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Abstract. We consider the Calderón–Lozanovskii construction ϕ(X0, X1) in
the context of quasi-Banach lattices, and we provide an extension of a result by
Ovchinnikov concerning the associated interpolation methods ϕc and ϕ0. Our
approach is based on the interpolation properties of (∞, 1)-regular operators
between quasi-Banach lattices.

1. Introduction

The aim of this note is to study the interpolation properties of the Calderón–
Lozanovskii construction in the quasi-Banach lattice setting. Let us start by
recalling this construction. Given (X0, X1) a compatible pair of quasi-Banach
lattices and a function ϕ : R2

+ → R+ which is homogeneous and nondecreas-
ing in each argument, we consider the space ϕ(X0, X1) of those x ∈ X0 + X1

such that |x| ≤ ϕ(x0, x1) for some x0 ∈ X0 and x1 ∈ X1. This space becomes a
quasi-Banach lattice when endowed with the quasinorm

‖x‖ϕ(X0,X1) = inf
{
λ > 0 : |x| ≤ λϕ(x0, x1), ‖x0‖X0 ≤ 1, ‖x1‖X1 ≤ 1

}
.

This space was introduced and studied by Lozanovskii [15] (see also the ref-
erences therein). In particular, considerable work has been done for the case of
ϕ(s, t) = s1−θtθ for some θ ∈ (0, 1), which yields the Calderón product X1−θ

0 Xθ
1

(see [4]). The relation between this and the complex interpolation methods has
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been carefully investigated in the literature (see [4], [9], [23], [24]). There is an
obvious interest in extending interpolation results which are valid in the Banach
space, or Banach lattice, setting to the more general context of quasi-Banach
spaces (see, e.g., [5], [6], [8], [16]).

Our interest in this note is to relate the construction ϕ(X0, X1) with two well-
known interpolation functors. In this respect, recall that, given quasinormed
spaces X and Y such that there is a continuous inclusion i : X ↪→ Y , the
Gagliardo completion of X in Y is the quasinormed space whose unit ball is the
closure of i(BX) in Y , where as usual BX denotes the unit ball of X; note that
when Y is complete, this clearly defines a quasi-Banach space. Let us denote
ϕc(X0, X1) the Gagliardo completion of the space ϕ(X0, X1) in X0 + X1. Also,
let ϕ0(X0, X1) denote the closure of the intersection X0 ∩ X1 in ϕ(X0, X1). We
obviously have the following bounded inclusions:

ϕ0(X0, X1) ⊂ ϕ(X0, X1) ⊂ ϕc(X0, X1).

Ovchinnikov [19] (see also [1, Theorem 4.3.11]) proved that ϕ0 and ϕc are
interpolation functors in the category of Banach lattices of measurable functions.
Earlier attempts to extend these interpolation functors to the category of quasi-
Banach lattices were made by Nilsson [18] and Ovchinnikov [20].

Our main result in this article is the extension of this fact to the category of
quasi-Banach lattices with the K∞,1 property: that is, those spaces X for which
the inequality ∥∥ max

1≤i≤n
|xi|

∥∥ ≤ C max
|ai|≤1

∥∥∥ n∑
i=1

aixi

∥∥∥
holds for some constant C > 0 independent of (xi)

n
i=1 ⊂ X (see Section 4 below).

It should be noted that a large class of quasi-Banach lattices, namely, that of
L-convex quasi-Banach lattices, introduced by Kalton in [7], have the K∞,1 prop-
erty (see also [18], in connection with the interpolation of L-convex lattices).

An important ingredient in our proof will be the class of (p, q)-regular operators,
that is, those satisfying estimates of the form∥∥∥( n∑

i=1

|Txi|p
) 1

p
∥∥∥ ≤ K

∥∥∥( n∑
i=1

|xi|q
) 1

q
∥∥∥.

This class of operators was introduced by Bukhvalov in [2], where some interpo-
lation results between Banach lattices were obtained. It will be shown in The-
orem 3.1 that (∞, 1)-regular operators have good interpolation properties with
respect to the Calderón–Lozanovskii construction. This fact will allow us to fur-
ther extend the interpolation functors ϕc and ϕ0.

2. Definitions and preliminaries

Let R+ = {x ∈ R : x ≥ 0}. Recall that a quasi-Banach space (X, ‖·‖) is a vector
space which is complete for the metric induced by the quasinorm ‖ · ‖ : X → R+
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that satisfies

‖x‖ = 0 ⇔ x = 0,

‖λx‖ = |λ|‖x‖,
‖x+ y‖ ≤ C

(
‖x‖+ ‖y‖

)
,

where C ≥ 1 is independent of x, y ∈ X. If, moreover, X is a vector lattice with
‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|, then we say that X is a quasi-Banach lattice.

We will denote by P the set of all functions ϕ : (0,∞)×(0,∞) → R+ satisfying

ϕ(λs, λt) = λϕ(s, t) for every s, t, λ > 0,

ϕ(·, t) is nondecreasing for every t > 0,

ϕ(s, ·) is nondecreasing for every s > 0.

We will usually make the normalization ϕ(1, 1) = 1. Given ϕ ∈ P , let us denote
ϕ0(t) = ϕ(t, 1) and ϕ1(t) = ϕ(1, t). Note that

ϕ1(t) = tϕ0(1/t).

It follows that both ϕ0 and ϕ1 are quasiconcave functions (i.e., ϕi(t) is nonde-
creasing and ϕi(t)/t is nonincreasing, for i = 0, 1). We will make repeated use of
the fact that every quasiconcave function is equivalent, up to a universal constant,
to a concave function (see [1, Corollary 3.1.4]). For 0 < s < t, we have

ϕi(s) ≤ ϕi(t) ≤
t

s
ϕi(s),

and thus ϕi is continuous on (0,∞). It follows from the equations

ϕ(s, t) = tϕ0(s/t) = sϕ1(t/s)

that ϕ is continuous on (0,∞)× (0,∞). Since ϕi is increasing, it has a right limit
ϕi(0

+) at 0 and thus has a continuous extension ϕ̄i to R+. Let us extend ϕ to a
function ϕ̄ on R2

+ by setting

ϕ̄(s, 0) = sϕ1(0
+) and ϕ̄(0, t) = tϕ0(0

+).

