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Abstract. We study properties under which the domain of a closed deriva-
tion δ : D(δ)→ A of a generalized B∗-algebra A remains invariant under ana-
lytic functional calculus. For a complete, generalized B∗-algebra with jointly
continuous multiplication, two sufficient conditions are assumed: that the unit
of A belongs to the domain of the derivation, along with a condition related
to the coincidence σA(x) = σD(δ)(x) of the (Allan) spectra for every element
x ∈ D(δ). Certain results are derived concerning the spectra for a general ele-
ment of the domain, in the realm of a domain which is advertibly complete or
enjoys the Q-property. For a closed ∗-derivation δ of a complete GB∗-algebra
with jointly continuous multiplication such that 1 ∈ D(δ) and x a normal
element of the domain, f(x) ∈ D(δ) for every analytic function on a neighbor-
hood of the spectrum of x. We also give an example of a closed derivation of
a GB∗-algebra which does not contain the identity element. A condition for a
closed derivation of a GB∗-algebra A to be the generator of a one-parameter
group of automorphisms of A is provided along with a generalization of the
Lumer–Phillips theorem for complete locally convex spaces.

1. Introduction

Generalized B∗-algebras (GB∗-algebras for short) are (in general, abstract)
∗-algebras consisting of unbounded linear operators on a Hilbert space, and
they were first studied in 1967 by Allan in [2]. More precisely, GB∗-algebras are
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locally convex ∗-algebras which are generalizations of C∗-algebras. Later, Dixon
[9] extended the notion of a GB∗-algebra to include nonlocally convex ∗-algebras.

The theory of unbounded ∗-derivations of C∗-algebras is well developed (see [7],
[8], [15]). In particular, necessary and sufficient conditions are known which guar-
antee an unbounded ∗-derivation of a C∗-algebra A to generate a one-parameter
automorphism group of A. In connection with this problem, the domains of
unbounded ∗-derivations of C∗-algebras have been studied extensively. More
importantly, if A is a C∗-algebra and δ : D(δ) → A is a closed, unbounded
∗-derivation of A with x ∈ D(δ), then f(x) ∈ D(δ) for all analytic functions f on
a neighborhood of SpA(x) = {λ ∈ C : x− λ1 is not invertible in A}. We say that
D(δ) is closed under analytic functional calculus.

One-parameter automorphism groups of C∗-algebras represent the time dynam-
ics of quantum mechanical systems, and our physical world consists mainly of
unbounded linear operators in a Hilbert space. It is well known that an every-
where defined derivation δ in a C∗-algebra A is bounded. In the case in which
δ is an unbounded, densely defined derivation in A, the question of closability
of the derivation arises. Motivated by the above, we were led to an investigation
of closed, possibly unbounded, ∗-derivations of GB∗-algebras. As for everywhere
defined derivations in GB∗-algebras, we were able to obtain certain results in pre-
vious work, for example, with respect to the innerness and continuity of these
derivations, in cases where the GB∗-algebra satisfied some particular properties
(see, e.g., [30], [31]). Nevertheless, the picture is far from complete for the case of
a general GB∗-algebra.

One of the main results (and motivational forces) of this article is Proposi-
tion 3.1, which gives sufficient conditions for the domain of a closed ∗-derivation
of a complete GB∗-algebra with jointly continuous multiplication to be closed
under analytic functional calculus. In Section 4, we prove one of the strongest
results of this article, namely, Theorem 4.8: If A[τ ] is a complete GB∗-algebra
with jointly continuous multiplication and δ : D(δ) → A is a closed ∗-derivation
of A such that 1 ∈ D(δ), then σA(x) = σD(δ)(x) for all normal elements x ∈ D(δ).
(If A is a locally convex ∗-algebra, then σA(x) represents the Allan spectrum of x;
see Section 2.) It follows from this and Proposition 3.1 that the domain of such
a closed ∗-derivation is closed under analytic functional calculus for all normal
elements x ∈ D(δ).

In Section 3, we give some general results involving conditions whereby the
domain of a closed ∗-derivation of a GB∗-algebra is closed under analytic func-
tional calculus, in which it is not necessarily the case that the corresponding
element is normal. If A is a C∗-algebra and δ : D(δ)→ A is a closed unbounded
∗-derivation of A, then 1 ∈ D(δ) (see [15, Theorem 4]). This no longer applies in
the more general case of a GB∗-algebra, as is demonstrated in Example 3.20.

Also in Section 4, we prove in Theorem 4.1 that if A is a complete locally
m-convex algebra and δ : D(δ) → A is a closed ∗-derivation of A such that
1 ∈ D(δ), then SpD(δ)(x) = SpA(x) for all x ∈ A, which extends the corresponding
result of Kissin and Shulman [16, Theorem 5]. From this, it follows that if A[τ ]
is a pro-C∗-algebra (i.e., an inverse limit of C∗-algebras) and δ : D(δ) → A is a
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closed ∗-derivation of A such that 1 ∈ D(δ), then the domain of δ is closed under
analytic functional calculus for all elements x ∈ D(δ) (see Corollary 4.3).

In Section 5 of this article, we investigate the problem of finding suitable con-
ditions for a closed ∗-derivation of a GB∗-algebra to generate a one-parameter
group of ∗-automorphisms of the algebra. In particular, we extend the well-known
Lumer–Phillips theorem for Banach spaces (see [19, Theorem 3.1]) to complete
locally convex spaces (see Proposition 5.3 and Theorem 5.4). This is applied to
prove Proposition 5.5. Let A[τ ] be a pro-C∗-algebra, and let δ : D(δ) → A be a
generator of a one-parameter automorphism group (αt)t of ∗-automorphisms of
A. Let 0 ≤ x ∈ D(δ). If (pα)α is a family of C∗-seminorms defining the topol-
ogy τ on A, then, for all α, there exists a (not necessarily nonzero) continuous
positive linear functional fα

x on A such that fα
x (δ(x)) ≤ 0 and fα

x (x) = pα(x).
Section 2 below gives all the necessary background material required to establish
our results from Section 3 onwards.

2. Preliminaries

Throughout the article, we adopt the convention that all vector spaces are
over the field C of complex numbers, and all topological spaces are assumed to
be Hausdorff. Moreover, all algebras are assumed to have an identity element
denoted by 1.

The term topological algebra is attributed to an algebra which is also a topo-
logical vector space such that the multiplication is separately continuous in both
variables. If the underlying topological vector space of a topological algebra is
metrizable and complete, then the algebra is called a Fréchet topological algebra.
A topological algebra endowed with a continuous involution ∗ is called a topo-
logical ∗-algebra. A topological ∗-algebra which is also a locally convex space is
called a locally convex ∗-algebra. The symbol A[τ ] will stand for a topological
(∗-)algebra A endowed with a given topology τ .

Definition 2.1 ([2, pp. 91–94]). Let A[τ ] be a topological ∗-algebra, and let B∗
A

(or simply B∗ if there is no chance of confusion) denote a collection of subsets B
of A with the following properties:

(i) B is absolutely convex, closed, and bounded;
(ii) 1 ∈ B, B2 ⊂ B, and B∗ = B.

For every B ∈ B∗, denote by A[B] the linear span of B, which is a normed algebra
under the gauge function ‖ · ‖B of B. If A[B] is complete for every B ∈ B∗, then
A[τ ] is called pseudocomplete.

An element x ∈ A is called bounded if for some nonzero complex number λ
the set {(λx)n : n = 1, 2, 3, . . .} is bounded in A. We denote by A0 the set of all
bounded elements in A.

A topological ∗-algebra A[τ ] is called symmetric if for every x ∈ A the element
(1 + x∗x)−1 exists and belongs to A0.

The notion of a bounded element is a generalization of the concept of bounded
operators on a Banach space, and was used by Allan [1] in order to develop a
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spectral theory for general locally convex algebras (a relevant notion of bound-
edness had been given earlier by Warner [29] in the context of locally m-convex
algebras). Toward this end, Allan [1] defined an extension of the usual notion of
the spectrum of an element of an algebra, which we give in the following def-
inition and to which we will refer as the Allan spectrum (a similar notion of
spectrum was previously defined by Waelbroeck [28] in the more special setting
of commutative b-algebras). Recall that for a general algebra A with an iden-
tity element 1, the spectrum of an element x ∈ A is denoted by SpA(x), where
SpA(x) = {λ ∈ C : λ1− x has no inverse in A}.

Definition 2.2 ([1, Definition 3.1]). Let A be a locally convex algebra with an
identity element 1, and let x ∈ A. Then the Allan spectrum of x ∈ A, denoted by
σA(x) (or simply by σ(x) if it is clear which algebra is being considered), is the
subset of C∗, that is, the one-point compactification of C, which is described as
follows:

σA(x) = {λ ∈ C : λ1− x has no inverse in A0} ∪ {∞ if and only if x /∈ A0}.

The resolvent set of x, denoted by ρA(x), is the complement of σA(x) in C∗.

A locally convex ∗-algebra A is said to have Hermitian involution if σA(x) ⊂ R
for every self-adjoint element x ∈ A (i.e., x = x∗). A pseudocomplete symmetric
algebra has Hermitian involution (see [2, p. 93]).

Definition 2.3 ([2, Definition 2.5]). A symmetric pseudocomplete locally convex
∗-algebra A[τ ] such that the collection B∗ has a greatest member denoted by B0,
is called a GB∗-algebra over B0.

If A is commutative, then A0 = A[B0] (see [2, p. 94]). In general, A0 is not a
∗-subalgebra of A, and A[B0] contains all normal elements of A0, that is, all x ∈ A
such that xx∗ = x∗x (see [2, p. 94]). We note that, throughout this paper, by a
Fréchet GB∗-algebra we mean a GB∗-algebra whose underlying locally convex
space is metrizable and complete. One of the results which indicates the closeness
of a GB∗-algebra to a C∗-algebra is the following proposition.

Proposition 2.4 ([2, Theorem 2.6], [6, Theorem 2]). If A[τ ] is a GB∗-algebra,
then the Banach ∗-algebra A[B0] is a C∗-algebra which is sequentially dense in A.
Moreover, (1 + x∗x)−1 ∈ A[B0] for every x ∈ A, and B0 is the unit ball of A[B0].

Recall that every C∗-algebra is topologically and algebraically ∗-isomorphic to
a norm-closed ∗-subalgebra of B(H) for some Hilbert space H. A GB∗-algebra is
algebraically ∗-isomorphic to a ∗-algebra of closed, possibly unbounded, operators
on a Hilbert space (see [9, Theorem 7.11]). Therefore, in light of Proposition 2.4,
a GB∗-algebra can be thought of as a C∗-algebra with “unbounded elements
adjoined to it.” For a recent survey on GB∗-algebras, the reader is referred to
[11].

A particular example of a GB∗-algebra is that of a pro-C∗-algebra (see [2,
p. 95(3)]. A pro-C∗-algebra A[τ ] is a complete topological ∗-algebra whose topol-
ogy τ is defined by a family Γ = {p} of C∗-seminorms, that is, p(x∗x) = p(x)2, for
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every p ∈ Γ and x ∈ A. A pro-C∗-algebra A[τ ] is, in particular, an m-convex alge-
bra; that is, p(xy) ≤ p(x)p(y) for every x, y ∈ A and for every seminorm p ∈ Γ.
In general, for a complete locally m-convex (∗-)algebra A[τΓ], the Arens–Michael
decomposition gives us that A = lim←−p

A/Np = lim←−p
Ap up to topological (∗-)iso-

morphisms. In the previous relation, Np := {x ∈ A : p(x) = 0} and Ap is the com-
pletion of the quotient A/Np with respect to the norm ‖x +Np‖ := p(x), x ∈ A.
If A[τ ] is a pro-C∗-algebra, then A/Np is automatically complete (see [10, Theo-
rem 10.24]).

Allan [1] presented a functional calculus for a pseudocomplete locally convex
algebra, which we now describe (see Theorem 2.6 below).

Definition 2.5 ([1, p. 414, Definition 5.2]). Let A be a pseudocomplete locally
convex algebra A, and let x ∈ A. We denote by Fx the set of all complex-valued
functions which are holomorphic on some neighborhood of σ(x). We denote by
F ′
x the quotient set of Fx by the equivalence relation ∼: for f, g ∈ Fx, f ∼ g if

and only if f equals g on some neighborhood of σ(x).
A subset D of C∗ is called a Cauchy domain if (i) D is open, (ii) D has a finite

number of components the closures of which are pairwise disjoint, and (iii) the
boundary ∂D of D is a subset of C and consists of a finite number of closed
rectifiable Jordan curves such that no two intersect.

If x ∈ A such that ρA(x) 6= Ø, then for any f ∈ Fx, there exists a Cauchy
domain D such that (i) σ(x) ⊂ D, and (ii) clD ⊂ ∆(f), where ∆(f) denotes
the domain of f and cl denotes the closure of D in C∗. The integral

∫
+∂D

f(λ)×
(λ1− x)−1 dλ (where +∂D denotes the positive oriented boundary of D) defines
an element of A0, which is independent of the choice of the Cauchy domain D
satisfying (i) and (ii) (see [1, p. 415]).

Theorem 2.6 ([1, Theorem 5.3]). Let A[τ ] be a pseudocomplete locally convex
algebra, and let x ∈ A. Then there is a homomorphism f 7→ f(x) of F ′

x into A0,
which is given by the following formulas.

(i) If x ∈ A0, then f(x) =
∫
+∂D

f(λ)(λ1 − x)−1 dλ, where D is a Cauchy
domain satisfying properties (i) and (ii) as in the immediately preceding
paragraph.

