

LOWER AND UPPER LOCAL UNIFORM *K*-MONOTONICITY IN SYMMETRIC SPACES

MACIEJ CIESIELSKI

Communicated by D. E. Alspach

ABSTRACT. Using the local approach to the global structure of a symmetric space E, we establish a relationship between strict K-monotonicity, lower (resp., upper) local uniform K-monotonicity, order continuity, and the Kadec– Klee property for global convergence in measure. We also answer the question: Under which condition does upper local uniform K-monotonicity coincide with upper local uniform monotonicity? Finally, we present a correlation between K-order continuity and lower local uniform K-monotonicity in a symmetric space E under some additional assumptions on E.

1. INTRODUCTION

The first essential result devoted to upper local uniform K-monotonicity (ULUKM) was published in [5] by Chilin, Dodds, Sedaev, and Sukochev in 1996. The authors presented a complete characterization of ULUKM written in terms of strict K-monotonicity and the Kadec-Klee property for global convergence in measure in symmetric spaces, among others. Recently, many interesting results have appeared in [7], [12], and [11] (see also [4], [14]) exploring the global and local K-monotonicity structure of Banach spaces.

The crucial inspiration for our discussion can be found in [8], where we studied an application of strict K-monotonicity and K-order continuity to the best dominated approximation with respect to the Hardy–Littlewood–Pólya relation \prec . (It

Copyright 2018 by the Tusi Mathematical Research Group.

Received Mar. 14, 2017; Accepted Apr. 12, 2017.

First published online Dec. 19, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 46E30; Secondary 46B20, 46B42.

Keywords. symmetric space, Lorentz space, *K*-order continuity, lower (upper) local uniform *K*-monotonicity, Kadec–Klee property for global convergence in measure.

is worth mentioning, in view of that previous result, that our work [9] will investigate, among other things, the full criteria for K-order continuity in symmetric spaces.) The main goal of the present article and our investigation is to develop a complete characterization of strict K-monotonicity and K-order continuity, as well as upper and lower local uniform K-monotonicity in symmetric spaces.

This article is organized as follows. Section 2 contains all the necessary definitions and notation. In Section 3, we focus on a characterization of lower and upper local uniform K-monotonicity in symmetric space E. First, we investigate a relation between a point of lower local uniform K-monotonicity and a point of lower local uniform monotonicity. We also characterize a full correlation between a point of lower local uniform K-monotonicity and a conjunction of a point of order continuity and a point of lower K-monotonicity and also an H_g point in a symmetric space E. Next, we show a correspondence between a point of upper local uniform K-monotonicity and a point of upper local uniform monotonicity and also an H_q point in E under some additional assumptions. Our investigation is not restricted only to the local approach to K-monotonicity structure; we also discuss as a consequence a complete characterization of global K-monotonicity properties in a symmetric space E. We answer the crucial question: Under which condition does lower local uniform K-monotonicity and upper local uniform K-monotonicity coincide in symmetric spaces? In the spirit of the previous result, we also describe an essential connection between a point of K-order continuity and a point of lower local uniform K-monotonicity and also an H_g point in a symmetric space E. It is worth noting that several results and examples concerning respective global properties are also presented in this section.

2. Preliminaries

Let \mathbb{R} , \mathbb{R}^+ , and \mathbb{N} be the sets of reals, nonnegative reals, and positive integers, respectively. In a Banach space $(X, \|\cdot\|_X)$, we use the notation S(X) (resp., B(X)) for the unit sphere (resp., closed unit ball). A nonnegative mapping ϕ given on \mathbb{R}^+ is called *quasiconcave* if $\phi(t)$ is increasing and $\phi(t)/t$ is decreasing on \mathbb{R}^+ and also $\phi(t) = 0 \Leftrightarrow t = 0$. Denote as usual by μ the Lebesgue measure on $I = [0, \alpha)$, where $\alpha = 1$ or $\alpha = \infty$, and denote by L^0 the set of all (equivalence classes of) extended real-valued Lebesgue measurable functions on I. We also use the notation $A^c = I \setminus A$ for any measurable set A. Let us recall that a Banach lattice $(E, \|\cdot\|_E)$ is said to be a *Banach function space* (or a *Köthe space*) if it is a sublattice of L^0 satisfying the following conditions.

- (1) If $x \in L^0$, $y \in E$, and $|x| \leq |y|$ almost everywhere, then $x \in E$ and $||x||_E \leq ||y||_E$.
- (2) There exists a strictly positive $x \in E$.

In addition, we employ in our investigation the symbol $E^+ = \{x \in E : x \ge 0\}$.

An element $x \in E$ is said to be a *point of order continuity* if, for any sequence $(x_n) \subset E^+$ with $x_n \leq |x|$ and $x_n \to 0$ almost everywhere, we have $||x_n||_E \to 0$. A Banach function space E is called *order continuous* ($E \in (OC)$ for short) if any element $x \in E$ is a point of order continuity (see [18]). It is said that a Banach function space E has the *Fatou property* when for every $(x_n) \subset E^+$, $\sup_{n\in\mathbb{N}} ||x_n||_E < \infty$, and $x_n \uparrow x \in L^0$, we have $x \in E$ and $||x_n||_E \uparrow ||x||_E$. In addition, we assume that E has the Fatou property, unless mentioned otherwise.

An element $x \in E^+$ is called a point of upper local uniform monotonicity (resp., a point of lower local uniform monotonicity) or a ULUM point (resp., an LLUM point) if for any $(x_n) \subset E$ such that $x \leq x_n$ and $||x_n||_E \to ||x||_E$ (resp., $x_n \leq x$ and $||x_n||_E \to ||x||_E$), we get $||x_n - x||_E \to 0$. Let us recall that if each point of $E^+ \setminus \{0\}$ is a ULUM point (resp., an LLUM point), then we say that E is upper local uniformly monotone, or $E \in (\text{ULUM})$ (resp., lower local uniformly monotone, or $E \in (\text{LLUM})$).

An element $x \in E$ is said to be an H_g point (resp., an H_l point) in E if for any sequence $(x_n) \subset E$ with $x_n \to x$ globally in measure (resp., locally in measure) and $||x_n||_E \to ||x||_E$, then $||x_n - x||_E \to 0$. Let us recall that the space E has the Kadec-Klee property for global convergence in measure (resp., Kadec-Klee property for local convergence in measure) if any element $x \in E$ is an H_g point (resp., an H_l point) in E (see [5], [12]).

For any function $x \in L^0$, we define its *distribution function* by

$$d_x(\lambda) = \mu \{ s \in [0, \alpha) : |x(s)| > \lambda \}, \quad \lambda \ge 0.$$

The decreasing rearrangement for any element $x \in L^0$ is given by

$$x^*(t) = \inf \left\{ \lambda > 0 : d_x(\lambda) \le t \right\}, \quad t \ge 0.$$

Throughout the article, we use the notation $x^*(\infty) = \lim_{t\to\infty} x^*(t)$ if $\alpha = \infty$ and $x^*(\infty) = 0$ if $\alpha = 1$. For any function $x \in L^0$, we denote the maximal function of x^* by

$$x^{**}(t) = \frac{1}{t} \int_0^t x^*(s) \, ds$$

We mention that for any function $x \in L^0$, it is well known that $x^* \leq x^{**}$, x^{**} is decreasing, continuous, and subadditive. (For more details on d_x , x^* , and x^{**} , see [1], [17].)