This extension is continuous. Indeed, since ϕ̄(s, t) = sϕ̄1(t/s) for s > 0, t ≥ 0
(resp., ϕ̄(s, t) = tϕ̄0(s/t) for s ≥ 0, t > 0), ϕ̄ is continuous on R2

+ \ {(0, 0)};
moreover, from ϕ̄(s, t) ≤ (s ∨ t)ϕ(1, 1), it follows that ϕ̄ is also continuous at
(0, 0). We will from now on denote simply by ϕ the unique continuous extension
of ϕ to R2

+.
Given quasi-Banach lattices X0, X1, we say that (X0, X1) is a compatible pair

of quasi-Banach lattices when there exists a (Hausdorff, locally solid) topologi-
cal vector lattice X, along with inclusions ji : Xi ↪→ X which are continuous,
interval-preserving, lattice homomorphisms for i = 0, 1. In this way, the space

X0 +X1 = {x ∈ X : x = x0 + x1 with x0 ∈ X0, x1 ∈ X1}
becomes a quasi-Banach lattice, endowed with the quasinorm

‖x‖ = inf
{
‖x0‖X0 + ‖x1‖X1 : x = x0 + x1

}
,

which contains X0 and X1 as (nonclosed) ideals.
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Note that this setting is more general than the one considered in [1] (where X
is the space of measurable functions over some measure space) or in [15] (where
X is a C∞(Q)-space, i.e., the space of extended continuous scalar functions with
dense domain over a Stonean compact space Q). In particular, X0 and X1 need
not be order-complete.

Now, given a compatible pair of quasi-Banach lattices (X0, X1) and a function
ϕ ∈ P , let us consider the Calderón–Lozanovskii space (see [14], [15])

ϕ(X0, X1) =
{
x ∈ X0 +X1 : |x| ≤ ϕ(x0, x1) for some x0 ∈ X+

0 , x1 ∈ X+
1

}
.

Here, for any pair of positive elements x0, x1 in a quasi-Banach lattice, ϕ(x0, x1)
is defined in an unambiguous way by means of Krivine’s functional calculus for
continuous positively 1-homogeneous functions on R2 (see [13, pp. 40–42], [22]).
Indeed, ϕ may be extended to such a function (e.g., ϕ̂(s, t) = ϕ(s ∨ 0, t ∨ 0)).

The space ϕ(X0, X1) is a quasi-Banach lattice equipped with the quasinorm

‖x‖ϕ(X0,X1) = inf
{
λ > 0 : |x| ≤ λϕ(x0, x1), ‖x0‖X0 ≤ 1, ‖x1‖X1 ≤ 1

}
.

Actually, we have

‖x+ y‖ϕ(X0,X1) ≤ max{C0, C1}
(
‖x‖ϕ(X0,X1) + ‖y‖ϕ(X0,X1)

)
,

where Ci is the constant appearing in the triangle inequality corresponding to
Xi (i = 0, 1). Given a function ϕ as above, there is a natural decomposition into
piecewise linear functions due to Brudnyi and Kruglyak [1, Proposition 3.2.5] (see
also [11]). We present next a small modification of this construction which is more
suitable for our purposes.

Lemma 2.1. Let ϕ ∈ P. Given that q > 1, there exist M,N ∈ N ∪ {∞},
extended sequences (tk)

2N
k=−2M ⊂ [0,+∞], and (εk)

N
k=−M ⊂ [0, 1] satisfying the

following properties.

(1) We have that (tk)
2N
k=−2M is increasing, 0 < εk < min{t2k − t2k−1,

t2k+3 − t2k+2}.
(2) For every s, t ∈ (0,+∞), it holds that

N∑
k=−M

ϕ(1, t2k+1)min
(
s,

t

t2k+1

)
≤ q + 1

q − 1
ϕ(s, t).

(3) For all t ∈ [t2k − εk, t2k+2 + εk],

ϕ(1, t) ≤ qϕ(1, t2k+1)min
(
1,

t

t2k+1

)
.

The notation here is consistent in the following sense.

• If M = ∞, then limk→−∞ tk = 0 = limk→−∞ εk.
• If N = ∞, then limk→+∞ tk = +∞, limk→+∞ εk = 0.
• If both M,N are finite, then t−2M = 0, t2N = +∞, ε−M = εN = 0.

Proof. We work with the function ϕ1(t) = ϕ(1, t). Since ϕ1 is quasiconcave, for
every s, t ∈ R+, we have

ϕ1(t) ≤ max
(
1,
t

s

)
ϕ1(s).
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Thus, we can assume without loss of generality that ϕ1 is a continuous concave
function on R+ (see [1, Corollary 3.1.4]).

According to [1, Proposition 3.2.5], for any q′ ∈ (1, q) there exist M,N ∈
N∪{∞} and an increasing sequence (tk)

2N
k=−2M ⊂ [0,+∞] satisfying the following

properties.

(a) If M,N <∞, then t−2M = 0 and t2N = +∞. Otherwise, if M = ∞, then
limk→−∞ tk = 0, while if N = ∞, then limk→+∞ tk = +∞.

(b) For −M ≤ k ≤ N , we have

ϕ1(t2k)

t2k
= q′

ϕ1(t2k+1)

t2k+1

and ϕ1(t2k+2) = q′ϕ1(t2k+1).

(c) For every s, t ∈ (0,+∞), it holds that

N∑
k=−M

ϕ1(t2k+1)min
(
s,

t

t2k+1

)
≤ q′ + 1

q′ − 1
ϕ(s, t).

Note that (b) yields that, for t ∈ [t2k, t2k + 2], one has

ϕ1(t) ≤ q′ϕ1(t2k+1)min
(
1,

t

t2k+1

)
.

Now, for any ε ∈ (0, q
q′
− 1), using the continuity of ϕ1 we can find a sequence

(εk) with lim|k|→+∞ εk = 0,

0 < εk < min{t2k − t2k−1, t2k+3 − t2k+2},

and such that

ϕ1(t) ≤ (1 + ε)q′ϕ1(t2k+1)min
(
1,

t

t2k+1

)
for all t ∈ [t2k−εk, t2k+2+εk]. These sequences satisfy the required properties. �

Throughout, we will be using the usual local representation of a quasi-Banach
lattice via C(Ω)-spaces (see [22]). That is, given a positive element in a quasi-
Banach lattice e ∈ X, the (nonclosed) ideal generated by e is isomorphic to
a space C(Ω) for a certain compact Hausdorff space Ω, and we can consider
an injective lattice homomorphism J : C(Ω) → X such that J(1Ω) = e and
J(BC(Ω)) = [−e, e].

Let us briefly recall the formal meaning of an interpolation functor between
quasi-Banach lattices. We use the terminology of category theory as in [1, Sec-
tion 2.3]. Let QBL denote the category of quasi-Banach lattices and bounded

linear operators between them, and let
−→

QBL denote the category of compatible

pairs
→
X = (X0, X1) of quasi-Banach lattices and linear operators between them,

where a linear operator

T :
→
X →

→
Y

is a bounded linear mapping T : X0 + X1 → Y0 + Y1 satisfying T |X0 : X0 → Y0
and T |X1 : X1 → Y1 (both being bounded, too).