(ii) If x /∈ A0 and ρA(x) 6= Ø, then f(x) = f(∞)1 +
∫
+∂D

f(λ)(λ1− x)−1 dλ,
where D is as before.

(iii) If ρ(x) = Ø, then Fx contains only constant functions. If f(λ) = c, then
f(x) = cl.

We recall that a derivation δ in a topological algebra A[τ ] is a linear map
δ : D(δ) → A such that δ(xy) = δ(x)y + xδ(y) for all x, y ∈ D(δ), where D(δ)
is the domain of the derivation δ which is taken to be a dense subalgebra of A.
In the case where A is a topological ∗-algebra, a derivation δ in A is said to be a
∗-derivation if a ∈ D(δ) implies that a∗ ∈ D(δ) and δ(a∗) = δ(a)∗. A derivation

δ in A is said to be closed if, for any net {xi} in D(δ) such that xi
τ→ x and

δ(xi)
τ→ y, we have that x ∈ D(δ) and y = δ(x).
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3. Domains of closed derivations of GB∗-algebras

Let δ : D(δ) → A be a derivation of a GB∗-algebra A[τ ], and let x ∈ D(δ). If
f is an analytic function on a neighborhood of σA(x), the Allan spectrum of x
in A, then the question is if the Allan functional calculus f(x) is an element of
D(δ).

Proposition 3.1. Let A[τ ] be a complete GB∗-algebra with jointly continuous
multiplication. Let δ : D(δ) → A be a (τ − τ)-closed derivation of A[τ ], and let
x ∈ D(δ). Suppose that δ and x satisfy the following conditions:

(i) 1 ∈ D(δ), and
(ii) (λ1− x)−1 ∈ D(δ) for all λ ∈ ∂D (assuming that ρA(x) 6= ∅, where D is

a Cauchy domain as in Theorem 2.6).

Then f(x) ∈ D(δ) for all f ∈ Fx.

Proof. The proof follows the same argument as that of [8, Corollary 3]. Let

I =
1

2πi

∫
+∂D

f(λ)(λ1− x)−1 dλ,

where D is any Cauchy domain such that σA(x) ⊆ D and clD ⊆ ∆(f), where
∆(f) is the domain of f . By [1, Lemma 3.11], we get that (λ1 − x)−1 ∈ A[B]
for some B ∈ B (where B denotes the family of all subsets of A which enjoy all
the properties of the sets of the family B∗ of Definition 2.1 except that of self-
adjointness) and for all λ ∈ ∂D. Therefore, I can be approximated by Riemann
sums

Rn =
1

2πi

n∑
i=1

f(λi)(λi1− x)−1,

in the sense that Rn converges to I with respect to ‖ · ‖B on A[B]. Hence Rn → I
with respect to the topology τ , since τ is weaker than ‖ · ‖B on A[B] (see [1,
p. 400]). By hypothesis and [1, Lemma 3.11], Rn ∈ D(δ)∩A[B] for all n ∈ N. By
[1, Theorem 3.8], the map λ 7→ (λ1−x)−1 is analytic and hence (|·|−τ)-continuous
on ρA(x) (since ρA(x) 6= ∅). Using this and the joint continuity of multiplication,
we get that the map λ 7→ f(λ)(λ1− x)−1δ(x)(λ1− x)−1 is continuous on ∂D.

The τ -convergence of the Riemann sums δ(Rn) =
1

2πi

∑n
i=1 f(λi)(λi1− x)−1×

δ(x)(λi1 − x)−1 is concluded along the lines of the normed case (see, e.g., [13,
Theorem 3.3.2, p. 63]). Indeed, for the sake of brevity, let g(λ) = f(λ)(λ1−x)−1×
δ(x)(λ1 − x)−1. Hence, as already observed, g is a (| · | − τ)-continuous map
from ∂D into A. Let ∂D = γ1 ∪ · · · ∪ γm, where γk, k = 1, . . . ,m, are non-
intersecting, closed, rectifiable Jordan curves. We want to show that for each
k = 1, . . . ,m, the Riemann sums Sπk =

∑n
i=1 g(zk(tik))(zk(tik)− zk(t(i−1)k)) form

a Cauchy net in A, where πk = {tik}ni=0 is a partition of an interval, say, [ak, bk],
|πk| = max1≤i≤n |tik − t(i−1)k|, and zk(t), t ∈ [ak, bk] defines the curve γk. Let
ε > 0 be given, and let p be an arbitrary but fixed seminorm in Γτ . Since g
is continuous on ∂D, for every zk(t), t ∈ [ak, bk], there is δzk(t) > 0 such that
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g(U(zk(t), δzk(t))) ⊂ Up(g(zk(t)),
ε
2
), where

U
(
zk(t), δzk(t)

)
=
{
µ ∈ C :

∣∣µ− zk(t)
∣∣ < δzk(t)

}
,

Up

(
g
(
zk(t)

)
,
ε

2

)
=
{
x ∈ A : p

(
x− g

(
zk(t)

))
<

ε

2

}
.

Since ∂D is compact, if λ is the Lebesgue number of the open covering
{U(zk(t), δzk(t)) : t ∈ [ak, bk]} of γk, then for zk(t1), zk(t2) ∈ γk such that
|zk(t1) − zk(t2)| < λ, we have that zk(t1), zk(t2) ∈ U(zk(t), δzk(t)) for some t ∈
[ak, bk]. Therefore, p(g(zk(t1)) − g(zk(t2))) < ε. Thus, for partitions πk

1 , π
k
2 such

that |πk
1 |, |πk

2 | < λ
2
, we have that

p(Sπk
1
− Sπk

2
) < εVar

(
zk(t)

)
,

where Var(zk(t)) is the total variation of the curve γk which is finite since the
curve is assumed rectifiable. Since the seminorm p was arbitrary, we get that Sπk

is τ -Cauchy in A, hence convergent in A. Since the above considerations hold for
all k = 1, . . . ,m, we conclude that

δ(Rn)→
1

2πi

∫
+∂D

f(λ)(λ1− x)−1δ(x)(λ1− x)−1 dλ

with respect to the topology τ .
Since δ is (τ − τ)-closed, it follows that I ∈ D(δ). By hypothesis, 1 ∈ D(δ),

and so f(x) ∈ D(δ) in all three cases (i)–(iii) of Theorem 2.6. �

We now show that condition (ii) in Proposition 3.1 is also a necessary condi-
tion. Again, let A be a pseudocomplete locally convex algebra. Let x ∈ A with
ρA(x) 6= ∅. Let δ : D(δ) → A be a ∗-derivation such that f(x) ∈ D(δ) for all
analytic functions f on a neighborhood surrounding σA(x).

Let λ /∈ σA(x), and let f(µ) = 1
λ−µ

. Then f is analytic on C∗ \ {λ}, and
hence on a neighborhood U of σA(x) with λ /∈ U . We could take U to be
a Cauchy domain D. Then f(x) = (λ1 − x)−1, whether or not x ∈ A0. The
functional calculus is a homomorphism, and

∫
+∂D

f(µ)(µ1 − x)−1 dµ is (closed)
curve-independent (see also [26, Theorem 7.2] in this regard). By assumption
(λ1− x)−1 = f(x) ∈ D(δ), whether or not x ∈ A0.

If A above is a C∗-algebra, then it is well known (see [8, Theorem 2]) that
(λ1−x)−1 ∈ D(δ) for all λ ∈ ρA(x). The proof of this result, as given in [8], relies
on expressing (λ1−x)−1 as a power series, especially making use of the Neumann
series when λ > rA(x). The proof is concluded with an analytic continuation argu-
ment. All of this works since a C∗-algebra consists of bounded linear operators.
However, a GB∗-algebra generally has unbounded linear operators. The following
proposition shows that Bratteli and Robinson’s proof of [8, Theorem 2] is gener-
ally not conceivable in the world of unbounded operators due to there being no
Neumann series (since it is not a Q-algebra unless it is a C∗-algebra). We recall
that a unital topological algebra is a Q-algebra if the group of invertible elements
is open. Motivated by the above discussion, we give the following proposition, for
which the proof follows immediately.
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Proposition 3.2. Let A[τ ] be a unital topological algebra for which there is a
neighborhood U of 0 ∈ A such that

∑∞
n=0 x

n converges to (1− x)−1 for all x ∈ U .
Then A[τ ] is a Q-algebra.

Corollary 3.3. Let A[τ ] be a Fréchet GB∗-algebra for which there is a neighbor-
hood U of 0 ∈ A such that

∑∞
n=0 x

n converges to (1 − x)−1 for all x ∈ U . Then
A[τ ] is a C∗-algebra.

Proof to Proposition 3.2. Every Fréchet Q-algebra has continuous inversion (see
[33, Corollary 7.8]) and is barreled. Therefore, by Proposition 3.2, [1, Corol-
lary 4.2], and [2, Corollary 2.8], it follows that A[τ ] is a C∗-algebra. �

Let (αt)t∈R be a τ -continuous one-parameter group of ∗-automorphisms of a
locally convex ∗-algebra A[τ ]. Then

D(δα) =
{
x ∈ A : τ − lim

t→0

αt(x)− x

t
exists

}
is dense in A. Let

δα(x) = τ − lim
t→0

αt(x)− x

t
for all x ∈ D(δα). It is well known that δα is an unbounded ∗-derivation of A,
and we say that δα is the generator of the group of automorphisms (αt)t∈R.

Remark 3.4. Let A[‖ · ‖] be a C∗-algebra, and let (αt)t be a strongly continuous
one-parameter subgroup of ∗-automorphisms of A. In [22], an element a of A is
defined to be analytic if t→ αt(a) is analytic. This is equivalent to a ∈

⋂∞
n=1 D(δnα)

and
∑∞

n=0(
‖δnα(a)‖

n!
)sn < +∞ for some s > 0 (see [22]). From the definition of

analytic element, we see that if an element a is analytic, then a ∈ D(δα).
If a ∈ A is analytic, then we can define an A-valued complex analytic function

f on neighborhood of zero in C such that f(z) =
∑∞

n=0(
δn(a)
n!

)zn, where |z| < s
(see [22]). Furthermore, f(t) = αt(a) for |t| < s. Lastly, Sakai [22, pp. 428–429]
proves that the set of analytic elements is a ∗-subalgebra of A.

Corollary 3.5. Let δ be a closed derivation of a complete GB∗-algebra A[τ ] having
jointly continuous multiplication, which is also the generator of a τ -continuous
one-parameter group of ∗-automorphisms of A. Then, for all x ∈ D(δ) and f ∈
Fx, we have that f(x) ∈ D(δ).

Proof. We show that conditions (i) and (ii) of Proposition 3.1 are satisfied. The
fact that 1 ∈ D(δα) is trivial, and this verifies condition (i). As for condition (ii),
let x ∈ D(δα). Observe that if λ ∈ ρA(x), then

αt((λ1− x)−1)− (λ1− x)−1

t

=
(λ1− x)−1[(λ1− x)− (λ1− αt(x))]αt((λ1− x)−1)

t

= (λ1− x)−1αt(x)− x

t
αt

(
(λ1− x)−1

)
→ (λ1− x)−1δα(x)(λ1− x)−1

as t→ 0, and therefore (λ1− x)−1 ∈ D(δα). �
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The last corollary therefore motivates the question as to when a closed deriva-
tion of a complete GB∗-algebra A[τ ], with jointly continuous multiplication, is
the generator of a continuous one-parameter group of ∗-automorphisms of A.
One answer to this question, for a complete GB∗-algebra, is given with Theorems
5.2 and 5.4.

The remainder of this section is devoted to finding some necessary and sufficient
conditions under which conditions (i) and (ii) of Proposition 3.1 are satisfied. We
first investigate condition (i) with the culmination of Corollary 3.8 below.

The proof of the following theorem is an adaptation of the proof of [16, Theo-
rem 4].

Theorem 3.6. Let A[τ ] be a complete GB∗-algebra with jointly continuous mul-
tiplication. If δ : D(δ)→ A is a (τ − τ)-closed derivation with domain D(δ) such

that D(δ) ∩ A[B0]
‖·‖B0 = A[B0], then 1 ∈ D(δ).

Proof. Since A[τ ] has jointly continuous multiplication, it follows that the multi-
plications A[B0] × A → A and A × A[B0] → A are (‖ · ‖B0 × τ − τ)-continuous
and (τ × ‖ · ‖B0 − τ)-continuous, respectively. Therefore, since A[τ ] is also com-
plete, by [21, Proposition 3.4] the topology τ can be defined by a family of semi-
norms (pα)α∈Λ such that pα(ax) ≤ ‖a‖B0pα(x) and pα(xa) ≤ ‖a‖B0pα(x) for all
a ∈ A[B0], x ∈ A, and α ∈ Λ.

Since D(δ) ∩ A[B0]
‖·‖B0 = A[B0], there exists y ∈ D(δ) ∩ A[B0] such that

‖1− y‖B0 = ε < 1. For every n ∈ N, let

xn = 1− (1− y)n =
n∑

k=1

Ck
n(−1)k+1yk,

where the Ck
n are the ordinary binomial coefficients. Then xn ∈ A[B0] ∩D(δ) for

all n ∈ N, and xn → 1 with respect to ‖ · ‖B0 . Therefore, xn → 1 with respect to
the topology τ .

We show that δ(xn)→ 0 with respect to the topology τ . Observe that

xn+1 = 1− (1− y)(1− y)n

= 1− (1− y)(1− xn)

= y + xn − yxn.

Therefore,

δ(xn+1) = δ(y) + δ(xn)− yδ(xn)− δ(y)xn

= δ(y)(1− xn) + (1− y)δ(xn).