We say that two functions $x, y \in L^0$ are equimeasurable $(x \sim y \text{ for short})$ if $d_x = d_y$. A Banach function space $(E, \|\cdot\|_E)$ is called symmetric or rearrangement invariant (r.i. for short) if for any $x \in L^0$ and $y \in E$ with $x \sim y$, we have $x \in E$ and $\|x\|_E = \|y\|_E$. In a symmetric space E, we denote by ϕ_E the fundamental function given by $\phi_E(t) = \|\chi_{(0,t)}\|_E$ for any $t \in [0, \alpha)$ (see [1]). For any two functions $x, y \in L^1 + L^\infty$, the Hardy-Littlewood-Pólya relation \prec is defined by

$$x \prec y \Leftrightarrow x^{**}(t) \le y^{**}(t) \quad \text{for all } t > 0.$$

A symmetric space E is called K-monotone ($E \in (KM)$ for short) if for any $x \in L^1 + L^\infty$ and $y \in E$ with $x \prec y$, we have $x \in E$ and $||x||_E \leq ||y||_E$. It is well known that a symmetric space is K-monotone if and only if E is an exact interpolation space between L^1 and L^∞ . It is worth noting that a symmetric space E equipped with an order continuous norm or with the Fatou property is K-monotone (see [17]).

An element $x \in E$ is said to be a *point of lower K-monotonicity* (an *LKM* point of *E* for short) if for any $y \in E$, $x^* \neq y^*$ and $y \prec x$, we have $||y||_E < ||x||_E$.

We note that a symmetric space E is called *strictly K-monotone* ($E \in (SKM)$ for short) if any element of E is an LKM point.

An element $x \in E$ is called a *point of K-order continuity* of E if for any sequence $(x_n) \subset E$ with $x_n \prec x$ and $x_n^* \to 0$ almost everywhere, we have $||x_n||_E \to 0$. Recall that a symmetric space E is said to be *K-order continuous* $(E \in (KOC) \text{ for short})$ if every element x of E is a point of *K*-order continuity.

An element $x \in E$ is said to be a point of upper local uniform K-monotonicity of E (a ULUKM point for short) if for any $(x_n) \subset E$ such that $x \prec x_n$ for every $n \in \mathbb{N}$ and $||x_n||_E \to ||x||_E$, we have $||x^* - x_n^*||_E \to 0$. An element $x \in E$ is said to be a point of lower local uniform K-monotonicity of E (an LLUKM point for short) if for any $(x_n) \subset E$ with $x_n \prec x$ for all $n \in \mathbb{N}$ and $||x_n||_E \to ||x||_E$, we have $||x^* - x_n^*||_E \to 0$. A symmetric space E is said to be upper local uniformly K-monotone or $E \in (\text{ULUKM})$ (resp., lower local uniformly K-monotone or $(E \in (\text{LLUKM}))$ if every element of E is a ULUKM point (resp., an LLUKM point). (We refer the reader to [5], [7]–[9], [14] for more details.)

Recall that the Marcinkiewicz function space $M_{\phi}^{(*)}$ (resp., M_{ϕ}), where ϕ is a quasiconcave function on I, is a subspace of L^0 such that for all $x \in M_{\phi}^{(*)}$ (resp., $x \in M_{\phi}$),

$$\begin{aligned} \|x\|_{M_{\phi}^{(*)}} &= \sup_{t>0} \left\{ x^{*}(t)\phi(t) \right\} < \infty \\ (\text{resp.}, \, \|x\|_{M_{\phi}} &= \sup_{t>0} \left\{ x^{**}(t)\phi(t) \right\} < \infty). \end{aligned}$$

Obviously, $||x||_{M_{\phi}^{(*)}} \leq ||x||_{M_{\phi}}$ for all $x \in M_{\phi}$, that is, the embedding of M_{ϕ} in $M_{\phi}^{(*)}$ has norm 1 ($M_{\phi} \hookrightarrow M_{\phi}^{(*)}$ for short). Moreover, it should be noted that the Marcinkiewicz space $M_{\phi}^{(*)}$ (resp., M_{ϕ}) is an r.i. quasi-Banach function space (resp., r.i. Banach function space) with the fundamental function ϕ on I. Let us also recall that for any symmetric space E with the fundamental function ϕ , we have the embedding $E \hookrightarrow M_{\phi}$ with norm 1 (see [1], [17]).

Given $0 and a locally integrable weight function <math>w \ge 0$, we define the Lorentz space $\Lambda_{p,w}$ as a subspace of L^0 such that

$$||x||_{\Lambda_{p,w}} = \left(\int_0^\alpha (x^*(t))^p w(t) \, dt\right)^{1/p} < \infty,$$

where $W(t) = \int_0^t w < \infty$ for any $t \in I$ and $W(\infty) = \infty$ in the case when $\alpha = \infty$. It is worth mentioning that the spaces $\Lambda_{p,w}$ were introduced by Lorentz in [19], and the space $\Lambda_{p,w}$ is a norm space (resp., quasinorm space) if and only if $1 \leq p < \infty$ and w is decreasing (see [16]) (resp., W satisfies the condition Δ_2 ; see [21], [16]). It is also known that for any 0 , if <math>W satisfies the condition Δ_2 and $W(\infty) = \infty$, then the Lorentz space $\Lambda_{p,w}$ is an order continuous r.i. quasi-Banach function space (see [16]).

For $0 and <math>w \in L^0$ a nonnegative locally integrable weight function, we consider the Lorentz space $\Gamma_{p,w}$, that is, a subspace of L^0 such that

$$\|x\|_{\Gamma_{p,w}} = \|x^{**}\|_{\Lambda_{p,w}} = \left(\int_0^\alpha x^{**p}(t)w(t)\,dt\right)^{1/p} < \infty.$$

Unless stated otherwise, we suppose that w belongs to the class D_p ; that is,

$$W(s) := \int_0^s w(t) \, dt < \infty \quad \text{and} \quad W_p(s) := s^p \int_s^\alpha t^{-p} w(t) \, dt < \infty$$

for all $0 < s \leq 1$ if $\alpha = 1$ and for all $0 < s < \infty$ otherwise. It is easy to observe that if $w \in D_p$, then the Lorentz space $\Gamma_{p,w}$ is nontrivial. Moreover, it is clear that $\Gamma_{p,w} \subset \Lambda_{p,w}$. On the other hand, the following inclusion $\Lambda_{p,w} \subset \Gamma_{p,w}$ holds if and only if $w \in B_p$ (see [15]). Let us also recall that $(\Gamma_{p,w}, \|\cdot\|_{\Gamma_{p,w}})$, introduced by Calderón in [3], is an r.i. quasi-Banach function space with the Fatou property. It is well known that in the case when $\alpha = \infty$, the Lorentz space $\Gamma_{p,w}$ has order continuous norm if and only if $\int_0^\infty w(t) dt = \infty$ (see [15]). It is also well known that by the Lions–Peetre K-method (see [2], [17]), the space $\Gamma_{p,w}$ is an interpolation space between L^1 and L^∞ . (For more details about the properties of the spaces $\Lambda_{p,w}$ and $\Gamma_{p,w}$, we refer the reader to [7], [10], [12], [15], [16].)

3. Lower and upper local uniform *K*-monotonicity in symmetric spaces

In this section, we investigate a connection between lower local uniform K-monotonicity and lower local uniform monotonicity in symmetric spaces. We also present a complete characterization of an LLUKM point in terms of a point of order continuity and an LKM point.