A functor F :
−→

QBL → QBL is called an interpolation functor if
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(i) for every
→
X = (X0, X1), we have bounded inclusions X0∩X1 ↪→ F (

→
X) ↪→

X0 +X1;

(ii) for every T :
→
X →

→
Y , the operator F (T ) = T |

F (
→
X)

: F (
→
X) → F (

→
Y ) is

bounded.

In particular, this implies that F (
→
X) is an interpolation space for every

→
X.

3. Interpolation of (∞, 1)-regular operators

Given quasi-Banach lattices E,F , and 1 ≤ p, q < ∞, a linear operator T :
E → F is called (p, q)-regular if there is a constant K > 0 such that for every
{xi}ni=1 ⊂ E, we have ∥∥∥( n∑

i=1

|Txi|p
) 1

p
∥∥∥ ≤ K

∥∥∥( n∑
i=1

|xi|q
) 1

q
∥∥∥.

Similarly, T will be called (p,∞)-regular (resp., (∞, q)-regular) when∥∥∥( n∑
i=1

|Txi|p
) 1

p
∥∥∥ ≤ K

∥∥∥ n∨
i=1

|xi|
∥∥∥ (

resp.,
∥∥∥ n∨

i=1

|Txi|
∥∥∥ ≤ K

∥∥∥( n∑
i=1

|xi|q
) 1

q
∥∥∥).

We will denote by ρp,q(T ) the smallest K > 0 for which the above inequalities
hold for arbitrary elements in E.

The class of (p, q)-regular operators was introduced in [2] (see also [3], [12]), and
has obvious connections with convexity and concavity (see [13, Section 1.d]). It is
clear that a (p, q)-regular operator T is always bounded and that ‖T‖ ≤ ρp,q(T ).
Also, if T is (p, q)-regular, then it is (p′, q′)-regular for every p′ ≥ p and q′ ≤ q,
and moreover ρp′,q′(T ) ≤ ρp,q(T ). In particular, among these, the largest class is
that of (∞, 1)-regular operators, which satisfies∥∥∥ n∨

i=1

|Txi|
∥∥∥ ≤ K

∥∥∥ n∑
i=1

|xi|
∥∥∥.

If F is Dedekind-complete and T : E → F is a regular operator (i.e., T can be
written as a difference of two positive operators), then it is (p, p)-regular for every
1 ≤ p ≤ ∞, and ρp,p(T ) ≤ ‖|T |‖. In the converse direction, if F is complemented
by a positive projection in its bidual, then every (1, 1)-regular operator T : E → F
is regular (see [12, p. 307]).

In Section 4, we will consider spaces in which every linear operator is (p, q)-
regular. In particular, an application of Grothendieck’s inequality yields that
every bounded linear operator between Banach lattices, or even L-convex quasi-
Banach lattices, is (2, 2)-regular. We state now our main result concerning the
interpolation of (∞, 1)-regular operators with respect to the functor ϕc.

Theorem 3.1. Let (X0, X1) and (Y0, Y1) be compatible pairs of quasi-Banach
lattices, and let T : X0 + X1 → Y0 + Y1 be a bounded operator such that T |Xi

:
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Xi → Yi is (∞, 1)-regular for i = 0, 1. Then, for ϕ ∈ P, we have that T :
ϕc(X0, X1) → ϕc(Y0, Y1) is (∞, 1)-regular with

ρ∞,1(T |ϕc(X0,X1)) ≤ Cmax
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
for some C > 0 which depends only on X0, X1, Y0, Y1, and ϕ.

Before giving our proof, we need some preliminaries.

Lemma 3.2. Let (X0, X1) and (Y0, Y1) be interpolation couples of quasi-Banach
lattices, and let T : X0+X1 → Y0+Y1 be a bounded operator such that T |Xi

: Xi →
Yi is (∞, 1)-regular for i = 0, 1. Then T : X0 + X1 → Y0 + Y1 is (∞, 1)-regular
with

ρ∞,1(T ) ≤ 2max
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
.

Proof. Let us consider (zi)
n
i=1 ⊂ X0+X1 such that ‖

∑n
i=1 |zi|‖X0+X1 < 1. Hence,

there exist positive u ∈ X0, v ∈ X1 with ‖u‖X0 + ‖v‖X1 < 1 and

n∑
i=1

|zi| ≤ u+ v.

Using the Riesz decomposition property (see [17, Theorem 1.1.1.viii]), we can
write zi = ui+vi for i = 1, . . . , n, with

∑n
i=1 |ui| ≤ 2u,

∑n
i=1 |vi| ≤ 2v. Now, since

T |Xj
is (∞, 1)-regular for j = 0, 1, we have∥∥∥ n∨

i=1

|Tui|
∥∥∥
Y0

≤ ρ∞,1(T |X0)
∥∥∥ n∑

i=1

|ui|
∥∥∥
X0

≤ 2ρ∞,1(T |X0)‖u‖X0 ,

∥∥∥ n∨
i=1

|Tvi|
∥∥∥
Y1

≤ ρ∞,1(T |X1)
∥∥∥ n∑

i=1

|vi|
∥∥∥
X1

≤ 2ρ∞,1(T |X1)‖v‖X1 .

These, together with
n∨

i=1

|Tzi| ≤
n∨

i=1

|Tui|+
n∨

i=1

|Tvi|

yield ∥∥∥ n∨
i=1

|Tzi|
∥∥∥
Y0+Y1

≤ 2max
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
.

This finishes the proof. �

Lemma 3.3. There is a constant γ > 0 such that, given (X0, X1), (Y0, Y1),
T : X0 + X1 → Y0 + Y1 as in Theorem 3.1, ϕ ∈ P with limt→0+ ϕ1(t) = 0 =

limt→+∞
ϕ1(t)

t
, and (xi)

n
i=1 ⊂ X0 + X1 such that

∑n
i=1 |xi| ≤ ϕ(u0, u1), where

ui ∈ Xi with ‖ui‖Xi
≤ 1 for i = 0, 1, there exist sequences (xmi )m∈N for 1 ≤ i ≤ n

satisfying:

(i) |xmi | ≤ |xi| for every m ∈ N, 1 ≤ i ≤ n,
(ii)

∨n
i=1 |xi − xmi | ≤ (u0 ∨ u1)am for certain am ∈ R+ with am −→

m→∞
0,

(iii) supm ‖
∨n

i=1 |Txmi |‖ϕ(Y0,Y1) ≤ γmax{ρ∞,1(T |X0), ρ∞,1(T |X1)}.
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Proof. By Lemma 2.1, for any q > 1 there exist M,N ∈ N ∪ {∞}, an increasing
sequence (tk)