Choose an arbitrary α ∈ Λ and keep it fixed. It follows that

pα
(
δ(xn+1)

)
≤ pα

(
δ(y)(1− xn)

)
+ pα

(
(1− y)δ(xn)

)
≤ ‖1− xn‖B0pα

(
δ(y)

)
+ ‖1− y‖B0pα

(
δ(xn)

)
≤ εnpα

(
δ(y)

)
+ εpα

(
δ(xn)

)
.
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Let tα,n = pα(δ(xn)) and Cα = pα(δ(y)) for all n ∈ N and α ∈ Λ. Then tα,n+1 ≤
εnCα + εtα,n. By induction,

tα,n+1 ≤ nεnCα + εntα,1 → 0

as n → ∞ (write ε = 1
ε0
; then ε0 > 1, and hence nεn = n

εn0
→ 0 as n → ∞).

Therefore, pα(δ(xn))→ 0 as n→∞. Since α ∈ Λ was chosen arbitrarily, the last
statement holds for all α ∈ Λ. So δ(xn)→ 0 with respect to the topology τ . Since
δ is (τ − τ)-closed, it follows that 1 ∈ D(δ). �

Remark 3.7.

(1) It would be interesting to know when the condition D(δ) ∩ A[B0]
‖·‖B0 =

A[B0] in Theorem 3.6 holds, and we give an answer to this in Corollary 4.14
below.

(2) Theorem 3.6 is especially true for all Fréchet GB∗-algebras, C∗-like alge-
bras, and particularly pro-C∗-algebras (since these algebras are complete
and have jointly continuous multiplication; for the definition of a C∗-like
algebra, see [14]).

(3) In Theorem 3.6, one only requires the condition that D(δ) ∩ A[B0]
‖·‖B0 =

A[B0] in order to know that there exists y ∈ A[B0] ∩ D(δ) such that

‖1 − y‖B0 < 1, that is, 1 ∈ D(δ) ∩ A[B0]
‖·‖B0 . We therefore have the

following result.

Corollary 3.8. Let A[τ ] be a complete GB∗-algebra with jointly continuous mul-
tiplication. Let δ : D(δ)→ A be a (τ−τ)-closed (∗-)derivation with domain D(δ).
The following conditions are equivalent:

(i) 1 ∈ D(δ), and

(ii) 1 ∈ D(δ) ∩ A[B0]
‖·‖B0 .

Proof. The proof of (ii) ⇒ (i) is exactly the same as the proof of Theorem 3.6
(see Remark 3.7(3) above). The implication (i) ⇒ (ii) is trivial. �

Let x ∈ A[τ ], and let δ : D(δ) → A be a closed ∗-derivation of A with x ∈
D(δ). Then the question of whether (λ1 − x)−1 is in D(δ) for all λ ∈ ρA(x) ∩
C is implied by SpD(δ)(x) = SpA(x). Since we want to find conditions under
which Proposition 3.1(ii) is satisfied, we now turn our attention to the question
of whether SpD(δ)(x) = SpA(x) is true for all x ∈ D(δ).

If A[τ ] is a topological algebra which is not necessarily unital, then we use the
symbol Gq

A to denote the set of quasi-invertible elements in A. If A is unital, then
the symbol GA denotes the set of all invertible elements in A. Furthermore, if A
is unital, then x ∈ Gq

A if and only if 1− x ∈ GA.
Recall that a topological algebra A[τ ] is said to be advertibly complete if every

Cauchy net (xλ) in A, having the property that xλ ◦ x → 0 and x ◦ xλ → 0 for
some x ∈ A, converges in A (see [10, Definition 6.1]).

Proposition 3.9 ([10, Proposition 6.2]). Let A[τ ] be an advertibly complete topo-

logical algebra (not necessarily unital) such that the completion Ã[τ̃ ] of A[τ ] is a
topological algebra. If x ∈ A, then x ∈ Gq

A if and only if x ∈ Gq

Ã
.
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Corollary 3.10. Let A[τ ] be a complete topological algebra, and let δ : D(δ)→ A
be a derivation of A such that D(δ) is advertibly complete and 1 ∈ D(δ). If
x ∈ D(δ), then (λ1− x)−1 ∈ D(δ) for all λ /∈ SpA(x).

Proof. Observe that D(δ) is an advertibly complete topological algebra in the
relative topology inherited from the topology τ on A, whose completion is A[τ ].
The completion of the advertibly complete topological algebra D(δ) is therefore
a topological algebra. Let x ∈ D(δ). By Proposition 3.9, we have that x ∈ GD(δ)

if and only if x ∈ GA. It follows that (λ1− x)−1 ∈ D(δ) for all λ /∈ SpA(x). �

Every Q-algebra is advertibly complete, and the concepts of advertibly com-
plete and Q-algebra are equivalent for normed algebras (see [10, Theorem 6.5]).
An advertibly complete algebra need not be a Q-algebra.

If δ : D(δ) → A is a closed derivation of a Banach algebra A, then D(δ) is a
Q-algebra (see [16, Theorem 5]). This result does not extend to GB∗-algebras. Let
A[τ ] be a Fréchet GB∗-algebra which is not a Q-algebra (i.e., not a C∗-algebra,
by Corollary 3.3). Take any continuous derivation δ : A→ A of A (e.g., an inner
derivation). By the closed graph theorem, δ is closed. However, D(δ) = A is not
a Q-algebra.

For the next result, which is an extension of [16, Theorem 1], we have to recall
that a Fréchet GB∗-algebra A[τ ] is a Q-algebra if and only if it is a C∗-algebra
(see Corollary 3.3). So if we want to look at a GB∗-algebra A[τ ] which is not a
C∗-algebra and behaves like a Q-algebra, then one has to put some other topology
τ ′ on A such that A[τ ′] is a Q-algebra (although not necessarily a GB∗-algebra).

Proposition 3.11. Let A[τ ′] be a complete Q-algebra. Let B be a subalgebra of
A which is also τ ′-dense in A. The following statements are equivalent.

(i) The algebra B[τ ′B] is a Q-algebra, where τ ′B is the relative topology on B
induced by the topology τ ′ on A.

(ii) The algebra B[τ ′B] is advertibly complete.
(iii) We have that SpB(x) = SpA(x) for all x ∈ B.

Proof. (i) ⇒ (iii) This is [10, Proposition 6.16].
(iii) ⇒ (i) Condition (iii) is equivalent to GB = B ∩ GA, where GB and GA

denote the set of invertible elements in B and A, respectively, with inverses in B
and A, respectively. By hypothesis, GA is τ ′-open in A, and hence GB is τ ′B-open
in B.

(i) ⇒ (ii) This follows from [10, Theorem 6.5]. Now (ii) ⇒ (iii) follows from
[10, Proposition 6.2]. �

Observe that the implication (iii) ⇒ (ii) in the above proposition holds under
less stringent conditions. If A[τ ] is a topological algebra such that there is a
topology τ ′ on A such that A[τ ′] is a Q-algebra (not necessarily complete), and
B is a subalgebra of A (not necessarily τ ′-dense in A), then (iii) implies (ii). The
proof is the same as that above.

Remark 3.12. Proposition 3.11 is especially valid if B is the domain of a closed
derivation of A, which is the motivation for the proof of the proposition.
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We now give two examples demonstrating that there are GB∗-algebras A[τ ]
having Q-algebra topologies τ ′ and A[τ ] is not a C∗-algebra.

Example 3.13 ([34, Example 1]). Let A be the commutative algebra of all complex-
valued continuous functions on [0, 1]. Let A be equipped with the compact-
open topology τ , defined by countable compact subsets of [0, 1]. Then A[τ ] is
a pro-C∗-algebra, and it is a C∗-algebra with respect to the topology τ ′ defined
by the norm on A. Now A[τ ′] is a Q-algebra, and A[τ ] is not a Q-algebra. So A[τ ]
is not a C∗-algebra.

Example 3.14. The noncommutative algebra B(H) of all bounded linear operators
on a Hilbert space H is a Q-algebra with respect to the norm topology, and
B(H)[τw] is a GB∗-algebra with respect to the weak operator topology τw on
B(H), but it is not a C∗-algebra.

We require the following result, which is a special case of [34, Corollary 3], in
the proof of Theorem 3.16 below.

Theorem 3.15. Let A[τ ] be a commutative barreled pro-C∗-algebra. Then A[τ ]
is a Q-algebra if and only if SpA(x) is bounded for every x ∈ A.

Theorem 3.16. Let A[τ ] be a metrizable commutative pro-C∗-algebra. The fol-
lowing statements are equivalent.

(i) We have that SpA(x) is bounded for all x ∈ A.
(ii) Every (τ − τ)-closed derivation δ : D(δ) → A has the properties that

SpD(δ)(x) = SpA(x) for all x ∈ D(δ), and D(δ)[τD(δ)] is a Q-algebra.
(iii) Every (τ − τ)-closed derivation δ : D(δ) → A has the property that

D(δ)[τD(δ)] is a Q-algebra.

Proof. (i) ⇒ (ii) By Theorem 3.15, we get that A[τ ] is a Fréchet Q-algebra.
Therefore, by Corollary 3.3, it follows that A[τ ] is a C∗-algebra.

Since δ : D(δ) → A is ‖ · ‖-closed, we have that SpD(δ)(x) = SpA(x) for all
x ∈ D(δ). It follows from Proposition 3.11 that D(δ)[τD(δ)] is a Q-algebra.

(iii) ⇒ (i) Assume that (iii) holds. Observe that the zero derivation δ on A is
(τ−τ)-continuous, and hence (τ−τ)-closed (since it is defined on the whole of A).
Therefore, by (iii), A[τ ] = D(δ) is a Q-algebra. Therefore, SpA(x) is bounded
for all x ∈ A (this is true for any Q-algebra). The implication (ii) ⇒ (iii) is
obvious. �

In the current literature, there exist various characterizations of C∗-algebras
within the class of locally convex ∗-algebras. The following proposition is another
such result with the surprising outcome that it is the nature of the unbounded
∗-derivations which completely determines whether or not a given Fréchet
GB∗-algebra is a C∗-algebra.

Proposition 3.17. Let A[τ ] be a Fréchet GB∗-algebra. The following statements
are equivalent.

(i) We have that A[τ ] is a C∗-algebra.
(ii) Every (τ − τ)-closed ∗-derivation δ : D(δ) → A has the properties that

σD(δ)(x) = σA(x) for all x ∈ D(δ), and D(δ)[τD(δ)] is a Q-algebra.
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(iii) Every (τ − τ)-closed derivation δ : D(δ) → A has the property that
D(δ)[τD(δ)] is a Q-algebra.

In the above, the symbol τD(δ) denotes the relative topology on the domain D(δ)
of δ induced by τ .

Proof. (i)⇒ (ii) Suppose that (i) holds, and let δ : D(δ)→ A be a (τ − τ)-closed
unbounded ∗-derivation of A. Then τ is defined by the C∗-norm ‖ · ‖, say. Then
δ : D(δ)→ A is (‖ · ‖ − ‖ · ‖)-closed, and hence σD(δ)(x) = σA(x) for all x ∈ D(δ)
(see [8, Theorem 2]), and D(δ) is a Q-algebra with respect to the relative topology
coming from the norm topology on A (proved in [16, Theorem 5]).

(iii) ⇒ (i) Assume that (iii) holds. Now the zero derivation δ on A is
(τ−τ)-continuous, and hence (τ−τ)-closed (since it is defined on the whole of A).
Therefore, by (iii), A[τ ] = D(δ) is a Q-algebra. Therefore, by Corollary 3.3, A[τ ]
is a C∗-algebra. The implication (ii) ⇒ (iii) is obvious. �

For the proof of the following proposition, we recall that if A[τ ] is a complete
commutativem-convex algebra (i.e., a commutative Arens–Michael algebra), then
x ∈ GA if and only if f(x) 6= 0 for all continuous characters f on A, since A[τ ],
being complete, is advertibly complete (see [10, Proposition 6.10(6)]).

Proposition 3.18 below is an analogue of [16, Theorem 5]. In what follows, we
will use the term “character” to mean “multiplicative linear functional.”

Proposition 3.18. Let A[τ ] be a commutative pro-C∗-algebra, and let δ : D(δ)→
A be a (τ − τ)-closed derivation such that SpD(δ)(x) = SpA(x) for all x ∈ D(δ).
Then D(δ)[τD(δ)] is advertibly complete.

Proof. By hypothesis, GD(δ) = D(δ)∩GA. Let x ∈ D(δ) be invertible with inverse
in D(δ), that is, x ∈ GD(δ). Then x ∈ GA. So, for all continuous characters f
on A, we have f(x) 6= 0. Since D(δ) is dense in A, every continuous character g
on D(δ) extends to a continuous character f on A. So g(x) 6= 0 for all continuous
characters g on D(δ).

Now suppose that x ∈ D(δ), and for all continuous characters g on D(δ), we
have g(x) 6= 0. Every continuous character g on D(δ) extends to a continuous
character f on A. All continuous characters on A are continuous extensions of
continuous characters of D(δ). Therefore, f(x) 6= 0 for all continuous characters
f on A, and hence x ∈ GA. Since GD(δ) = D(δ) ∩ GA, it follows that x ∈ GD(δ).
Therefore, x ∈ D(δ) is in GD(δ) if and only if g(x) 6= 0 for all continuous characters
g on D(δ).

By [10, Proposition 6.10(6)], D(δ)[τD(δ)] is advertibly complete. �

Motivated by Theorem 3.16(ii), it would be interesting to know if all (τ − τ)-
closed derivations δ : D(δ) → A of a commutative barreled pro-C∗-algebra with
1 ∈ D(δ), and SpD(δ)(x) = SpA(x) for all x ∈ D(δ), have the property that D(δ)
is a Q-algebra. The following example answers this question in the negative.