Lemma 3.1. Let E be a symmetric space. If $x \in E$ is an LLUKM point, then $x^*(\infty) = 0$.

Proof. Suppose on the contrary that $x^*(\infty) > 0$. Define $x_n = x^*\chi_{[0,n]}$ for any $n \in \mathbb{N}$. Then, for any $n \in \mathbb{N}$, we have $0 \leq x_n \leq x^*$ and also $x_n \prec x$. It is clear that $x_n \uparrow x^*$ almost everywhere and $\sup_{n \in \mathbb{N}} ||x_n||_E \leq ||x||_E < \infty$. Hence, by the Fatou property, we conclude that $||x_n||_E \to ||x||_E$. Consequently, by the assumption that x is an LLUKM point, it follows that

$$||x_n^* - x^*||_E \to 0$$

Since $x^*(\infty) > 0$, we obtain $\chi_I \in E$, whence for any $n \in \mathbb{N}$,

$$\|x_n^* - x^*\|_E = \|x^*\chi_{(n,\infty)}\|_E \ge \|x^*(\infty)\chi_{(n,\infty)}\|_E = x^*(\infty)\|\chi_I\|_E > 0.$$

So, we get a contradiction which finishes the proof.

Lemma 3.2. Let E be a symmetric space, and let ϕ be the fundamental function of E. If $x \in E$ is an LLUKM point and $x^*(t)\phi(t) \to 0$ as $t \to 0^+$, then x is a point of order continuity.

Proof. Let us assume, on the contrary, that x is not a point of order continuity in E. Then, by Lemma 2.6 in [10] and Proposition 3.2 in [1], there exist $(A_n) \subset I$ a decreasing sequence of measurable sets and $\delta > 0$ such that $A_n \to \emptyset$ and

$$\delta \le \|x^* \chi_{A_n}\|_E \tag{1}$$

for all $n \in \mathbb{N}$. Let $\epsilon \in (0, \delta)$. We claim that there exists $K \in \mathbb{N}$ such that for every $k \geq K$,

$$\|x^*\chi_{[k,\infty)}\|_E < \frac{\epsilon}{2}.$$

Indeed, taking $x_n = x^*\chi_{[0,n)}$ for any $n \in \mathbb{N}$, we have $x_n = x_n^* \uparrow x^*$ and also $\sup_{n \in \mathbb{N}} ||x_n^*||_E \leq ||x^*||_E < \infty$. Hence, by the Fatou property and by symmetry of E, it follows that $||x_n||_E \to ||x||_E$. Consequently, according to the assumption that x is an LLUKM point, in view of $x_n \prec x$ we obtain our claim. Moreover, it is easy to see that $x^*\chi_{A_n\cap[0,k)} \prec x^*\chi_{[0,\min\{\mu(A_n),k\})}$ for any $k, n \in \mathbb{N}$, whence by symmetry and by the triangle inequality of the norm in E, we conclude that

$$\begin{aligned} \|x^*\chi_{A_n}\|_E &\leq \|x^*\chi_{A_n\cap[0,k)}\|_E + \|x^*\chi_{A_n\cap[k,\infty)}\|_E \\ &\leq \|x^*\chi_{[0,\min\{\mu(A_n),k\})}\|_E + \|x^*\chi_{A_n\cap[k,\infty)}\|_E \end{aligned}$$

for any $k, n \in \mathbb{N}$. Hence, since $\mu(A_n) < K$ for sufficiently large $n \in \mathbb{N}$, passing to subsequence and relabeling if necessary, by the claim and by condition (1) we get

$$\delta \le \|x^* \chi_{A_n}\|_E \le \|x^* \chi_{[0,\mu(A_n))}\|_E + \|x^* \chi_{A_n \cap [K,\infty)}\|_E \le \|x^* \chi_{[0,\mu(A_n))}\|_E + \frac{\epsilon}{2}$$

for any $n \in \mathbb{N}$. Therefore, for any $n \in \mathbb{N}$ we have

$$\frac{\delta}{2} \le \|x^* \chi_{[0,\mu(A_n))}\|_E.$$
(2)

Define $t_n = \mu(A_n)$ and $z_n = x^*(t_n)\chi_{[0,t_n)} + x^*\chi_{[t_n,\infty)}$ for all $n \in \mathbb{N}$. Clearly, $z_n = z_n^* \leq x^*$ for every $n \in \mathbb{N}$ and $z_n^* \uparrow x^*$ almost everywhere on I. As a consequence, since $\sup_{n \in \mathbb{N}} ||z_n^*||_E \leq ||x^*||_E$, by the Fatou property and by symmetry of E this yields $||z_n||_E \to ||x||_E$. Hence, since $z_n \prec x$ for any $n \in \mathbb{N}$ and by the assumption that x is an LLUKM point, there exists $N \in \mathbb{N}$ such that for any $n \geq N$,

$$\left\| \left(x^* - x^*(t_n) \right) \chi_{[0,t_n)} \right\|_E < \frac{\epsilon}{4}.$$

So, by condition (2) and by the triangle inequality of the norm in E we obtain

$$\frac{\delta}{2} \le \|x^* \chi_{[0,t_n)}\|_E \le \|(x^* - x^*(t_n))\chi_{[0,t_n)}\|_E + \|x^*(t_n)\chi_{[0,t_n)}\|_E$$
$$\le \frac{\epsilon}{4} + x^*(t_n)\phi(t_n)$$

for all $n \geq N$. Consequently, for any $n \geq N$ we have

$$x^*(t_n)\phi(t_n) \ge \delta/4,\tag{3}$$

whence by the assumption that $x^*(t)\phi(t) \to 0$ as $t \to 0^+$ we get a contradiction, which ends the proof.

Now, we answer the crucial question about whether the condition $\phi(t)x^*(t) \to 0$ as $t \to 0^+$ in Lemma 3.2 is necessary and whether it can be avoided. Namely, in the following example we provide a function, in the Lorentz space $\Lambda_{1,\psi'} \cap L^{\infty}$, that is an LLUKM point and not a point of order continuity. *Example* 3.3. Let ψ be a strictly concave function such that $\psi(0^+) = 0$ and $\psi(\infty) = \infty$. Consider $E = \Lambda_{1,\psi'} \cap L^{\infty}$ on I = [0, 1], equipped with an equivalent norm given by

$$||x||_E = ||x||_{\Lambda_{1,\psi'}} + ||x||_{L^{\infty}}$$

for any $x \in E$. Assuming that ϕ is the fundamental function of E, we easily observe that $\phi(t) = \psi(t) + 1$ for any t > 0. Define $x(t) = (1 - t)\chi_{[0,1]}(t)$ for any $t \in I$. First, we prove that the function x is not a point of order continuity in E. Indeed, taking $x_n = x\chi_{(0,1/n)}$ for any $n \in \mathbb{N}$, it is easy to see that $x_n \to 0$ almost everywhere and that $x_n \leq x$ for any $n \in \mathbb{N}$. Next, since $\lim_{t\to 0^+} \phi(t)x^*(t) = 1$, by Proposition 5.9 in [1], we have

$$\|x_n\|_E \ge \|x_n\|_{M_{\phi}} \ge \sup_{t \in (0, 1/n]} \{(1-t)(1+\psi(t))\} \ge 1$$

