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Abstract. Partial actions of groups on C∗-algebras and the closely related
actions and coactions of Hopf algebras have received much attention in recent
decades. They arise naturally as restrictions of their global counterparts to
noninvariant subalgebras, and the ambient enveloping global (co)actions have
proven useful for the study of associated crossed products. In this article,
we introduce the partial coactions of C∗-bialgebras, focusing on C∗-quantum
groups, and we prove the existence of an enveloping global coaction under mild
technical assumptions. We also show that partial coactions of the function alge-
bra of a discrete group correspond to partial actions on direct summands of
a C∗-algebra, and we relate partial coactions of a compact or its dual dis-
crete C∗-quantum group to partial coactions or partial actions of the dense
Hopf subalgebra. As a fundamental example, we associate to every discrete
C∗-quantum group a quantum Bernoulli shift.

1. Introduction

Partial actions of groups on spaces and on C∗-algebras were gradually intro-
duced in [14], [15], and [21], with more recent study of associated crossed products
shedding new light on the inner structure of many interesting C∗-algebras (see
[16] for a comprehensive introduction and overview). In the purely algebraic set-
ting, the corresponding notion of a partial action or a partial coaction of a Hopf
algebra on an algebra was introduced in [12].
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Naturally, such partial (co)actions arise by restricting global (co)actions to
noninvariant subspaces or ideals, and in these cases, all the tools that are available
for the study of the global situation can be applied to the study of the partial one.
Therefore, it is highly desirable to know, given a partial group action or a partial
Hopf algebra (co)action, whether it can be identified with some restriction of a
global one, whether there exists a minimal global one—called a globalization—and
whether the latter, if it exists, can be constructed explicitly. For partial actions of
groups on locally compact Hausdorff spaces, such a globalization can always be
constructed, but the underlying space need no longer be Hausdorff (see [1], [2]).
As a consequence, partial actions of groups on C∗-algebras cannot always be
identified with the restriction of a global action (see [1]). In the purely algebraic
setting, partial (co)actions of Hopf algebras always have a globalization (see [4],
[5]; see also [3], [6], [13]).

In this article, we introduce partial coactions of C∗-bialgebras, in particular, of
C∗-quantum groups, on C∗-algebras, and relate them to the partial (co)actions
discussed above. In the case of the function algebra of a discrete group, partial
coactions correspond to partial actions of groups where for every group element,
the associated domain of definition is a direct summand of the total C∗-algebra,
and these are precisely the partial actions for which existence of a globalization
can be proven. If the C∗-bialgebra is a discrete C∗-quantum group, then every
partial coaction gives rise to a partial action of the Hopf algebra of matrix coef-
ficients of the dual compact quantum group. Finally, in the case of a compact
C∗-quantum group, partial coactions restrict, under a natural condition, to partial
coactions of the Hopf algebra of matrix coefficients on a dense subalgebra.

Partial coactions appear naturally as restrictions of ordinary coactions to ideals
or, more generally, to C∗-subalgebras that are weakly invariant in a suitable sense.
An identification of a partial coaction with such a restriction will be called a
dilation of the partial coaction. The main result of this article is the existence
and a construction of a minimal dilation, also called a globalization, under mild
assumptions. We follow the approach for coactions of Hopf algebras in [5], but
face new technical difficulties. To deal with these, we assume that the C∗-algebra
of the quantum group under consideration has the slice map property, which
follows, for example, from nuclearity (see [31]), and is automatic if the quantum
group is discrete. Briefly, the main result can be summarized as follows.

Theorem. Let (A,∆) be a C∗-quantum group, where A has the slice map prop-
erty. Then every injective, weakly continuous, regular partial coaction of (A,∆)
has a minimal dilation and the latter is unique up to isomorphism.

Presently, we cannot tell whether this slice map assumption is just convenient
or genuinely necessary.

Parts of the results in this article were obtained in the first and second authors’
Master’s theses. In forthcoming articles, we plan to study crossed products for
partial coactions, and partial corepresentations of C∗-bialgebras.
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The article is organized as follows. In Section 2, we recall background on
C∗-quantum groups, strict ∗-homomorphisms and the slice map property. In Sec-
tion 3, we introduce partial coactions of C∗-bialgebras, and discuss a few desir-
able properties like weak and strong continuity. In Section 4, we show that partial
actions of a discrete group Γ on a C∗-algebra correspond to counital partial coac-
tions of the function algebra C0(Γ) if and only if the domains of definition are
direct summands of the C∗-algebra. In Section 5, we relate partial coactions of
compact and discrete C∗-quantum groups to coactions and actions of the Hopf
algebra of matrix elements of the compact quantum group. In Section 6, we
show how partial coactions arise from global ones by restriction, and discuss the
closely related notion of weak or strong morphisms between partial coactions. In
Section 7, we construct for every discrete quantum group a quantum Bernoulli
shift and obtain, by restriction, a partial coaction that is initial in a suitable
sense. In Section 8, we consider the situation where a partial coaction can be
identified with the restriction of a global coaction, and study a few preliminary
properties of such identifications. Finally, in Section 9, we prove the main result
stated above.

2. Preliminaries

Let us fix some notation and recall some background.

2.1. Conventions and notation. Given a locally compact Hausdorff space X,
we denote by Cb(X) and C0(X) the C∗-algebra of continuous functions that are
bounded or vanish at infinity, respectively. For a subset F of a normed space E,
we denote by [F ] ⊆ E its closed linear span. Given a C∗-algebra A, we denote by
A∗ the space of bounded linear functionals on A, by M(A) the multiplier algebra,
and by 1A ∈ M(A) the unit of M(A). Given a Hilbert space K, we denote by 1K
the identity on H.

Let A and B be C∗-algebras. A ∗-homomorphism ϕ : A → M(B) is called
nondegenerate if [ϕ(A)B] = B. Each nondegenerate ∗-homomorphism ϕ : A →
M(B) extends uniquely to a unital ∗-homomorphism from M(A) to M(B), which
we denote by φ again. By a representation of a C∗-algebra A on a Hilbert space
H we mean a ∗-homomorphism π : A → B(H). All tensor products of C∗-algebras
will be minimal ones.

We write σ for the tensor flip isomorphism A⊗B → B ⊗ A, a⊗ b 7→ b⊗ a.

2.2. C∗-bialgebras and C∗-quantum groups. A C∗-bialgebra is a C∗-algebra
A with a nondegenerate ∗-homomorphism ∆: A → M(A⊗A), called the comul-
tiplication, that is coassociative in the sense that (∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆.
It satisfies the cancellation conditions if[

∆(A)(1A ⊗ A)
]
= A⊗ A =

[
(A⊗ 1A)∆(A)

]
. (2.1)

Given a C∗-bialgebra (A,∆), the dual space A∗ is an algebra with respect to
the convolution product defined by υω := (υ⊗ω)◦∆. A counit for a C∗-bialgebra
(A,∆) is a character ε on A satisfying (ε⊗ idA) ◦∆ = idA = (idA ⊗ ε) ◦∆. If it
exists, such a counit is a unit in the algebra A∗ and thus unique. A morphism of
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C∗-bialgebras (A,∆A) and (B,∆B) is a nondegenerate ∗-homomorphism f : A →
M(B) satisfying ∆B ◦ f = (f ⊗ f) ◦∆A.

A C∗-quantum group is a C∗-bialgebra that arises from a well-behaved multi-
plicative unitary as follows (see [27], [28], [32]). Suppose that H is a Hilbert space
and that W ∈ B(H ⊗H) is a multiplicative unitary (see [8]) that is manageable
or modular (see [32], [27]). Then the spaces

A :=
[
(ω⊗ idH)W : ω ∈ B(H)∗

]
and Â :=

[
(idH ⊗ω)W : ω ∈ B(H)∗

]
are separable, nondegenerate C∗-subalgebras of B(H), the unitary W is a multi-

plier of Â⊗ A ⊆ B(H ⊗H), and the formulas

∆(a) = W (a⊗ 1H)W
∗, ∆̂(â) = σ

(
W ∗(1H ⊗ â)W

)
(2.2)

define comultiplications on A and Â, respectively, such that (A,∆) and (Â, ∆̂)
become C∗-bialgebras. A C∗-bialgebra (A,∆) is a C∗-quantum group if it arises
from a modular multiplicative unitary W as above.

Let (A,∆) be a C∗-quantum group arising from a unitary W as above. Denote

by Σ the flip on H ⊗ H. Then also the dual Ŵ := ΣW ∗Σ of W is a modular
or manageable multiplicative unitary and the associated C∗-quantum group is
(Â, ∆̂). The latter only depends on (A,∆) and not on the choice of W , and is

called the dual of (A,∆). The images of W and Ŵ in M(Â ⊗ A) or M(A ⊗ Â),
respectively, do not depend on the choice of W but only on (A,∆). We call them

the reduced bicharacters of (A,∆) and (Â, ∆̂) and denote them by WA and ŴA,
respectively. We will need an anti-Heisenberg pair for (A,∆), which consists of

nondegenerate, faithful representations π of A and π̂ of Â on a Hilbert space K
such that the unitary

V := (idA ⊗π̂)(ŴA) ∈ M
(
A⊗ π̂(Â)

)
, (2.3)

regarded as an element of M(A⊗K(K)), satisfies

V
(
1A ⊗ π(a)

)
V ∗ = (idA ⊗π)∆(a) for all a ∈ A (2.4)

(see [22, Section 3] and [25, Section 3.1]).
Every locally compact quantum group or, more precisely, every reduced C∗-

algebraic quantum group in the sense of Kustermans and Vaes [18], is a C∗-
quantum group.

We will use regularity of C∗-quantum groups, which was studied for multi-
plicative unitaries in [8] and for reduced C∗-algebraic quantum groups in [9, Sec-
tion 5(b)]. We follow the approach of [24, Definition 5.37] and call a C∗-quantum

group (A,∆) regular if its reduced bicharacter satisfies [(Â⊗ 1A)W
A(1Â ⊗A)] =

Â⊗A in M(Â⊗A). This is equivalent to the condition [(1Â⊗A)WA(Â⊗ 1A)] =

Â ⊗ A (see [24, proof of Corollary 5.39]). For the unitary (2.3), this translates
into [(

1A ⊗ π̂(Â)
)
V (A⊗ 1π̂(Â))

]
= A⊗ π̂(Â) in M

(
A⊗ π̂(Â)

)
. (2.5)
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In [24], this condition is referred to as weak regularity. However, every reduced
C∗-algebraic quantum group (A,∆) is regular in the above sense if and only if
it is regular in the sense of [9, Section 5(b)]. One implication is contained in [8,
Proposition 3.6], and the other follows easily from [9, Proposition 5.6].