Example 3.19. Let A1 be an incomplete, unital, commutative, normed Q-algebra
which is also a pre-C∗-algebra (i.e., a C∗-algebra without the completeness prop-
erty). For every 1 < n ∈ N, let An be a commutative C∗-algebra. Then A =∏∞

n=1An is an advertibly complete commutative C∗-convex algebra (i.e.,
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a pro-C∗-algebra without the completeness property) in the product topology
τ which is not a Q-algebra (this is a special case of [10, Example 6.12(1)]). So

SpA(x) = SpÃ(x) for all x ∈ A (by Proposition 3.9), where Ã is the completion

of A. In fact, Ã =
∏∞

n=1Bn, where B1 is the completion of A1, and Bn = An for

all 1 < n ∈ N. Therefore, Ã is a commutative metrizable pro-C∗-algebra.
For every n > 1, let δn : An → An be the zero derivation. For n = 1, let

δ1 be any closed derivation of the C∗-algebra B1 with D(δ1) = A1. Since δn is
continuous and D(δn) = An for all n > 1, one has that δn is a closed derivation
of An for all n > 1 (for n > 1, recall that An is complete).

Let δ : A → Ã be the derivation defined by δ((xn)n) = (δn(xn))n for all
(xn)n ∈ A. Then δ is closed in the product topology. Let (ym) = (amn )n ∈ A with

ym → y = (an)n ∈ Ã, and let δ(ym)→ b = (bn)n ∈ Ã as m→∞.
Then amn → an for all n ∈ N as m→∞, and

δ(ym)→ b ⇒ δ
(
(amn )n

)
→ (bn)n

⇒ δn(a
m
n )→ bn

⇒ an ∈ An and bn = δn(an)

⇒ y = (an)n ∈ A and b = (bn)n =
(
δn(an)

)
n
= δ(y).

Therefore, δ is closed; note also that D(δ) = A. So, D(δ) is advertibly complete,
not a Q-algebra, and SpD(δ)(x) = SpA(x) for all x ∈ D(δ) (for this last fact, see
Proposition 3.9). This is the same as saying that, for all x ∈ D(δ) and λ /∈ SpA(x),
one has that (λ1− x)−1 ∈ D(δ).

Example 3.20. Consider the pro-C∗-algebra Ã[τ ] and the closed derivation δ :

D(δ) → Ã as in Example 3.19, where D(δ) is the ∗-subalgebra A as in Exam-
ple 3.19. Then 1 ∈ D(δ). Furthermore, if (pn) is the family of C∗-seminorms on

Ã defining the topology τ (as in Example 3.19), then supn pn(xn) ≤ 1 if and only

if pn(xn) ≤ 1 for all n ∈ N and all (xn)n ∈ Ã. Therefore

Ã[B0] ∩D(δ) = Ã[B0] ∩ A

=
{
(xn)n ∈ A : sup

n
pn(xn) <∞

}
=
{
(xn)n ∈ A : sup

n≥2
pn(xn) <∞

}
.

Note that Ã[B0] is a C∗-algebra with respect to the norm ‖(xn)‖ = supn pn(xn).

Let x = (xn) ∈ Ã[B0] ⊆ Ã. Then supn pn(xn) <∞, so supn≥2 pn(xn) <∞. There

is a sequence (am) in A1 such that am → x1. Let bm = (b
(m)
n )n be defined as

follows: b
(m)
1 = am for all m ∈ N, and b

(m)
n = xn for all n ≥ 2 and all m ∈ N. Then

bm ∈ A for all m ∈ N. By the three displayed equalities above, and the fact that

supn≥2 pn(xn) <∞, it follows that bm ∈ Ã[B0] ∩ A. Now

‖bm − x‖ = sup
n

pn(b
(m)
n − xn) = p1(am − x1)→ 0.
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Now p1 is the C∗-norm on A1. Therefore, Ã[B0] ∩D(δ)
‖·‖

= Ã[B0]. Observe that

the pro-C∗-algebra Ã[τ ] is not a C∗-algebra.

We conclude this section by giving an example of a GB∗-algebra admitting a
closed ∗-derivation δ : A[τ ]→ A for which 1 /∈ D(δ) (see Example 3.24). For this,
we require the following two propositions, of which the following proposition is
an immediate consequence of [5, Proposition 3.6]. In regard to the term “GNS-
representation” used in what follows, we briefly recall that if B is a general unital
∗-algebra and f is a state on B, the GNS-representation of B is constructed as
follows. Consider Nf = {x ∈ B : f(x∗x) = 0}. Then the quotient B/Nf is a pre-
Hilbert space under the inner product 〈x + Nf , y + Nf〉 = f(y∗x), x, y ∈ B. Let
Hf be the Hilbert space completion of B/Nf with respect to the inner product.
Then the GNS-representation of B is the ∗-representation of B on Hf which is
given by πf : B → L(B/Nf ) : πf (x)(y+Nf ) = xy+Nf , x, y ∈ B, where L(B/Nf )
denotes all linear operators X from B/Nf into B/Nf such that the domain of X∗

contains B/Nf and such that X∗(B/Nf ) ⊂ B/Nf (see, e.g., [24, p. 227]).

Proposition 3.21. Let δ : D(δ) → A be a derivation of a GB∗-algebra A[τ ].
Assume that there is a continuous linear functional f on A such that f |D(δ) is a
state on D(δ) and

(i) f ◦ δ is continuous on D(δ),
(ii) the GNS-representation πf of D(δ) is faithful.

Then δ is closable.

The strategy of the proof of this proposition given in [5] is to prove that

D(δ′) =
{
f ∈ A′ : δ′(f) has a continuous extension to A

}
is σ(A′, A)-dense in A′. By [17, p. 34], this is equivalent to δ being (τ − τ)-closed,
not only (τ − τ)-closable. One therefore has the following result.

Proposition 3.22. Let δ : D(δ) → A be a derivation of a GB∗-algebra A[τ ].
Assume that there is a continuous linear functional f on A such that f |D(δ) is a
state on D(δ) and

(i) f ◦ δ is continuous on D(δ),
(ii) the GNS-representation πf of D(δ) is faithful.

Then δ is closed.

An example of an unbounded derivation of a C∗-algebra satisfying the condi-
tions of Proposition 3.22 is every inner limit derivation of a uniformly hyperfinite
algebra (see [8, Corollaries 6 and 9 and their proofs]). For Example 3.24, we require
the following lemma. We recall that a C∗-algebraM is called aW ∗-algebra if there
is a Banach space M∗ such that the dual (M∗)

∗ of M∗ is M .

Lemma 3.23. Let A[τ ] be a GB∗-algebra whose A[B0] is a W ∗-algebra. If I is a
two-sided ideal of A, then I is a ∗-ideal of A.

Proof. Let x ∈ I. Then x(1 + x∗x)−1 ∈ I ∩ A[B0]. Observe that I ∩ A[B0] is a
two-sided ideal of theW ∗-algebra A[B0]. Since any two-sided ideal of aW ∗-algebra
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is a ∗-ideal, it follows that [x(1 + x∗x)−1]∗ ∈ I ∩ A[B0], that is, (1 + x∗x)−1x∗ ∈
I ∩ A[B0]. Therefore

x∗ = (1 + x∗x)(1 + x∗x)−1x∗ ∈ I,

completing the proof. �

It should be noted that it is known that every closed two-sided ideal of a
GB∗-algebra is a ∗-ideal (see [18]). In the preceding lemma, the assumption that
A[B0] is a W ∗-algebra makes the assumption “closed” for the ideal I to be redun-
dant in order to conclude that I is a ∗-ideal.

Example 3.24. Let δ : D(δ) → A be a derivation of a GB∗-algebra A[τ ] with
jointly continuous multiplication, and suppose that there is a ∗-subalgebra B of
D(δ) which is dense in A and such that 1 /∈ B (if 1 /∈ D(δ), then we can take
B = D(δ)). Assume that there is a continuous linear functional f on A such that
f |D(δ) is a state on D(δ) and

(i) f ◦ δ is continuous on D(δ),
(ii) the GNS-representation πf of D(δ) is faithful.

If δ0 is the restriction of δ to B, then conditions (i) and (ii) still hold for δ0. That
condition (i) is still valid is trivial. Concerning (ii), the restriction of πf to B is
the map (πf )B : B → B(H) defined by (πf )B(a)(x+ (Nf ∩B)) = ax+ (Nf ∩B)
for all a, x ∈ B. Since πf is faithful, it follows easily that (πf )B is faithful. By

Proposition 3.22, δ0 is closed. By Theorem 3.6, D(δ0) ∩ A[B0]
‖·‖B0 6= A[B0] (since

1 /∈ B).
If A is a C∗-algebra, then a ∗-subalgebra B as described above does not exist,

since every closed unbounded derivation of a C∗-algebra has 1 in its domain.
Therefore, the example can only exist in the realm of nonnormed GB∗-algebras.

Now, in this example, let A[τ ] be a commutative metrizable pro-C∗-algebra
which is not a C∗-algebra (with respect to the topology τ), and which has a
(continuous) positive linear functional f such that πf is faithful. Assume also
that A[B0] is a W ∗-algebra.

Observe that A[τ ] is not a Q-algebra since it is not a C∗-algebra (by Corol-
lary 3.3), and therefore, A has a dense maximal ideal M , say (see [34, Corol-
lary 3]). Observe that 1 /∈ M (since M is a maximal ideal, which is always
properly contained in the algebra). Now let δ (as above) denote the everywhere
defined zero derivation on A. Observe that condition (i) above is then trivially
satisfied. Let δ0 (as above) be the restriction of δ to M ; that is, we are taking
B above to be M . Since A[B0] is a W ∗-algebra, it follows from Lemma 3.23 that
M is a ∗-ideal, hence a ∗-subalgebra, of A. Then δ0 is a closed ∗-derivation of A
with 1 /∈M = B = D(δ0).

Furthermore, M is not closed under analytic functional calculus either. Assume
that there exists x ∈ M such that ρA(x) 6= ∅. Let f(λ) = 1 ∈ C for all λ
in C∗. Then f is an analytic function on C∗, and f(x) = 1 ∈ A. Therefore,
f(x) /∈M = D(δ0).

In the example above, we might also have an example of a GB∗-algebra A[τ ]
having a derivation δ : A → A which is not closed under analytic functional
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calculus for self-adjoint elements of D(δ), with 1 /∈ D(δ). Is there a closed deriva-
tion for which the domain contains 1 ∈ A and which is not closed under analytic
functional calculus? While such an example seems, at present, to be out of reach,
were it to exist, then, by Corollary 3.5, it would have no significance to quantum
physics and quantum statistical mechanics (and perhaps also not to the general
theory of Lie groups and Lie algebras).

4. Domains of closed derivations of pro-C∗-algebras

In this section, we detect certain features (such as continuity of inversion or
commutativity) which, when applied to a complete GB∗-algebra with jointly con-
tinuous multiplication, are sufficient to fulfill Proposition 3.1(ii). The empower-
ment of the latter property resulted either from the proven coincidence of the
algebraic spectra or the Allan spectra (see Theorem 4.4 and Theorem 4.8, respec-
tively) depending on the initial assumptions that we set for the algebra.

We start off by showing that if δ : D(δ)→ A is a closed ∗-derivation of a com-
plete locally m-convex ∗-algebra A[τ ] with 1 ∈ D(δ), then SpD(δ)(x) = SpA(x)
for all x ∈ D(δ). We first recall the following fact. Let A[τΓ] be a complete
locally m-convex ∗-algebra with Γ a family of submultiplicative seminorms defin-
ing the topology τΓ of A. Consider M2(A), the set of all 2 × 2 matrices with
elements from A, endowed with the usual matrix operations, involution (aij)i,j 7→
(a∗ji)i,j and equipped with the topology induced by the seminorms {Sp̃}p∈Γ, where
Sp̃((

x11 x12
x21 x22 )), for each matrix ( x11 x12

x21 x22 ) in M2(A), is defined by the following equal-
ities:

sup

{
p̃

((
x11 x12

x21 x22

)(
a1
a2

))
: a1, a2 ∈ A; p(a1) + p(a2) ≤ 1

}
= sup

{
p(x11a1 + x12a2) + p(x21a1 + x22a2) : a1, a2 ∈ A; p(a1) + p(a2) ≤ 1

}
,

where p̃(a, b) := p(a) + p(b) for every (a, b) ∈ A × A, p ∈ Γ. Then M2(A) is
a complete locally m-convex ∗-algebra such that M2(A) = lim←−p

M2(Ap) within

a topological ∗-isomorphism (see [20, p. 467]). Note that, for every p ∈ Γ, the
topology on M2(Ap) is the one induced by the norm

S‖·‖p

((
ap bp
cp dp

))
:= sup

{
‖apxp + bpyp‖p + ‖cpxp + dpyp‖p :

(xp, yp) ∈ Ap × Ap; ‖xp‖p + ‖yp‖p ≤ 1
}
,

( ap bp
cp dp

) ∈M2(Ap) (see [20, p. 467] and the comments therein).

For the proof of the following result, we use an adaptation of the proof of [15,
Theorem 1.3].