for all $n \in \mathbb{N}$. We claim that x is an LLUKM point in E. Since $\psi(\infty) = \infty$ and $\psi(0^+) = 0$, by Proposition 1.4 in [15] it follows that the Lorentz space $\Lambda_{1,\psi'}$ is order continuous. Hence, since ψ is strictly concave, by Theorem 2.11 in [5] we obtain that $\Lambda_{1,\psi'}$ is strictly K-monotone and also ULUKM; consequently, by Theorem 3.13, we conclude that Λ_{1,ϵ^*} is LLUKM. Hence, the Lorentz space E endowed with the given norm is strictly K-monotone, whence x is an LKM point in E. Assume that $(y_n) \subset E$, $y_n \prec x$ for any $n \in \mathbb{N}$ and $||y_n||_E \to ||x||_E$. Then, since x is an LKM point and $x^*(\infty) = 0$, by Theorem 1 in [9] it follows that $y_n^* \to x^*$ globally in measure. Therefore, by property 2.11 in [17] we get $y_n^*(t) \to x^*(t)$ for all $t \in [0, 1]$. In consequence, by monotonicity of the decreasing rearrangement y_n^* and by continuity of x^* on I, in view of Dini's theorem for monotone functions (see [20, p. 81]) it follows that y_n^* converges to x^* uniformly on I; that is,

$$\|x^* - y_n^*\|_{L^{\infty}} \to 0.$$
(4)

So, it is clear that

$$||y_n||_{L^{\infty}} = y_n^*(0) \to x^*(0) = ||x||_{L^{\infty}}$$

Furthermore, by the assumption that $||y_n||_E \to ||x||_E$ and by definition of the norm in E, we get $||y_n||_{\Lambda_{1,\psi'}} \to ||x||_{\Lambda_{1,\psi'}}$. Thus, since $y_n \prec x$ for all $n \in \mathbb{N}$ and by the fact that $\Lambda_{1,\psi'}$ is LLUKM, we have

$$||x^* - y_n^*||_{\Lambda_{1,\psi'}} \to 0,$$

and consequently, in view of condition (4) and by definition of the norm in E, we are done.

Proposition 3.4. Let E be a symmetric space. If E is LLUKM, then E is ordercontinuous.

Proof. Suppose for the contrary that there exists $x \in E$ that is not a point of order continuity. Let ϕ be the fundamental function of E. By symmetry of E and by Proposition 5.9 in [1], we have, for any t > 0 and $z \in E$,

$$z^{*}(t)\phi(t) \le \|z\|_{M_{\phi}^{(*)}} \le \|z\|_{M_{\phi}} \le \|z\|_{E}.$$
(5)

Next, proceeding similarly as in the proof of Lemma 3.2, in view of conditions (3) and (5) it is easy to see that

$$\frac{\delta}{4} \le \|x\|_{L^{\infty}} \phi(0^+) \le \|x\|_E.$$

Then, since $\phi(0^+) > 0$, by applying condition (5) for any $z \in E$, we observe that

$$||z||_{L^{\infty}}\phi(0^{+}) \le ||z||_{E}.$$
(6)

Define $y = \chi_{[0,1)}$ and $y_n = \chi_{[0,1-1/n)}$ for any $n \in \mathbb{N}$. Obviously, by the Fatou property we get $||y_n||_E \to ||y||_E$. Thus, since $y_n \prec y$ for all $n \in \mathbb{N}$, in view of the assumption that E is LLUKM, we get

$$\|\chi_{[0,1/n)}\|_E = \|y^* - y_n^*\|_E \to 0$$

Hence, by condition (6) we obtain a contradiction and complete the proof. \Box

Theorem 3.5. Let E be a symmetric space, and let ϕ be the fundamental function of E. If $x \in E$ is an LLUKM point and $\lim_{t\to 0^+} x^*(t)\phi(t) = 0$, then |x| is an LLUM point.

Proof. Let $(x_n) \subset E^+$ and $0 \leq x_n \leq |x|$, $||x_n||_E \to ||x||_E$. Then, by property of the maximal function, we obtain $x_n \prec x$. Hence, by the assumption that x is an LLUKM point, we have

$$\|x_n^* - x^*\|_E \to 0.$$
 (7)

By Lemma 3.1, we get $x^*(\infty) = 0$, whence by Lemma 2.7 in [10] and by the assumption that $0 \le x_n \le |x|$ for all $n \in \mathbb{N}$, it follows that x_n converges to x in measure. Moreover, since $\lim_{t\to 0^+} x^*(t)\phi(t) = 0$, by Lemma 3.2 this yields that x is a point of order continuity. Consequently, by condition (7) and by Proposition 2.4 in [13], we conclude that

$$\left\| x_n - |x| \right\|_E \to 0.$$

Theorem 3.6. Let E be a symmetric space on I = [0, 1), with ϕ the fundamental function of E. A point $x \in E$ is an LLUKM point and $\lim_{t\to 0^+} x^*(t)\phi(t) = 0$ if and only if x is an LKM point and a point of order continuity.

Proof. Our proof will consist of two parts.

(*Necessity*) Immediately, by Remark 3.1 in [7] and by Lemma 3.2, we complete the proof.

(Sufficiency) Let $(x_n) \subset E$, let $x_n \prec x$, and let $||x_n||_E \to ||x||_E$. Since x is a point of order continuity, it is easy to see that $\lim_{t\to 0^+} x^*(t)\phi(t) = 0$. Moreover, since $x^*(\infty) = 0$ and x is an LKM point, by Theorem 1 in [9] we obtain that x_n^* converges to x^* in measure. Hence, by property 2.11 in [17], we get

$$(x_n^* - x^*)^+ \to 0 \text{ and } (x^* - x_n^*)^+ \to 0$$
 (8)

almost everywhere and in measure on I. Note that, for any $n \in \mathbb{N}$, we have

$$(x_n^* - x^*)^+ \le x_n^*$$
 and $(x^* - x_n^*)^+ \le \sup_{k \ge n} (x^* - x_k^*)^+ \le x^*$ (9)

almost everywhere on *I*. In consequence, since $\sup_{k\geq n}(x^*-x_n^*)^+ \downarrow 0$ almost everywhere and since x is a point of order continuity, by Lemma 2.6 in [10] we obtain

$$\left\| (x^* - x_n^*)^+ \right\|_E \to 0.$$

Thus, by the triangle inequality of the norm in E, to complete the proof it is enough to show the following condition:

$$\left\| (x_n^* - x^*)^+ \right\|_E \to 0.$$
 (10)

First, by [8, Lemma 3.1] it is clear that $x^{**}(\infty) = 0$. Therefore, since $x_n^* \prec x^*$ for all $n \in \mathbb{N}$, by condition (9) it is easy to observe that for any $n \in \mathbb{N}$,

$$((x_n^* - x^*)^+)^* \le x_n^* \le x^{**} \text{ and } (x_n^* - x^*)^+ \prec x^*,$$
 (11)

whence, by condition (8) and by property 2.12 in [17] we conclude that

$$((x_n^* - x^*)^+)^* \to 0$$
 (12)

pointwise and also in measure. Furthermore, by condition (11) and by Hardy's lemma (see [1, Proposition 3.6]) for any $y \in E$ and t > 0, $n \in \mathbb{N}$, we have

$$\int_0^t \left((x_n^* - x^*)^+ \right)^* y^* \le \int_0^t x^* y^*.$$
(13)