2N
k=−2M ⊂ [0,+∞], and (εk)

N
k=−M such that, for every s, t ∈ (0,+∞),

we have
N∑

k=−M

ϕ1(t2k+1)min
(
s,

t

t2k+1

)
≤ q + 1

q − 1
ϕ(s, t), (3.1)

and for t ∈ [t2k − εk, t2k+2 + εk],

ϕ1(t) ≤ qϕ1(t2k+1)min
(
1,

t

t2k+1

)
. (3.2)

Let us consider the ideal generated by u0 ∨ u1 in X0 + X1. As usual, we can
consider a compact Hausdorff space Ω and a lattice homomorphism J : C(Ω) →
X0 +X1 such that J(BC(Ω)) = [−u0 ∨ u1, u0 ∨ u1]. Since

|xi| ≤
n∑

i=1

|xi| ≤ ϕ(u0, u1) ≤ u0 ∨ u1,

there exist (fi)
n
i=1, h0, h1 ∈ BC(Ω) such that J(fi) = xi, J(h0) = u0, and

J(h1) = u1.
Let m ∈ N, and for |k| ≤ m, let us consider the sets

Uk =
{
ω ∈ Ω : (t2k − εk)h0(ω) < h1(ω) < (t2k+2 + εk)h0(ω)

}
and

Vm = Ω \
{
ω ∈ Ω : t−2mh0(ω) ≤ h1(ω) ≤ t2m+2h0(ω)

}
.

Clearly, these are open subsets of Ω satisfying

Ω = Vm ∪
⋃

|k|≤m

Uk.

Therefore, we can consider a continuous partition of unity associated to this open
covering, that is, (ψk)|k|≤m, and ξm positive elements in C(Ω) such that for each
|k| ≤ m, ψk is supported within Uk, ξm is supported in Vm, and for every ω ∈ Ω
we have ∑

|k|≤m

ψk(ω) + ξm(ω) = 1.

Let us consider

fm
i =

∑
|k|≤m

fiψk ∈ C(Ω).

And denote xmi = J(fm
i ), yki = J(fiψk) for |k| ≤ m. These obviously satisfy

|yki |, |xmi | ≤ |xi|, for every 1 ≤ i ≤ n, m ∈ N and |k| ≤ m, and

xmi =
∑
|k|≤m

yki .

We claim that the sequences (xmi ) satisfy properties (ii) and (iii).
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In order to prove (ii), given m ∈ N, let us consider the sets

Wm
1 =

{
ω ∈ Ω : h1(ω) <

(
t−2m +

εm
2

)
h0(ω)

}
,

Wm
2 =

{
ω ∈ Ω :

(
t2m+2 −

εm+1

2

)
h0(ω) < h1(ω)

}
,

Wm
3 =

{
ω ∈ Ω : t−2mh0(ω) < h1(ω) < t2m+2h0(ω)

}
.

Since h0 and h1 cannot vanish simultaneously (because h0 ∨ h1 = 1), for every
m ∈ N these open sets Wm

i are such that
⋃3

l=1W
m
l = Ω. Let (ϑm

l )l=1,2,3 denote
a continuous partition of unity associated to these sets, that is, ϑm

l ∈ C(Ω) with
each ϑm

l being positive and supported in Wm
l , and for every ω ∈ Ω and every

m ∈ N,
3∑

l=1

ϑm
l (ω) = 1.

Note that for 1 ≤ i ≤ n,∣∣(fi − fm
i )(ω)

∣∣ = ∣∣fiξm(ω)∣∣ = ∣∣∣fiξm( 3∑
l=1

ϑm
l

)
(ω)

∣∣∣,
and since ξm is supported in Vm ⊂ Ω \Wm

3 , we have

|fi − fm
i | ≤ |fiξmϑm

1 |+ |fiξmϑm
2 |.

For ω ∈ Ω, we have∣∣fiξmϑm
1 (ω)

∣∣ ≤ ϕ(h0, h1)ξmϑ
m
1 (ω) (3.3)

≤ ϕ
(
h0(ω),

(
t−2m +

εm
2

)
h0(ω)

)
= h0(ω)ϕ1

(
t−2m +

εm
2

)
.

Similarly, we have ∣∣fiξmϑm
2 (ω)

∣∣ ≤ ϕ(h0, h1)ξmϑ
m
2 (ω) (3.4)

≤ ϕ
( h1(ω)

t2m+2 − εm+1

2

, h1(ω)
)

= h1(ω)
ϕ1(t2m+2 − εm+1

2
)

t2m+2 − εm+1

2

.

Therefore, setting

am = ϕ1

(
t−2m +

εm
2

)
+
ϕ1(t2m+2 − εm+1

2
)

t2m+2 − εm+1

2

,

and putting together the estimates (3.3) and (3.4), we get

|xi − xmi | ≤ (u0 ∨ u1)am.

The hypotheses on ϕ1 clearly yield that am → 0 as m→ ∞, so this proves (ii).
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Finally, to prove (iii), note that by inequality (3.2), for every |k| ≤ m and
ω ∈ Ω we have

n∑
i=1

∣∣fiψk(ω)
∣∣ ≤ ∣∣ϕ(h0(ω), h1(ω))ψk(ω)

∣∣
≤ h0(ω)ϕ1(t2k+2 + εk)ψk(ω)

≤ qϕ1(t2k+1)h0(ω)ψk(ω),

and similarly
n∑

i=1

∣∣fiψk(ω)
∣∣ ≤ q

ϕ1(t2k+1)

t2k+1

h1(ω)ψk(ω).

Therefore, the functions

Fm
0 =

∑
|k|≤m

1

ϕ1(t2k+1)

n∑
i=1

|fiψk|, Fm
1 =

∑
|k|≤m

t2k+1

ϕ1(t2k+1)

n∑
i=1

|fiψk|

satisfy Fm
j ≤ qhj for j = 0, 1.

Now, let us consider

Gm
0 = max

|k|≤m,1≤i≤n

{ 1

ϕ1(t2k+1)
|Tyki |

}
in Y0 + Y1. Since T |X0 : X0 → Y0 is (∞, 1)-regular, we have

‖Gm
0 ‖Y0 =

∥∥∥ max
|k|≤m,1≤i≤n

{ 1

ϕ1(t2k+1)
|Tyki |

}∥∥∥
Y0

≤ ρ∞,1(T |X0)
∥∥∥ ∑

|k|≤m

1

ϕ1(t2k+1)

n∑
i=1

|yki |
∥∥∥
X0

≤ ρ∞,1(T |X0)‖qu0‖X0

≤ qρ∞,1(T |X0),

while for

Gm
1 = max

|k|≤N,1≤i≤n

{ t2k+1

ϕ1(t2k+1)
|Tyki |

}
a similar argument yields

‖Gm
1 ‖Y1 ≤ qρ∞,1(T |X1).