A compact C∗-quantum group is, by definition, a unital C∗-bialgebra G =
(A,∆) that satisfies the cancellation conditions, and is indeed a weakly regular
C∗-quantum group (see [33]). Associated to such a compact quantum group is a
rigid C∗-tensor category of unitary finite-dimensional corepresentations (see [23]).
We denote by Irr(G) the equivalence classes of irreducible corepresentations. Their

matrix elements span a dense Hopf subalgebra O(G). The dual (Â, ∆̂) is called a

discrete C∗-quantum group, and the underlying C∗-algebra Â is a direct sum of
matrix algebras, indexed by Irr(G). We also denote the underlying C∗-algebra Â

of Ĝ by C0(Ĝ).

2.3. Strict ∗-homomorphisms of C∗-algebras. Recall from [19, Section 5,
Corollary 5.7] that a ∗-homomorphism π : B → M(C) is strict if it is strictly
continuous on the unit ball, and that in that case, it extends to a ∗-homomorphism
M(B) → M(C) that is strictly continuous on the unit ball. We denote this
extension by π again. Using this extension, we define the composition of strict
∗-homomorphisms, which evidently is strict again. Hence, C∗-algebras with strict
∗-homomorphisms form a category.

Recall that a corner of a C∗-algebra B is a C∗-subalgebra of the form pBp for
some projection p ∈ M(B).

Strict ∗-homomorphisms are just nondegenerate ∗-homomorphisms in the usual
sense from the domain to a corner of the target. Indeed, if π : B → M(C) is a
strict ∗-homomorphism, then p := π(1B) ∈ M(C) is a projection, pCp ⊆ C is
a corner, and the corestriction π : B → M(pCp) is nondegenerate. Conversely,
given a corner C0 ⊆ C and a nondegenerate ∗-homomorphism π : B → M(C0),
we get a strict extension M(B) → M(C0), a natural strict map M(C0) → M(C)
[11, II.7.3.14], and the composition is a strict ∗-homomorphism.

This description of strict ∗-homomorphisms immediately implies that the min-
imal tensor product of strict morphisms is a strict morphism again, and that an
embedding of C∗-algebras B ↪→ C is a strict ∗-homomorphism if and only if B
is a nondegenerate C∗-subalgebra of a corner of C. We will call such embeddings
strict.

In the commutative case, partial morphisms correspond to partially defined
continuous maps with a clopen domain of definition. Indeed, let X and Y be
locally compact Hausdorff spaces. Then every continuous map F from a clopen
subset D ⊆ Y to X induces a strict ∗-homomorphism F ∗ : C0(X) → M(C0(Y )) =
Cb(Y ) defined by(

F ∗(f)
)
(y) = 0 if y /∈ D,

(
F ∗(f)

)
(y) = f

(
F (y)

)
if y ∈ D.

Conversely, if π : C0(X) → M(C0(Y )) is a strict ∗-homomorphism, then π(1X)
is the characteristic function of a clopen subset D ⊆ Y and the corestriction
π : C0(X) → M(C0(D)) is the pullback along a continuous function F : D → X.
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2.4. The slice map property. In Sections 8 and 9, we need the following
property. A C∗-algebra A has the slice map property if, for every C∗-algebra B
and every C∗-subalgebra C ⊆ B, every x ∈ B ⊗ A satisfying (id⊗ω)(x) ∈ C
for all ω ∈ A∗ lies in C ⊗ A (see [31]). This property holds if A is nuclear, or,
more generally, if A has the completely bounded approximation property or the
strong operator approximation property (see [30] for a survey). In particular, this
condition holds whenever (A,∆) is a discrete quantum group, or, more generally,
whenever (A,∆) is a reduced C∗-algebraic quantum group whose dual is amenable
(see [10, Theorem 3.3]).

3. Partial coactions of C∗-bialgebras

The definition of a partial coaction given for Hopf algebras in [12] carries over
to C∗-bialgebras as follows.

Definition 3.1. A partial coaction of a C∗-bialgebra (A,∆) on a C∗-algebra C is
a strict ∗-homomorphism δ : C → M(C ⊗ A) satisfying the following conditions:

(1) δ(C)(1C ⊗ A) ⊆ C ⊗ A;
(2) δ is partially coassociative in the sense that

(δ⊗ idA)δ(c) =
(
δ(1C)⊗ 1A

)
(idC ⊗∆)δ(c) (3.1)

for all c ∈ C, or, equivalently, the following diagram commutes:

C
δ //

δ
��

M(C ⊗ A)

δ⊗id
��

M(C ⊗ A)

(
δ(1C)⊗1A

)
(idC ⊗∆)δ

// M(C ⊗ A⊗ A)

(3.2)

Let δ be a partial coaction of a C∗-bialgebra (A,∆) on a C∗-algebra C. For
every functional ω ∈ A∗ and every multiplier T ∈ M(C), we define a multiplier

ω . T := (idC ⊗ω)δ(T ) ∈ M(C),

where we use the fact that we can write ω = aυ or ω = υ′a′ with a, a′ ∈ A and
υ, υ′ ∈ A∗ by Cohen’s factorization theorem.

Let c ∈ C and ω ∈ A∗. Then conditions (1) and (2) in Definition 3.1 imply
that ω . c ∈ C and that

δ(ω . c) = (idC ⊗ idA ⊗ω)(δ⊗ idA)δ(c)

= δ(1C)(idC ⊗ idA⊗ω)(idC ⊗∆)δ(c). (3.3)

In particular, for every character χ ∈ A∗,

χ . (ω . c) = (χ . 1C)
(
idC ⊗(χ⊗ω)∆

)
δ(c) = (χ . 1C)(χω . c). (3.4)

The following conditions on a partial coaction are straightforward generaliza-
tions of the corresponding conditions on coactions, and they will play an equally
important role in the following.

Definition 3.2. We say that a partial coaction δ of a C∗-bialgebra (A,∆) on a
C∗-algebra C
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• satisfies the Podleś condition if [δ(C)(1C ⊗ A)] = [δ(1C)(C ⊗ A)],
• is weakly continuous if [A∗ . C] = C,
• is counital if (A,∆) has a counit ε and (idC ⊗ ε) ◦ δ = id.

Remark 3.3. If δ is a partial coaction as above and X ⊆ A∗ is a subset that sep-
arates the points of A, then a standard application of the Hahn–Banach theorem
shows that [X . C] = [A∗ . C].

Every counital partial coaction evidently is weakly continuous. A coaction sat-
isfying the Podleś condition is automatically weakly continuous, and is usually
called (strongly) continuous. For partial coactions, this implication no longer holds
in general, and so we avoid this terminology.

Lemma 3.4. Let δ be a partial coaction of a C∗-bialgebra (A,∆) on a C∗-algebra
C that satisfies the Podleś condition. Then

(1) δ is weakly continuous if and only if [(A∗ . 1C)C] = C,
(2) δ is counital if and only if (A,∆) has a counit ε and ε . 1C = 1C.

Proof. (1) By assumption, the closed linear span of all elements of the form aω .
c = (idC ⊗ω)(δ(c)(1C ⊗ a)), where ω ∈ A∗, a ∈ A, and c ∈ C, is equal to the
closed linear span of all elements of the form (idC ⊗ω)(δ(1C)(c⊗a)) = (aω.1C)c.
Now, use Cohen’s factorization theorem.

(2) If ε . 1C = 1C , then elements of the form aε . c, where a ∈ A and c ∈ C,
are linearly dense in C, and for every ω ∈ A∗ and c ∈ C, (3.4) implies that
ε . (ω . c) = 1C · (ω . c). �

For regular reduced C∗-algebraic quantum groups, weakly continuous coac-
tions automatically satisfy the Podleś condition (see [9, Proposition 5.8]). More
generally, we show the following.

Proposition 3.5. Let (A,∆) be a regular C∗-quantum group. Then every weakly
continuous partial coaction of (A,∆) satisfies the Podleś condition.

Proof. We proceed in a manner similar to that in the proof of [9, Proposition 5.8],
and we use an anti-Heisenberg pair (π, π̂) for (A,∆) on some Hilbert space K
and the unitary V in (2.3).

Let δ be a weakly continuous partial coaction of (A,∆) on a C∗-algebra C. By
(3.3) and Remark 3.3,[

δ(C)(1C ⊗ A)
]

=
[
δ(ω ◦ π . C)(1C ⊗ A) : ω ∈ B(K)∗

]
=

[
δ(1C) · (idC ⊗ idA ⊗ω ◦ π)

(
(idC ⊗∆)

(
δ(C)

))
· (1C ⊗ A) : ω ∈ B(K)∗

]
.

To shorten the notation, let δπ := (idC ⊗π) ◦ δ. We use the relations (2.4), (2.5),

and [π̂(Â)B(K)∗] = B(K)∗, and we find that[
(idC ⊗ idA⊗ω ◦ π)

(
(idC ⊗∆)

(
δ(C)

)
(1C ⊗ A⊗ 1A)

)
: ω ∈ B(K)∗

]
=

[
(idC ⊗ idA⊗ω)

(
V23δπ(C)13V

∗
23

(
A⊗ π̂(Â)

)
23

)
: ω ∈ B(K)∗

]
=

[
(idC ⊗ idA⊗ω)

(
V23δπ(C)13

(
A⊗ π̂(Â)

)
23

)
: ω ∈ B(K)∗

]
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=
[
(idC ⊗ idA⊗ω)

((
1A ⊗ π̂(Â)

)
23
V23(A⊗ 1K)23δπ(C)13

)
: ω ∈ B(K)∗

]
=

[
(idC ⊗ idA⊗ω)

((
A⊗ π̂(Â)

)
23
δπ(C)13

)
: ω ∈ B(K)∗

]
= [A∗ . C]⊗ A,

whence [δ(C)(1C ⊗ A)] = [δ(1C)(C ⊗ A)]. �

Partial coactions on C correspond to certain projections, as shown in the fol-
lowing lemma.

Lemma 3.6. Partial coactions of a C∗-bialgebra (A,∆) on C correspond bijec-
tively to projections p ∈ M(A) satisfying

(p⊗ 1A)∆(p) = p⊗ p. (3.5)

Proof. Projections p ∈ M(A) correspond to strict ∗-homomorphisms δ : C →
M(C⊗A) ∼= M(A) via p = δ(1), and under this correspondence, (δ⊗ idA)δ(λ) =
λ⊗ p⊗ p and (δ(1)⊗ 1A)(idC⊗∆)(δ(λ)) = λ⊗ (p⊗ 1A)∆(p). �

Note that if (A,∆) is cocommutative, for example, if A = C∗(G) or A = C∗
r (G)

for a locally compact group G, then (3.5) just means that p is group-like in the
sense that (p⊗1A)∆(p) = p⊗p = (1A⊗p)∆(p). Group-like projections were also
studied in connection with idempotent states (see [17, Section 2]). Elementary
examples related to groups are as follows.