Theorem 4.1. Let A[τ ] be a complete locally m-convex ∗-algebra, and let δ :
D(δ) → A be a closed ∗-derivation of A such that 1 ∈ D(δ). Then SpD(δ)(x) =
SpA(x) for all x ∈ D(δ).
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Proof. On the one hand, it is immediate that SpA(x) ⊂ SpD(δ)(x). We show the
other inclusion. We consider the following subalgebras of M2(A):

Aδ =

{(
a δ(a)
0 a

)
: a ∈ D(δ)

}
and B =

{(
a c
0 a

)
: a, c ∈ A

}
,

where B is a closed subalgebra of M2(A). Indeed, if {( bi ci
0 bi

)}i∈I is a net in B with

( bi ci
0 bi

) → ( b c
d f ) ∈ M2(A) with respect to {Sp̃}p∈Γ, then for every p ∈ Γ, we have

that

p(bi − b) = p
(
(bi − b)1 + (ci − c)0

)
≤ sup

{
p
(
(bi − b)a1 + (ci − c)a2

)
+ p
(
−da1 + (bi − f)a2

)
:

(a1, a2) ∈ A× A; p̃(a1, a2) = p(a1) + p(a2) ≤ 1
}

= Sp̃

((
bi ci
0 bi

)
−
(
b c
d f

))
→
i
0,

where the inequality is based on the fact that we can assume without loss of
generality that p(1) = 1 for every p ∈ Γ (see [10, Theorem 2.3]). Therefore,
bi → b with respect to τ . Similarly, we show that bi → f and that d = 0.

So, B, being a closed subalgebra of M2(A), is a complete locally m-convex
algebra. Therefore, by the Arens–Michael decomposition of B, we have that B =
lim←−p

B[Sp̃]/NSp̃
= lim←−p

BSp̃
, up to topological isomorphisms, where BSp̃

stands

for the completion of the normed algebra B[Sp̃]/NSp̃
with respect to the norm

‖ · ‖Sp̃
: ‖B +NSp̃

‖Sp̃
= Sp̃(B), B ∈ B.

We next show that BSp̃
= {( ap bp

Np ap
) : ap, bp ∈ Ap}. Toward this end, we consider

the map

Φ : B[Sp̃]/NSp̃
→M2(Ap) :

(
a b
0 a

)
+NSp̃

7→
(
a+Np b+Np

Np a+Np

)
.

The map Φ is well defined since if, for a, b ∈ A, we have that Sp̃(( a b
0 a )) = 0,

then p(a) = p̃(( a b
0 a )(

1
0 )) ≤ Sp̃(( a b

0 a )) = 0, and thus that a ∈ Np. Moreover,
p(b) = p(a ·0+ b ·1)+p(a) = p̃(( a b

0 a )(
0
1 )) ≤ Sp̃(( a b

0 a )) = 0, and hence b ∈ Np also.
Furthermore, Φ is clearly injective and an algebra homomorphism. In addition,
Φ is isometric as can be seen by the following relations:

S‖·‖p

(
Φ

[(
a b
0 a

)
+NSp̃

])
= S‖·‖p

((
a+Np b+Np

Np a+Np

))
= sup

{∥∥(a+Np)xp + (b+Np)yp
∥∥
p
+
∥∥(a+Np)yp

∥∥
p
:

(xp, yp) ∈ Ap × Ap; ‖xp‖p + ‖yp‖p ≤ 1
}

= sup
{∥∥(a+Np)(x+Np) + (b+Np)(y +Np)

∥∥
p
+
∥∥(a+Np)(y +Np)

∥∥
p
:

(x+Np, y +Np) ∈ A/Np × A/Np; ‖x+Np‖p + ‖y +Np‖p ≤ 1
}
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= sup
{
p(ax+ by) + p(ay) : (x, y) ∈ A2; p(x) + p(y) ≤ 1

}
= Sp̃

((
a b
0 a

))
=

∥∥∥∥(a b
0 a

)
+NSp̃

∥∥∥∥
Sp̃

.

Hence every element ( a b
0 a ) + NSp̃

∈ B/NSp̃
can be identified with the element

( a+Np b+Np

Np a+Np
) ∈ M2(Ap). Moreover, Φ extends to an isometric algebra homomor-

phism from BSp̃
into M2(Ap).

Then, for {( ai bi
0 ai

) + NSp̃
}i a ‖ · ‖Sp̃

-Cauchy net in B/NSp̃
, we deduce that

(ai + Np)i, (bi + Np)i are ‖ · ‖p-Cauchy nets. So, there are ap, bp ∈ Ap such that
ai +Np → ap, bi +Np → bp with respect to ‖ · ‖p. Thus we have that

S‖·‖p

((
ai +Np bi +Np

Np ai +Np

)
−
(
ap bp
Np ap

))
= sup

{∥∥[(ai +Np)− ap
]
xp +

[
(bi +Np)− bp

]
yp
∥∥
p
+
∥∥[(ai +Np)− ap

]
yp
∥∥
p
:

(xp, yp) ∈ Ap × Ap; ‖xp‖p + ‖yp‖p ≤ 1
}

≤
∥∥(ai +Np)− ap

∥∥
p
+
∥∥(bi +Np)− bp

∥∥
p
→ 0.

So, we conclude that

lim
‖·‖Sp̃

[(
ai bi
0 ai

)
+NSp̃

]
≡ lim

S‖·‖p

(
ai +Np bi +Np

Np ai +Np

)
=

(
ap bp
Np ap

)
,

where the first identification is derived from the fact that the extension of Φ is
isometric as noted above.

Since the derivation δ is closed, we deduce that Aδ is a closed subalgebra of
B, and hence a complete locally m-convex algebra. Then Aδ = lim←−p

(Aδ)p up to

topological isomorphism, where for every p ∈ Γ, (Aδ)p denotes the completion
of Aδ/NSp̃

with respect to ‖ · ‖Sp̃
. Therefore, (Aδ)p is a closed subalgebra of the

Banach algebra Bp. By following analogous considerations given in the preceding

paragraph, we conclude that an element of (Aδ)p is of the form ( a+Np b+Np

Np a+Np
), for

a, b ∈ A, such that there is a Cauchy net (ai)i ∈ D(δ) with ai + Np
‖·‖p→ a + Np

and δ(ai) +Np
‖·‖p→ b+Np.

Following the proof of [15, Theorem 1.3], an involution, denoted by ], is defined

on BSp̃
as follows: ( bp cp

Np bp
)] = (

b∗p c∗p
Np b∗p

). Then, BSp̃
, endowed with the involu-

tion ], is a symmetric Banach algebra (see [15, Theorem 1.2(1)]). For an element

lim‖·‖Sp̃
( ai+Np δ(ai)+Np

Np ai+Np
) ∈ (Aδ)p, we have that(

lim
‖·‖Sp̃

(
ai +Np δ(ai) +Np

Np ai +Np

))]

=

(
lim‖·‖p(ai +Np) lim‖·‖p(δ(ai) +Np)

Np lim‖·‖p(ai +Np)

)]

=

(
lim‖·‖p(a

∗
i +Np) lim‖·‖p(δ(a

∗
i ) +Np)

Np lim‖·‖p(a
∗
i +Np)

)
= lim

‖·‖Sp̃

(
a∗i +Np δ(a∗i ) +Np

Np a∗i +Np

)
.
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Hence (Aδ)p is a closed ]-subalgebra of the symmetric Banach algebra Bp,

containing the identity ( 1+Np Np

Np 1+Np
) = ( 1+Np δ(1)+Np

Np 1+Np
). Therefore, by [15, Theo-

rem 1.3], Sp(Aδ)p
(x̂p) = SpBp

(x̂p) for every x̂p ∈ (Aδ)p. So, by [10, Theorem 4.6(2),
p. 46], we have that

SpAδ
(x̂) =

⋃
p∈Γ

Sp(Aδ)p
(x̂p) =

⋃
p∈Γ

SpBp
(x̂p) = SpB(x̂)

for every x̂ = (x̂p)p ∈ Aδ = lim←−p
(Aδ)p. The rest of the proof is concluded using

an argument in the proof of [15, Theorem 1.3], which we include for the reader’s
convenience. Let x ∈ D(δ) and λ /∈ SpA(x); that is, (λ1 − x)−1 ∈ A. Then the
inverse of the element λ( 1 0

0 1 )− ( x δ(x)
0 x

) exists in B, since(
λ

(
1 0
0 1

)
−
(
x δ(x)
0 x

))−1

=

(
(λ1− x)−1 (λ1− x)−1δ(x)(λ1− x)−1

0 (λ1− x)−1

)
.

Therefore, for x̂ = ( x δ(x)
0 x

), we have that λ /∈ SpB(x̂). So λ /∈ SpAδ
(x̂); that is,

(λ1− x)−1 ∈ D(δ). Hence λ /∈ SpD(δ)(x). �

Remark 4.2. Based on Theorem 4.1 and Proposition 3.18, we have that the
domain D(δ) for any τ -closed ∗-derivation of a commutative pro-C∗-algebra A[τ ]
such that 1 ∈ D(δ) is advertibly complete.

Corollary 4.3. Let A[τ ] be a pro-C∗-algebra, and let δ : D(δ) → A be a closed
∗-derivation of A such that 1 ∈ D(δ) and x ∈ D(δ). Then, for every analytic
function f ∈ Fx, we have that f(x) ∈ D(δ).

Proof. For λ ∈ ρA(x) = C∗ \σA(x), λ 6=∞, it is straightforward that λ /∈ SpA(x).
Therefore, by Theorem 4.1, we have that λ /∈ SpD(δ)(x); that is, (λ1 − x)−1 ∈
D(δ). Since a pro-C∗-algebra is an example of a complete GB∗-algebra with jointly
continuous multiplication (see [2, p. 95]), the result then follows from Proposi-
tion 3.1. �

Theorem 4.4. Let A[τ ] be a complete GB∗-algebra with continuous inversion and
jointly continuous multiplication, and let δ : D(δ) → A be a closed ∗-derivation
of A such that 1 ∈ D(δ). Then SpD(δ)(x) = SpA(x) for all x ∈ D(δ).

Proof. The proof is broken up into the following four stages.
(1) On A⊕ A, we define the multiplication

(a, b) · (x, y) = (ax, ay + bx)

for all a, b, x, y ∈ A, and the involution

(x, y)∗ = (x∗, y∗)

for all x, y ∈ A. Observe that (1, 0) is the identity element of A ⊕ A. If Γ is a
family of ∗-seminorms defining the topology τ of A, then we let

p̃(x, y) = p(x) + p(y)
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for all x, y ∈ A, p ∈ Γ. With respect to the family of ∗-seminorms (p̃)p∈Γ, describ-
ing a topology, say, τ̃ on A⊕A, it follows that A⊕A is a complete locally convex
∗-algebra with jointly continuous multiplication with respect to τ̃ .

(2) We now show that SpA(x) = SpA⊕A(x, δ(x)) for all x ∈ D(δ). Let x ∈ D(δ).
If z is invertible in A, then it is an easy exercise to show that (z, w) is invertible
in A⊕ A for all w ∈ A and that

(z, w)−1 = (z−1,−z−1wz−1).

Therefore,

λ /∈ SpA(x) ⇐⇒ x− λ1 is invertible in A

⇐⇒
(
x− λ1, δ(x)

)−1
exists in A⊕ A

⇐⇒
[(
x, δ(x)

)
− λ(1, 0)

]−1
exists in A⊕ A

⇐⇒ λ /∈ SpA⊕A

(
x, δ(x)

)
.

(3) Next, we show that SpA⊕A(x, δ(x)) = SpG(δ)(x, δ(x)) for all x ∈ D(δ), where
G(δ) is the graph of δ. From the identity

(x, y)−1 = (x−1,−x−1yx−1),

where it is assumed that x, and hence (x, y), is invertible, it follows that A ⊕ A
has continuous inversion (here, we also use the fact that A has jointly continuous
multiplication and continuous inversion). Since A ⊕ A is complete with respect
to τ̃ , we get that A⊕ A is sequentially complete and hence pseudocomplete (see
[1, Proposition 2.6]). Thus, the mere existence of(

(1, 0) + (x, y)∗(x, y)
)−1

= (1 + x∗x, x∗y + y∗x)−1

=
(
(1 + x∗x)−1,−(1 + x∗x)−1(x∗y + y∗x)(1 + x∗x)−1

)
leads us, by [2, Proposition 2.4], to the information that A ⊕ A is symmetric,
that is, that the former invertible element is bounded. Furthermore, we show
that (A ⊕ A)[τ̃ ] is in fact a GB∗-algebra. For this, it suffices to show that the
respective family B∗

A⊕A of subsets of A⊕A has a greatest member. Toward this
end, let Ω = (B1, B2) ∈ B∗

A⊕A. Since (1, 0) ∈ Ω, we have that 1 ∈ B1. Moreover,
Ω2 ⊂ Ω and thus, by induction, Ωn ⊂ Ω for every n ∈ N. By induction, we get
that

(B1, B2)
n =

(
Bn

1 ,

n−1∑
k=0

Bk
1B2B

n−(k+1)
1

)
, ∀n ∈ N.

Therefore, since (B1, B2)
n ⊂ (B1, B2), we have that

∑n−1
k=0 B

k
1B2B

n−(k+1)
1 ⊂ B2.

Hence, by the latter inclusion, for x ∈ B2 and for 1 ∈ B1, we take that nx ∈ B2 for
every n ∈ N. Thus, if there exists a seminorm p ∈ Γ such that p(x) 6= 0, we have
that p(nx) = np(x) → +∞ for n → +∞, which contradicts the boundedness of
B2 (that B2 is bounded follows from the boundedness of Ω and from the definition
of the topology τ̃ on A ⊕ A). So p(x) = 0, ∀p ∈ Γ. Thus x = 0, from which
we conclude that B2 = {0}. Therefore, we have that Ω = (B1, {0}). From the
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respective properties of Ω as a member of B∗
A⊕A, we can easily derive that B1 ∈

B∗
A. Thus, we conclude that (B0, {0}) is the greatest member of B∗

A⊕A, where B0

is the greatest member of B∗
A. Hence we deduce that A⊕ A is a GB∗-algebra.