Now, by equation (3.1), we have

max
1≤i≤n

|Txmi | ≤ max
1≤i≤n

∑
|k|≤m

|Tyki |

≤
∑
|k|≤m

ϕ1(t2k+1)min
(
Gm

0 ,
1

t2k+1

Gm
1

)
≤ q + 1

q − 1
ϕ(Gm

0 , G
m
1 ).
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From this inequality and the fact that ‖Gm
j ‖Yj

≤ qρ∞,1(T |Xj
) for j = 0, 1, it

follows that∥∥ max
1≤i≤n

|Txmi |
∥∥
ϕ(Y0,Y1)

≤ q(q + 1)

q − 1
max

{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
.

This finishes the proof of (iii). �

Remark 3.4. Optimizing the estimate obtained in the previous proof for q > 1,
we could take γ = 3 + 2

√
2.

Proof of Theorem 3.1. Let R = max{ρ∞,1(T |X0), ρ∞,1(T |X1)}. First, we claim
that there is K > 0 such that, given (xi)

n
i=1 ⊂ X0 +X1,

if
∥∥∥ n∑

i=1

|xi|
∥∥∥
ϕ(X0,X1)

≤ 1, then
∥∥∥ n∨

i=1

|Txi|
∥∥∥
ϕc(Y0,Y1)

≤ KR. (3.5)

Indeed, as before, let ϕ1(t) = ϕ(1, t). Without loss of generality, we can assume
that ϕ1 is a concave function (see [1, Corollary 3.1.4]). Note that if limt→0+ ϕ1(t) =

0 = limt→∞
ϕ1(t)

t
, then the conclusion follows directly from Lemma 3.3. Otherwise,

let us consider

φ1(s) = lim
t→0+

ϕ1(t) ∨ s lim
t→∞

ϕ1(t)

t
and η1 = ϕ1 − φ1. (3.6)

Note that, as φ1 is clearly convex, it follows that η1 is a concave function which

moreover is positive and satisfies limt→0+ η1(t) = 0 = limt→∞
η1(t)
t
.

Now, if we consider φ(s, t) = sφ1(
t
s
) and η(s, t) = sη1(

t
s
), it follows that

φ(X0, X1) + η(X0, X1) = ϕ(X0, X1) (3.7)

with equivalent norms (with a constant not greater than 2).
Take (xi)

n
i=1 ∈ ϕ(X0, X1) such that ‖

∑n
i=1 |xi|‖ϕ(X0,X1) < 1; hence,

∑n
i=1 |xi| ≤

ϕ(u0, u1) for some ui ∈ Xi with ‖ui‖Xi
≤ 1 for i = 0, 1. According to (3.7) and

using the Riesz decomposition property, we can write xi = vi + wi, where
n∑

i=1

|vi| ≤ φ(u0, u1) and
n∑

i=1

|wi| ≤ η(u0, u1).

On the one hand, note that φ(X0, X1) coincides, up to a c-equivalent norm, with
X0, X1, or X0 +X1 for some c > 0. Hence, by Lemma 3.2, we have that∥∥∥ n∨

i=1

|Tvi|
∥∥∥
φ(Y0,Y1)

≤ 2Rc. (3.8)

On the other hand, by Lemma 3.3, there exist a constant γ and sequences (wm
i )m∈N

for 1 ≤ i ≤ n such that

sup
m

∥∥∥ n∨
i=1

|Twm
i |
∥∥∥
η(Y0,Y1)

≤ γR (3.9)

and for every i = 1, . . . , n and some (am)m∈N with am −→
m→∞

0,

|wm
i − wi| ≤ (u0 ∨ u1)am. (3.10)
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Note, in particular, that (3.10) implies that

max
1≤i≤n

‖vi + wm
i − xi‖X0+X1 −→

m→∞
0,

and also that ∥∥∥ n∨
i=1

|Tvi + Twm
i | −

n∨
i=1

|Txi|
∥∥∥
Y0+Y1

−→
m→∞

0.

Then, putting together (3.8) and (3.9), we have∥∥∥ n∨
i=1

|Tvi + Twm
i |
∥∥∥
ϕ(Y0,Y1)

≤
∥∥∥ n∨

i=1

|Tvi|
∥∥∥
φ(Y0,Y1)

+
∥∥∥ n∨

i=1

|Twm
i |
∥∥∥
η(Y0,Y1)

≤ (2 + γ)R. (3.11)

This proves claim (3.5).
Using the fact that T : X0+X1 → Y0+Y1 is bounded, the following density argu-

ment will finish the proof. Given (xi)
n
i=1 ⊂ X0+X1 with ‖

∑n
i=1 |xi|‖ϕc(X0,X1) < 1,

we can find (xm)m∈N ⊂ X0 +X1 such that

sup
m

‖xm‖ϕ(X0,X1) < 1 and
∥∥∥xm −

n∑
i=1

|xi|
∥∥∥
X0+X1

→ 0.

Without loss of generality, we can write xm =
∑n

i=1 |xmi | for some (xmi )m∈N such
that

∑n
i=1 |xmi | ≤

∑n
i=1 |xi| and ‖xmi − xi‖X0+X1 → 0 for every i = 1, . . . , n. By

claim (3.5), it follows that for every m ∈ N, (Txmi )ni=1 ⊂ ϕc(Y0, Y1) with∥∥∥ n∨
i=1

|Txmi |
∥∥∥
ϕ(Y0,Y1)

≤ γR. (3.12)

Now, since T : X0+X1 → Y0+Y1 is bounded, we have that for every i = 1, . . . , n,
‖Txmi − Txi‖Y0+Y1 → 0, and in particular we have that∥∥∥ n∨

i=1

|Txmi | −
n∨

i=1

|Txi|
∥∥∥
Y0+Y1

→ 0. (3.13)

This shows that ∥∥∥ n∨
i=1

|Txi|
∥∥∥
ϕc(Y0,Y1)

≤ γR

and finishes the proof. �

Remark 3.5. The proof given here is heavily motivated by the one in [1, The-
orem 4.3.11] and follows a similar approach. Actually, under the assumptions
of Theorem 3.1, the proof of [1, Theorem 4.3.11] essentially shows that T :
ϕc(X0, X1) → ϕc(Y0, Y1) is bounded as long as (X0, X1) and (Y0, Y1) are interpo-
lation couples of Banach lattices of measurable functions on a certain measure
space. However, the one given here is more general since the lattices we deal with
do not necessarily consist of functions over a measure space.
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4. Quasi-Banach lattices with the Kp,q property