Define, for any $n, k \in \mathbb{N}$,

$$M_n^k = \left\{ t \in I : \left((x_n^* - x^*)^+ \right)^* (t) > \frac{1}{k} \right\}.$$

Clearly, by condition (12), for any $k \in \mathbb{N}$ we have $\mu(M_n^k) \to 0$ as $n \to \infty$. Now, letting $y = \chi_{M_n^k} \in E$, by condition (13) and by symmetry of E, in view of Corollary 4.7 in [1] we get

$$\left\| \left((x_n^* - x^*)^+ \right)^* \chi_{[0,\mu(M_n^k)]} \right\|_E \le \| x^* \chi_{[0,\mu(M_n^k)]} \|_E$$

for every $n, k \in \mathbb{N}$. Thus, since $x^*\chi_{[0,\mu(M_n^k)]} \leq x^*$ almost everywhere on I for all $n, k \in \mathbb{N}$ and since x^* is a point of order continuity, it follows that, for any $k \in \mathbb{N}$ and $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for any $n \geq N$,

$$\left\| \left((x_n^* - x^*)^+ \right)^* \chi_{[0,\mu(M_n^k)]} \right\|_E \le \frac{\epsilon}{2}.$$

Moreover, by construction of the set M_n^k , picking $k \in \mathbb{N}$ such that $\|\chi_I\|_E/k < \epsilon/2$, it is easy to see that

$$\left\| \left((x_n^* - x^*)^+ \right)^* \chi_{(\mu(M_n^k), 1)} \right\|_E \le \left\| \frac{1}{k} \chi_{(\mu(M_n^k), 1)} \right\|_E \le \frac{\epsilon}{2}$$

for all $n \in \mathbb{N}$. Finally, by the triangle inequality of the norm in E, we prove condition (10) and finish the proof.

Now, we investigate a similar result as above for a symmetric space E on $[0, \infty)$ under some additional assumptions on E.

Theorem 3.7. Let E be a symmetric space on $I = [0, \infty)$, let ϕ be the fundamental function of E such that $\phi(t)/t \to 0$ as $t \to \infty$, and let $x \in E \cap L^1$. A point xis an LLUKM point and $\lim_{t\to 0^+} x^*(t)\phi(t) = 0$ if and only if x is an LKM point and a point of order continuity.

Proof. Note that proceeding analogously as in the proof of Theorem 3.6 in sufficiency it is enough to show condition (10). First, let us mention that by Lemma 2.5 in [10] and by Lemma 3.1 in [8] and in view of the assumption that x is a point of order continuity, it follows that $x^*(\infty) = x^{**}(\infty) = 0$. Let $\epsilon > 0$ and $t_{\epsilon} = d_{x^*}(\epsilon)$. Then it is clear that $t_{\epsilon} < \infty$, and so by the monotonicity of the decreasing rearrangement x^* , we obtain $x^*(t) \leq \epsilon$ for all $t \geq t_{\epsilon}$. To simplify our notation, let us assume that $y_n = (x_n^* - x^*)^+$ for any $n \in \mathbb{N}$. First, we claim that

$$\|y_n^*\chi_{[0,t_{\epsilon})}\|_E \to 0.$$
 (14)

Define a set

$$A_n = \left\{ t \in [0, t_{\epsilon}] : x^*(t) \le y_n^*(t) \right\}$$

for every $n \in \mathbb{N}$. Then, by the monotonicity of x^* , it is easy to see that $x^*(t) \ge \epsilon$ for any $t \le t_{\epsilon}$. Next, in view of condition (12), we observe that

$$\mu(A_n) \le \mu(t \in [0, t_{\epsilon}] : y_n^*(t) \ge \epsilon) \to 0.$$
(15)

Moreover, by condition (13) we obtain

$$\int_0^t y_n^* \chi_{[0,\mu(A_n)]} \le \int_0^t x^* \chi_{[0,\mu(A_n)]}$$

for all $n \in \mathbb{N}$ and t > 0. Hence, by Proposition 1.1 in [6], for any t > 0 and $n \in \mathbb{N}$ we get

$$(y_n^*\chi_{A_n})^{**}(t) = \frac{1}{t} \int_0^t (y_n^*\chi_{A_n})^* \le \frac{1}{t} \int_0^t y_n^*\chi_{[0,\mu(A_n)]} \le (x^*\chi_{[0,\mu(A_n)]})^{**}(t) \le x^{**}(t).$$

Thus, by symmetry of E we conclude that

$$\begin{aligned} \|y_n^*\chi_{[0,t_{\epsilon})}\|_E &\leq \|y_n^*\chi_{A_n}\|_E + \|y_n^*\chi_{[0,t_{\epsilon})\setminus A_n}\|_E \\ &\leq \|x^*\chi_{[0,\mu(A_n)]}\|_E + \|y_n^*\chi_{[0,t_{\epsilon})\setminus A_n}\|_E \end{aligned}$$

for each $n \in \mathbb{N}$. Consequently, since $y_n^*\chi_{[0,t_\epsilon)\setminus A_n} \leq x^*$ for any $n \in \mathbb{N}$, by conditions (12) and (15) as well as by the assumption that x is a point of order continuity and in view of Lemma 2.6 in [10], we prove our claim (14). Now, without loss of generality, and passing to a subsequence and relabeling, we may assume that $y_n^*(t_\epsilon) > 0$ for all $n \in \mathbb{N}$, because otherwise, in view of claim (14), we finish the proof. Furthermore, by condition (11) and by the assumption that $x \in E \cap L^1$, it is easy to see that

$$\int_{t_{\epsilon}}^{\infty} y_n^* \le \int_0^{\infty} y_n^* \le \int_0^{\infty} x^* < \infty$$

for all $n \in \mathbb{N}$. Denote, for any $n \in \mathbb{N}$,

$$\delta_n = t_{\epsilon} + \frac{1}{y_n^*(t_{\epsilon})} \int_{t_{\epsilon}}^{\infty} y_n^* \text{ and } z_n = y_n^* \chi_{[0,t_{\epsilon})} + y_n^*(t_{\epsilon}) \chi_{[t_{\epsilon},\delta_n)}.$$

Now, we prove that

$$\left\| y_n^*(t_\epsilon) \chi_{[t_\epsilon,\delta_n)} \right\|_E \to 0.$$
(16)

Assume to the contrary that $a = \inf_{n \in \mathbb{N}} \|y_n^*(t_{\epsilon})\chi_{[t_{\epsilon},\delta_n)}\|_E > 0$. Then, passing to a subsequence and relabeling if necessary, we obtain

$$\left\|y_n^*(t_{\epsilon})\chi_{[t_{\epsilon},\delta_n)}\right\|_E \downarrow a.$$

Hence, for any $n \in \mathbb{N}$, we note that

$$a \leq \left\| y_n^*(t_{\epsilon}) \chi_{[t_{\epsilon},\delta_n)} \right\|_E = y_n^*(t_{\epsilon}) \phi(\delta_n - t_{\epsilon})$$
$$= y_n^*(t_{\epsilon}) \phi\left(\frac{1}{y_n^*(t_{\epsilon})} \int_{t_{\epsilon}}^{\infty} y_n^*\right)$$
$$\leq y_n^*(t_{\epsilon}) \phi\left(\frac{1}{y_n^*(t_{\epsilon})} \int_0^{\infty} x^*\right).$$