Since δ is closed, we have that G(δ) is a closed subalgebra of A⊕A containing
the identity element (1, 0). Then, by [2, Proposition 2.9], G(δ) is a GB∗-algebra.
So G(δ) has Hermitian involution; that is, σG(δ)(x, δ(x)) ⊂ R for every self-adjoint
element (x, δ(x)) ∈ G(δ) (see [2, Proposition 2.2]). Therefore, SpG(δ)(x, δ(x)) ⊂
σG(δ)(x, δ(x)) ⊂ R for every self-adjoint (x, δ(x)) ∈ G(δ). The result then follows
from an argument similar to the proof of [25, Proposition I.4.8].

(4) The map θ : D(δ) → A, x 7→ (x, δ(x)), is an injective self-adjoint algebra
homomorphism of D(δ) onto its range G(δ). Therefore,

SpG(δ)

(
x, δ(x)

)
= SpD(δ)(x)

for all x ∈ D(δ).
By combining stages (2), (3), and (4) above, we get that SpD(δ)(x) = SpA(x)

for all x ∈ D(δ). �

Corollary 4.5. Let A[τ ] be a complete GB∗-algebra with continuous inversion
and jointly continuous multiplication, and let δ : D(δ) → A be a closed
∗-derivation of A such that 1 ∈ D(δ) and x ∈ D(δ). Then f(x) ∈ D(δ) for
every f ∈ Fx.

Proof. The result follows from Theorem 4.4 and Proposition 3.1. �

Remark 4.6.

(1) A pro-C∗-algebra is an example of a complete GB∗-algebra with jointly
continuous multiplication and continuous inversion. Moreover, every pro-
C∗-algebra is in particular a complete locally m-convex algebra. Never-
theless, not every GB∗-algebra is m-convex. Hence Theorem 4.4 can be
seen as a kind of generalization of Theorem 4.1.

(2) Theorem 4.4 tells us in particular that the algebra B = {( b c
0 b ) : b, c ∈ A}

is a GB∗-algebra. Indeed, the map

φ : B → A⊕ A :

(
b c
0 b

)
7→ (b, c)

is an algebraic ∗-isomorphism. Recall that the involution considered on
B is ( b c

0 b )
∗ = ( b∗ c∗

0 b∗ ). Therefore, since A ⊕ A is symmetric, so is B (see
also [2, Proposition 2.4]). If we endow B with the locally convex topology
inherited from the GB∗-topology of A⊕A, that is, the one induced on B by
the seminorms rp̃(( b c

0 b )) := p̃(b, c) = p(b) + p(c), then B is a GB∗-algebra,
whose greatest member for its respective family of subsets BB is the set
φ−1(B0, 0) = ( B0 0

0 B0
).

(3) If we define the topology, involution, and multiplication on A⊕A⊕A in
an analogous way to that of Theorem 4.4 for A⊕ A, it can be proved by
using arguments similar to those of stage (3) of the proof of Theorem 4.4
that A ⊕ A ⊕ A is a GB∗-algebra. Hence, by an analogous argument to
that of Remark 4.6(2), we have that the algebra {( b c

0 d ) : b, c, d ∈ A}
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is a GB∗-algebra. Similarly, it can be shown that the algebra {( b 0
c d ) :

b, c, d ∈ A} is a GB∗-algebra. The general question, though, of whether
M2(A) is a GB∗-algebra in case A is seems to be unsettled. (For an example
of Mn(A) being a GB∗-algebra for a particular GB∗-algebra A, see [12,
Examples 6.2(3)].)

Let M be a von Neumann algebra with a faithful semifinite normal trace φ, and

let M̃ denote the unital ∗-algebra of φ-measurable operators affiliated with M .

Then M̃ is a Fréchet topological ∗-algebra, which is also a GB∗-algebra in the
sense of Dixon [9, Definition 2.5] (not necessarily locally convex), with respect
to the topology of convergence in measure τcm. With respect to this topology,

we note that M̃ is not necessarily locally convex. Now, (M̃, τcm) has continuous

inversion (see [27]). Observe that M̃ ⊕ M̃ is a unital topological ∗-algebra with
respect to the same multiplication and involution as in stage (1) of the proof of
Theorem 4.4.

Corollary 4.7. Let M be a von Neumann algebra with a faithful semifinite nor-

mal trace φ such that the topology τcm on M̃ is locally convex. Let δ : D(δ)→ M̃

be a closed ∗-derivation of M̃ with 1 ∈ D(δ). Then SpD(δ)(x) = SpM̃(x) for all
x ∈ D(δ). Furthermore, f(x) ∈ D(δ) for every f ∈ Fx.

In an attempt to answer the question whether dependence on the assumption
of continuity of inversion in Theorem 4.4 can be alleviated, we have the following
result.

Theorem 4.8. Let A[τ ] be a complete GB∗-algebra with jointly continuous multi-
plication, and let δ : D(δ)→ A be a closed ∗-derivation of A such that 1 ∈ D(δ).
Then σA(x) = σD(δ)(x), for every normal element x ∈ D(δ).

For the proof of Theorem 4.8, we make use of the following result.

Lemma 4.9. Let A be a GB∗-algebra with jointly continuous multiplication. Con-
sider A ⊕ A endowed with topology τ̃ , multiplication, and involution, defined as
in the proof of Theorem 4.4. Then ((1, 0) + (x, y)∗(x, y))−1 ∈ (A⊕A)0, for every
(x, y) ∈ A⊕ A.

Proof. As noted in the proof of Theorem 4.4,(
(1, 0) + (x, y)∗(x, y)

)−1
=
(
(1, 0) + (x∗x, x∗y + y∗x)

)−1

=
(
(1 + x∗x)−1,−(1 + x∗x)−1(x∗y + y∗x)(1 + x∗x)−1

)
.

For simplicity of notation, let us denote throughout the proof

a ≡ (1 + x∗x)−1, b ≡ x∗y + y∗x.

We show that the set S = {(1
2
(a,−aba))n : n ∈ N} is a {p̃}p∈Γ-bounded subset

of A ⊕ A. Let p ∈ Γ be an arbitrary but fixed seminorm of the family Γ. Since
the multiplication on A is jointly continuous, there is a q ∈ Γ such that p(xyz) ≤
q(x)q(y)q(z) for all x, y, z ∈ A. Since τ ≤ ‖ · ‖B0 on A[B0], there is Cp, Cq > 0
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such that p(x) ≤ Cp‖x‖B0 , q(x) ≤ Cq‖x‖B0 for every x ∈ A[B0]. We note that, as
can be shown by induction, we have that for every n ∈ N,

(a,−aba)n =
(
an,−

n∑
k=1

akban+1−k
)
.

Therefore,

p̃
((1

2
(a,−aba)

)n)
= p̃
( 1

2n

(
an,−

n∑
k=1

akban+1−k
))

≤ 1

2n

[
p(an) +

n∑
k=1

q(ak)q(b)q(an+1−k)
]

≤ 1

2n

[
Cp‖an‖B0 +

n∑
k=1

C2
q ‖ak‖B0q(b)‖an+1−k‖B0

]
≤ 1

2n

[
Cp +

n∑
k=1

C2
q q(b)

]
=

1

2n
Cp +

n

2n
C2

q q(b),

where the argument of the second-to-last line is deduced from the fact that a =
(1 + x∗x)−1 ∈ B0. Thus we have that for every n ∈ N,

p̃
((1

2
(a,−aba)

)n)
≤ 1

2n
Cp +

n

2n
C2

q q(b) ≤ Cp + C2
q q(b).

So

sup
{
p̃
([1

2
(a,−aba)

]n)
: n ∈ N

}
≤ Cp + C2

q q(b) < +∞.

Since the seminorm p was arbitrary, we have that for every seminorm p̃ from the
family of the seminorms defining the topology τ̃ on A⊕ A, sup{p̃(ω) : ω ∈ S} <
+∞. Hence the set S is {p̃}-bounded, from which the result follows. �

Proof of Theorem 4.8. It is straightforward that∞ ∈ σD(δ)(x) if and only if∞ ∈
σA(x), for every x ∈ D(δ). Thus we proceed to show the result for the finite part
of the Allan spectra.

We first show the result for a self-adjoint element x ∈ D(δ). We follow the
steps of the proof of Theorem 4.4, but we use the Allan spectra. Involution,
multiplication, and the topology τ̃ on A ⊕ A are considered to be those of the
proof of Theorem 4.4. We note that the self-adjointness of x is only needed in
step (3) below.

Step 1 : We show that σA⊕A(x, δ(x)) = σA(x) for all x ∈ D(δ).
Indeed, on the one hand, if λ ∈ σA(x), then λ ∈ σA⊕A(x, δ(x)). For if λ were

not in σA⊕A(x, δ(x)), then (λ(1, 0) − (x, δ(x)))−1 ∈ (A ⊕ A)0. Therefore, in that
case, (λ1 − x)−1 exists and ((λ1 − x)−1, (λ1 − x)−1δ(x)(λ1 − x)−1) = (λ(1, 0) −
(x, δ(x)))−1 ∈ (A ⊕ A)0. Hence, by the way the multiplication and the topology
τ̃ are defined, we conclude that (λ1 − x)−1 ∈ A0, which is a contradiction. So
σA(x) ⊂ σA⊕A(x, δ(x)).
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On the other hand, let λ /∈ σA(x). Then (λ1 − x)−1 ∈ A0, and thus there is a
nonzero µ ∈ C such that the set {(µ(λ1 − x)−1)n : n ∈ N} is {p}p∈Γ-bounded.
Hence, for a fixed seminorm p, there exists Mp > 0 such that

sup
{
p
((
µ(λ1− x)−1

)n)
: n ∈ N

}
≤Mp.

Moreover, for this seminorm p ∈ Γ, there exists a seminorm q such that p(abc) ≤
q(a)q(b)q(c), a, b, c ∈ A, and for the latter seminorm q, there exists Mq > 0 such
that sup{q((µ(λ1− x)−1)n) : n ∈ N} ≤Mq. Following arguments similar to those
of Lemma 4.9, we have that for every n ∈ N,

p̃
([µ

2

(
(λ1− x)−1, (λ1− x)−1δ(x)(λ1− x)−1

)]n)
= p̃
(µn

2n
(
(λ1− x)−1

)n
,
µn

2n

n∑
k=1

(
(λ1− x)−1

)k
δ(x)

(
(λ1− x)−1

)n+1−k
)

= p̃
( 1

2n
(
µ(λ1− x)−1

)n
,

n∑
k=1

(
µ(λ1− x)−1

)k 1

2nµ
δ(x)

(
µ(λ1− x)−1

)n+1−k
)

≤ 1

2n
p
((
µ(λ1− x)−1

)n)
+

1

2n|µ|

n∑
k=1

p
((
µ(λ1− x)−1

)k
δ(x)

(
µ(λ1− x)−1

)n+1−k)
≤ 1

2n
Mp +

n

2n|µ|
M2

q q
(
δ(x)

)
≤Mp +

M2
q

|µ|
q
(
δ(x)

)
.

Therefore, from the string of relations above, we conclude that (λ(1, 0) −
(x, δ(x)))−1 is a bounded element of A ⊕ A. Hence λ /∈ σA⊕A(x, δ(x)). Thus,
we have that σA⊕A(x, δ(x)) ⊂ σA(x).

So, from all the above in step (1), we have that σA(x) = σA⊕A(x, δ(x)).
Step 2 : We show that σD(δ)(x) = σG(δ)(x, δ(x)) for every x ∈ D(δ).
On the one hand, if λ /∈ σG(δ)(x, δ(x)), then(
λ(1, 0)−

(
x, δ(x)

))−1
=
(
(λ1− x)−1, (λ1− x)−1δ(x)(λ1− x)−1

)
∈ G(δ)0.

Hence we deduce that (λ1− x)−1 ∈ D(δ)0, and thus λ /∈ σD(δ)(x).
On the other hand, let λ /∈ σD(δ)(x). Hence (λ1−x)−1 ∈ D(δ)0. From the series

of relations of step (1), we have that(
λ(1, 0)−

(
x, δ(x)

))−1
=
(
(λ1− x)−1, (λ1− x)−1δ(x)(λ1− x)−1

)
is a bounded element of A⊕A. The fact that the latter element belongs to G(δ)
is derived from the Leibniz rule as follows:

δ(1) = 0 ⇒ δ
(
(λ1− x)−1(λ1− x)

)
= 0

⇒ δ
(
(λ1− x)−1

)
(λ1− x) + (λ1− x)−1δ(λ1− x) = 0

⇒ δ
(
(λ1− x)−1

)
(λ1− x) = −(λ1− x)−1δ(λ1− x) = (λ1− x)−1δ(x)

⇒ δ
(
(λ1− x)−1

)
= (λ1− x)−1δ(x)(λ1− x)−1.
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Step 3 : We show that σG(δ)(x, δ(x)) = σA⊕A(x, δ(x)) for every self-adjoint x ∈
D(δ). The inclusion σA⊕A(x, δ(x)) ⊂ σG(δ)(x, δ(x)) is straightforward.

For the inverse inclusion, let λ /∈ σA⊕A(x, δ(x)). We first remark that, due to
Lemma 4.9, (A ⊕ A)[τ̃ ] is a symmetric locally convex ∗-algebra. In addition, as
is shown in (3) of the proof of Theorem 4.4, A⊕A is pseudocomplete and B∗

A⊕A

has a greatest member. Note that for the latter arguments, continuity of inversion
is not needed. Hence we have that A ⊕ A is a GB∗-algebra. Then G(δ) is also a
GB∗-algebra as a closed subalgebra of A⊕ A containing the identity.

