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Abstract. Given a higher-rank graph Λ, we investigate the relationship
between the cohomology of Λ and the cohomology of the associated groupoid
GΛ. We define an exact functor between the Abelian category of right modules
over a higher-rank graph Λ and the category of GΛ-sheaves, where GΛ is the
path groupoid of Λ. We use this functor to construct compatible homomor-
phisms from both the cohomology of Λ with coefficients in a right Λ-module,
and the continuous cocycle cohomology of GΛ with values in the corresponding
GΛ-sheaf, into the sheaf cohomology of GΛ.

1. Introduction

Higher-rank graphs (also called k-graphs) were introduced by Kumjian and
Pask in [14] as a combinatorial model for certain higher-rank Cuntz–Krieger
C∗-algebras (see [22]) in a construction that also generalized the definition of
the C∗-algebra of a directed graph. As the name suggests, a k-graph is often best
viewed as a k-dimensional generalization of a directed graph. Formally, however, a
k-graph (see Definition 3.1 below) is defined to be a countable category with addi-
tional structure. The combinatorial nature of k-graph C∗-algebras has facilitated
the analysis of structural properties of these C∗-algebras, such as their simplicity
and ideal structure (see [19], [21], [23], [7], [12]), quasidiagonality (see [6]), and
KMS states (see [2], [1]). In particular, results such as [24], [5], [4], and [18] show
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that k-graphs often provide concrete examples of C∗-algebras which are relevant
to Elliott’s classification program for simple separable nuclear C∗-algebras.

Under mild hypotheses—namely, that Λ is row-finite and has no sources— we
can associate a groupoid GΛ to a k-graph Λ, and it was also shown in [14] that the
groupoid C∗-algebra C∗(GΛ), as defined in [20, Definition II.1.12], is isomorphic
to the C∗-algebra C∗(Λ) of the k-graph. More generally, given a locally compact
Hausdorff groupoid G and a continuous T-valued 2-cocycle σ on G, Renault defines
in [20] a twisted version C∗(G, σ) of the groupoid C∗-algebra, such that, up to
isomorphism, C∗(G, σ) only depends on the class [σ] ∈ H2

c (G,T) of σ in the
continuous cocycle cohomology of G with coefficients in T.

Kumjian, Pask, and Sims initiated in [15] the study of the cohomology of a
k-graph taking values in an Abelian group A. They also explained how to con-
struct, from a k-graph Λ and a T-valued 2-cocycle on Λ, a twisted higher-rank
graph C∗-algebra C∗(Λ, c). In Lemma 6.3 of [16], they constructed a map σ from
the k-graph 2-cocycles Z2(Λ, A) to the continuous 2-cocycles Z2

c (GΛ, A) of the
associated groupoid, such that σ maps coboundaries to coboundaries, and they
proved that C∗(Λ, c) ∼= C∗(GΛ, σ(c)) when A = T (see [16, Theorem 6.5, Corol-
lary 7.9]). However, the map σ is ad hoc and does not easily generalize to provide
a homomorphism Hn(Λ, A) → Hn

c (GΛ, A) for n 6= 2.
The initial motivation for the research presented in this article was to under-

stand more thoroughly the relationship between the cohomology of a k-graph Λ
and that of its associated groupoid. Since k-graphs are small categories, a natural
alternative to use, instead of the approach to the cohomology of k-graphs from
[16], is the cohomology theory of small categories (see [25], [3], [26]; we review
these constructions in Section 2 below). For a k-graph Λ, Proposition 2.8 below
shows that the usual definition of the cohomology of a small category with coeffi-
cients in a Λ-module (see Definitions 2.1 and 2.5 below) agrees with the categorical
cohomology of [16] in the case that the module is a constant Abelian group.

The advantage of the Λ-module perspective on the cohomology of a k-graph
Λ is that it enables us to relate the k-graph cohomology to the groupoid sheaf
cohomology in all degrees. The first main result of this paper, Theorem 3.7, is
the construction (under mild hypotheses) of an exact additive functor, A 7→ A,
from the category of right Λ-modules to the category of GΛ-sheaves. In Sec-
tion 4, we then construct natural maps into the sheaf cohomology Hn(GΛ,A)
from both the k-graph cohomology Hn(Λ,A) and the continuous cocycle coho-
mology Hn

c (GΛ,A). Moreover, we show in Proposition 4.5 that both of these maps
factor through the functor A 7→ A. Indeed, the second main result of the paper,
Theorem 4.1, consists of showing the commutativity of the diagram below (for
n ≤ 2):

Hn(Λ,A) Hn
(
HomGΛ

(P ∗,A)
)

Hn
c (GΛ,A) Hn

(
HomGΛ

(P∗,A)
)

Hn(GΛ,A)

ψ∗
n

ηn

∼=

[16] (n ≤ 2)
ρnP

ρnP
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Although the left-hand vertical arrow above is not defined for n > 2, the right-
hand triangle commutes for all n, and the composition

ρnP ◦ ηn : Hn
c (G,A ) → Hn(G,A )

is well defined for any étale groupoid G and any G-sheaf A (see Propositions 3.14,
4.4, and 4.5 below).

We note in Remark 4.9 that the diagonal arrow in the diagram above is an
isomorphism when n = 2. One might then begin to suspect that other arrows
in the diagram might also be isomorphisms. However, Kumjian, Pask, and Sims
exhibit in Remark 6.9 of [16] a 1-graph B2 such that the left-hand vertical arrow
H1(B2, A) → H1(GB2 , A) is not surjective. Example 4.8 below complements this
example, and answers in the negative a conjecture from [16], by showing that the
homomorphism H1(Λ,A) → H1

c (GΛ,A) need not be injective.

2. Modules over categories

In this section, we present the cohomology theory for small categories, which
provides the foundation for our main results in Sections 3 and 4, relating the coho-
mology of a higher-rank graph with that of its associated groupoid. Most of the
material in this section is surely well known to the experts in the area, but we have
chosen to present it in detail here both as a courtesy to our intended audience,
namely those interested in higher-rank graphs and their associated C∗-algebras,
and to have the material available in the form we require.

To be precise, we begin by describing (in Definition 2.1) modules over small
categories, and (in Definition 2.3) a canonical projective resolution of the con-
stant module ZΛ over a category Λ, which we use in Definition 2.5 to define the
cohomology groups of Λ with coefficients in a Λ-module A. We show in Propo-
sition 2.8 that the cohomology groups thus defined agree with the categorical
cohomology groups employed in [16] to study the cohomology of higher-rank
graphs.

Before we begin, a brief word about notation. Throughout this paper, N :=
{0, 1, 2, . . .} is regarded as a monoid under addition, or equivalently a category
with one object. Thus, the notation n ∈ N indicates that n is a morphism, rather
than an object, of N. Inspired by this, we use the arrows-only picture of category
theory throughout this paper, so that the notation λ ∈ Λ implies that λ is a
morphism in the category Λ.

Definition 2.1 (see [25, p. 331]). Given a small category Λ, we define a (right)
Λ-module to be a contravariant functor A : Λ → Ab, where Ab denotes the
category of Abelian groups. For v ∈ Obj(Λ) we will write Av for the associated
Abelian group, and for a morphism λ ∈ Λ we will write A(λ) : Ar(λ) → As(λ) for
the associated homomorphism of Abelian groups. A morphism of Λ-modules is
then a natural transformation. A sequence of Λ-modules

A η−−−−−→ B ρ−−−−−→ C
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is exact if, for all v ∈ Obj(Λ), the sequence of Abelian groups

Av
η(v)−−−−−→ Bv

ρ(v)−−−−−→ Cv
is exact.

Note that MΛ, the category of right Λ-modules, forms an Abelian category.
Given an Abelian group A, we write AΛ for the Λ-module, or functor, given by
AΛ
v = A for all v ∈ Obj(Λ) and AΛ(λ) = id for all morphisms λ ∈ Λ.

Definition 2.2. Let Λ be a small category. A projective Λ-module is a Λ-module
P such that every surjective morphism η : A → P of Λ-modules splits as a map
of Λ-modules. Equivalently, P is projective if, for any exact sequence A → B → 0
of Λ-modules, the natural map HomΛ(P ,A) → HomΛ(P ,B) is surjective.

Let {An}n∈N be a sequence of Λ-modules and let {ηn : An → An−1}n≥1 be a
sequence of Λ-module morphisms. We say that {An, ηn}n∈N is a resolution of a
Λ-module B if ker ηn = Im ηn+1 for all n ≥ 1, and there also exists a surjective
morphism η0 : A0 → B of Λ-modules such that ker η0 = Im η1.

To define the cohomology of a small category Λ, we will use a projective reso-
lution {P n, dn}n∈N of the constant Λ-module ZΛ.

The projective resolution {P n, dn}n is essentially a reformulation of the pro-
jective resolution {Pn, σn}n described in [26, p. 2567]. Moreover, the cohomology
groups arising from this projective resolution agree with the definitions in the lit-
erature of the categorical cohomology of a higher-rank graph or an étale groupoid
(see Propositions 2.8 and 3.14 below).

Definition 2.3. Let Λ be a small category. For n ≥ 1, we write Λ∗n for the set of
composable n-tuples in Λ:

Λ∗n =
{
(λ1, . . . , λn) ∈

n∏
i=1

Λ : s(λi) = r(λi+1) ∀i
}
.

We define Λ∗0 = Λ0 to be the objects of Λ. For each v ∈ Obj(Λ), let

P n
v = ZΛ∗(n+1)v

be the free Abelian group generated by the collection Λ∗(n+1)v of all (n+1)-tuples
(λ0, . . . , λn) of composable morphisms with s(λn) = v. When it is useful to dis-
tinguish an (n + 1)-tuple (λ0, . . . , λn) from the associated generator of P n

v , we
will write [λ0, . . . , λn] for the latter. For each λ ∈ Λ, there is a unique morphism
P n(λ) : P n

r(λ) → P n
s(λ) such that

P n(λ)
(
[λ0, λ1, . . . , λn]

)
= [λ0, λ1, . . . , λnλ].