Therefore, letting $s_n = \int_0^\infty x^* / y_n^*(t_{\epsilon})$ for all $n \in \mathbb{N}$, we have

$$a \le \frac{\phi(s_n)}{s_n} \int_0^\infty x^*$$

for all $n \in \mathbb{N}$. According to condition (12), we observe that $y_n^*(t_{\epsilon}) \to 0$ and so $s_n \to \infty$. In consequence, by the assumption that $\phi(t)/t \to 0$ as $t \to \infty$, we get a contradiction which provides condition (16). Now, we show that $y_n \prec z_n$ for all $n \in \mathbb{N}$. Obviously, $y_n^{**} = z_n^{**}$ on $[0, t_{\epsilon}]$ for each $n \in \mathbb{N}$. Moreover, for any $n \in \mathbb{N}$ and $t \in (t_{\epsilon}, \delta_n)$, we have

$$\int_0^t z_n^* = \int_0^{t_{\epsilon}} y_n^* + y_n^*(t_{\epsilon})(t - t_{\epsilon}) \ge \int_0^{t_{\epsilon}} y_n^* + \int_{t_{\epsilon}}^t y_n^* = \int_0^t y_n^*,$$

and also, for any $t \geq \delta_n$, we have

$$\int_0^t z_n^* = \int_0^{t_{\epsilon}} y_n^* + y_n^*(t_{\epsilon})(\delta_n - t_{\epsilon}) = \int_0^{t_{\epsilon}} y_n^* + \int_{t_{\epsilon}}^\infty y_n^* \ge \int_0^t y_n^*$$

Therefore, by symmetry of E we get $||z_n||_E \ge ||y_n||_E$. Thus, by conditions (14) and (16) and by the triangle inequality of the norm in E, we complete the proof. \Box

Immediately, in view of Remark 3.1 in [7], and by Proposition 3.4 and Theorems 3.6 and 3.7, we obtain the following results.

Corollary 3.8. Let E be a symmetric space on $I = [0, \alpha)$ with $\alpha < \infty$. The space E is LLUKM if and only if E is strictly K-monotone and order continuous.

Corollary 3.9. Let E be a symmetric space on $I = [0, \infty)$ with the fundamental function ϕ such that $\phi(t)/t \to 0$ as $t \to \infty$, and let $F \subset E$ be a symmetric sublattice that is embedded in $L^1[0, \infty)$. Then, the space F is LLUKM if and only if F is strictly K-monotone and order continuous.

324

Now, we investigate a relation between lower local uniform K-monotonicity and the Kadec-Klee property for global convergence in measure. First, we show an example of a function in a symmetric space E on $I = [0, \infty)$ that is a point of lower local uniform K-monotonicity but is not an H_g point in E. We also discuss in this example a symmetric space E on I = [0, 1) that is lower local uniformly K-monotone, but does not have the Kadec-Klee property for global convergence in measure. We recall Example 2.8 in [5] and we modify to the case when $I = [0, \alpha)$, where $\alpha \leq \infty$. For the reader's convenience, we present the details of the modified example.

Example 3.10. Let $\delta > 0$, and let ϕ_1, ϕ_2 be strictly concave functions such that

$$\phi_i(0) = \phi_i(0^+) = 0$$
 and $\phi_i(\infty) = \lim_{t \to \infty} \phi_i(t) = \infty$ for $i = 1, 2,$

and also

$$\phi_2(1) > \phi_1(1) + \delta$$
 and $\lim_{t \to 0} \frac{\phi_2(t)}{\phi_1(t)} = \lim_{t \to \infty} \frac{\phi_i(t)}{t} = 0$ for $i = 1, 2$.

Consider the space $E = \Lambda_{1,\phi'_1} \cap \Lambda_{1,\phi'_2}$ with a norm given by

$$\|x\|_E = \max\{\|x\|_{\Lambda_{1,\phi'_1}}, \|x\|_{\Lambda_{1,\phi'_2}}\}$$

for all $x \in E$. Since $\phi_i(\infty) = \infty$ for i = 1, 2, it follows that the symmetric space E is order continuous (see [5], [15]). Hence, since ϕ_1 and ϕ_2 are strictly concave, by Theorem 2.11 in [5] we get that E is strictly K-monotone. Consequently, in the case when I = [0, 1), by Corollary 3.8 we obtain that E is LLUKM. Define

$$x = \chi_{[0,1]}$$
 and $x_n = x + \frac{\delta}{\phi_1(\frac{1}{n})}\chi_{[0,\frac{1}{n})}$

for any $n \in \mathbb{N}$. Obviously, $x_n \to x$ in measure and

$$\|x_n\|_E = \frac{\delta\phi_2(\frac{1}{n})}{\phi_1(\frac{1}{n})} + \phi_2(1) \to \phi_2(1) = \|x\|_E.$$

On the other hand, we observe that $||x_n - x||_E \ge \delta$ for any $n \in \mathbb{N}$, from which we infer that x is not an H_g point in E, and consequently, E does not have the Kadec-Klee property for global convergence in measure. However, since $x \in L^1[0,\infty)$, by Theorem 3.7 we get that x is an LLUKM point in the space E on $I = [0,\infty)$.

Theorem 3.11. Let E be a symmetric space, let $x, x_n \in E$ with $x^*(\infty) = 0$, and

- (i) let x be an LKM point and an H_a point;
- (ii) let x be an LKM point and

$$x_n^{**} \to x^{**}$$
 in measure, $||x_n||_E \to ||x||_E \Rightarrow ||x_n^* - x^*||_E \to 0;$

(iii) let x be an LLUKM point.

Then, $(i) \Rightarrow (ii) \Rightarrow (iii)$. If x is an H_g point, then $(iii) \Rightarrow (i)$.

Proof. (i) \Rightarrow (ii) Let $x, x_n \in E$ for any $n \in \mathbb{N}, x_n^{**} \to x^{**}$ in measure, and let $||x_n||_E \to ||x||_E$. Now, proceeding analogously as in the proof of Theorem 3.8 in [7], under the assumption that x is an H_g point and $x^*(\infty) = 0$, in view of Theorem 3.3 in [12] we complete the proof.

(ii) \Rightarrow (iii) Let $x, x_n \in E$, $x_n \prec x$ for any $n \in \mathbb{N}$, and let $||x_n||_E \rightarrow ||x||_E$. Hence, by Theorem 1 in [9], it follows that $x_n^{**} \rightarrow x^{**}$ in measure. Therefore, by condition (*ii*) we get $||x_n^* - x^*||_E \rightarrow 0$, which proves that x is an LLUKM point.

(iii) \Rightarrow (i) Let x be an H_g point in E. Immediately, by Remark 3.1 in [7], we get that x is an LKM point, and this ends the proof.

In the next example, we present a symmetric space with the Kadec–Klee property for global convergence in measure which does not have the LLUKM property.