We show that λ /∈ σG(δ)(x, δ(x)). For this, it suffices to assume that λ ∈ R.
This is due to the fact that G(δ), as a GB∗-algebra, has symmetric involution;
that is, for the self-adjoint element (x, δ(x)), we have that σG(δ)(x, δ(x)) ⊂ R.
Let λε = λ + iε, where ε ∈ R. Then λε ∈ ρG(δ)(x, δ(x)) ⊂ ρA⊕A(x, δ(x)) and
λε →

ε→0
λ, where λ ∈ ρA⊕A(x, δ(x)). Then, by [1, Theorem 3.8(3)], we get that

(λε(1, 0) − (x, δ(x)))−1 → (λ(1, 0) − (x, δ(x)))−1 for ε → 0 with respect to norm
convergence in (A⊕A)[(B0, {0})], and thus with respect to τ̃ , since τ̃ ≤ ‖·‖(B0,{0})
on (A⊕A)[(B0, {0})] . Therefore, since G(δ) is a closed subalgebra of A⊕A, we
conclude that (λ(1, 0) − (x, δ(x)))−1 ∈ G(δ). Clearly, (λ(1, 0) − (x, δ(x)))−1 is a
bounded element in G(δ) since it is a bounded element in A⊕A. So we have that
λ /∈ σG(δ)(x, δ(x)).

From the three steps above, we conclude that σD(δ)(x) = σG(δ)(x, δ(x)) =
σA⊕A(x, δ(x)) = σA(x), for every self-adjoint element x ∈ D(δ).

Now, let x be a normal element in D(δ), that is, x∗x = xx∗. As can be seen
in the proof above, one does not require x to be self-adjoint in steps (1) and (2)
of the proof. It is for this reason that the only point that needs to be proved
is the inclusion σG(δ)(x, δ(x)) ⊂ σA⊕A(x, δ(x)). So let λ /∈ σA⊕A(x, δ(x)). Then
(λ(1, 0)−(x, δ(x)))−1 exists in A⊕A and is bounded. Therefore, (λ1−x)−1 ∈ A0.
Let ω = λ(1, 0) − (x, δ(x)) = (λ1 − x,−δ(x)). It is clear that ω, ω∗ ∈ G(δ). We
have that

ω∗ω =
(
(λ1− x)∗(λ1− x),−(λ1− x)∗δ(x)− δ(x∗)(λ1− x)

)
.

Note that ω∗ω ∈ G(δ), as this follows easily from the Leibniz rule and the facts
that δ is a ∗-derivation and δ(1) = 0. We have that

(ω∗ω)−1 =
(
(λ1− x)−1

(
(λ1− x)−1

)∗
, (λ1− x)−1

(
(λ1− x)−1

)∗
×
[
(λ1− x)∗δ(x) + δ(x∗)(λ1− x)

]
(λ1− x)−1

(
(λ1− x)−1

)∗)
=
(
(λ1− x)−1

(
(λ1− x)−1

)∗
, (λ1− x)−1δ(x)(λ1− x)−1

(
(λ1− x)−1

)∗)
+ (λ1− x)−1

(
(λ1− x)−1

)∗
δ(x∗)

(
(λ1− x)−1

)∗
.

For simplicity of notation, we set

c = (λ1− x)−1
(
(λ1− x)−1

)∗
, a = (λ1− x)−1, b = δ(x).

So by the above string of relations, we have that

(ω∗ω)−1 =
(
c, (ab)c+

(
(ab)c

)∗)
.
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We prove by induction that(
(ω∗ω)−1

)n
=
(
cn,

n−1∑
k=0

ck(ab)cn−k +
(n−1∑

k=0

ck(ab)cn−k
)∗)

.

Indeed, the latter relation holds for n = 1. If it is true for n ∈ N, then(
(ω∗ω)−1

)n+1
=
(
cn,

n−1∑
k=0

ck(ab)cn−k +
(n−1∑

k=0

ck(ab)cn−k
)∗)
·
(
c, (ab)c+

(
(ab)c

)∗)
=
(
cn+1, cn(ab)c+ cn+1(b∗a∗)

+
n−1∑
k=0

ck(ab)cn+1−k +
(n−1∑

k=0

ck+1(ab)cn−k
)∗)

=
(
cn+1, cn(ab)c+ cn+1(b∗a∗)

+
n−1∑
k=0

ck(ab)cn+1−k +
( n∑

k=1

ck(ab)cn+1−k
)∗)

=
(
cn+1,

n∑
k=0

ck(ab)cn+1−k +
( n∑

k=0

ck(ab)cn+1−k
)∗)

,

where for the above string of relations, we recall that c is a self-adjoint element.
Now let p ∈ Γτ . From the joint continuity of multiplication, there is a seminorm
q such that

p(xyzw) ≤ q(x)q(y)q(z)q(w)

for every x, y, z, w ∈ A. Also, since x is normal, we have that ((λ1 − x)−1)∗ and
(λ1−x)−1 commute. Hence, since they are both bounded elements, we have that
c = (λ1 − x)−1((λ1 − x)−1)∗ ∈ A0 (see [2, p. 92]). Therefore, there is a nonzero
µ ∈ C and there are Cp, Cq > 0 such that

sup
{
p
(
(µc)n

)
: n ∈ N

}
≤ Cp, sup

{
q
(
(µc)n

)
: n ∈ N

}
≤ Cq.

For the following relations, we note that since there exists 0 6= µ ∈ C such that
{(µc)n : n ∈ N} is a bounded subset of A ⊕ A, it is immediate that the set
{(|µ|c)n : n ∈ N} is also bounded. Moreover, we can assume without loss of
generality that s(x) = s(x∗) and s(1) = 1 for every seminorm s ∈ Γ and for every
x ∈ A (see [12, Lemma 5.5]). Therefore, we have that

p̃
([ |µ|

2
(ω∗ω)−1

]n)
= p̃
( |µ|n

2n
cn,

1

2n

n−1∑
k=0

(
|µ|c
)k
ab
(
|µ|c
)n−k

+
1

2n

(n−1∑
k=0

(
|µ|c
)k
ab
(
|µ|c
)n−k

)∗)
=

1

2n
p
((
|µ|c
)n)

+
1

2n−1
p
(n−1∑

k=0

(
|µ|c
)k
ab
(
|µ|c
)n−k

)
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≤ 1

2n
Cp +

1

2n−1

n−1∑
k=0

q
((
|µ|c
)k)

q(a)q(b)q
((
|µ|c
)n−k)

=
1

2n
Cp +

1

2n−1
q(a)q(b)q

((
|µ|c
)n)

+
1

2n−1

n−1∑
k=1

q
((
|µ|c
)k)

q(a)q(b)q
((
|µ|c
)n−k)

≤ Cp + Cqq(a)q(b) +
n− 1

2n−1
C2

q q(a)q(b)

≤ Cp + Cqq(a)q(b) + C2
q q(a)q(b).

So, from the above string of relations, we have that there is a positive number

|µ| such that sup{p̃([ |µ|
2
(ω∗ω)−1]n) : n ∈ N} < +∞ for every seminorm p̃. Hence

we get that (ω∗ω)−1 ∈ (A ⊕ A)0. Thus 0 /∈ σA⊕A(ω
∗ω). So 0 /∈ σG(δ)(ω

∗ω),
since we have already proved coincidence of the Allan spectra for self-adjoint
elements. Therefore, we have that (ω∗ω)−1 ∈ G(δ)0. Hence, since G(δ) is an
algebra according to how the multiplication is defined on A ⊕ A, we have that
ω−1 = (ω∗ω)−1ω∗ ∈ G(δ). Moreover, ω−1 is bounded in G(δ) since it is initially
supposed to be bounded in A⊕A. So, we have that ω−1 = (λ(1, 0)− (x, δ)x)−1 ∈
G(δ)0, that is, λ /∈ σG(δ)(x, δ(x)). �

Remark 4.10. If A is a complete GB∗-algebra with continuous inversion and
jointly continuous multiplication, and δ : D(δ)→ A is a closed ∗-derivation of A
with 1 ∈ D(δ), then by Theorem 4.4, we have that SpD(δ)(x) = SpA(x) for every
x ∈ D(δ). The latter equality tells us in particular that if x ∈ D(δ) is invertible
in A, then x−1 ∈ D(δ). So, by the assumed continuity of inversion for A, we con-
clude that D(δ) is a locally convex algebra with continuous inversion. Hence, by
[1, Theorem 4.1], we get that SpD(δ)(x) ⊂ σD(δ)(x) ⊂ cl(SpD(δ)(x)). Furthermore,
since A is pseudocomplete and has continuous inversion, it follows from [1, Theo-
rem 4.1] that cl(SpA(x)) = σA(x). Then, by the two previous relations and the fact
that SpD(δ)(x) = SpA(x), we get that σD(δ)(x) ⊂ cl(SpA(x)) = σA(x). The other
inclusion, σA(x) ⊂ σD(δ)(x), is immediate. Thus we have that σD(δ)(x) = σA(x),
that is, the result of Theorem 4.8.

Nevertheless, by abandoning the hypothesis of continuity of inversion we are
driven to shift our attention to the Allan spectra. This comes as a consequence of
the fact that in the proof of Theorem 4.8, we make use of [1, Theorem 3.8(3)] and
for the application of the latter result, we need to work with a bounded resolvent
(see the proof of [1, Theorem 3.8(3)]).

Based on Theorem 4.8, the following corollary is immediate.

Corollary 4.11. Let A be a commutative complete GB∗-algebra with jointly
continuous multiplication, and let δ : D(δ) → A be a closed ∗-derivation with
1 ∈ D(δ). Then σA(x) = σD(δ)(x) for all x ∈ D(δ).

Corollary 4.12. Let A be a commutative complete GB∗-algebra with jointly
continuous multiplication, and let δ : D(δ) → A be a closed ∗-derivation with
1 ∈ D(δ). Then, for every f ∈ Fx, we have that f(x) ∈ D(δ).
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Proof. The result follows from Theorem 4.8 and Proposition 3.1. �

Remark 4.13. As can be seen by Example 3.24, condition 1 ∈ D(δ) cannot be
dropped from hypothesis of Corollary 4.12.

Corollary 4.14 below is a converse to Theorem 3.6, answering the question
raised in Remark 3.7(1).

Corollary 4.14. Let A[τ ] be a complete GB∗-algebra with jointly continuous
multiplication. Let δ : D(δ)→ A be a closed ∗-derivation of A. Then the following
are equivalent:

(i) 1 ∈ D(δ) and the norm-closed unit ball of A[B0] ∩D(δ)
‖·‖B0 is τ -closed,

and

(ii) A[B0] ∩D(δ)
‖·‖B0 = A[B0].

Proof. (i) ⇒ (ii) Let x ∈ D(δ) be self-adjoint. Then xn = x(1 + 1
n
x2)−1 → x

with respect to the topology τ , and xn ∈ A[B0] (see Proposition 2.4). Also,
n /∈ σA(−x2), since (n1 + x2)−1 ∈ A[B0] ⊂ A0. Therefore, by Theorem 4.8, we
have that n /∈ σD(δ)(−x2). So (1 + 1

n
x2)−1 ∈ D(δ). Therefore, since x ∈ D(δ), we

get that xn ∈ D(δ) for all n ∈ N. So x ∈ A[B0] ∩D(δ)
τ
. Since D(δ) is a ∗-algebra

and all elements of D(δ) are linear combinations of self-adjoint elements of D(δ),

we get that D(δ) ⊆ A[B0] ∩D(δ)
τ
. Therefore, since D(δ)

τ
= A, we get that

A ⊆ A[B0] ∩D(δ)
τ
. Hence it follows that A[B0] ∩D(δ)

τ
= A, and therefore

A[B0] ∩D(δ)
‖·‖B0

τ

= A.

Let

C = A[B0] ∩D(δ)
‖·‖B0 .

Since D(δ) is a ∗-subalgebra of A, and A[B0] is a C∗-algebra with respect to
‖ · ‖B0 , we get that C is a C∗-algebra with respect to ‖ · ‖B0 .

Since A[τ ] is complete, it follows that A[τ ] is also the τ -completion of C. Fur-
thermore, τ |C ≤ ‖·‖B0 . By [4, Theorem 2.2], A[τ ] is a GB∗-algebra over Bτ , where
Bτ is the τ -closure of the norm-closed unit ball U(C) of C.

Since U(C) is τ -closed, U(C) = Bτ and C = A[Bτ ]. Thus A[τ ] is also a
GB∗-algebra over U(C) (not only B0). Furthermore, by the proof of [4, Theo-
rem 2.2], Bτ is the largest member of the collection B∗ associated with A[τ ],
which is viewed here as the τ -completion of C. Now B0 is the largest member of
B∗ corresponding to A[τ ]. Therefore B0 = Bτ = U(C), and so A[B0] = A[Bτ ] = C,
that is,

A[B0] ∩D(δ)
‖·‖B0 = A[B0].

(ii) ⇒ (i) By Theorem 3.6, we have that 1 ∈ D(δ). Furthermore, the relation

A[B0] ∩D(δ)
‖·‖B0 = A[B0] clearly gives us that B0 = U(C). Since B0 is τ -closed,

we get that U(C) is τ -closed. �

An example of a GB∗-algebra which is not a C∗-algebra and which satisfies the
hypothesis of Corollary 4.14 is given in Example 3.20.
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5. Generators of one-parameter groups of automorphisms
of GB∗-algebras

In this section, we characterize those ∗-derivations of GB∗-algebras which are
infinitesimal generators of one-parameter groups of ∗-automorphisms of the
GB∗-algebra, thereby also extending some corresponding results for C∗-algebras,
as given in [23, Section 3.4].