For n ≥ 1, we define dn : P n
v → P n−1

v on generators [λ0, λ1, . . . , λn] and extend
Z-linearly:

dn
(
[λ0, λ1, . . . , λn]

)
= [λ1, λ2, . . . , λn] +

n∑
i=1

(−1)i[λ0, λ1, . . . , λi−1λi, . . . , λn].
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Similarly, the morphism d0 : P
0
v → Z is defined on generators by d0([λ]) = 1. One

easily checks that dn is a natural transformation for each n and that dn◦dn+1 = 0.

Proposition 2.4. The complex {P n, dn}n∈N is a projective resolution of ZΛ.

Proof. We begin by showing that P n is projective for all n. To this end, let
η : A → P n be a surjective morphism of Λ-modules. For each n + 1-tuple of the
form (λ0, . . . , λn−1, s(λn−1)), choose an element a(λ0,...,λn−1,s(λn−1)) ∈ A such that

η(a(λ0,...,λn−1,s(λn−1))) =
[
λ0, . . . , λn−1, s(λn−1)

]
.

Define a morphism ξ : P n → A of Λ-modules by defining ξ on generators of the
form [λ0, . . . , λn−1, s(λn−1)] by

ξ
([
λ0, . . . , λn−1, s(λn−1)

])
= a(λ0,...,λn−1,s(λn−1));

then we extend ξ to all of P n so that ξ becomes a morphism of Λ-modules. In
other words, if (λ0, . . . , λn) is an arbitrary element of Λ∗(n+1), then we have

ξ
(
[λ0, . . . , λn]

)
:= A(λn)

(
ξ
([
λ0, . . . , λn−1, s(λn−1)

]))
= A(λn)(a(λ0,...,λn−1,s(λn−1))).

By construction, η ◦ ξ = id as morphisms of Λ-modules. Thus, P n is projective,
as claimed.

Now, we show that {P n, dn}n∈N is a resolution of ZΛ. Since dn ◦ dn+1 = 0
for all n, and since d0 : P 0 → ZΛ is clearly surjective, it suffices to show that
ker dn ⊆ Im dn+1. To that end, we construct a contracting homotopy (sn)n∈N,
where sn : Pn → Pn+1 is a natural transformation for each n. Fix v ∈ Λ0 and
define sn = sn,v : P

n
v → P n+1

v on generators by

sn
(
[λ0, . . . , λn]

)
= (−1)n+1

[
λ0, . . . , λn, s(λn)

]
,

and extend Z-linearly. We also define s−1 : ZΛ
v → P 0

v by s−1([1]) = [v]. Although
sn does not commute with the action of Λ, and hence fails to determine a mor-
phism of Λ-modules, for n ≥ 1 we have

(dn+1 ◦ sn + sn−1 ◦ dn)
(
[λ0, . . . , λn]

)
= dn+1

(
(−1)n+1

[
λ0, . . . , λn, s(λn)

])
+ sn−1

(
[λ1, . . . , λn] +

n∑
j=1

(−1)j[λ0, . . . , λj−1λj, . . . , λn]
)

= (−1)n+1
([
λ1, . . . , λn, s(λn)

]
+ (−1)n+1[λ0, . . . , λn]

+
n∑
j=1

(−1)j
[
λ0, . . . , λj−1λj, . . . , λn, s(λn)

]
+ (−1)n

[
λ1, . . . , λn, s(λn)

])
+

n∑
j=1

(−1)j+n
[
λ0, . . . , λj−1λj, . . . , λn, s(λn)

]
= [λ0, . . . , λn].
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If n = 0, then we compute

(d1 ◦ s0 + s−1 ◦ d0)
(
[λ]

)
= −d1

([
λ, s(λ)

])
+
[
s(λ)

]
= −

[
s(λ)

]
+ [λ]−

[
s(λ)

]
= [λ].

Thus, if a ∈ ker dn, then we have a = (dn+1 ◦ sn + sn−1 ◦ dn)(a) ∈ Im dn+1.
Since ker dn ⊆ Im dn+1 for all n, the projective complex {P n, dn}n∈N is in fact a
resolution of ZΛ, as claimed. �

Definition 2.5. Let Λ be a small category, and let A be a Λ-module. We define
the cohomology groups of Λ with coefficients in A to be the cohomology groups
of the complex HomΛ(P

∗,A), where the boundary map δn : HomΛ(P
n,A) →

HomΛ(P
n+1,A) is δn(c) := c ◦ dn+1. In more detail, an n-cochain is a mor-

phism of Λ-modules c : P n → A, and an n-cocycle is an n-cochain c such that
δn(c) := c ◦ dn+1 = 0. We say that c is an n-coboundary if c = δn−1(b) for some
b ∈ HomΛ(P

n−1,A). Now note that HomΛ(P
n,A) is an Abelian group for all n.

Writing Zn(Λ,A) for the subgroup of n-cocycles and Bn(Λ,A) for the subgroup
of coboundaries, the cohomology of Λ with coefficients in A is

Hn(Λ,A) :=
Zn(Λ,A)

Bn(Λ,A)
. (1)

We now compare Definition 2.5 with the categorical cohomology of Λ intro-
duced in Definition 3.5 of [16]. Although the categorical cohomology was orig-
inally defined in a slightly more restrictive setting than the one we present in
Definition 2.6 below, Definition 2.6 agrees with the above-cited Definition 3.5
when the module is a constant Abelian group. Moreover (see Proposition 2.8)
the categorical cohomology groups of Definition 2.6 agree with the cohomology
groups of Definition 2.5 above.

Definition 2.6. Let Λ be a small category, and let A be a Λ-module. The group
of categorical n-cochains on Λ taking values in A is

C̃n(Λ,A) :=
{
c : Λ∗n → A

∣∣ c(λ1, . . . , λn) ∈ As(λn)

}
.

We define δ̃n : C̃n(Λ,A) → C̃n+1(Λ,A) by

δ̃n(c)(λ0, . . . , λn) = c(λ1, . . . , λn) +
n∑
i=1

(−1)ic(λ0, . . . , λi−1λi, . . . , λn)

+ (−1)n−1A(λn)
(
c(λ0, . . . , λn−1)

)
if n ≥ 1; we set δ̃0(c)(λ) = c(s(λ)) − A(λ)(c(r(λ))). A categorical A-valued

n-cocycle on Λ is then an element of Z̃n(Λ,A) := ker δ̃n+1; we call B̃n(Λ,A) :=

Im δ̃n the group of categorical A-valued n-coboundaries. One easily checks (see

Lemma 3.4 of [16]) that (C̃∗(Λ,A), δ̃∗) is a cochain complex; thus, we can define
the categorical cohomology H̃∗(Λ,A) of Λ with coefficients in A to be the coho-
mology of this complex, namely,

H̃n(Λ,A) := Z̃n(Λ,A)/B̃n−1(Λ,A).



578 E. GILLASPY and A. KUMJIAN

Remark 2.7. In contrast to Definition 2.5, there is no mention of equivariance
in Definition 2.6 above because we have not defined an action of Λ on Λ∗n. In
other words, categorical cochains and cocycles are merely set maps satisfying the
conditions in Definition 2.6. We also observe that, unlike in [16], we do not require
that our cochains and cocycles be normalized. However, every categorical cocycle
(in the sense of Definition 2.6) is cohomologous to a normalized cocycle, so the
cohomology groups of Definition 2.6 agree with those of [16, Definition 3.5] in the
case when Λ is a k-graph (see Definition 3.1 below) and A = AΛ for an Abelian
group A.

Proposition 2.8. For any small category Λ and any Λ-module A, the map ζn :
HomΛ(P

n,A) → C̃n(Λ,A) given by

ζnf(λ1, . . . , λn) = f
([
λ1, . . . , λn, s(λn)

])
induces an isomorphism H∗(Λ,A) ∼= H̃∗(Λ,A).

Proof. We will show that ζn is an isomorphism of Abelian groups by exhibiting
an inverse ηn : C̃n(Λ,A) → HomΛ(P

n,A), namely,

ηnc
(
[λ0, . . . , λn]

)
= A(λn)

(
c(λ0, . . . , λn−1)

)
.

To see that ηnc ∈ HomΛ(P
n,A), we note that, whenever r(λ) = s(λn),

A(λ)ηnc
(
[λ0, . . . , λn]

)
= A(λ)

(
A(λn)

(
c(λ0, . . . , λn−1)

))
= ηnc

(
[λ0, . . . , λnλ]

)
= ηnc

(
P n(λ)[λ0, . . . , λn]

)
.

A straightforward computation shows that ζn ◦ ηn = id; to see that ηn ◦ ζn = id,
we rely on the fact that, for any f ∈ HomΛ(P

n,A) and any (λ0, . . . , λn) ∈ Λ∗(n+1),
we have

A(λn)
(
f
([
λ0, . . . , λn−1, s(λn−1)

]))
= f

(
P n(λn)

[
λ0, . . . , λn−1, s(λn−1)

])
= f

(
[λ0, . . . , λn−1, λn]

)
.

This fact also underlies the computation that ζn+1 ◦ δn = δ̃n ◦ ζn. In other
words, ζ∗ preserves cocycles and coboundaries, and so ζ∗ induces an isomorphism
H∗(Λ,A) ∼= H̃∗(Λ,A). �

Remark 2.9. Applying Proposition 2.8 to the case when Λ is a higher-rank graph
and A = AΛ for an Abelian group A establishes that the cohomology of Λ, as
defined in Definition 2.5 above, agrees with the categorical cohomology defined
by Kumjian, Pask, and Sims in [16].