Example 3.7. Let G be a locally compact group.

(1) Consider the C∗-bialgebra (C0(G),∆). A projection p ∈ M(C0(G)) is just
the characteristic function of a clopen subset H ⊆ G, and it satisfies
(3.5) if and only if p(g)p(gg′) = p(g)p(g′) for all g, g′ ∈ G, that is, if and
only if H ⊆ G is a subgroup. Thus, partial coactions of (C0(G),∆) on C
correspond to open subgroups of G.

(2) Consider the reduced group C∗-bialgebra (C∗
r (G),∆). For every finite nor-

mal subgroup N ⊆ G, the sum p =
∑

g∈N λg is a central projection in

M(C∗
r (G)) satisfying (3.5), where λg denotes the left translation by g ∈ G.

(More information on group-like projections in C∗
r (G) and C∗(G) can be

found in [20, Proposition 7.6] and [29].)

Every central projection satisfying (3.5) gives rise to a quotient C∗-bialgebra
(Ap,∆p) of (A,∆) whose coactions can be regarded as partial coactions of (A,∆).

Lemma 3.8. Suppose that (A,∆) is a C∗-bialgebra with a central projection
p ∈ M(A) satisfying (3.5). Let Ap = pA, and define ∆p : Ap → M(Ap ⊗ Ap) by
a 7→ (p⊗ p)∆(a). Then (Ap,∆p) is a C∗-bialgebra, the map A → Ap, a 7→ pa, is
a morphism of C∗-bialgebras, and every coaction of (Ap,∆p) can be regarded as
a partial coaction of (A,∆).

Proof. All of these assertions are easily verified. For example, if δ is a coaction of
(Ap,∆p) on a C∗-algebra C, then for all c ∈ C,(

δ(1C)⊗ 1A
)
(idC ⊗∆)δ(c) = (1C ⊗ p⊗ 1A)(1C ⊗∆)

(
(1C ⊗ p)δ(c)

)
= (1C ⊗ p⊗ p)(idC ⊗∆)δ(c)
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= (1C ⊗∆p)δ(c)

= (idC ⊗∆)δ(c). �

Example 3.9. Let G = (A,∆) be a discrete quantum group, so that A is a c0-sum

of matrix algebras indexed by Irr(Ĝ). Consider a central projection p ∈ M(A)

supported on J ⊆ Irr(Ĝ). Then (p⊗ 1)∆(p) = p⊗ p if and only if the following
condition holds:

If α ∈ J , β, γ ∈ Irr(Ĝ) and α⊗ β contains γ, then β ∈ J if and only if γ ∈ J .
(3.6)

If (Ap,∆p) is a discrete quantum subgroup of (A,∆), then J is closed under taking
duals and summands of tensor products, and then Frobenius duality implies (3.6).
Conversely, suppose that (3.6) holds. Taking γ = α, we see that J contains the
trivial representation, and taking this for γ, we see that J contains the dual of
α. Thus, finite sums of representations in J form a rigid tensor subcategory, and
(Ap,∆p) is a discrete quantum subgroup of (A,∆).

4. The relation to partial actions of groups

We now relate partial actions of a (discrete) group Γ to counital partial coac-
tions of the C∗-bialgebra C0(Γ). Recall that a partial action of Γ on a C∗-algebra
C is a family (Dg)g∈Γ of closed ideals of C together with a family (θg)g∈Γ of
isomorphisms θg : Dg−1 → Dg such that (see [16], [21])

(G1) De = C and θe = idC , where e ∈ Γ denotes the unit,
(G2) θg−1θgθh = θg−1θgh and θgθhθh−1 = θghθh−1 for all g, h ∈ Γ as partially

defined maps.

We show that partial coactions of C0(Γ) correspond to partial actions of Γ as
above, where each ideal Dg is a direct summand, and adopt the following termi-
nology.

Definition 4.1. A disconnected partial action of Γ on a C∗-algebra C is given by a
family (pg)g∈Γ of central projections inM(C) and a family (θg)g∈Γ of isomorphisms
θg : pg−1C → pgC such that ((pgC)g∈Γ, (θg)g∈Γ) is a partial action.

Remark 4.2.

(1) Let X be a locally compact Hausdorff space. Then partial actions of Γ
on C0(X) correspond bijectively to partial actions of Γ on X (see [16,
Corollary 11.6]), and a partial action on C0(X) is disconnected if and
only if for every group element g ∈ Γ, the domain of definition of its
action on X is not only open but also closed. This condition also implies
that the partial action on X admits a globalization that is Hausdorff (see
[16, Proposition 5.7]).

(2) A partial action of Γ on an algebra C admits a globalization if and only
if for every group element g ∈ Γ, its domain of definition is not just a
two-sided ideal of C but also unital, that is, a direct summand (see [16,
Theorem 6.13]).
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We denote by Cb(Γ;C) the C∗-algebra of norm-bounded C-valued functions
on Γ, and we identify this C∗-algebra with a subalgebra of M(C ⊗ C0(Γ)) in the
canonical way. For each g ∈ Γ, we denote by evg ∈ C0(Γ)

∗ the evaluation at g.

Proposition 4.3. Let Γ be a group, and let C be a C∗-algebra.

(1) Let δ be a counital partial coaction of C0(Γ) on C. Then the projections

pg := evg . 1C

are central and the maps θg : pg−1C → pgC given by

θg(c) := evg . c

form a disconnected partial action of Γ on C.
(2) Let ((pg)g∈Γ, (θg)g∈Γ) be a disconnected partial action of Γ on C. Then the

map

δ : C → Cb(Γ;C) ↪→ M
(
C ⊗ C0(Γ)

)
defined by (

δ(c)
)
(g) := θg(pg−1c) (c ∈ C, g ∈ Γ)

is a counital partial coaction of C0(Γ) on C.

Proof. (1) For each g ∈ Γ, the map Θg : C → C given by c 7→ evg . c is a strict
endomorphism. Since δ is counital, Θe is the identity on C. Let g, h ∈ Γ. Then
by (3.4),

Θg

(
Θh(c)

)
= (evg . 1C)(evgevh . c) = pgΘgh(c); (4.1)

in particular,

Θg(ph) = pgpgh, Θg

(
Θg−1(c)

)
= pgc, Θg−1

(
Θg(c)

)
= pg−1c. (4.2)

Since Θg ◦Θg−1 is a ∗-homomorphism, the second equation implies that pgc = cpg
for all c ∈ C; that is, pg is central and Dg := pgC is a direct summand of C. The
second and third equations imply that Θg and Θg−1 restrict to mutually inverse
isomorphisms

Dg−1

θg

�
θg−1

Dg.

It remains to show that θg−1θgh = θg−1θgθh. But the relations (4.1) and (4.2)
imply that

(Θg−1 ◦Θgh)(c) = pg−1Θgh(c) = (Θg−1 ◦Θg ◦Θh)(c)

for all c ∈ C, and that the compositions θg−1θgh and θg−1θgθh have the domain

Θh−1g−1(pg)C = ph−1g−1ph−1C = Θh−1(pg−1)C.

(2) For each g ∈ Γ, denote by δg ∈ C0(Γ) the characteristic function of {g} ⊂ Γ.
Then

δ(c)(1C ⊗∆g) = θg(pgc)⊗∆g (g ∈ Γ, c ∈ C).
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We conclude that δ(C)(1C ⊗ C0(Γ)) is contained in C ⊗ C0(Γ), and that δ core-
stricts to a nondegenerate ∗-homomorphism from C to q(C ⊗ C0(Γ)), where
q =

∑
g∈Γ pg ⊗∆g, so that δ is strict. To verify that δ is partially coassociative,

it suffices to check that for all g, h ∈ Γ and c ∈ C, the element

(idC ⊗ evg ⊗ evh)(δ⊗ idA)δ(c) = θg
(
pg−1θh(ph−1c)

)
is equal to the element

(idC ⊗ evg ⊗ evh)
((
δ(1C)⊗ 1A

)
(idC ⊗∆)δ(c)

)
= θg(pg−1)θgh(ph−1g−1c),

and this follows easily from the definition of a partial action. �

The following example shows that the correspondence between partial coactions
of C0(Γ) and partial actions of Γ does not easily extend from groups to inverse
semigroups.

Example 4.4. Denote by Γ the inverse semigroup consisting of the 2× 2 matrices

0, v =

(
0 0
1 0

)
, v∗ =

(
0 1
0 0

)
, vv∗ =

(
0 0
0 1

)
, v∗v =

(
1 0
0 0

)
with matrix multiplication as composition. Then C(Γ) is a C∗-bialgebra with
respect to the transpose ∆ of the multiplication. For x ∈ Γ, define δx ∈ C(Γ) by
y 7→ δx,y. Then, for example,

∆(δv∗v) = δv∗ ⊗∆v + δv∗v ⊗∆v∗v, ∆(δv) = δvv∗ ⊗∆v + δv ⊗∆v∗v.

Now, the ∗-homomorphism

δ : C2 → C2 ⊗ C(Γ), (α, β) 7→ (α, 0)⊗∆v∗v + (0, α)⊗∆v

is a partial coaction. Indeed, for all α, β ∈ C,

(δ⊗ idC(Γ))δ
(
(α, β)

)
= (α, 0)⊗∆v∗v ⊗∆v∗v + (0, α)⊗∆v ⊗∆v∗v

is equal to the product of

δ
(
(1, 0)

)
⊗ 1C(Γ) = (1, 0)⊗∆v∗v ⊗ 1C(Γ) + (0, 1)⊗∆v ⊗ 1C(Γ)

with

(idC2 ⊗∆)δ
(
(α, β)

)
= (α, 0)⊗ (δv∗v ⊗∆v∗ + δv∗ ⊗∆vv∗)

+ (0, α)⊗ (δv ⊗∆v∗v + δvv∗ ⊗∆v).

But the maps Θw := (id⊗ evw) ◦ δ, where w ∈ Γ, are given by

Θ0 = Θv∗ = Θvv∗ = 0, Θv

(
(α, β)

)
= (0, α), Θv∗v

(
(α, β)

)
= (α, 0);

in particular, ΘvΘv∗Θv = 0 and ΘvΘv∗v = Θv.
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5. Partial coactions of C∗-quantum groups that are discrete or
compact

Let G = (A,∆) be a compact C∗-quantum group, and denote by O(G) ⊆ A
the dense Hopf subalgebra of matrix elements of finite-dimensional corepresen-
tations. We now relate partial (co)actions of G and of the discrete dual Ĝ to
partial coactions and partial actions of the Hopf algebra O(G), respectively. Note

that (A,∆) and (Â, ∆̂) are regular, so that weakly continuous partial coactions
automatically satisfy the Podleś condition by Proposition 3.5.