An application of Grothendieck’s inequality due to Krivine [10] (see also [13,
Theorem 1.f.14]) yields that for any Banach lattices E,F , every bounded linear
operator T : E → F is (2, 2)-regular with ρ2,2(T ) ≤ KG‖T‖, where KG denotes
Grothendieck’s constant. This fact was later extended by Kalton [7] to L-convex
quasi-Banach lattices. Recall that a quasi-Banach lattice E is L-convex whenever
its order intervals are uniformly locally convex, that is, whenever there exists
0 < ε < 1 so that if u ∈ E+ with ‖u‖ = 1 and 0 ≤ xi ≤ u (for i = 1, . . . , n)
satisfy

1

n
(x1 + · · ·+ xn) ≥ (1− ε)u,

then

max
1≤i≤n

‖xi‖ ≥ ε.

In particular, every Banach lattice is L-convex, and so is a quasi-Banach lattice
which is for an equivalent quasinorm the p-concavification of a Banach lattice. In
fact, every L-convex quasi-Banach lattice is of this kind by [7, Theorem 2.2], so
that L-convex quasi-Banach lattices are exactly Nilsson’s quasi-Banach lattices
of type C (see [18, Definition 1.7]). These include classical spaces like Lp, Λ(W, p),
and Lp,∞ for 0 < p ≤ ∞. On the other hand, examples of non-L-convex quasi-
Banach lattices are the Lp(φ)-spaces (0 < p < ∞) with respect to pathological
submeasures φ (see [7], [25]). Motivated by these facts, we introduce the following.

Definition 4.1. A quasi-Banach lattice F has the Kp,q property with constant
C > 0 if, for every quasi-Banach lattice E, every bounded linear operator T :
E → F is (p, q)-regular with ρp,q(T ) ≤ C‖T‖.

By [7, Theorem 3.3], every L-convex quasi-Banach lattice has the K2,2 prop-
erty. As far as we know, it is still unknown whether the converse holds. However,
L-convex quasi-Banach lattices constitute a large collection of spaces for which
our results hold. In particular, this includes every quasi-Banach lattice E such
that `∞ is not lattice finitely representable in E. Also, if F is an L-convex quasi-
Banach lattice and E is a quasi-Banach lattice which is linearly homeomorphic
to a subspace of F , then E is L-convex.

Note that if a quasi-Banach lattice has the Kp,q property for some p, q, then it
has theK∞,1 property. Let us summarize this in the following chain of implications
for a quasi-Banach lattice E:

locally convex ⇒ L-convex ⇒ K2,2 property ⇒ K∞,1 property.

We will focus now on the K∞,1 property for a quasi-Banach lattice, which is the
weakest among the above properties.

Proposition 4.2. For a quasi-Banach lattice E, the following are equivalent.

(1) E has the K∞,1 property with constant C.
(2) Every operator T : `∞ → E is (∞, 1)-regular with ρ∞,1(T ) ≤ C‖T‖.
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(3) For every (xi)
n
i=1 ⊂ E, we have∥∥ max

1≤i≤n
|xi|

∥∥ ≤ C max
|ai|≤1

∥∥∥ n∑
i=1

aixi

∥∥∥.
Proof. The implication (1) ⇒ (2) is trivial. Suppose that (2) holds. Then given
(xi)

n
i=1 ⊂ E, let T : `∞ → E be the operator defined by

T (ai) =
n∑

i=1

aixi

for (ai)
∞
i=1 ∈ `∞. Let ei ∈ `∞ denote the sequence having 1 in the ith position and 0

elsewhere. By hypothesis, the operator T is (∞, 1)-regular with ρ∞,1(T ) ≤ C‖T‖,
which in particular yields∥∥ max

1≤i≤n
|xi|

∥∥ =
∥∥ max

1≤i≤n
|Tei|

∥∥ ≤ C‖T‖
∥∥∥ n∑

i=1

|ei|
∥∥∥ = C max

|ai|≤1

∥∥∥ n∑
i=1

aixi

∥∥∥.
Therefore, (3) holds.

For the implication (3) ⇒ (1), if F is a quasi-Banach lattice and T : F → E is
bounded, then∥∥ max

1≤i≤n
|Txi|

∥∥ ≤ C max
|ai|≤1

∥∥∥ n∑
i=1

aiTxi

∥∥∥ ≤ C‖T‖
∥∥∥ n∑

i=1

|xi|
∥∥∥.

Hence, ρ∞,1(T ) ≤ C‖T‖. �

A modification of [7, Example 3.5] provides an example of a quasi-Banach
lattice without the K∞,1 property.

Example 4.3. For each n ∈ N, let Ωn be the unit sphere in `n∞; that is, Ωn =
{v ∈ Rn : max1≤i≤n |vi| = 1}. Let An denote the algebra of all subsets of Ωn. For
u ∈ Rn \ {0}, let

Bu =
{
v ∈ Ωn :

n∑
i=1

uivi 6= 0
}
.

Let us consider the normalized submeasure defined, for A ∈ An, by

φn(A) =
1

n
inf

{
#S : A ⊂

⋃
u∈S

Bu

}
.

Given 0 < p < 1, consider the quasi-Banach lattice Lp(Ωn,An, φn) which is the
completion of the simple An-measurable functions f : Ωn → R, with respect to
the quasinorm

‖f‖p =
(∫ ∞

0

φn

(
|f | ≥ t

1
p
)
dt
) 1

p
.

Now, for 1 ≤ i ≤ n, let fi : Ωn → R be given by fi(v) = vi. It is clear that
max1≤i≤n |fi(v)| = 1 for every v ∈ Ωn; thus,∥∥ max

1≤i≤n
|fi|

∥∥
p
= 1.
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On the other hand, for a ∈ Rn with |ai| ≤ 1, we have∣∣∣ n∑
i=1

aifi

∣∣∣ ≤ nχBa .

Therefore, we have ∥∥∥ n∑
i=1

aifi

∥∥∥
p
≤ n1− 1

p .

Taking E to be the `∞-product of the spaces Lp(Ωn,An, φn) for n ∈ N, by Propo-
sition 4.2, we see that E cannot have the K∞,1 property.

5. Interpolation functors

A direct consequence of Theorem 3.1 yields that the functor ϕc is an interpo-
lation functor in the category of quasi-Banach lattices with the K∞,1 property.