3. From k-graphs to groupoids and modules to sheaves

In this section, we specialize from arbitrary small categories to the k-graphs
introduced by Kumjian and Pask in [14] (see Definition 3.1 below) and their
associated groupoids. We show that a module A over a k-graph Λ gives rise to
a sheaf A over the associated groupoid GΛ; in fact, Theorem 3.7 establishes that
the map A 7→ A is an exact functor.
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Sheaves over a groupoid G (or G-sheaves) play a central role in both the con-
tinuous cocycle cohomology and the sheaf cohomology of G. We discuss the con-
tinuous cocycle cohomology in this section, and postpone the discussion of sheaf
cohomology to Section 4. To be precise, we explain in Definitions 3.9 and 3.11 the
construction of the G-sheaves relevant to the continuous cocycle cohomology, and
Proposition 3.14 establishes that the continuous cocycle cohomology of G can be
computed from these sheaves.

For the reader who is not familiar with k-graphs, étale groupoids, and groupoid
sheaves, we begin this section by defining these objects. Recall that N = {0, 1,
2, . . .} is a monoid under addition. We regard Nk as a category with one object
generated by k commuting morphisms e1, . . . , ek.

Definition 3.1 ([14, Definition 1.1]). A higher-rank graph, or k-graph, is a count-
able category Λ equipped with a functor d : Λ → Nk such that d satisfies the
factorization property : if a morphism λ ∈ Λ satisfies d(λ) = m + n, then there
exist unique µ, ν ∈ Λ with λ = µν and d(µ) = m, d(ν) = n.

A fundamental example of a k-graph is the category Ωk, where ObjΩk = Nk

and MorΩk = {(m,n) ∈ Nk × Nk : m ≤ n}. We have r(m,n) = m, s(m,n) = n,
and composition is given by (m,n)(n, p) = (m, p). The degree map d : Ωk → Nk

is given by d(m,n) = n − m. For any n ∈ Nk and any k-graph Λ, we write
Λn = {λ ∈ Λ : d(λ) = n}; we identify Obj Λ = Λ0 and refer to elements of Λ0 as
vertices. If v ∈ Λ0, then we write

vΛn =
{
λ ∈ Λ : r(λ) = v and d(λ) = n

}
.

A k-graph Λ is row-finite if, for all m ∈ Nk and all v ∈ Λ0, we have |vΛm| <∞;
we say that Λ has no sources if 0 < |vΛm| for all m, v. We will be exclusively
concerned with row-finite k-graphs with no sources in this paper, since these are
the k-graphs from which one can most easily build groupoids.1

A groupoid G is a small category with inverses. When discussing groupoids, as
with k-graphs, we will use the arrows-only picture of category theory, identifying
the objects G(0) of G with their identity morphisms. We will also often refer to
the composition of morphisms in a groupoid G as multiplication, in line with
our tendency to think of a groupoid as a generalization of a group, in which
multiplication is defined only on a subset G(2) of G × G.

In this work, we will deal exclusively with étale groupoids G; recall that G is
étale if G has a locally compact Hausdorff topology with respect to which the
multiplication and inverse operations are continuous, and the range and source
maps r, s : G → G(0) are local homeomorphisms.

Definition 3.2 ([14, Definition 2.1]). For a row-finite source-free k-graph Λ, the
infinite path space Λ∞ is the set of all k-graph morphisms Ωk → Λ. For λ ∈ Λ,
write

Z(λ) :=
{
x ∈ Λ∞ : x

(
0, d(λ)

)
= λ

}
1The row-finite and source-free requirement is slightly stronger than is strictly necessary in

order to associate a groupoid to a k-graph; see [8] for a more general groupoid approach to
k-graphs.
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and note that the collection {Z(λ) : λ ∈ Λ} forms a compact open basis for a
topology on Λ∞ For p ∈ Nk, the map σp : Λ∞ → Λ∞ given by

σp(x)(m,n) = x(m+ p, n+ p)

is a local homeomorphism. Similarly, for any y ∈ Λ∞, λ ∈ Λ with s(λ) = y(0), we
define λy to be the unique path x ∈ Λ∞ such that x(0, d(λ)) = λ and σd(λ)(x) = y
(see [14, Proposition 2.3]).

The groupoid GΛ ⊂ Λ∞ × Zk × Λ∞ associated to Λ is

GΛ :=
{
(x, n, y) : ∃j, ` ∈ Nk s.t. j − ` = n, σj(x) = σ`(y)

}
.

We have s(x, n, y) = (y, 0, y), r(x, n, y) = (x, 0, x), and composition given by

(x, n, y)(y,m, z) = (x, n+m, z). Thus, we identify G(0)
Λ with Λ∞ via the embedding

Λ∞ 3 x 7→ (x, 0, x) ∈ G(0)
Λ .

Now write Λ ∗s Λ = {(λ, µ ∈ Λ × Λ) : s(λ) = s(µ)}. For each (λ, µ) ∈ Λ ∗s Λ,
we define

Z(λ, µ) =
{(
x, d(λ)− d(µ), y

)
: x

(
0, d(λ)

)
= λ, y

(
0, d(µ)

)
= µ

}
⊆ GΛ.

Proposition 2.8 of [14] establishes that the sets Z(λ, µ) form a compact open
basis for a locally compact Hausdorff topology on GΛ; in fact, this topology makes
GΛ into an étale groupoid.

In what follows, we will discuss how to construct a sheaf A over GΛ from a
Λ-module A. To this end, it will be helpful to use the espace étalé picture of a
sheaf.

Definition 3.3 ([11, Definition I.2.1]). A sheaf of Abelian groups over a topological
space X is a topological space A equipped with a local homeomorphism π : A →
X such that π−1(x) is an Abelian group for all x ∈ X and the fiberwise group
operations are continuous.

Note that in particular there is a continuous zero section X → A , given by
x 7→ 0x where 0x is the zero element in A (x) := π−1(x), the stalk at x.

Definition 3.4 ([13, Definition 0.6]). Let G be an étale groupoid with unit space
G(0). A G-sheaf consists of a sheaf of Abelian groups, π : A → G(0) over G(0),
equipped with an isomorphism αγ : A (s(γ)) → A (r(γ)) for each γ ∈ G, such
that the following hold.

• If x ∈ G(0), then αx = id.
• If (γ1, γ2) ∈ G(2), then αγ1 ◦ αγ2 = αγ1γ2 .
• The map α : G∗A → A given by (γ, a) 7→ αγ(a) is continuous. (We equip
G ∗A = {(γ, a) : s(γ) = π(a)} with the subspace topology inherited from
G × A .)

Note that if A is an Abelian group, then one may form the constant sheaf A with
fiber A(x) = A for all x ∈ G(0) and with αγ = id for all γ ∈ G. If A , B are two
G-sheaves, we say a continuous map f : A → B is a morphism of G-sheaves, and
we write f ∈ HomG(A ,B), if the following hold.

• For any x ∈ G(0), f(a) ∈ B(x) for all a ∈ A (x), and the induced map
A (x) → B(x) is a homomorphism.
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• For any (γ, a) ∈ G ∗ A ,

f
(
αγ(a)

)
= βγ

(
f(a)

)
,

where β is the action of G on B.

We often abuse notation and use the same symbol α to denote the action of G
on different G-sheaves, and we sometimes write simply γ · a for αγ(a).

Remark 3.5. The category of G-sheavesSG is an Abelian category (see [13, Propo-
sition 0.7]). Subobjects and quotient objects are defined as in the category of
sheaves with the additional requirement that the embeddings and quotient maps
be morphisms of G-sheaves. The direct sum of two G-sheaves A , B, denoted
A ⊕ B, will also be regarded as a G-sheaf when endowed with the diagonal
action.

Remark 3.6. Since an étale groupoid G is a small category, we can also consider
right (or left) G-modules as in Definition 2.1. Comparing Definition 2.1 and Def-
inition 3.4, we see that a G-sheaf is in particular a left G-module; but we require
in addition that the action map α : G ∗ A → A be continuous and that αγ be
an isomorphism for all γ ∈ G.

Recall that a functor between Abelian categories is said to be exact if it pre-
serves exact sequences.

Theorem 3.7. Let Λ be a k-graph, and let A be a Λ-module. For each x ∈ Λ∞,
define

A(x) := lim−→
(
Ax(p),A

(
x(p, q)

))
,

where (p, q) ∈ Ωk.
2 There is a topology on A :=

⊔
x∈Λ∞ A(x) which makes A into

a GΛ-sheaf. Let η ∈ HomΛ(A,B); then for any x ∈ Λ∞, we have

lim−→
(p,q)∈Ωk

η ◦ A
(
x(p, q)

)
= lim−→

(p,q)∈Ωk

B
(
x(p, q)

)
◦ η.

We consequently obtain a well-defined element η ∈ HomGΛ
(A,B) such that, for

any [a] ∈ A(x), we have

η
(
[a]

)
:=

[
η(a)

]
.

Moreover, the assignment A 7→ A defines an exact functor, and the induced map
HomΛ(A,B) → HomGΛ

(A,B) is a homomorphism.

Proof. Write ϕxp for the natural map Ax(p) → A(x); the structure of the inductive

limit implies that every element of A(x) is of the form ϕxp(a) for some p ∈ Nk, a ∈
Ax(p). Equip A =

⊔
x∈Λ∞ A(x) with the topology generated by the sets

{Sa,λ}λ∈Λ,a∈As(λ)
,where Sa,λ =

{
ϕyq(a) : y(0, q) = λ

}
. (2)

To see that these sets do indeed form a basis, suppose that β ∈ Sa,λ ∩ Sb,µ.
Then β = ϕxq (a) = ϕxp(b) ∈ A(x) for some x ∈ Λ∞ such that x(0, q) = λ and

2Note that x(p, q) is the morphism in Λ between the vertex x(q) ∈ Λ0 = Obj(Λ) and the
vertex x(p). Since A is a contravariant functor, A(x(p, q)) : Ax(p) → Ax(q).
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x(0, p) = µ. The definition of the inductive limit implies the existence of m ≥ p, q
and λ′, µ′ ∈ Λ such that

x(0,m) = λλ′ = µµ′ and A(λ′)(a) = A(µ′)(b) ∈ Ax(m).