Example 3.12. Consider the Lorentz space $\Gamma_{p,w}$ with 0 , and let <math>w be a nonnegative weight function. If $W(\infty) < \infty$ or $W(t) = \int_0^t w$ is not strictly increasing, then by Proposition 1.4 in [15] or by Theorem 2.10 in [11], respectively, we obtain that the Lorentz space $\Gamma_{p,w}$ is not order continuous or that it is not strictly K-monotone, respectively. Moreover, we have $\lim_{t\to 0^+} \|x^*\chi_{[0,t)}\|_{\Gamma_{p,w}} = 0$ (see [15]), whence and by the monotonicity of the decreasing rearrangement x^* we get $\lim_{t\to 0^+} x^*(t)\phi(t) = 0$, where ϕ is the fundamental function of $\Gamma_{p,w}$. In consequence, by Remark 3.1 in [7] or by Lemma 3.2, respectively, it follows that $\Gamma_{p,w}$ is not LLUKM. On the other hand, by Theorem 4.1 in [12] we know that the Lorentz space $\Gamma_{p,w}$ has the Kadec–Klee property for global convergence in measure.

Now, we present the full characterization of lower and upper local uniform K monotonicity in a symmetric space E with order continuous norm. Then we establish a correlation between upper local uniform K-monotonicity and upper local uniform monotonicity in E.

Theorem 3.13. Let E be a symmetric space with order continuous norm. Then, the following conditions are equivalent:

(i) E is SKM and for any $(x_n) \subset E, x \in E$,

 $x_n^{**} \to x^{**}$ in measure and $||x_n||_E \to ||x||_E \Rightarrow ||x_n^* - x^*||_E \to 0;$

- (ii) E is LLUKM and has the Kadec-Klee property for global convergence in measure;
- (iii) E is SKM and has the Kadec-Klee property for global convergence in measure;
- (iv) E is SKM and has the Kadec-Klee property for local convergence in measure;
- (v) E is ULUKM.

Proof. It is well known that the equivalences (iii) \Leftrightarrow (iv) \Leftrightarrow (v) follow directly from Theorem 2.7 in [5]. Immediately, by Theorem 3.8 in [7] and by Theorem 3.5 in [12], we get (i) \Leftrightarrow (iii) \Leftrightarrow (v). Finally, the consequence of Lemma 2.5 in [10] and Theorem 3.11 is the following conclusion (ii) \Leftrightarrow (iii).

Theorem 3.14. Let E be a symmetric space. If $x \in E$ is a point of order continuity and a ULUKM point, then |x| is a ULUM point and x is an H_a point.

Proof. Let $(x_n) \subset E^+$, $|x| \leq x_n$, and $||x_n||_E \to ||x||_E$. Then, by Proposition 3.2 in [1] we get $x \prec x_n$ for all $n \in \mathbb{N}$, and consequently, by the assumption that xis a ULUKM point, we have $||x_n^* - x^*||_E \to 0$. Hence, by the implication (iii) \Rightarrow (ii) in [5, proof of Theorem 3.2], it follows that x_n converges to |x| in measure. Consequently, by the assumption that x is a point of order continuity and by Proposition 2.4 in [13], we have $||x_n - |x|||_E \to 0$. Finally, in view of the assumptions, by Theorem 3.8 in [7] and by Theorem 3.5 in [12], we conclude that x is an H_q point in E.

In the next example, we show that if the assumption that x is a point of order continuity of the above theorem is missing, then the implication is not true.

Example 3.15. Take $E = L^{\infty}$ on $I = [0, \infty)$ and $x = \chi_I$. Let $(x_n) \subset E$ be such that $x \prec x_n$ for any $n \in \mathbb{N}$, and let $||x_n||_E \to ||x||_E$. Since $x^* = 1$ on I, we claim that $x^* \leq x_n^*$ almost everywhere for all $n \in \mathbb{N}$. Indeed, if it is not true, then there exist $(n_k) \subset \mathbb{N}$ and $(t_k) \subset I$ such that, for any $k \in \mathbb{N}$ and $t \geq t_k$, we have

$$x_{n_k}^*(t) \le x_{n_k}^*(t_k) < 1.$$

Hence, setting $k \in \mathbb{N}$, we observe that for sufficiently large $t > t_k$,

$$x_{n_k}^{**}(t) < x^{**}(t) = 1.$$

Therefore, by the assumption that $x \prec x_n$ for all $n \in \mathbb{N}$, we get a contradiction which proves our claim. It is easy to see that x is a ULUM point in E (see [10]). Thus, according to the claim and by the assumption that $||x_n^*||_E \to ||x^*||_E$, we obtain

$$||x_n^* - x^*||_E \to 0.$$

In consequence, we get that x is a ULUKM point. On the other hand, taking $y_n = \chi_{(\frac{1}{n},\infty)}$ for any $n \in \mathbb{N}$, it is easy to see that $y_n \to x$ in measure and $\|y_n\|_E = \|x\|_E = 1$, and also that $\|x - y_n\|_E = 1$ for every $n \in \mathbb{N}$. So, it follows that x is not an H_q point in E.

Now we discuss a correlation between K-order continuity and lower local uniform K-monotonicity in symmetric spaces.

Theorem 3.16. Let E be a symmetric space. If $x \in E$ is a point of K-order continuity and an LKM point and also $x^*(\infty) = 0$, then x is an LLUKM point.

Proof. Let $(x_n) \subset E$ with $x_n \prec x$ for all $n \in \mathbb{N}$, and let $||x_n||_E \to ||x||_E$. Observe that for each $n \in \mathbb{N}$,

$$(x^* - x_n^*)^+ \le x^*$$
 and $(x_n^* - x^*)^+ \prec x_n^* \prec x^*$. (17)

Moreover, since x is an LKM point and $x^*(\infty) = 0$, by the assumption that $x_n \prec x$ for any $n \in \mathbb{N}$ and $||x_n||_E \to ||x||_E$ and by Theorem 1 in [9], it follows that x_n^* converges to x^* in measure. Hence, by property 2.11 in [17], we get

$$((x_n^* - x^*)^+)^* \to 0 \text{ and } ((x^* - x_n^*)^+)^* \to 0$$

almost everywhere on I. In consequence, by condition (17) and by the assumption that x is a point of K-order continuity, we have

$$\left\| \left((x^* - x_n^*)^+ \right)^* \right\|_E \to 0 \text{ and } \left\| \left((x_n^* - x^*)^+ \right)^* \right\|_E \to 0.$$

Thus, by symmetry of E and by the triangle inequality of the norm in E, we conclude that x_n^* converges to x^* in norm of E.

We present an example of a symmetric space having upper and lower local uniform K-monotonicity but not satisfying K-order continuity.

Remark 3.17. Let $\psi(t) = t^{1/4}$ for any $t \in I$. Consider the space $E = \Lambda_{1,\psi'} \cap L^1$ on I endowed with the equivalent norm given by $||x||_E = ||x||_{\Lambda_{1,\psi'}} + ||x||_{L^1}$. We claim that $(E, ||\cdot||_E)$ is LLUKM and ULUKM, but it is not KOC. First, denote $\phi(t) = \psi(t) + t$ for any $t \in I$. Observe that $E = \Lambda_{1,\phi'}$ and $\phi(t)/t \to 1$ as $t \to \infty$. Define

$$x(t) = \chi_{[0,1)}(t) + \frac{1}{t^2}\chi_{[1,\infty)}(t)$$
 and $x_n(t) = \frac{1}{n}\chi_{[0,n)}(t)$

for any t > 0 and $n \in \mathbb{N}$. It is easy to see that $x = x^*$, $x_n = x_n^* \to 0$ almost everywhere. Clearly,