Corollary 5.1. If (X0, X1) and (Y0, Y1) are compatible pairs of quasi-Banach
lattices such that Y0 and Y1 have the K∞,1 property, then for every T : (X0, X1) →
(Y0, Y1) and every function ϕ ∈ P, we have that T : ϕc(X0, X1) → ϕc(Y0, Y1).

Proof. Let (X0, X1), (Y0, Y1) be compatible couples of quasi-Banach lattices such
that Y0 and Y1 have the K∞,1 property. Let T : X0 + X1 → Y0 + Y1 be an
operator which is bounded as an operator T |X0 : X0 → Y0 and T |X1 : X1 → Y1.
It follows that the T |Xi

’s are (∞, 1)-regular for i = 0, 1, so Theorem 3.1 yields
that T : ϕc(X0, X1) → ϕc(Y0, Y1) is (∞, 1)-regular; in particular, it is bounded,
and moreover

‖T |ϕc(X0,X1)‖ ≤ ρ∞,1(T |ϕc(X0,X1)) ≤ max
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
≤ Cmax

{
‖T |X0‖, ‖T |X1‖

}
,

where C > 0 depends only on the K∞,1 constants of Y0 and Y1. �

Recall that given (X0, X1), we can also consider ϕ0(X0, X1) the closure of
the intersection X0 ∩ X1 in ϕ(X0, X1). Our aim is to show that this is also an
interpolation functor. We will need to address some technicalities first.

Definition 5.2. A function ϕ ∈ P is called doubly bounded provided there exists
C > 0 such that ϕi(t) ≤ C for i = 0, 1.

Lemma 5.3. A function ϕ ∈ P is doubly bounded if and only if ϕ(s, t) ≈
min(s, t).

Proof. Suppose that there is C > 0 such that, for every t ∈ R+, we have
ϕ0(t), ϕ1(t) ≤ C. In this case, we get that

ϕ(s, t) = sϕ1(t/s) ≤ Cs,

ϕ(s, t) = tϕ0(s/t) ≤ Ct.

Hence, it follows that ϕ(s, t) ≤ Cmin(s, t). Since for ϕ ∈ P we have the trivial
estimate ϕ(s, t) ≥ ϕ(1, 1)min(s, t), the conclusion follows. The converse implica-
tion is clear. �
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Lemma 5.4. Let (X0, X1) be an interpolation couple of quasi-Banach lattices,
and let ϕ ∈ P. If ϕ is not doubly bounded, and ϕ1(t) → 0 as t → 0, then there
is Cϕ,X > 0, depending only on ϕ and the quasinorm constants of X0, X1, such
that for every positive x ∈ X0 ∩ X1 with ‖x‖ϕ(X0,X1) < 1 there exist positive
f, g ∈ X0 ∩X1 with ‖f‖X0 , ‖g‖X1 ≤ Cϕ and x = ϕ(f, g).

Proof. By symmetry of the argument, we can suppose without loss of generality
that limt→∞ ϕ0(t) = ∞. Hence, for every δ > 0, there is N > 0 such that
ϕ0(

N
δ
) ≥ 1

δ
, or in other words, ϕ(N, δ) ≥ 1.

Assume that x ∈ (X0 ∩ X1)
+ with ‖x‖ϕ(X0,X1) < 1, and let u ∈ X+

0 , v ∈ X+
1

with ‖u‖X0 < 1, ‖v‖X1 < 1, and

x ≤ ϕ(u, v).

Let CXj
be the quasinorm constant of Xj, for j = 0, 1, let δ > 0 be small enough

so that ‖v∨δx‖X1 < CX1 , and let N > 0 be such that ϕ(N, δ) ≥ 1. Let u′ = u∧Nx
and v′ = v ∨ δx. Note that u′ ∈ X0 ∩X1, ‖u′‖X0 < 1, and v′ ∈ X1, ‖v′‖X1 < CX1 .
Moreover,

ϕ(u′, v′) = ϕ(u, v′) ∧ ϕ(Nx, v′) ≥ ϕ(u, v) ∧ ϕ(Nx, δx) = x ∧ ϕ(N, δ)x ≥ x.

We distinguish two cases.
Case (a): If we also have that limt→∞ ϕ1(t) = ∞, then we can proceed in a

similar way as before exchanging the roles of the variables in ϕ. Let 0 < ε < N be
small enough so that ‖u′ ∨ εx‖X0 < CX0 , and let M > 0 such that ϕ(ε,M) ≥ 1.
Then, take u′′ = u′ ∨ εx and v′′ = v′ ∧Mx which also satisfy u′′, v′′ ∈ X0 ∩ X1

with ‖u′′‖X0 < CX0 , ‖v′′‖X1 < CX1 , and x ≤ ϕ(u′′, v′′). Moreover,

ϕ(u′′, v′′) ≤ ϕ(Nx,Mx, ) ≤ ϕ(N,M)x.

Let J0(x) be the (nonclosed) ideal generated by x, which can be considered as a
C(Ω)-space for some compact Hausdorff space Ω. Thus, we can consider the func-

tions û′′, v̂′′, ŷ ∈ C(Ω) as corresponding, respectively, to u′′, v′′ and y = ϕ(u′′, v′′).
Recall that in this correspondence, x is represented by x̂ = 1Ω, so

ŷ ≥ x̂ = 1Ω.

Thus, 1
ŷ
∈ C(Ω) with ‖ 1

ŷ
‖ ≤ 1. Set f̂ = û′′

ŷ
and ĝ = v̂′′

ŷ
, which clearly correspond

to elements f, g ∈ J0(x) such that

ϕ(f, g) = x.

This identity follows from the fact that

ϕ(f̂ , ĝ) = ϕ
( û′′
ŷ
,
v̂′′

ŷ

)
=
ϕ(û′′, v̂′′)

ŷ
= 1Ω = x̂.

Moreover, we have

f ≤ u′′ ≤ Nx, g ≤ v′′ ≤Mx.

Hence, f, g ∈ X0 ∩X1, with ‖f‖X0 ≤ ‖u′′‖X0 < CX0 and ‖g‖X1 ≤ ‖v′′‖X1 < CX1 .
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Case (b): If, on the contrary, ϕ1 is bounded, then set Cϕ = sups>0 ϕ1(s) < ∞
so that

ϕ(s, t) = sϕ1

( t
s

)
≤ Cϕs.

Since x = ϕ(u′, v′), we have x ≤ Cϕu
′ and

x = ϕ(x, x) ≤ ϕ(Cϕu
′, x).