Recall that a partial action of a Hopf algebra H on a unital algebra C is a map

H ⊗ C → C, h⊗ c 7→ h . c

satisfying the following conditions (see [12]):

(H1) 1H . c = c for all c ∈ C,
(H2) h . (cd) = (h(1) . c)(h(2) . d) for all h ∈ H and c, d ∈ C,
(H3) h . (k . c) = (h(1) . 1C)(h(2)k . c) for all h, k ∈ H and c ∈ C;

and that such a partial action is symmetric if additionally (see [7])

(H4) h . (k . c) = (h(1)k . c)(h(2) . 1C) for all h, k ∈ H and c ∈ C.

If additionally h.1C = ε(h) for all h ∈ H, we have a genuine action; in that case,
(H3) and (H4) reduce to h . (k . c) = hk . c.

Recall that the C∗-algebra Â of the discrete C∗-quantum group Ĝ is a c0-direct
sum of matrix algebras Âα indexed by α ∈ Irr(G). The Hopf algebra O(G) can

be identified with the subspace of all functionals ω ∈ Â∗ that vanish on Âα for
all but finitely many α ∈ Irr(G), and then

∆(ω)(â⊗ b̂) = ω(âb̂) and (υω)(â) = (υ⊗ω)(â)

for all υ, ω ∈ O(G) and â, b̂ ∈ Â.

Theorem 5.1. Let G = (A,∆) be a compact quantum group, and let δ be

a counital partial coaction of the discrete dual Ĝ = (Â, ∆̂) on a unital C∗-
algebra C. Then the formula

υ ⊗ c 7→ υ . c = (idC ⊗υ)
(
δ(c)

) (
υ ∈ O(G), c ∈ C

)
defines a symmetric partial action of the Hopf algebra O(G) on C.

Proof. Condition (H1) holds because the unit ofO(G), regarded as a functional on

Â, is the counit. Let υ, ω ∈ O(G) and c, d ∈ C. Choose central projections p, q ∈ Â

such that υ(pâ) = υ(â), ω(â) = ω(qâ), and υ(1)(â)υ(2)(b̂) = υ(1)(pâ)υ(2)(pb̂) for all

â, b̂ ∈ Â. Then

υ . cd = (idC ⊗υ)
(
(1C ⊗ p)δ(c)δ(d)(1C ⊗ p)

)
.

Since (1C ⊗p)δ(c) and δ(d)(1C ⊗p) are contained in the tensor product of C with

the finite-dimensional C∗-algebra pÂ+ qÂ, this expression is equal to

(id⊗υ(1))
(
(1⊗ p)δ(c)

)
· (id⊗υ(2))

(
δ(d)(1⊗ p)

)
= (υ(1) . c)(υ(2) . d).
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Thus, condition (H2) is satisfied. Likewise,

υ . (ω . c) = (idC ⊗υ⊗ω)
(
(δ⊗ idÂ)δ(c)

)
= (idC ⊗υ⊗ω)

(
(1C ⊗ p⊗ q)

(
δ(1C)⊗ 1Â

)
(idC ⊗∆̂)

(
δ(c)

))
,

and a similar argument as above shows that this expression is equal to

(idC ⊗υ(1))
(
δ(1C)

)(
idC ⊗(υ(2)⊗ω) ◦ ∆̂

)(
δ(c)

)
= (υ(1) . 1C) · (υ(2)ω . c).

Therefore, condition (H3) holds as well, and a similar argument proves (H4). �

Next, we consider partial coactions of the compact C∗-quantum group (A,∆),
and relate them to partial coactions of the Hopf algebra O(G). Recall that a
partial coaction of a Hopf algebra H on a unital algebra C is a homomorphism

δ : C 7→ C ⊗H

satisfying the following conditions (see [12]):

(CH1) (δ⊗ idH)(δ(c)) = (δ(1C)⊗ 1H) · (idC ⊗∆H)(δ(c)) for all c ∈ C, and
(CH2) (idC ⊗εH)(δ0(c)) = c for all c ∈ C.

Theorem 5.2. Let δ be a partial coaction of a compact C∗-quantum group G =
(A,∆) on a unital C∗-algebra C. Then the following conditions are equivalent:

(1) δ is weakly continuous, δ(1C) lies in the algebraic tensor product C⊗O(G),
and (idC ⊗ ε)(δ(1C)) = 1C, where ε denotes the counit of O(G);

(2) δ restricts to a partial coaction of O(G) on a unital dense ∗-subalgebra C0

of C.

Proof. Denote by O(Ĝ) ⊆ Â the algebraic direct sum of the matrix algebras Âα

associated to all α ∈ Irr(G), and recall that we can canonically identify O(G)
with a subspace of A∗.

(1)⇒(2): By Remark 3.3, the subspace C0 = O(Ĝ) . C of C is dense. We show
that C0 ⊆ C is a subalgebra. Let c, d ∈ C and υ, ω ∈ O(G). Then

(υ . c)(ω . d) = (idC ⊗υ⊗ω)
(
δ(c)12δ(d)13

)
,

where we use the leg notation on δ(c) and δ(d). Now, we find finitely many

υ′
i, ω

′
i ∈ O(Ĝ) such that

υ(a)ω(b) =
∑
i

(υ′
i ⊗ω′

i)
(
(a⊗ 1A)∆(b)

)
for all a, b ∈ A, and then

(υ . c)(ω . d) =
∑
i

(idC ⊗υ′
i⊗ω′

i)
((
δ(c)⊗ 1A

)
(id⊗∆)

(
δ(d)

))
=

∑
i

(idC ⊗υ′
i⊗ω′

i)(δ⊗ idA)
(
(c⊗ 1A)δ(d)

)
=

∑
i

υ′
i .

(
c(ω′

i . d)
)
∈ C0.
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Next, we show that δ(C0) is contained in the algebraic tensor product C⊗O(G).

Let ω ∈ O(Ĝ) and c ∈ C. Since O(G) has a basis of elements (uα
i,j)α,i,j satisfying

∆(uα
i,j) =

∑
k u

α
ik ⊗ uα

kj (see [33, Proposition 5.1]), we can find finitely many

υ1, . . . , υn ∈ O(Ĝ) and a1, . . . , an ∈ O(G) such that

(idA ⊗ω)
(
∆(b)

)
=

n∑
i=1

υi(b)ai

for all b ∈ O(G), and then

δ(ω . c) = (idC ⊗ idA ⊗ω)(δ⊗ idA)δ(c)

= δ(1C)
(
idC ⊗(idA ⊗ω)∆

)
δ(c)

= δ(1C) ·
n∑

i=1

(υi . c)⊗ ai

lies in the algebraic tensor product of C with O(G). Using a basis for O(Ĝ) con-

sisting of functionals (φα
i,j)α,i,j such that φα

i,j(u
β
k,l) = δα,βδi,kδj,l (see [33, Section 6]),

we see that δ(C0) is contained in the algebraic tensor product C0 ⊗O(G).
To finish the proof, note that with ω, c as above, (3.4) implies that

ε . (ω . c) = (idC ⊗ ε)
(
δ(1C)

)
· (ω . c) = ω . c.

(2)⇒(1): Since C0 ⊆ C is dense, the unit of C0 has to be 1C , whence δ(1C) lies
in the algebraic tensor product C⊗O(G) and (id⊗ ε)δ(1C) = 1C . To prove weak
continuity, we show that for every c ∈ C0, there exists some ω ∈ A∗ such that
ω . c = c. So, take c ∈ C0, and write δ(c) =

∑n
i=1 di ⊗ ai with di ∈ C0 and ai ∈

O(G). By the Hahn–Banach theorem, the restriction of ε to the finite-dimensional
subspace of A spanned by a1, . . . , an extends to a bounded linear functional ω ∈
A∗ that satisfies ω . c = ε . c = c. �

6. Restriction

Like partial actions of groups and partial (co)actions of Hopf algebras, partial
coactions of C∗-bialgebras can be obtained from nonpartial ones by restriction.

Definition 6.1. Let δB be a partial coaction of a C∗-bialgebra (A,∆) on a C∗-
algebra B. We call a C∗-subalgebra C ⊆ B weakly invariant if

δB(C)(C ⊗ A) ⊆ C ⊗ A,

and strongly invariant if the embedding C ↪→ B is strict and δB(C) ⊆ M(C ⊗
A) ⊆ M(B ⊗ A).

Note here that if the embedding C ↪→ B is strict, then the embedding C⊗A ↪→
B ⊗ A is strict as well and extends to an embedding M(C ⊗ A) ↪→ M(B ⊗ A).

Remark 6.2.

(1) Every ideal C ⊆ B is weakly invariant but not necessarily strongly invari-
ant.
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(2) A corner C ⊆ B is strongly invariant if and only if 1C ∈ M(C) ⊆ M(B)
is strongly invariant in the sense that

δB(1C) = δB(1C)(1C ⊗ 1A),

as one can easily check. If one thinks of elements ofM(B) andM(B⊗A) as
2×2 matrices with respect to the Peirce decomposition B = 1CB+(1B −
1C)B, then strong invariance of C means that δB(C) is contained in the
upper left corner, while weak invariance of C means that the off-diagonal
part of δB(C) vanishes.

Example 6.3. Suppose that δB is the partial coaction corresponding to a discon-
nected partial action ((pg)g∈Γ, (θg)g∈Γ) of a discrete group Γ on a C∗-algebra B as
in Proposition 4.3, and assume that C ⊆ B is a direct summand. Then C is auto-
matically weakly invariant, but strongly invariant if and only if θg(pg−1C) ⊆ C
for all g ∈ Γ.

Evidently, partial coactions can be restricted to strongly invariant C∗-
subalgebras. Restriction to weakly invariant C∗-subalgebras is a bit more deli-
cate unless the embedding of the C∗-subalgebra is strict.

Proposition 6.4. Let δB be a partial coaction of a C∗-bialgebra (A,∆) on a
C∗-algebra B, and let C ⊆ B be a weakly invariant C∗-subalgebra. Then we have
the following:

(1) δB restricts to a ∗-homomorphism δC : C → M(C ⊗ A),
(2) if the embedding C ↪→ B is strict, then the composition of δC with the

embedding of M(C ⊗ A) into M(B ⊗ A) is strict and

δC(c) = δB(c)(1C ⊗ 1A) (c ∈ C),

(3) if δC is strict, then it is a partial coaction of (A,∆) on C.

Proof. (1) This follows immediately from the definition.
(2) Suppose that the embedding C ↪→ B is strict. Then so is its composition

with δB and hence also δC . To prove the formula given for δC(c), choose a bounded
approximate unit (uν)ν for C, and note that δC(c)(uν ⊗ 1A) = δB(c)(uν ⊗ 1A)
converges strictly to δC(c) in M(C ⊗ A) and to δB(c)(1C ⊗ 1A) in M(B ⊗ A).