Thus, SA(λ′)(a),x(0,m) = SA(µ′)(b),x(0,m); moreover, since ϕxp(b) = β = ϕxq (a),

β = ϕxm
(
A(λ′)(a)

)
= ϕxm

(
A(µ′)(b)

)
⇒ β ∈ SA(λ′)(a),x(0,m) = SA(µ′)(b),x(0,m) ⊆ Sa,λ ∩ Sb,µ.

It follows that the sets {Sa,λ} form a basis for a topology on A.
Note that the natural projection π :

⊔
x∈Λ∞ A(x) → Λ∞ satisfies π(Sa,λ) =

Z(λ), so this topology does indeed make π into a surjective local homeomorphism.
Moreover, the group operations are continuous in this topology: Suppose that
ϕyq(a) − ϕyp(b) ∈ Sc,λ. We will show that there exist basic open sets Sma,µ, Smb,µ

such that

ϕyq(a) ∈ Sma,µ, ϕyp(b) ∈ Smb,µ, and{
f − g : (f, g) ∈ Sma,µ ∗π Smb,µ

}
⊆ Sc,λ.

Given ϕyq(a)− ϕyp(b) ∈ Sc,λ, there exists m′ ≥ p, q, d(λ) such that

ϕyq(a)− ϕyp(b) = ϕym′

(
A
(
y(q,m′)

)
a
)
− ϕym′

(
A
(
y(p,m′)

)
b
)
∈ SA(y(`,m′))c,λy(`,m′).

It follows that ϕym′(A(y(q,m′))a−A(y(p,m′))b) = ϕym′(A(y(`,m′))c). The struc-
ture of the direct limit then implies the existence of m ≥ m′ such that

A
(
y(q,m)

)
a−A

(
y(p,m)

)
b = A

(
y(`,m)

)
c.

Write ma := A(y(q,m))a,mb := A(y(p,m))b, and write µ = y(0,m). Then
ϕyq(a) ∈ Sma,µ and ϕyp(b) ∈ Smb,µ. In fact, we claim, for any f ∈ Sma,µ, g ∈ Smb,µ,
that both live in the same fiber A(z), and we have f − g ∈ SA(y(`,m))c,µ ⊆ Sc,λ. To
see this, choose f , g as above, so that f = ϕzm(ma), g = ϕzm(mb). Consequently,

f − g = ϕzm(ma −mb) = ϕzm
(
A
(
y(`,m)

)
c
)
∈ SA(y(`,m))c,µ ⊆ Sc,λ,

so the fiber-wise group operations are continuous.
To make A into a GΛ-sheaf, we equip it with the following action α of GΛ. If

(x, n, y) ∈ GΛ and b ∈ A(y), then write b = ϕyq(b) for b ∈ Ay(q). Without loss of
generality, suppose that q is large enough so that y(q) = x(p) (where n = p− q);
then we define

α(x,n,y)(b) = (x, n, y) · b := ϕxp(b). (3)

To see that α is continuous, suppose that (xi, ni, yi) → (x, n, y) ∈ GΛ and that
for all i, we have bi ∈ A(yi) with bi → b ∈ A(y). Suppose also that (x, n, y) · b ∈
Sa,λ; in other words, x ∈ Z(λ) and there exists q ∈ Nk such that y(q) = s(λ) and
b = ϕyq(a) for some a ∈ Ay(q) = As(λ).

Writing µ = y(0, q), we have (x, n, y) ∈ Z(λ, µ) and b ∈ Sa,µ. Since (xi, ni, yi) →
(x, n, y) and bi → b, the fact that {Z(λ, µ)}λ,µ is a basis for GΛ implies that, for
i large enough, we also have (xi, ni, yi) ∈ Z(λ, µ) and bi ∈ Sa,µ, so bi = ϕyiq (a). It
follows that

(xi, ni, yi) · bi = ϕxid(λ)(a) ∈ Sa,λ
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for large enough i. Since Sa,λ was an arbitrary neighborhood of (x, n, y) · b, the
action ((x, n, y), b) → α(x,n,y)(b) is continuous.

We now check the functoriality of the map A 7→ A. First, we check that a
morphism η : A → B of Λ-modules induces a continuous morphism of sheaves
η : A → B via the formula η[a] = [η(a)]. In the notation used earlier in the proof,
this formula becomes

η
(
ϕyq(a)

)
:= ϕyq

(
η(a)

)
for all y ∈ Λ∞, a ∈ Ay(q).

Since η is a natural transformation, we have η ◦ A(y(p, q)) = B(y(p, q)) ◦ η for
all y ∈ Λ∞ and all (p, q) ∈ Ωk; this implies that η is well defined. Moreover, if

b ∈ η−1(Sb,λ), there exists µ ∈ Λ, y ∈ Z(λµ), a ∈ As(µ) such that

b = ϕyd(λµ)(a) and η(a) = B(µ)(b).

In other words, b ∈ Sa,λµ, and

η(Sa,λµ) =
{
ϕyd(λµ)

(
η(a)

)
: y ∈ Z(λµ)

}
=

{
ϕyd(λµ)

(
B(µ)(b)

)
: y ∈ Z(λµ)

}
=

{
ϕyd(λ)(b) : y ∈ Z(λµ)

}
⊆ B

⊆ Sb,λ.

That is, every b ∈ η−1(Sb,λ) has an open neighborhood Sa,λµ which is contained

in η−1(Sb,λ). Consequently, η is continuous, as claimed.

It follows immediately from the definitions that id = id and that if η, ρ are
morphisms of Λ-modules, then η ◦ ρ = η ◦ ρ. So the assignment A 7→ A is a
functor. It is routine to check that the map HomΛ(A,B) → HomGΛ

(A,B) is a
homomorphism.

Let 0 → A → B → C → 0 be a short exact sequence of Λ-modules. Then
since the inductive limit of short exact sequences is a short exact sequence, we
have that 0 → A(x) → B(x) → C(x) → 0 is exact for all x ∈ Λ∞. Thus,
0 → A → B → C → 0 is exact in SGΛ

. It follows that the functor A 7→ A is
exact, as desired. �

We now give the details of the above construction in the important special case
of the GΛ-sheaves associated to the projective Λ-modules P n.

Example 3.8. For any n ∈ N, we have

P n(x) ∼= Z
{(

(x,m, y), (λ1, . . . , λn)
)
∈ GΛ × Λ∗n : s(λn) = r(y)

}
.

For each x ∈ Λ∞, the map dn(x) : P
n(x) → P n−1(x) is given on the generators

by

dn(x)
[
(x,m, y), (λ1, . . . , λn)

]
=

[
(x,m, y), (λ2, . . . , λn)

]
+

n−1∑
j=1

(−1)j
[
(x,m, y), (λ1, . . . , λjλj+1, . . . , λn)

]
+ (−1)n

[(
x,m− d(λn), λny

)
, (λ1, . . . , λn−1)

]
;

d1(x)
[
(x,m, y), λ

]
= [x,m, y]−

[
x,m− d(λ), λy

]
;

d0(x)[x,m, y] = 1x.
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Proof. Fix x ∈ Λ∞, and write Gn(x) for the free Abelian group described above;
that is, Gn(x) := Z{((x,m, y), (λ1, . . . , λn)) ∈ GΛ×Λ∗n : s(λn) = r(y)}. As above,
we will use square brackets to indicate a generator of Gn(x).

For each p ∈ Nk, we have a map φxp : P
n
x(p) → Gn(x) given on the generators by

φxp
(
[λ0, . . . , λn]

)
=

[(
x, p− d(λn), λnσ

p(x)
)
, (λ0, . . . , λn−1)

]
.

Note that φxq ◦ P n(x(p, q)) = φxp , so the universal property of the direct limit
implies that the maps {φxp}p∈Nk induce a homomorphism φ : P n(x) → Gn(x).
Moreover, every generator [(x,m, y), (λ1, . . . , λn)] of G

n(x) is in the image of φxp
for some p, namely,[

(x, p− q, y), (λ1, . . . , λn)
]
= φxp

([
λ1, . . . , λn, y(0, q)

])
.

This surjectivity implies that, if {ρx(p)}p∈Nk : P n
x(p) → A is any family of group

homomorphisms that is compatible with the maps P n(x(p, q)) : P n
x(p) → P n

x(q),

then we can define R : Gn(x) → A by

R
(
φxp

(
[λ0, λ1, . . . , λn]

))
= ρx(p)

(
[λ0, . . . , λn]

)
.

The universal property of the inductive limit now implies that Gn(x) = P n(x), as
claimed. The formula for dn follows from the definition and universal properties
of P n. �

Finally, note that, for each γ = (x,m, y) ∈ GΛ and each n ∈ N, the action
αγ : P n(y) → P n(x) is given on generators as follows. If b = [λ0, . . . , λn] is a
generator of P n

y(p−m) for some p ∈ Nk with p ≥ m, then we have

φyp−m(b) =
[(
y, p−m− d(λn), λnσ

p−m(y)
)
, (λ0, . . . , λn−1)

]
.

In this case, with b := φyp−m(b),

αγ(b) = (x,m, y) · b = (x,m, y) · φyp−m
(
[λ0, . . . , λn]

)
= φxp

(
[λ0, . . . , λn]

)
=

[(
x, p− d(λn), λnσ

p(x)
)
, (λ0, . . . , λn−1)

]
.

Note that since (x,m, y) ∈ GΛ and p ≥ m, we have p − (p −m) = m and hence
σp(x) = σp−m(y).