On the other hand, x = ϕ(u′, v′) ≤ ϕ(Cϕu
′, v′) (assuming without loss of gener-

ality that Cϕ ≥ 1). Thus,

x ≤ ϕ(Cϕu
′, x ∧ v′).

Then, we can take u′′ = Cϕu
′ and v′′ = x ∧ v′. Then u′′, v′′ belong to J0(x),

the (nonclosed) ideal generated by x, which corresponds to the space C(Ω), and
satisfy

‖u′′‖X0 ≤ Cϕ, ‖v′′‖X1 < CX1 .

Hence, as before, we may find f ≤ u′′ and g ≤ v′′ with x = ϕ(f, g). �

This fact will allow us to show that ϕ0 is an interpolation functor in the category
of quasi-Banach lattices with the K∞,1 property. More precisely, we have the
following.

Theorem 5.5. Let (X0, X1) and (Y0, Y1) be compatible pairs of quasi-Banach lat-
tices, and let T : X0+X1 → Y0+Y1 be such that T |Xj

: Xj → Yj is (∞, 1)-regular
for j = 0, 1. Then for every function ϕ ∈ P, we have that T : ϕ0(X0, X1) →
ϕ0(Y0, Y1) is (∞, 1)-regular with

ρ∞,1(T |ϕ0(X0,X1)) ≤ Cmax
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
,

for some C > 0 depending only on X0, X1, Y0, Y1, and ϕ.

Proof. If ϕ is doubly bounded, by Lemma 5.3, then it follows that ϕ0(X0, X1) =
X0∩X1 (with an equivalent norm). Therefore, in this case the conclusion follows.

Note that we can consider a decomposition as the one given in (3.6):

φ1(s) = lim
t→0+

ϕ1(t) ∨ s lim
t→∞

ϕ1(t)

t
and η1 = ϕ1 − φ1. (5.1)

As before, note that φ1 is convex, so η1 is concave. Thus, taking φ(s, t) = sφ1(
t
s
)

and η(s, t) = sη1(
t
s
), it holds that

ϕ = φ+ η, (5.2)

where φ(s, t) ≈ max(s, t) and limt→0 η1(t) = 0 = limt→∞
η1(t)
t
.

Let (xi)
n
i=1 ⊂ X0 ∩ X1 be positive with ‖

∑n
i=1 |xi|‖ϕ(X0,X1) < 1. Since Txi ∈

Y0 ∩ Y1 for every 1 ≤ i ≤ n, it will be enough to show that∥∥ max
1≤i≤n

|Txi|
∥∥
ϕ(Y0,Y1)

≤ γmax
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
(5.3)

for a certain constant γ > 0 independent of T and (xi)
n
i=1.

Note that
∑n

i=1 |xi| ≤ ϕ(u0, u1) with uj ∈ Xj and ‖uj‖Xj
≤ 1. Using the Riesz

decomposition property and (5.2), we can write xi = fi + gi with 0 ≤ fi, gi ≤ xi
in X0 ∩X1 such that fi ≤ φ(u0, u1) and gi ≤ η(u0, u1).
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On the one hand, since φ(X0, X1) coincides, up to an equivalent norm, with
X0, X1, or X0 +X1, using Lemma 3.2, it follows that∥∥ max

1≤i≤n
|Tfi|

∥∥
φ(Y0,Y1)

≤ γ0max
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
(5.4)

for a certain constant γ0. On the other hand, since we can assume that ϕ, and
hence η, is not doubly bounded, by Lemma 5.4 there exist Cη,X > 0 and v0, v1 ∈
X0 ∩X1 with ‖vj‖Xj

≤ Cη,X such that

n∑
i=1

|gi| = η(v0, v1).

Hence, Lemma 3.3 applied to (gi)
n
i=1, v0, and v1 provides for 1 ≤ i ≤ n sequences

(gmi )m∈N in X0 +X1 such that, for m ∈ N, we have

max
1≤i≤n

|gi − gmi | ≤ (v0 ∨ v1)am

for certain am ∈ R+ with am −→
m→∞

0, and

sup
m

∥∥ max
1≤i≤n

|Tgmi |
∥∥
ϕ(Y0,Y1)

≤ γmax
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
.

Hence, since v0, v1 ∈ X0 ∩ X1, for every 1 ≤ i ≤ n, it holds that gmi → gi in
X0 ∩X1. In particular, it also holds that Tgmi → Tgi in Y0 ∩ Y1, which yields∥∥ max

1≤i≤n
|Tgi|

∥∥
η(Y0,Y1)

≤ γmax
{
ρ∞,1(T |X0), ρ∞,1(T |X1)

}
. (5.5)

Since Txi = Tfi + Tgi, this finishes the proof. �

The above result immediately yields the following.

Corollary 5.6. If (X0, X1) and (Y0, Y1) are compatible pairs of quasi-Banach
lattices such that Y0 and Y1 have the K∞,1 property, then for every T : (X0, X1) →
(Y0, Y1) and every function ϕ ∈ P, we have T : ϕ0(X0, X1) → ϕ0(Y0, Y1).

Remark 5.7. If X0 and X1 are quasi-Banach lattices of measurable functions over
a measure space and if for some constant M > 0 and vectors (xi)

n
i=1 ⊂ Xj it

holds that ∥∥ max
1≤i≤n

|xi|
∥∥
Xj

≤M max
t∈[0,1]

∥∥∥ n∑
i=1

ri(t)xi

∥∥∥
Xj

, (5.6)

where ri denotes the ith Rademacher function, and the function ϕ ∈ P satisfies
the condition that ϕ(s, t) → 0 as s → 0 or t → 0, and ϕ(s, t) → ∞ as s → ∞
or t → ∞, then [18, Theorem 2.1] asserts that ϕ0(X0, X1) coincides with the
〈·〉ϕ-method introduced by Peetre in [21]. Note that by Proposition 4.2, condition
(5.6) implies the K∞,1 property of Xj. Hence, under these somewhat stronger
assumptions, the interpolation result of Theorem 5.6 also follows from this fact.

Remark 5.8. We do not know whether theK∞,1 property in Corollaries 5.1 and 5.6
is actually necessary.
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Schwartz 1973–1974: Espaces Lp, applications radonifiantes et géométrie des espaces de
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24. V. A. Šestakov, Complex interpolation in Banach spaces of measurable functions (in Rus-
sian), Vestnik Leningrad Univ. Math. 19 Mat. Meh. Astronom. Vyp. 4 (1974), 64–68, 171.
Zbl 0297.46028. MR0372597. 295

25. M. Talagrand, A simple example of a pathological submeasure, Math. Ann. 252 (1979/80),
no. 2, 97–102. Zbl 0444.28003. MR0593624. DOI 10.1007/BF01420116. 306
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