(3) Let (uν)ν be as above, and let c, c′ ∈ C. Then by definition of δC ,

(c′ ⊗ 1A ⊗ 1A) · (δC ⊗ idA)
(
δC(c)(uν ⊗ 1A)

)
= (c′ ⊗ 1A ⊗ 1A) · (δC ⊗ idA)

(
δB(c)(uν ⊗ 1A)

)
= (c′ ⊗ 1A ⊗ 1A) · (δB ⊗ idA)

(
δB(c)

)
·
(
δC(uν)⊗ 1A

)
= (idC ⊗∆)

(
(c′ ⊗ 1A)δB(c)

)
·
(
δC(uν)⊗ 1A

)
= (c′ ⊗ 1A ⊗ 1A) · (idC ⊗∆)

(
δC(c)

)
·
(
δC(uν)⊗ 1A

)
.

Since c′ ∈ C was arbitrary, we can conclude that

(δC ⊗ idA)
(
δC(c)(uν ⊗ 1A)

)
= (idC ⊗∆)

(
δC(c)

)
·
(
δC(uν)⊗ 1A

)
.
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As ν tends to infinity, δC(c)(uν⊗1A) converges strictly to δC(c), and since δC and
hence also δC ⊗ idA are strict, the left-hand side converges to (δC ⊗ idA)δC(c) and
the right-hand side converges to (idC ⊗∆)(δC(c))(δC(1C)⊗ 1A). �

Remark 6.5.

(1) As a corollary, a (partial) coaction on a C∗-algebra C
restricts to a partial coaction on every direct summand of C because
every direct summand is weakly invariant by Remark 6.2(1).

(2) The restriction δC can be strict without the embedding C ↪→ B being
strict; for example, this is the case if δB is the trivial coaction b 7→ b⊗ 1A
and C ⊆ B is a closed ideal that is not a direct summand.

Example 6.6. Let G = (A,∆) be a discrete quantum group so that A is a c0-sum

of matrix algebras Aα with α ∈ Irr(Ĝ). Then for every subset J ⊆ Irr(Ĝ), the
restriction of ∆ to the c0-sum AJ :=

⊕
α∈J Aα yields a partial coaction. But if J is

nontrivial, then AJ is not strongly invariant: if α /∈ J and γ ∈ J , then α⊗(α†⊗γ),
where α† denotes the dual of α, contains γ, and hence ∆(Aγ)(Aα ⊗ 1) 6= 0.

Closely related to the concept of restriction is the notion of a morphism of
partial coactions.

Definition 6.7. Let δB and δC be partial coactions of a C∗-bialgebra (A,∆) on
C∗-algebras B and C, respectively. A strong morphism from δC to δB is a strict
∗-homomorphism π : C → M(B) satisfying

(π⊗ idA)δC(c) = δB
(
π(c)

)
(c ∈ C).

A weak morphism from δC to δB is a ∗-homomorphism π : C → M(B) satisfying

(π⊗ idA)
(
δC(c)(c

′ ⊗ a)
)
= δB

(
π(c)

)(
π(c′)⊗ a

)
(c, c′ ∈ C, a ∈ A).

We call such a weak or strong morphism π proper if π(C) ⊆ B.

Evidently, partial coactions with strong morphisms or with proper weak mor-
phisms as above form categories.

Remark 6.8.

(1) Clearly, π is a strong or a weak morphism if and only if

π(ω . c) = ω . π(c) or π(ω . c)π(c′) =
(
ω . π(c)

)
π(c′), (6.1)

respectively, for all ω ∈ A∗ and c, c′ ∈ C.
(2) If π is a weak or a strong morphism and proper, then its image is weakly

or strongly invariant, respectively.
(3) Suppose that δB is a partial coaction of (A,∆) on a C∗-algebra B and

that C ⊆ B is a C∗-subalgebra that is weakly or strongly invariant. If the
embedding C ↪→ B is strict, then this embedding is a weak or a strong
morphism with respect to the restriction of δB to C defined above.

Let us look at the special case of partial coactions associated to disconnected
partial group actions.



PARTIAL ACTIONS OF C∗-QUANTUM GROUPS 859

Proposition 6.9. Let B and C be two C∗-algebras with disconnected partial
actions ((pg)g, (βg)g) and ((qg)g, (γg)g), respectively, of a discrete group Γ. With
respect to the associated partial coactions of C0(Γ), a strict ∗-homomorphism
π : B → M(C) is a strong morphism if and only if

π(pg) = qgπ(1C) and π ◦ βg ⊆ γg ◦ π for all g ∈ Γ, (6.2)

and a weak morphism if and only if

π(1C)γg
(
qg−1π(1C)

)
= π(pg) = γg

(
π(pg−1)

)
and

π ◦ βg ⊆ γg ◦ π for all g ∈ Γ.
(6.3)

Proof. Denote the partial coactions by δB and δC .
(1) Suppose that π is a strong morphism. Then the definition of δB and δC

implies that

(π ◦ βg)(pg−1b) = (π⊗ evg)δB(b) = (idC ⊗ evg)δC
(
π(b)

)
= γg

(
qg−1π(b)

)
(6.4)

for all g ∈ Γ and b ∈ B. Taking b = 1C or b = pg−1 , we conclude that

γg
(
qg−1π(pg−1)

)
= π(pg) = γg

(
qg−1π(1C)

)
,

and in particular, that π(pg)qg = π(pg). We use this relation on the left-hand side
above, apply γg−1 , and get π(pg) = qgπ(1C). Moreover, π(pgB) ⊆ qgC, and (6.4)
implies that π ◦ βg ⊆ γg ◦ π.

Conversely, the first relation in (6.2) implies that qg−1π(1C −pg−1) = 0, whence
both sides in (6.4) are zero for all b ∈ (1 − pg−1)B, and the second relation in
(6.2) implies that (6.4) holds for all b ∈ pg−1B. Combined, (6.2) implies that
(π⊗ id)δB = δC ◦ π.

(2) Suppose that π is a strict weak morphism. As in (1), we find that

(π ◦ βg)(pg−1b) = π(1C)γg
(
qg−1π(b)

)
(6.5)

for all g ∈ Γ and b ∈ B, and arguments similar to those in (1) yield the first
equation in (6.3). Now, we apply γg−1 to this relation and find that

γg−1

(
π(pg)

)
= γg−1

(
qgπ(1c)

)
π(1C) = π(pg−1).

In particular, this relation and (6.5) imply the second relation in (6.3).
Conversely, (6.3) implies that both sides of (6.5) coincide for all b ∈ pg−1B, and

that for all b ∈ (1C − pg−1)B,

π(1C)γg
(
qg−1π(1C − pg−1)

)
= π(pg)− π(pg) = 0,

whence both sides of (6.5) are zero for all b ∈ (1C − pg−1)B. But this implies that
(π⊗ id) ◦ δB = (π(1C)⊗ 1A)(δC ◦ π). �
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7. The Bernoulli shift of a discrete quantum group

The Bernoulli shift of a discrete group Γ is its action on the power set P(Γ),
which we identify with the infinite product {0, 1}Γ, by left translation. Restriction
to the subsets containing the unit eΓ yields an important example of a partial
action. To a discrete quantum group, we now associate a quantum Bernoulli shift
and obtain, by restriction, a partial coaction that is initial in a natural sense.

The space {0, 1}Γ ∼= P(Γ) parameterizes all maps from Γ to {0, 1} or, equiv-
alently, all subsets of Γ, which correspond to projections in M(C0(Γ)). Given
a discrete quantum group G, it is natural to define its quantum power set as
a universal quantum family of maps from G to {0, 1} in the sense of [26] or,
equivalently, as the unital C∗-algebra C that comes with a universal projection
in M(C ⊗ C0(G)). However, we need an additional commutativity assumption.

LetG = (C0(G),∆) be a discrete C∗-quantum group with counit ε and compact

dual Ĝ.

Definition 7.1. Let C be a C∗-algebra. We call a projection p ∈ M(C ⊗ C0(G))
admissible if in M(C ⊗ C0(G)⊗ C0(G)),

(p⊗ 1) · (id⊗∆)(p) = (id⊗∆)(p) · (p⊗ 1). (7.1)

Remark 7.2. For every partial coaction δ of C0(G) on a C∗-algebra C, the pro-
jection δ(1C) ∈ M(C ⊗ C0(G)) is admissible.

Proposition 7.3. Let G be a discrete C∗-quantum group. Then there exists a
unital C∗-algebra C(BG) with an admissible projection p ∈ M(C(BG) ⊗ C0(G))
that is universal in the following sense: for every C∗-algebra C with an admissible
projection q ∈ M(C(BG)⊗C0(G)), there exists a unique unital ∗-homomorphism
π : C(BG) → M(C) such that q = (π⊗ id)(p).

Proof. Write C0(G) ∼=
⊕

α Iα, where α varies in Irr(Ĝ) and each Iα is a matrix
algebra. Choose matrix units (eαij)i,j for each Iα. Denote by C(BG) the universal
unital C∗-algebra with generators 1 and (pαij)α,i,j satisfying the following relations:

(1) the finite sum pα :=
∑

i,j p
α
ij ⊗ eαij is a projection for every α ∈ Irr(Ĝ),

(2) (pα ⊗ 1)(id⊗∆)(pβ) = (id⊗∆)(pβ)(pα ⊗ 1) for all α, β ∈ Irr(Ĝ).

Then the sum p =
∑

α p
α ∈ M(C(BG)⊗ C0(G)) converges strictly because each

summand pα lies in a different summand of C(BG)⊗ C0(G) ∼=
⊕

α(C(BG)⊗ Iα)
and has norm at most 1. By (1) and (2), this p is an admissible projection, and
by construction, C(BG) has the desired universal property. �

We denote by C0(B
×
G) ⊂ C(BG) the nonunital C∗-subalgebra generated by all

pαi,j’s.

Example 7.4. In the case in which G is a classical discrete group Γ, we can identify
C(BΓ) with C({0, 1}Γ). Indeed, in that case, Irr(Γ̂) can be identified with Γ so
that C(BΓ) is generated by 1 and a family of projections pγ, where γ ∈ Γ. Denote
by δγ ∈ C0(Γ) the Dirac delta function at γ ∈ Γ. Then p =

∑
γ p

γ ⊗∆γ and the
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admissibility condition takes the form[∑
γ

pγ ⊗∆γ ⊗ 1,
∑
γ,γ′

pγγ
′ ⊗∆γ ⊗∆γ′

]
= 0

or, equivalently, [pγ, pγ
′′
] = 0 for all γ, γ′′ ∈ Γ. Thus, C(BΓ) is commutative.