In general, given (x,m, y) and (y, `, z) ∈ GΛ, we can write z = λσp−m(y) for
some p ∈ Nk with p ≥ m and some λ := z(0, d(λ)) ∈ Λ. By construction, we have
p − m − d(λ) = `, and consequently m + ` = p − d(λ). If (λ0, . . . , λn−1) ∈ Λ∗n

satisfies s(λn−1) = r(λ), then we have

φyp−m
(
[λ0, . . . , λn−1, λ]

)
=

[
(y, `, z), (λ0, . . . , λn−1)

]
.

Thus, we obtain a general formula for the action of GΛ on P n:

(x,m, y) ·
[
(y, `, z), (λ0, . . . , λn−1)

]
=

[
(x,m+ `, z), (λ0, . . . , λn−1)

]
. (4)
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3.1. G-sheaves from sheaves of sets. It is not always obvious whether a bun-
dle A of Abelian groups over G(0) can be topologized in a way that makes it into
a G-sheaf. If A arises from a G-sheaf of sets, however, this is always possible. As
a matter of fact, all of the G-sheaves discussed in this paper have this format, so
we pause to detail this construction.

Definition 3.9. Let G be an étale groupoid. A topological space Y , equipped with
a surjective local homeomorphism π : Y → G(0), is a (left) G-sheaf of sets if,
for each γ ∈ G, there is a bijection αγ : π−1(s(γ)) → π−1(r(γ)) such that the
following hold.

• If x ∈ G(0), then αx = id.
• If (γ1, γ2) ∈ G(2), then αγ1 ◦ αγ2 = αγ1◦γ2 .
• The map α : G ∗ Y → Y given by (γ, y) 7→ αγ(y) is continuous.

If Y is a G-sheaf of sets over G(0), then one may form a G-sheaf of Abelian
groups Z[Y ] over G(0) such that the stalk at x ∈ G(0) is the free Abelian group
generated by Y (x) := π−1(x). When it is useful to distinguish between an element
y in Y (x) from the corresponding generator of Z[Y ](x), we use [y] for the latter.

The topology on Z[Y ] can be described as follows. Since Y is a G-sheaf of sets,
for each point e ∈ Y (x), there is an open neighborhood ωe of e and an open
neighborhood Ue of x such that ωe is homeomorphic to Ue. For each z ∈ Ue, write
ez for the unique element of Y (z) ∩ ωe. Given an arbitrary point a in Z[Y ](x),
write a as a finite sum,

a =
∑
e∈Y (x)

ae[e],

where ae ∈ Z. Since this sum is finite, there is a finite set Y a(x) ⊂ Y (x) such
that ae = 0 if e /∈ Y a(x), and so the set⋂

e∈Y a(x)

Ue ⊆ G(0)

is open. For any open U ⊆
⋂
e∈Y a(x) Ue such that x ∈ U , we define

Oa,U =
{ ∑
e∈Y a(x)

ae[ez] : z ∈ U
}
.

The sets {Oa,U}a,U form a basis for the topology on Z[Y ].
The action of G on Z[Y ] is determined by its action on Y : on generators,

γ · [e] = [γe] for e ∈ Y (s(γ)). We then extend the action Z-linearly. Checking
that {Oa,U} is indeed a basis, and that the group operations and the G-action are
continuous, is analogous to the proof of Theorem 3.7.

Example 3.10. In Example 3.8, we showed that the fiber over x ∈ Λ∞ of the
GΛ-sheaf P

n is of the form Z[Yn](x), where
Yn :=

{(
(x,m, y), (λ1, . . . , λn)

)
∈ GΛ × Λ∗n : r(y) = s(λn)

}
.

In fact, we can topologize Yn so that Z[Yn] ∼= P n as GΛ-sheaves. We thus obtain a
second picture of the sheaves P n, complementing their initial definition in Exam-
ple 3.8 as an inductive limit of Λ-modules.
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First, we make Yn into a sheaf of sets over G(0)
Λ via the sheaf map π : Yn →

G(0)
Λ = Λ∞ given by

π
(
(x,m, y), (λ1, . . . , λn)

)
= x.

The topology on Yn is generated by the sets

Z(λ, µ)×
{
(λ1, . . . , λn)

}
,

with (λ, µ) ∈ Λ ∗s Λ, (λ1, . . . , λn) ∈ Λ∗n, and s(λn) = r(µ), where Z(λ, µ) is as in
Definition 3.2. The GΛ-action on Yn is given by

(z, `, x) ·
(
(x,m, y), (λ1, . . . , λn)

)
:=

(
(z, `+m, y), (λ1, . . . , λn)

)
.

Under this definition, not only do Z[Yn] and P n agree as sets, but the action of
GΛ on the generators is given by the same formula in both cases. We now check
that the topology on the GΛ-sheaf Z[Yn] agrees with the topology on P n defined
in Theorem 3.7. Let F be a finite set and write

B :=
∑
i∈F

bi
[
(x,mi, yi), (λ

i
1, . . . , λ

i
n)
]
∈ Z[Yn](x)

for integers bi. Choose a sufficiently small open neighborhood Z(λ) of x such that,
for each i, we have yi = µiσ

d(λ)(x) for some µi with mi = d(λ) − d(µi). Setting
A =

∑
i∈F bi[λ

i
1, . . . , λ

i
n, µi] ∈ P n

s(λ), we have

OB,Z(λ) =
{∑
i∈F

bi
[
(λz,mi, µiz), (λ

i
1, . . . , λ

i
n)
]
: r(z) = s(λ)

}
= SA,λ.

Similarly, if C =
∑

j cj[λ
j
0, . . . , λ

j
n] ∈ P n

s(λ) is arbitrary and x ∈ Z(λ), let

D :=
∑
j

cj
[(
x, d(λ)− d(λjn), λ

j
nσ

d(λ)(x)
)
, (λ0, . . . , λn−1)

]
∈ Z[Yn](x).

One checks immediately that OD,Z(λ) = SC,λ. In other words, the identity map
Z[Yn] → P n is a homeomorphism.

For another example, we return to the (right) projective modules of Defini-
tion 2.3. Here, however, our focus will be on G-sheaves where the groupoid G acts
on the left. In the definition that follows, we also modify the notation slightly in
order to mesh more easily with the standard notation for continuous groupoid
n-cocycles (see Proposition 3.14 below).

Write G(n) for the set of composable n-tuples of elements of G, for each n ≥ 0.
(This set was denoted G∗n in Definition 2.3.) The topology on G(n) ⊆ G×· · ·×G is
the subspace topology; consequently, the fact that the range and source maps in
an étale groupoid are local homeomorphisms ensures that the map π : G(n) → G(0)

given by

π(γ1, . . . , γn) = r(γ1)

is a surjective local homeomorphism. With the left action of G given by left
multiplication,

γ · (γ1, . . . , γn) = (γγ1, . . . , γn),
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G(n) satisfies the conditions of Definition 3.9. Consequently, the remarks following
Definition 3.9 tell us how to topologize Z[G(n)] in order to make it a G-sheaf. As
a module, we denoted Z[G(n)] by P n−1 in Definition 2.3; when we wish to regard
Z[G(n)] as a G-sheaf, we will use the notation Pn−1.

Definition 3.11. For each n ≥ 0, we define the left G-sheaf Pn := Z[G(n+1)]. Fix
n ≥ 0 and x ∈ G(0); then

(Pn)(x) = Z
{
(γ0, γ1, . . . , γn) ∈ G(n+1) : r(γ0) = x

}
.

For n ≥ 1 define ∂n : Pn → Pn−1 on the generators by

∂n[γ0, γ1, . . . , γn] = (−1)n[γ0, . . . , γn−1] +
n∑
i=1

(−1)i−1[γ0, γ1, . . . , γi−1γi, . . . , γn].

If n = 0, we define ∂0 : P0 → Z on the generators by

∂0[γ] = [1]r(γ).

Proposition 3.12. For any étale groupoid G, the sequence {Pn, ∂n}n∈N consti-
tutes a resolution of the constant G-sheaf Z.

Proof. It is straightforward to check that ∂n is an equivariant sheaf map and
∂n∂n+1 = 0 for each n ≥ 0; the continuity of ∂n is a consequence of the continuity
of the multiplication in G. Indeed, the maps ∂n are simply a translation into the
setting of left G-sheaves of the maps dn of Definition 2.3. Consequently, just as in
the proof of Proposition 2.4, we have a contracting homotopy {sn : Pn → Pn+1}n
given on generators by

sn
(
[γ0, . . . , γn]

)
=

[
r(γ0), γ0, . . . , γn

]
; s−1

(
[1]x

)
= [x].

It follows that ker ∂n = Im ∂n+1 for all n. The foregoing proves the following. �

It can be shown that {Pn, ∂n}n is in fact a relative projective resolution of Z,
but we do not need this here, so we omit the details.

3.2. Continuous cocycle cohomology. One can use the resolution {Pn, ∂n}n
to compute the continuous cocycle cohomology of a groupoid G with coefficients
in a G-sheaf A ; this is the content of Proposition 3.14 below.

For the definition of the continuous cocycle cohomology Hn
c (G,A ), we follow

[20, Definition 1.11ff.] except that we do not require the cocycles be normalized.
As in the case of k-graph cocycles, this does not change the cohomology groups,
since every cocycle is cohomologous to a normalized cocycle.

Definition 3.13 ([20, Definitions 1.11–1.12]). Let A be a G-sheaf. The set of
continuous groupoid n-cochains with values in A is defined to be

Cn
c (G,A ) :=

{
f : G(n) → A : f continuous, f(γ1, . . . , γn) ∈ Ar(γ1)

}
.