Let X[τ ] be a sequentially complete locally convex space, and let (Tt)t≥0 be a
one-parameter family of continuous linear operators from X into itself. We say
that (Tt) is equicontinuous with respect to a family of seminorms (pα)α∈I on
X which define the topology τ if, for every seminorm pα, α ∈ I, there exists a
seminorm pβ, β ∈ I such that pα(Tt(x)) ≤ pβ(x) for all x ∈ X and t ≥ 0 (see [32,
p. 234]).

The above family (Tt)t≥0 of linear operators on X will be called a C0-semigroup
of linear operators if the following hold for all x ∈ X (see [32, Definition, p. 234]):

(1) Tt+sx = TtTsx, for t, s ≥ 0;
(2) T0x = x;
(3) limt→t0 Ttx = Tt0x, for every t0 ≥ 0.

The following result is a generalization of the Hille–Yosida theorem to sequen-
tially complete locally convex spaces. In this regard, we observe that if T is the
infinitesimal generator of a C0-semigroup of linear operators on X, then, for every
n ∈ N, we have that (n1 − T )−1 exists and is a continuous linear operator from
X into itself (see [32, Theorem 1, p. 240]).

Theorem 5.1 ([32, p. 246]). Let X[τ ] be a sequentially complete locally convex
space. Let T be a densely defined linear operator on X. Then T is the infinitesimal
generator of an equicontinuous semigroup of class C0 with respect to (pα)α if
and only if the operators {(1 − 1

n
T )−m} are equicontinuous in n ∈ N and m ∈

N ∪ {0} with respect to (pα)α, where (pα)α is a defining family of seminorms for
the topology τ on X.

If {αt : t ≥ 0} is a C0-semigroup of automorphisms of a GB∗-algebra A[τ ], then
it can be extended to a group of automorphisms of A. Since, for every t ≥ 0, αt

is an invertible linear operator on A whose inverse is an automorphism, we can
define α−t to be α−1

t for every t ≥ 0.
From this and Theorem 5.1, we can deduce the following theorem.

Theorem 5.2. Let A[τ ] be a sequentially complete GB∗-algebra, and let δ :
D(δ) → A be a ∗-derivation. Then δ is the generator of an equicontinuous
one-parameter automorphism group of A with respect to (pα)α if and only if
{(1 − 1

n
δ)−m : n ∈ N,m ∈ N ∪ {0}} is equicontinuous with respect to (pα)α,

where (pα)α is a defining family of seminorms for the topology τ on A.

With respect to this theorem, we note that every sequentially complete locally
convex algebra is pseudocomplete (see [1, Proposition 2.6]). Hence, in view of Def-
inition 2.3, a sequentially complete GB∗-algebra is actually a symmetric sequen-
tially complete locally convex ∗-algebra such that the collection B∗ has a greatest
member.
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If A[‖ · ‖] is a C∗-algebra, and δ is a ∗-derivation of A, then the closure δ of δ
is a generator of a one-parameter group of ∗-automorphisms of A if and only if
(1±δ)(D(δ)) is dense in A, and for every self-adjoint x ∈ D(δ), there exists a state
fx of A such that |fx(x)| = ‖x‖ and fx(δ(x)) = 0 (see [23, Proposition 3.4.4]).
This result is the Lumer–Phillips theorem (see [32, p. 250]) put in the context
of C∗-algebras, and it would be interesting to know if one can extend this result
to GB∗-algebras. It would therefore be interesting to know if the Lumer–Phillips
theorem for Banach spaces extends to complete locally convex spaces. In order to
do this, we first have to extend the notion of dissipative operator to the setting
of locally convex spaces.

A densely defined operator T : D(T ) → X on a Banach space X is called
dissipative if for every x ∈ D(T ), there exists fx ∈ X∗ such that fx(x) = ‖x‖,
|fx(y)| ≤ ‖y‖ for all y ∈ X, and Re(fx(Tx)) ≤ 0. Clearly, the notion of dissipative-
ness of an operator depends on the norm defining the topology ofX. Furthermore,
the above definition coincides with that given in [19, Definition 1.2].

We now generalize the concept of dissipative operator to the setting of a general
complete locally convex space. Let X[τ ] be a complete locally convex space, and
let T : D(T ) → X be a densely defined linear operator. Let (pα)α denote a
family of seminorms on X defining the topology τ . We say that T is dissipative
if for every x ∈ D(T ) and every seminorm pα, there exists fα

x ∈ X∗ such that
fα
x (x) = pα(x), |fα

x (y)| ≤ pα(y) for all y ∈ X and Re(fα
x (Tx)) ≤ 0.

It is clear that if X is a Banach space, then this definition coincides with that
of dissipative operator for Banach spaces given above. As with the normed case,
the above definition of dissipative operator depends on the family of seminorms
(pα)α on X defining the topology τ . The following result gives one implication of
the Lumer–Phillips theorem for locally convex spaces.

Proposition 5.3. Let X[τ ] be a complete locally convex space, and let T be a
generator of an equicontinuous C0-semigroup of linear operators on X with respect
to a family of seminorms (pα)α defining the topology τ . Then T is dissipative with
respect to a defining family of seminorms for τ , and R(I − T ) = X.

Proof. It follows from [32, p. 240] that R(I − T ) = X. Let (pα)α be a family
of seminorms on X defining the topology τ and with respect to which T is the
generator of an equicontinuous C0-semigroup of linear operators on X, {Tt}t≥0

say. For each α, let p′α(x) = supt≥0 pα(Tt(x)), x ∈ X. Then, (p′α)α is a family
of seminorms, equivalent to (pα)α, which define the topology τ and such that
p′α(Tt(x)) ≤ p′α(x) for all x ∈ X, t ≥ 0 and for all α. With respect to the seminorms
(p′α)α, X = lim←−α

Xα, where Xα is the Banach space completion of the normed

space Xα = X/Nα with respect to the norm p̃′α(x + Nα) = p′α(x) for all x ∈ X,
where Nα = {x ∈ X : p′α(x) = 0}. By [3, Corollary 4.5 or Theorem 2.5], we have
that T can be expressed as an inverse limit of densely defined operators Tα on
Xα which are generators of a C0-semigroup of contraction operators on Xα and
where Tα(x + Nα) = T (x) + Nα, x ∈ D(T ). By the Lumer–Phillips theorem for

Banach spaces, there exists, for each x ∈ D(T ) and each α, a gαx ∈ Xα
∗
such

that gαx (x + Nα) = p̃′α(x + Nα), |gαx (y + Nα)| ≤ p̃′α(y + Nα) for all y ∈ X, and
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Re[gαx (Tα(x+Nα))] ≤ 0. Now let fα
x (y) = gαx (y +Nα) for all y ∈ X. Then∣∣fα

x (y)
∣∣ = ∣∣gαx (y +Nα)

∣∣ ≤ p̃′α(y +Nα) = p′α(y)

for all y ∈ X. Also,

fα
x (x) = gαx (x+Nα) = p̃′α(x+Nα) = p′α(x).

Now Re(fα
x (Tx)) = Re[gαx (Tα(x+Nα))] ≤ 0, for all α. Therefore, T is dissipative

with respect to the family (p′α)α. �

What now about the reverse implication? If one again is to try and work with
inverse limits, then one would have to start off by writing T as an inverse limit
of operators, and then apply the results in [3] and the Lumer–Phillips theorem
for Banach spaces. Now one cannot in general express T as an inverse limit of
operators in order to start the argument, and therefore an alternative argument
to that of inverse limits must be found.

We now give a converse of Proposition 5.3 above. Namely, we prove the follow-
ing result.

Theorem 5.4. Let X[τ ] be a complete locally convex space, and let T : D(T )→ X
be a densely defined linear operator which is dissipative with respect to a family
of seminorms (pα)α defining the topology τ , and such that R(λI − T ) = X for
all λ > 0. Then T is a generator of an equicontinuous C0-semigroup of linear
operators on X with respect to (pα)α.

Proof. Let x ∈ X, and let (pα)α be a family of seminorms defining the topology
τ on X. Since T is dissipative with respect to (pα)α, there exists for every α and
every x ∈ D(T ) an fα

x ∈ X∗ such that fα
x (x) = pα(x), |fα

x (y)| ≤ pα(y) for all
y ∈ X and Re(fα

x (Tx)) ≤ 0. Let λ > 0. Then

λpα(x) = λfα
x (x)

≤ λfα
x (x)− Re

(
fα
x (Tx)

)
= Re

(
λfα

x (x)
)
− Re

(
fα
x (Tx)

)
= Re

(
fα
x (λx)

)
− Re

(
fα
x (Tx)

)
= Re

[
fα
x

(
(λI − T )x

)]
≤
∣∣fα

x

(
(λI − T )x

)∣∣
≤ pα

(
(λI − T )x

)
,

that is, 0 ≤ λpα(x) ≤ pα((λI −T )x) for all x ∈ D(T ), for all α, and for all λ > 0.
Therefore, if (λI − T )x = 0, then pα((λI − T )x) = 0 for all α, and consequently,
pα(x) = 0 for all α. Therefore x = 0, and hence

(λI − T )−1 : R(λI − T ) = X → X

exists for all λ > 0. From the above inequality, it follows that

λpα
(
(λI − T )−1x

)
≤ pα

(
(λI − T )

[
(λI − T )−1x

])
= pα(x)
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for all λ > 0, for all x ∈ X, and for all α. Therefore,

λpα
(
(λI − T )−nx

)
= λpα

(
(λI − T )−1

[
(λI − T )1−nx

])
≤ pα

(
(λI − T )1−nx

)
for all λ > 0, for all x ∈ X, for all n ∈ N, and for all α. Hence

pα
(
(λI − T )−nx

)
≤ 1

λ
pα
(
(λI − T )1−nx

)
≤ 1

λ2
pα
(
(λI − T )2−nx

)
≤ 1

λn
pα
(
(λI − T )n−nx

)
=

1

λn
pα(x)

for all n ∈ N, x ∈ X, and α. Hence

pα

( 1

λn

(
I − 1

λ
T
)−n

x
)
= pα

(
(λI − T )−nx

)
≤ 1

λn
pα(x)

for all x ∈ X, for all α, and n ∈ N. Therefore,

sup
n∈N

pα

((
I − 1

λ
T
)−n

x
)
≤ pα(x)

for all x ∈ X, for all α, and for all λ > 0. So we get that {(I− 1
m
T )−n : n,m ∈ N} is

equicontinuous with respect to (pα)α. By Theorem 5.1, that is, a generalized Hille–
Yosida theorem, we get that T is the generator of an equicontinuous C0-semigroup
of linear operators on X with respect to (pα)α. �

In the case whereX is a Banach space, the proof of the Lumer–Phillips theorem,
given in [19] and [32], shows that if R(I − T ) = X, then R(λI − T ) = X for all
λ > 0. This makes use of the Neumann power series and an analytic continuation
argument. It would be interesting to see if this argument, or a variation thereof,
holds for the general complete locally convex case. Nevertheless, in light of this
remark, we see that Theorem 5.4 generalizes the Lumer–Phillips theorem for
Banach spaces to complete locally convex spaces.

If X[τ ] is a GB∗-algebra, and T above is an unbounded ∗-derivation of X,
then it would be interesting to know if the continuous linear functionals fα

x above
are positive linear functionals. That this is so for C∗-algebras is well known (see
[23, Proposition 3.4.4]). In the following proposition, we answer this question for
pro-C∗-algebras.

Proposition 5.5. Let A[τ ] be a pro-C∗-algebra, and let δ : D(δ) → A be a
generator of a one-parameter group (αt)t∈R of ∗-automorphisms of A. Let 0 ≤
x ∈ D(δ). If (pα)α is a family of C∗-seminorms defining the topology τ on A,
then, for each α, there exists a (not necessarily nonzero) continuous positive linear
functional fα

x on A such that fα
x (δ(x)) ≤ 0 and fα

x (x) = pα(x).

Proof. Let x ≥ 0 with x ∈ D(δ), and let δ be as in the hypothesis. Then xα =
x + Nα ∈ D(δα) = D(δ)/Nα for all α and δ = lim←−α

δα. As in the proof of
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Proposition 5.3, we have that

gαx (x+Nα) = p̃α(x+Nα),

gαx (y +Nα) ≤ p̃α(y +Nα)

for all y ∈ A and Re[gαx (δαxα)] ≤ 0. If x /∈ Nα, then ‖gαx‖α = 1. So∣∣gαx (x+Nα)
∣∣ = p̃α(x+Nα) = ‖gαx‖αp̃α(x+Nα).

By a standard result for C∗-algebras, and remembering that A/Nα is a C∗-algebra
for every α, we get that gαx is a positive linear functional on A/Nα.

Now if x ∈ Nα, then

gαx (x+Nα) = p̃α(x+Nα) = 0,

and therefore ∣∣gαx (x+Nα)
∣∣ = p̃α(x+Nα) = ‖gαx‖αp̃α(x+Nα).

Therefore, as in the above, gαx is a positive linear functional on A/Nα. This holds
for every α and every 0 ≤ x ∈ D(δ). Therefore fα

x , defined as in the proof of
Proposition 5.3, is a positive linear functional on A for every α. By the proof of
the same proposition, we get that

fα
x

(
δ(x)

)
= Re

[
fα
x

(
δ(x)

)]
≤ 0.

This completes the proof. �
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24. K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Oper. Theory
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