$$x^{**}(t) = \chi_{[0,1)}(t) + \frac{2t-1}{t^2}\chi_{[1,\infty)}(t)$$

and

$$x_n^{**}(t) = \frac{1}{n}\chi_{[0,n)}(t) + \frac{1}{t}\chi_{[n,\infty)}(t)$$

for any t > 0 and $n \in \mathbb{N}$, whence $x_n \prec x$ for all $n \in \mathbb{N}$. Note that $x \in E$ and

$$||x_n||_E = ||x_n||_{\Lambda_{1,\psi'}} + ||x_n||_{L^1} = 1 + \frac{1}{n^{3/4}}$$

for any $n \in \mathbb{N}$. Therefore, $||x_n||_E \geq 1$ for every $n \in \mathbb{N}$, from which we infer that E is not KOC. On the other hand, since $\phi(\infty) = \int_0^\infty \phi' = \infty$, by Proposition 1.4 in [15], it follows that the Lorentz space $\Lambda_{1,\phi'}$ is order continuous. Hence, since ϕ is strictly concave, by Theorem 2.11 and Proposition 1.7 in [5], we obtain that $\Lambda_{1,\phi'}$ is strictly K-monotone and also has the Kadec–Klee property for global convergence in measure. Finally, by Theorem 3.13, we get that E is ULUKM and LLUKM.

According to Theorem 2 in [9] and Remark 3.1 in [7], and also by Lemma 3.2 as well as Theorem 3.16, we conclude with the next theorem.

Theorem 3.18. Let E be a symmetric space on $I = [0, \infty)$, and let ϕ be the fundamental function of E and $x \in E$. Then the following conditions are equivalent:

(i) x is an LLUKM point and

$$\lim_{t \to 0^+} \phi(t) x^*(t) = \lim_{s \to \infty} \phi(s) x^{**}(s) = 0;$$

(ii) x is an LKM point and a point of order continuity, and

$$\lim_{s \to \infty} \phi(s) x^{**}(s) = 0;$$

(iii) x is an LKM point and a point of K-order continuity, and $x^*(\infty) = 0$.

328

Acknowledgment. We wish to express our gratitude to the reviewer for many valuable suggestions and remarks.

References

- C. Bennett and R. Sharpley, *Interpolation of Operators*, Pure Appl. Math. **129**, Academic Press, Boston, 1988. Zbl 0647.46057. MR0928802. 316, 317, 318, 320, 322, 327
- Y. A. Brudnyi and N. Y. Kruglyak Interpolation Functors and Interpolation Spaces, I, North-Holland Math. Library 47, North-Holland, Amsterdam, 1991. Zbl 0743.46082. MR1107298. 318
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. Zbl 0204.13703. MR0167830. 318
- 4. J. Cerdà, H. Hudzik, A. Kamińska, and M. Mastyło, Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces, Positivity 2 (1998), no. 4, 311–337. Zbl 0920.46022. MR1656108. 314
- V. I. Chilin, P. G. Dodds, A. A. Sedaev, and F. A. Sukochev, *Characterizations of Kadec-Klee properties in symmetric spaces of measurable functions*, Trans. Amer. Math. Soc. **348**, no. 12 (1996), 4895–4918. Zbl 0862.46015. MR1390973. DOI 10.1090/S0002-9947-96-01782-5. 314, 316, 317, 320, 325, 326, 327, 328
- V. I. Chilin and F. A. Sukochev, Weak convergence in non-commutative symmetric spaces, J. Operator Theory **31** (1994), no. 1, 35–65. Zbl 0836.46057. MR1316983. 323
- M. Ciesielski, On geometric structure of symmetric spaces, J. Math. Anal. Appl. 430 (2015), no. 1, 98–125. Zbl 1331.46021. MR3347203. DOI 10.1016/j.jmaa.2015.04.040. 314, 317, 318, 321, 324, 326, 327, 328
- M. Ciesielski, Hardy-Littlewood-Pólya relation in the best dominated approximation in symmetric spaces, J. Approx. Theory 213 (2017), 78–91. Zbl 1368.46029. MR3578831. DOI 10.1016/j.jat.2016.10.001. 314, 317, 322, 323
- M. Ciesielski, Strict K-monotonicity and K-order continuity in symmetric spaces, Positivity, published electronically 28 October 2017. DOI 10.1007/s11117-017-0540-7. 315, 317, 320, 321, 326, 327, 328
- M. Ciesielski, P. Kolwicz, and A. Panfil, Local monotonicity structure of symmetric spaces with applications, J. Math. Anal. Appl. 409 (2014), no. 2, 649–662. Zbl 1306.46017. MR3103185. DOI 10.1016/j.jmaa.2013.07.028. 318, 321, 322, 323, 326, 327
- M. Ciesielski, P. Kolwicz, and R. Płuciennik, A note on strict K-monotonicity of some symmetric function spaces, Comment. Math. 53 (2013), no. 2, 311–322. Zbl 1296.46025. MR3155057. 314, 326
- M. Ciesielski, P. Kolwicz, and R. Płuciennik, Local approach to Kadec-Klee properties in symmetric function spaces, J. Math. Anal. Appl. 426 (2015), no. 2, 700–726. Zbl 06417346. MR3314854. DOI 10.1016/j.jmaa.2015.01.064. 314, 316, 318, 326, 327
- M. M. Czerwińska and A. Kamińska, Complex rotundities and midpoint local uniform rotundity in symmetric spaces of measurable operators, Studia Math. 201 (2010), no. 3, 253–285. Zbl 1214.46008. MR2745807. DOI 10.4064/sm201-3-3. 321, 327
- H. Hudzik, A. Kamińska, and M. Mastyło, On geometric properties of Orlicz-Lorentz spaces, Canad. Math. Bull. 40 (1997), no. 3, 316–329. Zbl 0903.46014. MR1464840. DOI 10.4153/ CMB-1997-038-6. 314, 317
- 15. A. Kamińska and L. Maligranda, On Lorentz spaces $\Gamma_{p,w}$, Israel J. Math. **140** (2004), 285–318. Zbl 1068.46019. MR2054849. 318, 320, 325, 326, 328
- 16. A. Kamińska and L. Maligranda, Order convexity and concavity of Lorentz spaces $\Lambda_{p,w}$, 0 , Studia Math.**160**(2004), no. 3, 267–286. Zbl 1057.46026. MR2033403. DOI 10.4064/sm160-3-5. 317, 318
- S. G. Krein, Y. I. Petunin, and E. M. Semenov, *Interpolation of Linear Operators*, Transl. Math. Monogr. **54**, Amer. Math. Soc., Providence, 1982. Zbl 0493.46058. MR0649411. 316, 317, 318, 320, 321, 322, 327

M. CIESIELSKI

- J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces*, II: Function Spaces, Ergeb. Math. Grenzgeb. 97, Springer, Berlin, 1979. Zbl 0403.46022. MR0540367. 315
- G. G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1 (1951), 411–429. Zbl 0043.11302. MR0044740. DOI 10.2140/pjm.1951.1.411. 317
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, I: Series, Integral Calculus, Theory of Functions, Grundlehren Math. Wiss. 193, Springer, New York, 1972. Zbl 0236.00003. MR0344042. 320
- 21. A. Sparr, "On the conjugate space of the Lorentz space $L(\phi, q)$ " in *Interpolation Theory* and Applications, Contemp. Math. **445**, Amer. Math. Soc., Providence, 2007, 313–336. Zbl 1141.46318. MR2381903. 317

Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland.

E-mail address: maciej.ciesielski@put.poznan.pl