We regard Cn(G,A ) as an Abelian group under pointwise addition.
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Alternatively, we may regard Cn
c (G,A ) as the group of continuous sections of

the pullback sheaf r∗(A ) → G(n), where r(γ1, . . . , γn) = r(γ1).
We form a cohomology complex by defining the boundary maps δnc : Cn

c (G,
A ) → Cn+1

c (G,A ) as follows. Let f ∈ Cn
c (G,A ) and (γ0, γ1, . . . , γn) ∈ G(n+1). If

n ≥ 1, then set

δnc f(γ0, γ1, . . . , γn) := γ0 · f(γ1, . . . , γn)

+
n∑
i=1

(−1)if(γ0, . . . , γi−1γi, . . . , γn)

+ (−1)n+1f(γ0, γ1, . . . , γn−1);

if n = 0, then set δ0cf(γ0) := γ0 · f(s(γ0))− f(r(γ0)). A straightforward computa-
tion shows that δn+1

c ◦ δnc = 0.
Define the group of n-cocycles Zn

c (G,A ) := ker δnc and the group of n-cobound-
aries Bn

c (G,A ) := Im δn−1
c for n ≥ 1; set B0

c (G,A ) := 0. The nth continuous
cocycle cohomology group of G with coefficients in A is then defined to be

Hn
c (G,A ) = Zn

c (G,A )/Bn
c (G,A ) =

ker δnc
Im δn−1

c

.

For any resolution {Qn, ϑn}n∈N of Z, the cohomology groups of the associated
complex HomG(Q∗,A ) often contain useful information about the cohomology
of G. In addition to Proposition 3.14 below, which shows that the continuous
cocycle cohomology can be computed from the resolution {Pn, ∂n}n of Defini-
tion 3.11, we will see this principle at work in Proposition 4.4 in the next section.

The boundary maps δn : HomG(Qn,A ) → HomG(Qn+1,A ) of the complex
HomG(Q∗,A ) are given by δnf = f ◦ ϑn+1. We define Zn

Q(G,A ) := ker δn for
n ≥ 0, Bn

Q(G,A ) := Im δn−1 for n ≥ 1, and B0
Q(G,A ) := 0. Then the cohomology

groups of the complex are

Hn
Q(G,A ) := Hn

(
HomG(Q∗,A )

)
=
Zn

Q(G,A )

Bn
Q(G,A )

. (5)

Proposition 3.14. Let G be an étale groupoid, and let A be a G-sheaf. For all
n ≥ 0, there is an isomorphism ξn : HomG(Pn,A ) → Cn

c (G,A ) determined by

(ξnf)(γ1, . . . , γn) = f
([
r(γ1), γ1, . . . , γn

])
which is compatible with the boundary maps and induces an isomorphism

Hn
P(G,A ) ∼= Hn

c (G,A ) for every n ≥ 0.

The inverse is induced by ηn : Cn
c (G,A ) → HomG(Pn,A ) determined by

(ηnf)
(
[γ0, γ1, . . . , γn]

)
= γ0 · f(γ1, . . . , γn).

Proof. We first check that for each sheaf morphism f ∈ HomG(Pn,A ), ξnf is
continuous. If {(γi1, . . . , γin)}i → (γ1, . . . , γn) in G(n), then the fact that r is a
local homeomorphism implies that {(r(γi1), γi1, . . . , γin)}i → (r(γ1), γ1, . . . , γn) in
G(n+1) and hence in Pn = Z[G(n+1)]. The fact that any morphism f of G-sheaves
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is continuous then implies that ξnf is continuous for all f ∈ HomG(Pn,A ).
Moreover, for any (γ0, . . . , γn) ∈ G(n+1) and any f ∈ HomG(Pn,A ),

γ0 · f
[
r(γ1), γ1, . . . , γn

]
= f [γ0, γ1, . . . , γn]. (6)

A routine computation, exploiting this fact, shows that

δnc (ξ
nf) = ξn+1(f ◦ ∂n+1);

in other words, that ξn takes cocycles to cocycles and coboundaries to cobound-
aries. Consequently, it induces a homomorphism Hn

P(G,A ) → Hn
c (G,A ).

To see that ξn is an isomorphism, recall that ηn : Cn
c (G,A ) → HomG(Pn,A )

is given by

ηnf
(∑
i∈F

ai[γ
i
0, γ

i
1, . . . , γ

i
n]
)
=

∑
i∈F

ai
(
γi0 · f(γi1, . . . , γin)

)
.

One checks easily that ηnf is G-equivariant for all f ∈ Cn
c (G,A ), and the conti-

nuity of ηnf follows from the continuity of the G-action on A , the continuity of
f , and the fact that if

lim
J

∑
i∈FJ

ai,J [γ
i,J
0 , . . . , γi,Jn ] =

∑
i∈F

ai[γ
i
0, . . . , γ

i
n] ∈ Pn,

then we must have FJ = F eventually and, at that point, ai,J = ai for all
i ∈ F . Moreover, for each n ≥ 0, (6) implies that ξnηn = idCn

c (G,A ) and η
nξn =

idHom(Pn,A ). �

Remark 3.15. An analogue of Proposition 3.14 was proved in [13, Addendum 5.1],
using a relative injective resolution of A .

4. A commuting diagram of cohomologies

In this section, we use sheaf cohomology to show how the k-graph cohomology
Hn(Λ,A) and the continuous cocycle cohomology Hn

c (GΛ,A) relate. More pre-
cisely, Theorem 3.7 and Proposition 3.14 above, and Proposition 4.4 below, allow
us to identify homomorphisms

Hn(Λ,A) → Hn
P (G,A)

ρnP−−→ Hn(GΛ,A) and

Hn
c (GΛ,A)

∼=−→ Hn
P(GΛ, A)

ρnP−−→ Hn(GΛ,A),

where Hn(GΛ,A) denotes the sheaf cohomology of GΛ with coefficients in A. We
also construct a map ψ∗

n : Hn
c (GΛ,A) → Hn

P (G,A) and show that the map from
the continuous cocycle cohomology to the sheaf cohomology factors through ψ∗

n.
Thus, the main result of this section is the following.
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Theorem 4.1. For any row-finite higher-rank graph Λ with no sources, and any
Λ-module A, we have a commuting diagram (for n ≥ 2):

Hn(Λ,A) Hn
P (GΛ,A)

Hn
c (GΛ,A) Hn

P(GΛ,A)

Hn(GΛ,A)

ψ∗
n

ηn

∼=

[16] (n ≤ 2)
ρnP

ρnP

(7)

We prove Theorem 4.1 via a series of propositions. First, we describe the sheaf
cohomology groups Hn(G,A ) of G with coefficients in a G-sheaf A , and we
construct the maps ρnP , ρnP . Both maps are special cases of a more general con-
struction, detailed in Proposition 4.4 below. The bottom row of the diagram
(7) was established in Proposition 3.14. The vertical arrow ψ∗

n and the com-
mutativity of the right-hand triangle of (7) are established in Proposition 4.5.
Propositions 4.6 and 4.7 connect our work with that of Kumjian, Pask, and Sims
in [16], and complete the proof of Theorem 4.1, by showing that the homomor-
phisms Hn(Λ, A) → Hn

c (GΛ, A) established in Section 6 of [16] for n ≤ 2 make
the left-hand square of (7) commute.

We conclude the paper with a few remarks on the question of when the maps
in the diagram (7) are isomorphisms. Kumjian, Pask, and Sims established in
[16] that the left-most vertical arrow need not be surjective but conjectured that
it is injective; however, Example 4.8 shows this conjecture to be false. Finally,
Remark 4.9 shows that the diagonal arrow is an isomorphism for n = 2. (The equi-
variant sheaf cohomology of an étale groupoid G was introduced in [13], inspired
by Grothendieck’s work in [9]. See also [10] for an alternative approach.)

A G-sheaf I is said to be injective if every injective map f ∈ HomG(I ,A )
has a left inverse (i.e., a map g ∈ HomG(A ,I ) such that gf = idI ). In [13,
Corollary 1.6] it was established that the category of G-sheaves SG has enough
injectives in the sense that every G-sheaf may be embedded into an injective
G-sheaf, enabling the following definition.

Definition 4.2. Let G be an étale groupoid. A cohomology theory for G is a
sequence of covariant functors {Hn(G, ·)}n∈N from the category SG of G-sheaves
to the category of Abelian groups which satisfy the following conditions:

(i) H0(G, ·) ∼= HomG(Z, ·);
(ii) Hn(G,I ) = 0 if I is injective and n > 0;
(iii) for each short exact sequence of G-sheaves, 0 → A → B → C → 0, there

are natural connecting maps δn : Hn(G,C ) → Hn+1(G,A ) such that the
following sequence is exact:

0 → H0(G,A ) → H0(G,B) → H0(G,C )
δ0−→ H1(G,A ) → · · ·

δn−1

−−−→ Hn(G,A ) → Hn(G,B) → Hn(G,C )
δn−→ Hn+1(G,A ) → · · ·

The cohomology functors defined this way are unique up to natural equivalence,
and will be denoted the (equivariant) sheaf cohomology of G.
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Remark 4.3. Since SG is an Abelian category that has enough injectives, the
bifunctors ExtnG(·, ·) which classify n-fold exact sequences of G-sheaves are defined.
Moreover, Section 1 of [13] indicates that Hn(G, ·) and ExtnG(Z, ·) are naturally
equivalent. Thus, for a G-sheaf A and n ≥ 1, we may identify elements of
Hn(G,A ) as equivalence classes of n-fold exact sequences of G-sheaves:

0 → A → Rn−1 → · · · → R0 → Z → 0.

(When n = 0, we recall that Ext0G(Z, ·) = HomG(Z, ·) = H0(G, ·), so the cor-
respondence between extensions and sheaf cohomology also occurs when n = 0.)
The equivalence relation is generated by morphisms between n-fold exact sequences
which identify the ends, A and Z, as in the following commutative diagram:

0 A Rn−1 · · · R0 Z 0

0 A Sn−1 · · · S0 Z 0

See page 215 of [13] and [17, Proposition III.5.2]. We will use this characterization
of Hn(G,A ) in the sequel.