Therefore, the map that sends pγ to the projection of {0, 1}Γ onto the γth com-
ponent induces an isomorphism C(BΓ) ∼= C({0, 1}Γ). Under this isomorphism,
the C∗-subalgebra C0(B

×
G) corresponds to C0(P(Γ) \ {∅}).

The quantum space BG comes with a natural action of G, as follows.

Proposition 7.5. There exists a unique coaction δ of C0(G) on C(BG) such that

(δ⊗ id)(p) = (id⊗∆)(p). (7.2)

This coaction is counital and restricts to a coaction on C0(B
×
G).

Proof. The projection q := (id⊗∆)(p) ∈ M((C(BG)⊗C0(G))⊗C0(G)) is admis-
sible because

(id⊗ id⊗∆)(q) = (id⊗∆(2))(p) = (id⊗∆⊗ id)(id⊗∆)(p)

commutes with q⊗ 1 = (id⊗∆⊗ id)(p⊗ 1). The universal property of p yields a
unital ∗-homomorphism δ : C(BG) → M(C(BG)⊗C0(G)) such that (δ⊗ id)(p) =
q = (id⊗∆)(p). We have (δ⊗ id)δ = (id⊗∆)δ because by definition of δ,(

(δ⊗ id)δ⊗ id
)
(p) = (δ⊗ id⊗ id)(id⊗∆)(p)

= (id⊗ id⊗∆)(δ⊗ id)(p)

= (id⊗∆⊗ id)(id⊗∆)(p)

=
(
(id⊗∆)δ⊗ id

)
(p).

Next, ((id⊗ ε)δ⊗ id)(p) = (id⊗(ε⊗ id)∆)(p) = p and hence (id⊗ ε)δ = id.
Finally, (7.2) implies that δ(pαij)(1⊗ C0(G)) ⊆ C0(B

×
G)⊗ C0(G). �

We will restrict the coaction δ to the direct summand of C(BG) that is given
by the following projection.

Lemma 7.6. The projection pε := (id⊗ ε)(p) ∈ C(BG) is central and δ(pε) = p.

Proof. We apply id⊗ ε⊗ id to (7.1) and obtain (pε ⊗ 1)p = p(pε ⊗ 1). Thus, pε
commutes with (id⊗ω)(p) ∈ C(BG) for every ω ∈ C0(G)

∗ and hence with C(BG).
Moreover,

δ(pε) = (δ⊗ ε)(p) = (id⊗ id⊗ ε)(δ⊗ id)(p) = (id⊗ id⊗ ε)(id⊗∆)(p) = p. �

Example 7.7. If G is a classical group Γ (see Example 7.4), then ε is the evaluation
at the unit eΓ and pε = peΓ . Therefore, restriction of the coaction δ above to the
direct summand pεC(BG) of C(BG) corresponds to restriction of the Bernoulli
shift on P(Γ) to the subsets containing the unit eΓ.

We can now define the quantum analogue of the partial Bernoulli shift.
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Definition 7.8. Let G be a discrete C∗-quantum group, and write C(Bε
G) for the

direct summand pεC(BG) of C(BG). Then the partial Bernoulli action of G is the
partial coaction δε of C0(G) on C(Bε

G) obtained as the restriction of the coaction
δ as in Proposition 6.4, that is,

δε(b) = δ(b)(pε ⊗ 1) for all b ∈ C(Bε
G).

Proposition 7.3 immediately implies the following.

Corollary 7.9. Let C be a C∗-algebra, and let q ∈ M(C⊗C0(G)) be an admissible
projection such that (id⊗ ε)(q) = 1C ∈ M(C). Then there exists a unique unital
∗-homomorphism π : C(Bε

G) → M(C) such that q = (π⊗ id)(p).

The partial Bernoulli action is initial in the following sense.

Proposition 7.10. Let δC be a counital partial coaction of C0(G) on a C∗-
algebra C. Then there exists a unique unital ∗-homomorphism π : C(Bε

G) → M(C)
such that

(π⊗ id)
(
p(pε ⊗ 1)

)
= δC(1C), (7.3)

and this π is a strong morphism of partial coactions, that is, (π⊗ id)◦δε = δC ◦π.

Proof. The projection δC(1C) ∈ M(C ⊗ C0(G)) is admissible and δC is counital.
Hence, Corollary 7.9 yields a unique unital ∗-homomorphism π : C(Bε

G) → M(C)
such that (π⊗ id)(p) = δC(1C). We show that (π⊗ id) ◦ δε = δC ◦ π. First, (7.2)
and Lemma 7.6 imply that

(δε ⊗ id)
(
p(pε ⊗ 1)

)
= (δ⊗ id)

(
p(pε ⊗ 1)

)
· (pε ⊗ 1)

= (id⊗∆)(p) · (p⊗ 1) · (pε ⊗ 1⊗ 1).

We apply π⊗ id⊗ id, use (7.3), and find that(
(π⊗ id)δε ⊗ id

)(
p(pε ⊗ 1)

)
= (π⊗∆)

(
p(pε ⊗ 1)

)
· (π⊗ id)

(
p(pε ⊗ 1)

)
= (id⊗∆)

(
δC(1C)

)
·
(
δC(1C)⊗ 1

)
= (δC ⊗ id)δC(1C)

= (δC ◦ π⊗ id)
(
p(pε ⊗ 1)

)
.

But this relation implies that (π⊗ id) ◦ δε = δC ◦ π. �

We will study this partial Bernoulli shift in a forthcoming article. In particular,
the partial coaction δε should give rise to a partial crossed product that can be
regarded as a quantum counterpart to the partial group algebra of a discrete group
(see [16, Section 10]) and as a C∗-algebraic counterpart to the Hopf algebroid Hpar

associated to a Hopf algebra H in [7].

8. Dilations

Let (A,∆) be a C∗-bialgebra. Given a partial coaction of (A,∆), a natural
and important question is whether it can be identified with the restriction of a
coaction to a weakly invariant C∗-subalgebra as in Proposition 6.4.
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Definition 8.1. Let δC be a partial coaction of (A,∆) on a C∗-algebra C. A dilation
of δC consists of a C∗-algebra B, a coaction δB of (A,∆) on B, and an embedding
ι : C ↪→ B that is a weak morphism from δC to δB that satisfies

δB
(
ι(c)

)(
ι(c′)⊗ a

)
= (ι⊗ idA)

(
δC(c)(c

′ ⊗ a)
)

(c, c′ ∈ C, a ∈ A).

Example 8.2 (Disconnected partial actions of groups). Let C be a C∗-algebra with
a disconnected partial action ((pg)g, (θg)g) of a discrete group Γ, and consider the
associated partial coaction δC of C0(Γ) as in Proposition 4.3.

A dilation of δC is given by a C∗-algebra B with a coaction of C0(Γ), that is, by
an action (αg)g∈Γ of Γ on B, and an embedding C ↪→ B that is a weak morphism.
Suppose that this embedding is strict. By Proposition 6.9, it is a weak morphism
if and only if

pg = 1Cαg(1C) and θg = αg|pgC (g ∈ Γ).

In particular, 1C commutes with αg(1C) for each g ∈ Γ. We claim that our partial
action coincides with the set-theoretic restriction ((Dg)g, (αg|Dg)g) of α to C,
where Dg = αg(C) ∩ C for each g ∈ Γ. Indeed, for every element c ∈ Dg with
0 ≤ c ≤ 1C , we have c ≤ 1C and α−1

g (c) ≤ 1C , whence c ≤ αg(1C)1C = pg and
c ∈ pgC. On the other hand, if c ∈ pgC, then αg−1(c) = θg−1(c) ∈ C and hence
c ∈ αg(C) ∩ C = Dg.

Conversely, suppose that α is an action of Γ on a C∗-algebra B that contains
C and suppose that α is a dilation in the usual sense, so that C ⊆ B is an ideal,
pgC = αg(C)∩C, and θg = αg|pgC for each g ∈ Γ. If the embedding C ⊆ B is strict,
then C is a direct summand, that is, C = 1CB, and then αg(C) ∩ C = αg(1C)1C
for each g ∈ Γ, so that the coaction δB corresponding to α is a dilation of δC .

The main question is, of course: Which partial coactions have a dilation? We
start with a necessary condition.

Definition 8.3. We call a partial coaction δC of (A,∆) on a C∗-algebra C regular
if

(idC ⊗∆)
(
δC(C)

)
· (1C ⊗ 1A ⊗ A) ⊆ M(C ⊗ A)⊗ A. (8.1)

Example 8.4.

(1) Every coaction is easily seen to be regular.
(2) The question of regularity arises only if C is nonunital because every

partial coaction on a unital C∗-algebra is regular.
(3) If A is a direct sum of matrix algebras, for example, if (A,∆) is a discrete

quantum group, then every partial coaction of (A,∆) is regular.

Regularity is necessary for the existence of a dilation with a strict embedding.

Lemma 8.5. If a partial coaction has a dilation (B, δB, ι), where ι is strict, then
the partial coaction is regular.

Proof. Suppose that δC is a partial coaction of (A,∆) on a C∗-algebra C with a
dilation (B, δB, ι). It suffices to show that the product

(ι⊗ idA ⊗ idA)
(
(idC ⊗∆)δC(C)

)
· (1B ⊗ 1A ⊗ A)
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lies in M(B ⊗ A)⊗ A. Since ι is a weak morphism, this product is equal to

(idC ⊗∆)
(
δB

(
ι(C)

))
·
(
ι(1C)⊗ 1A ⊗ A

)
,

which by coassociativity of δB can be rewritten as

(δB ⊗ idA)
(
δB

(
ι(C)

)
(1B ⊗ A)

)
·
(
ι(1C)⊗ 1A ⊗ 1A

)
,

and this product lies in M(B ⊗ A)⊗ A because δB(ι(C))(1B ⊗ A) ⊆ B ⊗ A. �

If (A,∆) is a regular C∗-quantum group, for example, a compact one, and if
δC is weakly continuous, then regularity of δC can be tested on the unit.

Lemma 8.6. Let (A,∆) be a regular C∗-quantum group, and let δC be a weakly
continuous partial coaction of (A,∆) on a C∗-algebra C such that

(idC ⊗∆)
(
δC(1C)

)
· (1C ⊗ 1A ⊗ A) ⊆ M(C ⊗ A)⊗ A.

Then δC is regular.