The following Proposition, which defines the two right-most arrows of (7), relies
on the terminology introduced in Remark 3.5 and Equation (5).

Proposition 4.4. Let {Qn, ϑn}n be a resolution of the constant G-sheaf Z. Let
c ∈ Zn

Q(G,A ). For n ≥ 1, we have a commuting diagram

· · · Qn+1 Qn Qn−1 Qn−2 · · · Q0 Z 0

0 A Rc Qn−2 · · · Q0 Z 0

ϑn+1 ϑn ϑn−1 ϑn−2 ϑ1 ϑ0

ι ϑ̃n−1 ϑn−2 ϑ1 ϑ0

c

with exact rows. Moreover, the class of this n-fold exact sequence in ExtnG(Z,A )
only depends on [c] ∈ Hn

Q(G,A ). For n = 0 there is a unique c̃ ∈ HomG(Z,A )
such that c = c̃ ◦ ϑ0 for c ∈ Z0

Q(G,A ). Furthermore, for all n ∈ N we obtain a
well-defined homomorphism

ρnQ : Hn
Q(G,A ) → Hn(G,A )

which for n ≥ 1 is given by taking [c] ∈ Hn
Q(G,A ) to the class of the n-fold exact

sequence

0 → A
ι−→ Rc

ϑ̃n−1−−−→ Qn−2
ϑn−2−−−→ · · · ϑ1−→ Q0

ϑ0−→ Z → 0, (8)

and for n = 0, we have ρ0Q([c]) = c̃ for c ∈ Z0
Q(G,A ).
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Proof. We begin by defining the objects in the sequence (8). Given an n-cocycle
c ∈ Zn

Q(G,A ), Rc is the pushout of the diagram

Qn

A

Qn−1

c

ϑn

That is, Rc = (A ⊕ Qn−1)/{(c(q),−ϑn(q)) : q ∈ Qn} (see Remark 3.5).

We define ϑ̃n−1 : Rc → Qn−2 by ϑ̃n−1[a, p] = ϑn−1(p) and ι : A → Rc

by ι(a) = [a, 0]. The exactness of the complex {Qn, ϑn}n implies that ϑ̃n−1 is
well defined; showing that the sequence of G-sheaves (8) is exact relies on the
exactness of the complex and the fact that c ◦ ϑn+1 = 0 for any n-cocycle c. We
will write ρnQ : Zn

Q(G,A ) → Hn(G,A ) for the map taking a cocycle c to the exact
sequence (8).

In fact, ρnQ induces a map

ρnQ : Hn
Q(G,A ) → Hn(G,A ).

This follows from the observation that if c−d ∈ Bn
Q(G,A ), so that c−d = g ◦∂n

for some g ∈ HomG(Qn−1,A ), then the map

Rc → Rd given by [a, p] 7→
[
a+ g(p), p

]
is a G-equivariant sheaf homomorphism which (combined with the identity maps
on the other sheaves in the exact sequence ρnQ(c)) induces a morphism ρnQ(c) →
ρnQ(d). In other words,

[c] = [d] ∈ Hn
P(G,A ) ⇒

[
ρnQ(c)

]
=

[
ρnQ(d)

]
∈ Hn(G,A ),

so ρnQ gives a well-defined homomorphism of cohomology groups.
For the case n = 0, recall that Z0

Q(G,A ) = H0
Q(G,A ). Let c ∈ Z0

Q(G,A ).
Then, since c ◦ ϑ1 = 0, the exactness of the sequence

· · · → Q1
ϑ1→ Q0

ϑ0→ Z → 0

at Q0 implies that there is a unique c̃ ∈ HomG(Z,A ) such that c = c̃ ◦ ϑ0. It is
routine to show that the resulting map

ρ0Q : H0
Q(G,A ) → HomG(Z,A ) = H0(G,A )

is a homomorphism. �

To complete the right-hand triangle of the diagram (7), we now describe the
maps ψn : P n → Pn which induce the vertical maps ψ∗

n in the diagram.
Recall from Example 3.10 that P n = Z[Yn]. Given ((x,m, y), (λ1, . . . , λn)) ∈ Yn,

let

γ0 := (x,m, y)

γ1 :=
(
y,−d(λn), λny

)
γ2 :=

(
λny,−d(λn−1), λn−1λny

)
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...

γn :=
(
λ2 · · ·λny,−d(λ1), λ1 · · ·λny

)
.

The map ((x,m, y), (λ1, . . . , λn)) 7→ (γ0, γ1, . . . , γn) allows us to define ψn : P n →
Pn by setting

ψn
([
(x,m, y), (λ1, . . . , λn)

])
= (−1)dn/2e[γ0, γ1, . . . , γn] (9)

for n ≥ 0, and extending Z-linearly. We define ψ−1 : Z → Z to be the identity
map.

Proposition 4.5. Let Λ be a row-finite, source-free k-graph and let GΛ be its
associated groupoid. For any n ∈ N, the maps ψn : P n → Pn are continuous,
equivariant sheaf morphisms, and

ψn−1 ◦ dn = ∂n ◦ ψn.
Furthermore, for any GΛ-sheaf A , the induced map ψ∗

n : Hn
P(GΛ,A ) → Hn

P (GΛ,
A ) satisfies

ρnP ◦ ψ∗
n = ρnP .

It follows that the right-hand triangle of (7) commutes.

Proof. To see that ψn is continuous for n ∈ N, fix a ∈ Pn(x) such that a ∈ Imψn.
Writing a =

∑
i∈F ai[(γ

i
0, . . . , γ

i
n)] ∈ Imψn, we have r(γi0) = x for all i. There

exists λ ∈ Λ such that x ∈ Z(λ) and that Z(λ) is homeomorphic (under the pro-
jection map π(γ0, . . . , γn) = r(γ0)) to an open neighborhood of each (γi0, . . . , γ

i
n).

In other words, for each i ∈ F , we have zi ∈ Λ∞, (λi1, . . . , λ
i
n, µ

i) ∈ Λ∗(n+1) such
that

γi0 =
(
λzi, d(λ)− d(µi), µizi

)
γi1 =

(
µizi,−d(λin), λnµizi

)
...

γin =
(
λi2 · · ·λinµizi,−d(λi1), λi1 · · ·λinµizi

)
.

If z ∈ Z(λ), for 0 ≤ j ≤ n, then define γij(z) by replacing zi in the formula above

for γij with σ
d(λ)(z). Then

Oa,Z(λ) =
{∑
i∈F

ai
[(
γi0(z), . . . , γ

i
n(z)

)]
: z ∈ Z(λ)

}
.

Using the maps φxp : P n
x(p) → P n(x) from Example 3.8, and the topology on P n

given in the proof of Theorem 3.7, we see that

ψ−1
n (Oa,Z(λ)) =

{
(−1)dn/2e

∑
i∈F

ai
[(
z, d(λ)− d(µi), µiσd(λ)(z)

)
, (λi1, . . . , λ

i
n)
]
:

z ∈ Z(λ)
}

=
{
φzd(λ)

(∑
i∈F

(−1)dn/2eai
[
(λi1, . . . , λ

i
n, µ

i)
])

: z ∈ Z(λ)
}

= Sã,λ
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is a basic open set in P n, where ã = (−1)dn/2e
∑

i∈F ai[(λ
i
1, . . . , λ

i
n, µ

i)] ∈ P n.
In other words, ψn is continuous; it is straightforward to check that ψn is also
equivariant, and consequently defines an element in HomGΛ

(P n,Pn). We now
proceed to show that the ψn intertwine the boundary maps.

For ((x,m, y), (λ1, . . . , λn)) ∈ Yn, we have

(−1)d(n−1)/2eψn−1

(
dn
[
(x,m, y), (λ1, . . . , λn)

])
= (−1)d(n−1)/2eψn−1

([
(x,m, y), (λ2, . . . , λn)

])
+ (−1)d(n−1)/2e

n∑
i=2

(−1)i−1ψn−1

([
(x,m, y), (λ1, . . . , λi−1λi, . . . , λn)

])
+ (−1)d(n−1)/2e(−1)nψn−1

([(
x,m− d(λn), λny

)
, (λ1, . . . , λn−1)

])
= [γ0, γ1, . . . , γn−1]− [γ0, γ1, . . . , γn−1γn]+

+ · · ·+ (−1)n−1[γ0, γ1γ2, . . . , γn] + (−1)n[γ0γ1, γ2, . . . , γn]

= [γ0, γ1, . . . , γn−1] +
n∑
i=1

(−1)n−i+1[γ0, . . . , γi−1γi, . . . , γn]

= (−1)dn/2e(−1)n∂nψn
[
(x,m, y), (λ1, . . . , λn)

]
.

Hence, since d(n− 1)/2e+ dn/2e = n, we have

ψn−1 ◦ dn = (−1)d(n−1)/2e+dn/2e+n∂n ◦ ψn = ∂n ◦ ψn.

To establish the commutativity of the right-hand triangle of (7), we first note
that the calculation above establishes that

ψ∗
n(c) := c ◦ ψn

is an n-cocycle in Zn
P (GΛ,A ) whenever c ∈ Zn

P(GΛ,A ). We must prove that[
ρnP(c)

]
=

[
ρnPψ

∗
n(c)

]
. (10)

This is immediate when n = 0, since P0 = Z[G] = P 0, and ψ0 is the identity
map.