Proof. We use the same notation and a similar argument as in the proof of Propo-
sition 3.5. By (3.3),

(idC ⊗∆)
(
δC(ω . c)

)
= (idC ⊗∆)

(
δC(1C)

)
· (idC ⊗ idA ⊗ idA ⊗ω)(idC ⊗∆(2))δC(c)

for all ω ∈ A∗ and c ∈ C, where ∆(2) = (∆⊗ idA)∆ = (idA⊗∆)∆. Since δC is
weakly continuous, we can conclude that [(idC ⊗∆)δC(C) · (1C ⊗1A⊗A)] is equal
to the product of (idC ⊗∆)(δC(1C)) with[

(idC ⊗ idA ⊗ idA ⊗ω)
(
(idC ⊗∆(2))

(
δC(C)

)
(1C ⊗ 1A ⊗ A⊗ 1A)

)
: ω ∈ A∗].

Similarly as in the proof of Proposition 3.5, we rewrite this space in the form[
(idC ⊗ idA⊗ idA ⊗ω)

(
V34

(
idC ⊗(idA ⊗π)∆

)(
δC(C)

)
124

V ∗
34

(
A⊗ π̂(Â)

)
34

)
:

ω ∈ B(K)∗
]

=
[
(idC ⊗ idA ⊗ idA⊗ω)

((
A⊗ π̂(Â)

)
34

(
idC ⊗(idA⊗π)∆

)(
δC(C)

)
124

)
:

ω ∈ B(K)∗
]

=
[(
(idC ⊗ idA⊗ω ◦ π)(idC ⊗∆)δC(C)

)
⊗ A : ω ∈ B(K)∗

]
⊆ M(C ⊗ A)⊗ A.

Summarizing, we find that

(idC ⊗∆)δC(C) · (1C ⊗ 1A ⊗ A) ⊆ (idC ⊗∆)δC(1C) ·
(
M(C ⊗ A)⊗ A

)
.

By assumption on δC(1C), the right-hand side lies in M(C ⊗ A)⊗ A. �

For partial actions of a group G on a space X, a canonical dilation can be
constructed as a certain quotient of the productX×G (see [1] or [16, Theorem 3.5,
Proposition 5.5]). We now give a dual construction. Although this one will be
improved upon in the next section, we include it for informational purposes (see
also Example 8.8).
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From now on, we almost always assume the C∗-algebra underlying our C∗-
bialgebra to have the slice map property, which holds, for example, if it is nuclear
(see Section 2.4).

Proposition 8.7. Let δC be an injective, regular partial coaction of a C∗-bialgebra
(A,∆) on a C∗-algebra C, and suppose that A has the slice map property. Denote
by C � A ⊆ M(C ⊗ A) the subset of all x satisfying the following conditions:

(1) [x, δC(1C)] = 0,
(2) (δC ⊗ idA)(x) = (δC(1C)⊗ 1A)(idC ⊗∆)(x) = (idC ⊗∆)(x)(δC(1C)⊗ 1A),
(3) x(1C ⊗ A) and (1C ⊗ A)x lie in C ⊗ A,
(4) (idC ⊗∆)(x)(1C ⊗ 1A ⊗A) and (1C ⊗ 1A ⊗A)(idC ⊗∆)(x) lie in M(C ⊗

A)⊗ A.

Then C �A is a C∗-algebra, idC ⊗∆ restricts to a coaction of (A,∆) on C �A,
and (C � A, idC ⊗∆, δC) is a dilation of δC.

Proof. Clearly, C � A is a C∗-algebra. It contains δC(C) by (3.1) and regularity
of δC . Next, we need to show that

(idC ⊗∆)(C � A)(1C ⊗ 1A ⊗ A) ⊆ (C � A)⊗ A.

Condition (4) implies that the left-hand side is contained in M(C⊗A)⊗A. Since
A has the slice map property, it suffices to show that for every y ∈ C � A and
ω ∈ A∗, the element

x := (idC ⊗ idA⊗ω)(idC ⊗∆)(y) =
(
idC ⊗(idA⊗ω)∆

)
(y)

lies in C �A (i.e., it satisfies conditions (1)–(4) above). In cases (2)–(4), we only
prove the first halves of the statements; the others follow similarly.

(1) The element x commutes with δC(1C) because (idC ⊗∆)(y) commutes with
(δC(1C)⊗ 1A) by (2), applied to y.

(2) We use (1) for y and coassociativity of ∆ to see that

(δC ⊗ idA)(x) =
(
idC ⊗ idA ⊗(idA⊗ω)∆

)
(δC ⊗ idA)(y)

=
(
idC ⊗ idA ⊗(idA⊗ω)∆

)((
δC(1)⊗ 1A

)
(idC ⊗∆)(y)

)
=

(
δC(1C)⊗ 1A

)(
idC ⊗(idA ⊗ idA⊗ω)∆(2)

)
(y)

=
(
δC(1C)⊗ 1A

)
(idC ⊗∆)

(
idA⊗(idA ⊗ω)∆

)
(y)

=
(
δC(1C)⊗ 1A

)
(idC ⊗∆)(x).

(3) Write ω = aυ with a ∈ A and υ ∈ A∗ using Cohen’s factorization theorem,
and let a′ ∈ A. Then

x(1C ⊗ a′) = (idC ⊗ idA ⊗υ)
(
(idC ⊗∆)(y)(1C ⊗ a′ ⊗ a)

)
.

We use the relation A⊗A = [∆(A)(A⊗A)] and condition (3) on y and find that
x(1C ⊗ a′) lies in C ⊗ A, as desired.

(4) With a, a′, υ as above,

(idC ⊗∆)(x) · (1C ⊗ 1A ⊗ a′)

= (idC ⊗ idA ⊗ idA⊗υ)
(
(idC ⊗∆(2))(y) · (1C ⊗ 1A ⊗ a′ ⊗ a)

)
.
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We use the relation A⊗ A = [∆(A)(A⊗ A)] again and find that

(idC ⊗∆(2))(y) · (1C ⊗ 1A ⊗ a′ ⊗ a)

∈ (idC ⊗ idA⊗∆)
(
(idC ⊗∆)(y) · (1C ⊗ 1A ⊗ A)

)
· (1C ⊗ 1A ⊗ A⊗ A).

Condition (4), applied to y, implies that the expression above lies in M(C⊗A)⊗
A ⊗ A. Slicing the last factor with υ, we get (idC ⊗∆)(x) · (1C ⊗ 1A ⊗ a′) ∈
M(C ⊗ A)⊗ A. �

Example 8.8 (Case of a partial group action). Consider the partial coaction δC
associated to a disconnected partial action ((pg), (θg)g) of a discrete group Γ on a
C∗-algebra C. IdentifyM(C⊗C0(Γ)) with Cb(Γ;M(C)), and let f ∈ Cb(Γ;M(C)).
Then conditions (1) and (4) in Proposition 8.7 are automatically satisfied by f ,
condition (3) is equivalent to f ∈ Cb(Γ;C), and condition (2) corresponds to the
invariance condition

θg
(
pg−1f(h)

)
= pgf(gh) (g, h ∈ Γ).

In particular, if C = C0(X) for some locally compact Hausdorff space X, then
each pg is the characteristic function of some clopen Dg ⊆ X, each θg is the pull-
back along some homeomorphism αg−1 : Dg → Dg−1 , and the invariance condition
above translates into

f(x, gh) = f
(
αg−1(x), h

)
(g, h ∈ Γ, x ∈ Dg),

so that f descends to the quotient space of X×Γ with respect to the equivalence
relation given by (x, gh) ∼ (αg−1(x), h) for all g, h ∈ Γ and x ∈ Dg. This space
is, up to the reparameterization (x, g) 7→ (g−1, x), the globalization of the partial
action ((Dg)g, (αg)g) of Γ on X (see [16, Theorem 3.5, Proposition 5.5]), and
C0(X)� C0(Γ) can be identified with a C∗-subalgebra of Cb((X × Γ)/∼).

9. Minimal dilations

Among all dilations of a fixed partial coaction δC of a C∗-bialgebra (A,∆),
we now single out a universal one, which we call the globalization of δC . More
precisely, we show that (1) every dilation of δC contains one that is minimal in
a natural sense, and (2) that all such minimal dilations are isomorphic. We need
to assume, however, that δC is regular and injective, that A has the slice map
property, and, for (2), that (A,∆) is a C∗-quantum group.

Definition 9.1. Let δC be a partial coaction of (A,∆) on a C∗-algebra C. We call a
dilation (B, δB, ι) of δC minimal if ι(C) and A∗ .ι(C) generate B as a C∗-algebra.

Remark 9.2. Let (B, δB, ι) be a minimal dilation of a partial coaction δC of (A,∆)
on some C∗-algebra C. Then ι(C) ⊆ B is an ideal because ι(C)(A∗ . ι(C)) =
ι(C)ι(A∗ . C) ⊆ ι(C) by (6.1). If, moreover, ι is strict, then ι(C) is a direct
summand of B.

Example 9.3. If, in the situation above, (A,∆) is the C∗-bialgebra of functions
on a discrete group Γ, then the coaction δB corresponds to an action α of Γ on
B, and the dilation is minimal if and only if

∑
g∈Γ αg(ι(C)) generates B as a

C∗-algebra.
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Example 9.4 (Partial Bernoulli shift). Let G = (C0(G),∆) be a discrete C∗-
quantum group. Denote by δ the coaction of C0(G) on C(BG) (see Section 7),
denote by δε its restriction to a partial coaction on C(Bε

G), denote by δ× the coac-
tion of C0(G) on C0(B

×
G) obtained as the restriction of δ (see Proposition 7.5),

and denote by ι : C(Bε
G) ↪→ C0(B

×
G) the inclusion. Then (C0(B

×
G), δ

×, ι) is a dila-
tion of δε because δε is a restriction of δ×, and this dilation is minimal. Indeed,
δ×(pε) = p by Lemma 7.6, whence C0(G)

∗ . ι(C0(B
ε
G)) contains p

α
ij for every α, i,

j, and these elements generate C0(B
×
G).

Every dilation contains a minimal one.

Proposition 9.5. Let δC be a partial coaction of (A,∆) on a C∗-algebra C with
a dilation (B, δB, ι), and suppose that A has the slice map property. Denote by
B0 ⊆ B the C∗-subalgebra generated by ι(C) and A∗ . ι(C).

(1) The coaction δBrestricts to a coaction δB0 on B0, and (B0, δB0 , ι) is a
minimal dilation of δC.

(2) If (A,∆) is a regular C∗-quantum group and δC is weakly continuous,
then [A∗ . ι(C)] ⊆ B is a C∗-algebra. If additionally ι is strict, then
B0 = [(A∗ . ι(C))(C1B + Cι(1C))].

Proof. (1) To prove the first assertion, we only need to show that

δB
(
ι(C)

)
(1B ⊗ A) ⊆ B0 ⊗ A and δB

(
A∗ . ι(C)

)
(1B ⊗ A) ⊆ B0 ⊗ A.

But for all c ∈ C, υ, ω ∈ A∗, both (id⊗ω)(δB(ι(c))) = ω.ι(c) and (id⊗ω)(δB(υ.
ι(c))) = ωυ . ι(c) lie in B0. Since A has the slice map property, the desired
inclusions follow.

(2) We follow the proof of [9, Proposition 5.7], using the same notation and
manipulations as in the proof of Proposition 3.5. To shorten the notation, let
U := (π⊗ idπ̂(Â))(V ) and δπ := (idB ⊗π) ◦ δB ◦ ι. Then by (3.3),[

A∗ . ι(C)
]

=
[
A∗ . ι

(
C(A∗ . C)

)]
=

[
(idB ⊗υ⊗ω)

(
(δB ⊗ idA)

(
(C ⊗ 1A)δC(C)

))
: υ, ω ∈ A∗]

=
[
(idB ⊗υ⊗ω)

(
(δB ⊗ idA)

(
(C ⊗ 1A)δB(C)

))
: υ, ω ∈ A∗]

=
[
(idB ⊗υ ◦ π⊗ω ◦ π)

((
δB(C)⊗ 1A

)
(idB ⊗∆)δB(C)

)
: υ, ω ∈ B(K)∗

]
=

[
(idB ⊗υ⊗ω)

(
δπ(C)12U23δπ(C)13U

∗
23

)
: υ, ω ∈ B(K)∗

]
=

[
(idB ⊗υ⊗ω)

(
δπ(C)12U23δπ(C)13

(
π(A)⊗ π̂(Â)

)
23

)
: υ, ω ∈ B(K)∗

]
=

[
(idB ⊗υ⊗ω)

(
δπ(C)12

(
π(A)⊗ π̂(Â)

)
23
δπ(C)13

)
: υ, ω ∈ B(K)∗

]
=

[(
A∗ . ι(C)

)(
A∗ . ι(C)

)]
.

Thus, [A∗.ι(C)] is a C∗-algebra. If ι is strict so that ι(1C) is well defined, then this
C∗-algebra commutes with ι(1C), and by (6.1) the product is [ι(A∗ . C)] = ι(C).
This proves the last assertion concerning B0. �

If we apply Proposition 9.5 to the canonical dilation (C �A, idC ⊗∆, δC) con-
structed in Proposition 8.7, we obtain the following dilation.
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Theorem 9.6. Let (A,∆) be a C∗-bialgebra, where A has the slice map property,
and let δC be an injective, regular partial coaction of (A,∆) on a C∗-algebra C.
Denote by G(C) ⊆ M(C ⊗ A) the C∗-subalgebra generated by{

(idC ⊗ idC ⊗ω)(idC ⊗∆)δC(c) : ω ∈ A∗, c ∈ C
}

and δC(C).

Then idC ⊗∆ restricts to a partial coaction on G(C), and

G(δC) :=
(
G(C), idC ⊗∆, δC

)
is a minimal dilation of δC.

Proof. By an argument similar to that in the proof of Proposition 8.7, we only
need to show that for every c ∈ C and υ, ω ∈ A∗, the elements

(idC ⊗ idA ⊗υ)
(
(idC ⊗∆)δC(c)

)
and

(idC ⊗ idA ⊗υ)
(
(idC ⊗∆)

(
(idC ⊗ idA⊗ω)(idC ⊗∆)δC(c)

))
lie in G(C). In the first case, this is trivially true, and in the second case, one finds
that the element is equal to d = (idC ⊗ idA ⊗υω)((idC ⊗∆)δC(C)) ∈ G(C). �

Remark 9.7. Suppose that (A,∆) and δC are as above.

(1) Be aware that δC is strict as a map from C to M(C ⊗ A), but this does
not imply that δC is strict as a map from C to G(C).

(2) If δC is weakly continuous, then (3.3) implies that G(C) ⊆ M(C ⊗ A) is
equal to the C∗-subalgebra generated by {(idC ⊗ idC ⊗ω)(idC ⊗∆)δC(c) :
ω ∈ A∗, c ∈ C} and δC(1C).

Example 9.8 (Case of a partial group action). Consider the partial coaction δC
associated to a disconnected partial action ((pg), (θg)g) of a discrete group Γ on a
C∗-algebra C, and identify M(C ⊗C0(Γ)) with Cb(Γ;M(C)). In that case, G(C)
is the C∗-algebra generated by all functions of the form

fc,h = (idC ⊗ idC0(Γ)⊗ evh)(idC ⊗∆)δC(c) : g 7→ θgh(ph−1g−1c),

where c ∈ C and g, h ∈ Γ. The action ρ of Γ corresponding to the coaction
idC ⊗∆ is given by right translation of functions, whence ρh′(fc,h) = fc,h′h for all
h′ ∈ Γ.

We will use the following notion of a morphism between dilations.

Definition 9.9. Let δC be a partial coaction of a C∗-bialgebra (A,∆) on some
C∗-algebra C. A morphism between dilations B = (B, δB, ι

B) and D = (D, δD, ι
D)

of δC is a ∗-homomorphism φ : B → D satisfying

φ
(
ιB(c)

)
= ιD(c) and

δD
(
φ(b)

)
(1D ⊗ a) = (φ⊗ idA)

(
δB(b)(1B ⊗ a)

) (9.1)

for all c ∈ C, b ∈ B, and a ∈ A. Evidently, all dilations of a fixed partial coaction
δC form a category; we denote this category by Dil(δC).
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Remark 9.10. The second equation in (9.1) is equivalent to the condition that φ
is a morphism of left A∗-modules; that is, ω . φ(b) = φ(ω . b) for all b ∈ B and
ω ∈ A∗.

If δC is injective and regular, then the dilation G(δC) is terminal among the
minimal ones.

Proposition 9.11. Let δC be an injective, regular partial coaction of a C∗-
bialgebra (A,∆) on a C∗-algebra C, let B = (B, δB, ι) be a minimal dilation
of δC, and suppose that A has the slice map property. Then there exists a unique
morphism φB from B to G(δC), and on the level of C∗-algebras φB is surjec-
tive. For each b ∈ B, the image φB(b) is the restriction of δB(b) to the ideal
ι(C)⊗ A ∼= C ⊗ A in B ⊗ A.

Proof. Uniqueness follows from the fact that B is generated by ι(C) and A∗.ι(C).
To prove existence, define φB as in (3). Since ι is a weak morphism, φB ◦ ι = δC .

The relation (idB ⊗∆)δB = (δB ⊗ idA)δB implies that

(φB ⊗ idA)
(
δB(b)(b

′ ⊗ a)
)
= (idC ⊗∆)

(
φB(b)

)(
φB(b

′)⊗ a
)

for all b, b′ ∈ B and a ∈ A; in particular,

φB
(
ω . ι(c)

)
φB(b) = (idC ⊗ idA⊗ω)

(
(idC ⊗∆)δC(C)

)
φB(b)

for all c ∈ C and ω ∈ C∗. Now, the definition of G(C) and minimality of B imply
that φB(B) = G(C). �

If (A,∆) is a C∗-quantum group, then the morphism above is injective and
hence an isomorphism. To show this, we use the following observation.

Lemma 9.12. Let δB be a coaction of a C∗-quantum group (A,∆) on a C∗-algebra
B, and let b, b′ ∈ M(B). Then δB(b)(b

′⊗1A) = 0 if and only if (b⊗1A)δB(b
′) = 0.

Proof. Choose a modular multiplicative unitary W for (A,∆) so that ∆(a) =
W (a⊗ 1)W ∗ for all a ∈ A. Then

(δB ⊗ idA)
(
δB(b)

)
·
(
δB(b

′)⊗ 1A
)
= (idB ⊗∆)

(
δB(b)

)
·
(
δB(b

′)⊗ 1A
)

= W23

(
δB(b)⊗ 1A

)
W ∗

23

(
δB(b

′)⊗ 1A
)
.

Since δB ⊗ idA is injective andW is unitary, we can conclude that δB(b)(b
′⊗ 1A) =

0 if (
δB(b)⊗ 1A

)
W ∗

23

(
δB(b

′)⊗ 1A
)
= 0. (9.2)

A similar argument shows that (b⊗ 1A)δB(b
′) = 0 if and only if(

δB(b)⊗ 1A
)
W23

(
δB(b

′)⊗ 1A
)
= 0. (9.3)

Now, both (9.2) and (9.3) are equivalent to the condition δB(b)(1B ⊗
Â)δB(b

′) = 0. �

We can now prove claim (2) stated in the introduction to Section 9.
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Proposition 9.13. Let δC be an injective, regular partial coaction of a C∗-
quantum group (A,∆) on a C∗-algebra C, suppose that A has the slice map prop-
erty, and let B be a minimal dilation of δC. Then the morphism φB from B to
G(δC) is an isomorphism.

Proof. Write B = (B, δB, ι). It suffices to show that φB is injective on the level
of C∗-algebras. On the direct summand ιC(C) ⊆ B, the morphism φB is given
by ιC(c) 7→ δC(c) and hence injective. Since B is minimal, the direct summand
(1B − ι(1C))B of B is generated by (1B − ι(1C))(A

∗ . ι(C)). Given a nonzero
b ∈ (1B − ι(1C))B, we therefore find some c ∈ C such that δB(ι(c))(b ⊗ 1A) is
nonzero, and then (ι(c)⊗ 1A)δB(b) is nonzero by the lemma above, whence φB(b)
is nonzero. �

Corollary 9.14. Let (A,∆) be a C∗-quantum group, and suppose that A has
the slice map property. Then all minimal dilations of an injective, regular partial
coaction of (A,∆) are isomorphic.
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Smash product, globalization and Morita theory, J. Pure Appl. Algebra 219 (2015), no. 12,
5511–5538. Zbl 1331.16024. MR3390037. DOI 10.1016/j.jpaa.2015.05.031. 844

14. R. Exel, Circle actions on C∗-algebras, partial automorphisms, and a generalized Pimsner-
Voiculescu exact sequence, J. Funct. Anal. 122 (1994), no. 2, 361–401. Zbl 0808.46091.
MR1276163. DOI 10.1006/jfan.1994.1073. 843

15. R. Exel, Twisted partial actions: A classification of regular C∗-algebraic bundles, Proc.
Lond. Math. Soc. (3) 74 (1997), no. 2, 417–443. Zbl 0874.46041. MR1425329. 843

16. R. Exel, Partial dynamical systems, Fell bundles and applications, Math. Surveys Monogr.
224, Amer. Math. Soc., Providence, 2017. Zbl 06801030. MR3699795. 843, 851, 862, 864,
866

17. U. Franz and A. Skalski, On idempotent states on quantum groups, J. Algebra 322 (2009),
no. 5, 1774–1802. Zbl 1176.43005. MR2543634. DOI 10.1016/j.jalgebra.2009.05.037. 850

18. J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Éc. Norm.
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