When n ≥ 1, Equation (10) follows from the observation that the map χ :
Rψ∗

n(c) → Rc given by

χ[a, p] =
[
a, ψn−1(p)

]
is well defined and induces, together with {ψi}n−2

i=0 , a map between the exact
sequences associated to c and ψ∗

n(c) as in Proposition 4.4. That is, the following
is a commutative diagram with exact rows:

0 A Rψ∗
n(c)

Pn−2 · · · P0 Z 0

0 A Rc Pn−2 · · · P0 Z 0

dn−2 d1 d0

∂n−2 ∂1 ∂0

χ ψn−2 ψ0
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This proves (10); thus ρnP ◦ ψ∗
n = ρnP and so the right-hand half of (7) com-

mutes. �

We now complete the proof of Theorem 4.1 by establishing the commutativity
of the left-hand square in the diagram (7) in the case which was considered by
Kumjian, Pask, and Sims in [16]. To that end, let A be an Abelian group. In [16],
the authors describe homomorphisms Hn(Λ, A) → Hn

c (G, A) for n ≤ 2 (see [16,
Lemma 6.3, Remark 6.9, and the paragraph preceding Remark 6.9]). We show
in Propositions 4.6 and 4.7 below that these homomorphisms make the left-hand
square of (7) commutative.

To mesh better with the notation from [16], in what remains of this section
we will use the description of Hn(Λ, A) in terms of categorical cocycles, as in
Definition 2.6, rather than the Λ-module perspective.

Proposition 4.6. Let A be an Abelian group, and let c be a categorical A-valued
2-cocycle on a row-finite k-graph Λ with no sources. Let c 7→ σc be the map
H2(Λ, A) → H2

c (GΛ, A) of [16, Lemma 6.3]. We have

ψ∗
2

(
η2(σc)

)
= c.

Hence, when n = 2, the left-hand square of the diagram (7) commutes.

Proof. We begin by observing that, since the action of Λ on A is trivial,

c
[
(x,m, y), (λ1, λ2)

]
= (ζ2)−1c

(
λ1, λ2, r(y)

)
= c(λ1, λ2),

where ζ∗ denotes the isomorphism between the categorical cohomology and the
Λ-module cohomology given in Proposition 2.8.

Recall that ηn is the inverse to the isomorphism ξn : Hn
P(G, A) → Hn

c (G, A) of
Proposition 3.14. Then using formula (9), we have

ψ∗
2

(
η2(σc)

)[
(x,m, y), (λ1, λ2)

]
= (−1)d2/2e(x,m, y) · σc

((
y,−d(λ2), λ2y

)
,
(
λ2y,−d(λ1), λ1λ2y

))
= −σc

((
y,−d(λ2), λ2y

)
,
(
λ2y,−d(λ1), λ1λ2y

))
,

since we posited a trivial action of Λ (and hence of GΛ) on A.
In order to evaluate σc((y,−d(λ2), λ2y), (λ2y,−d(λ1), λ1λ2y)), we must find a

collection P of cylinder sets Z(µ, ν) which forms a partition of the groupoid GΛ

as in Lemma 6.6 of [16]. Reviewing [16, proof of Lemma 6.6], we see that we can
use the techniques presented in that proof to construct a partition P of GΛ such
that, for any λ ∈ Λ, we have Z(λ, s(λ)) ∈ P and Z(s(λ), λ) ∈ P .

Thus, since g := (y,−d(λ2), λ2y) and h := (λ2y,−d(λ1), λ1λ2y), as well as their
product gh = (y,−d(λ1λ2), λ1λ2y) are in cylinder sets of the form Z(s(λ), λ), we
have (in the notation of Lemma 6.3 of [16])

µg = µgh = α = γ = r(y); νg = β = λ2;

µh = r(λ2); νh = λ1; νgh = λ1λ2.
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Therefore, assuming that the 2-cocycle c is normalized (which assumption we can
always make, up to cohomology), we have

ψ∗
2

(
η2(σc)

)[
(x,m, y), (λ1, λ2)

]
= −σc

((
y,−d(λ2), λ2y

)
,
(
λ2y,−d(λ1), λ1λ2y

))
= −

(
c(µg, α)− c(νg, α) + c(µh, β)− c(νh, β)− c(µgh, γ) + c(µgh, γ)

)
= −

(
c
(
r(y), r(y)

)
− c

(
r(y), λ2

)
+ c

(
r(λ2), λ2

)
− c(λ1, λ2)

− c
(
r(y), r(y)

)
+ c

(
λ1λ2, r(y)

))
= c(λ1, λ2)

= c
[
(x,m, y), (λ1, λ2)

]
. �

Proposition 4.7. For an Abelian group A and n ≤ 1, the homomorphisms
Hn(Λ, A) → Hn(GΛ, A) identified in the paragraphs following Corollary 6.8 of
[16] make the left-hand square of (7) commute.

Proof. Recall from [16] that when n = 1, the map H1(Λ, A) → H1(GΛ, A) (which
we will denote c 7→ σ1

c in analogy with Proposition 4.6) is given by

σ1
c (y, `− j, z) = c

(
y(0, `)

)
− c

(
z(0, j)

)
,

and when n = 0, we have σ0
f [y] = f(r(y)). Thus,

ψ∗
0

(
η0(σ0

f )
)[
(x,m, y)

]
= (x,m, y) · f

(
r(y)

)
= f

(
r(y)

)
, and

ψ∗
1

(
η1(σ1

c )
)[
(x,m, y), λ

]
= (−1)(x,m, y) ·

(
c
(
r(y)

)
− c(λ)

)
= c(λ)

whenever c is a normalized cocycle. Moreover, for a 1-cocycle c ∈ Z1(Λ, A),
chasing through the formulas from Theorem 3.7 and Proposition 2.8 reveals that

c
[
(x,m, y), λ

]
= c(λ)

as well, and for a 0-cocycle f we also have f [(x,m, y)] = f(r(y)) = ψ∗
0(η

0(σ0
f )). �

We note that the homomorphisms Hn(Λ, A) → Hn(GΛ, A) established by
Kumjian, Pask, and Sims will not, in general, be isomorphisms. Remark 6.9 of
[16] presents an example of a 1-graph B2 with H1(B2,ZB2) ∼= Z2, but for which
H1
c (GB2 ,Z) surjects onto Z[1

2
]. Hence, H1

c (GB2 ,Z) is not finitely generated. Con-
sequently, we cannot expect the map Hn(Λ, A) → Hn

c (GΛ, A) to be surjective in
general. Moreover, we have the following example of a 1-graph for which this map
is not injective. This answers in the negative a conjecture of Kumjian, Pask, and
Sims (stated in the paragraph immediately following Corollary 6.8 of [16]).

Example 4.8. Let Λ be the path category of the 1-graph with Λ0 := {vn : n ∈ N}
and edge set Λ1 := {f, g}∪{e1, e2, . . .}, where s(f) = s(g) = v1, r(f) = r(g) = v0
and r(en) = vn, s(en) = vn+1 for all n = 1, 2, . . . . Then Λ∞ is a countably infinite
space; there are two infinite paths x± with range v0 and exactly one with range
vn for n ≥ 1. Thus,

GΛ =
{
(x+, 0, x−), (x−, 0, x+)

}
∪
{(
x, n, σn(x)

)
,
(
σn(x),−n, x

)
: x ∈ Λ∞, n ∈ N

}
.
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Let c : GΛ → Z be a 1-cocycle; that is, an additive function. For any infinite path
x, there is a unique n ∈ N such that (x,−n, x+) ∈ GΛ. Thus, setting

bc(x) := c(x,−n, x+)

if x 6= x+, and setting bc(x+) = 0, we have c(x,m, y) = bc(x) − bc(y). In other
words, every 1-cocycle on GΛ is a coboundary, so H1(GΛ,Z) = 0.

However, H1(Λ,ZΛ) = Z is generated by the cocycle c given by

c(λ) =

{
1, λ = fe1 · · · e`for some ` ∈ N,
0, otherwise.

The fact that c has infinite order follows from the fact that c(f) = 1 but c(g) = 0,
even though these edges have the same source and range. In more detail, suppose
that we have a function b : Λ0 → Z such that, for all λ ∈ Λ, nc(λ) = b(r(λ)) −
b(s(λ)). Then

n = nc(f) = b(v0)− b(v1) = nc(g) = 0.

Remark 4.9. Recall that an étale groupoid with a basis of clopen sets is said to be
an ample groupoid. For example, GΛ is ample for any row-finite higher-rank graph
Λ with no sources. Given an étale groupoid G and a G-sheaf A , Theorem 2.7
of [13] establishes that the group of isomorphism classes of groupoid extensions
of the form A → H → G forms a group TG(A ) and that the assignment A 7→
TG(A ) is a half-exact covariant functor which is naturally isomorphic to the
first derived functor of ZG (the functor which assigns the group of continuous
A -valued 1-cocycles on G to A ). When G is an ample groupoid, every such
extension has a continuous section and therefore is determined by a continuous
A -valued 2-cocycle on G. It follows that

H2
c (G,A ) ∼= TG(A ).

Let A 0 denote the same sheaf A , regarded as an ordinary sheaf (with no G-
action). Then by [13, Theorem 3.7] there is a long exact sequence

0 → H0(G,A ) → H0(G(0),A 0) → Z0
G(A ) → H1(G,A )

→ H1(G(0),A 0) → Z1
G(A ) → H2(G,A ) → H2(G(0)A 0) → · · · .

When G is ample, G(0) has a basis of clopen sets, and thus Hn(G(0),A 0) = 0 for
n ≥ 1. It now follows by the above long exact sequence that

Zn
G (A ) ∼= Hn+1(G,A ) for all n ≥ 1.

In the case n = 1, the isomorphisms mentioned above combine to give us

H2
c (G,A ) ∼= TG(A ) ∼= Z1

G(A ) ∼= H2(G,A ).



598 E. GILLASPY and A. KUMJIAN

Acknowledgments. Kumjian would like to thank his coauthor and her col-
leagues at both the University of Colorado and the Universität Münster for their
hospitality and support, as well as Wojciech Szymański for preliminary discus-
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