Banach J. Math. Anal. 11 (2017), no. 4, 923-944
http://dx.doi.org/10.1215/17358787-2017-0032
ISSN: 1735-8787 (electronic)
http://projecteuclid.org/bjma

NON-SELF-ADJOINT SCHRÖDINGER OPERATORS WITH NONLOCAL ONE-POINT INTERACTIONS

SERGII KUZHEL ${ }^{1 *}$ and MILOSLAV ZNOJIL ${ }^{2}$

Communicated by J. A. Ball

Abstract

We generalize and study, within the framework of quantum mechanics and working with 1-dimensional, manifestly non-Hermitian Hamiltonians $H=-d^{2} / d x^{2}+V$, the traditional class of exactly solvable models with local point interactions $V=V(x)$. We discuss the consequences of the use of nonlocal point interactions such that $(V f)(x)=\int K(x, s) f(s) d s$ by means of the suitably adapted formalism of boundary triplets.

1. Introduction

An important class of Schrödinger operators is formed by operators with singular perturbations. For example, this class contains Schrödinger operators with point interactions. These operators effectively simulate short-range interactions and belong to the class of exactly solvable models. Numerous works have been devoted to the study of singularly perturbed Schrödinger operators, in which a series of approaches to the construction and investigation of such operators are developed (see, e.g., [1], [3] and references therein). These studies, in the majority of cases, deal with symmetric singular perturbations that lead to self-adjoint Schrödinger operators.

In the present article, we study non-self-adjoint Schrödinger operators with nonlocal one-point interactions. This new class of solvable models with point

[^0]interactions has recently been proposed and studied (for the self-adjoint case) by Albeverio and Nizhnik [6] (see also [7], [2], [15]). Our interest in the non-selfadjoint case was inspired in part by an intensive development of pseudo-Hermitian ($\mathcal{P} \mathcal{T}$-symmetric) quantum mechanics ($\mathrm{PHQM} / \mathrm{PTQM}$) in recent decades (see [8], [14], [23]).

Non-self-adjoint point-interaction solvable models (see, e.g., [4], [24], [28]) require a more detailed analysis in comparison with their self-adjoint counterparts. In contrast to the self-adjoint case, one should illustrate a typical PHQM/ PTQM evolution of spectral properties which can be obtained by changing the parameters of the model: complex eigenvalues \rightarrow spectral singularities; exceptional points \rightarrow similarity to a self-adjoint operator. One of the simplest examples of this is the well-studied δ-interaction model $-d^{2} / d x^{2}+a\langle\delta, \cdot\rangle \delta(x)$ with complex parameter $a \in \mathbb{C}$ (see [19], [22], or Section 6 below). However, this model seems to be sufficiently trivial due to the very simple structure of the singular potential that leads to "poor" spectral properties of the corresponding operator-realizations H_{a} (e.g., the H_{a} 's have no exceptional points and bound states on the continuous spectrum).

One possible reasonable complication of the model consists in the addition of the nonlocal interaction term $\int_{-\infty}^{\infty} K(x, s) f(s) d s$. In an attempt to keep the solvability of the model and its intimate relationship with δ-interaction, we assume that

$$
K(x, s)=q(x) \delta(s)+\delta(x) q^{*}(s)
$$

where $q \in L_{2}(\mathbb{R})$ is a given piecewise continuous function. The corresponding nonlocal δ-interaction

$$
\begin{equation*}
-\frac{d^{2}}{d x^{2}}+a\langle\delta, \cdot\rangle \delta(x)+\langle\delta, \cdot\rangle q(x)+(q, \cdot) \delta(x), \quad a \in \mathbb{C} \tag{1.1}
\end{equation*}
$$

where (\cdot, \cdot) is the inner product in $L_{2}(\mathbb{R})$ linear in the second argument, is studied in Section 5 with the use of the boundary triplet technique (see the Appendix). Namely, the formal expression (1.1) gives rise to the family of operators $\left\{H_{a}\right\}$,

$$
H_{a} f=-\frac{d^{2} f}{d x^{2}}+f(0) q(x), \quad a \in \mathbb{C}, q \in L_{2}(\mathbb{R}) \text { is fixed }
$$

with domains of definition (5.3) which are determined by the singular part of perturbation $a\langle\delta, \cdot\rangle \delta(x)+(q, \cdot) \delta(x)$ in (1.1). Our investigation of $\left\{H_{a}\right\}$ is based on the fact that each operator H_{a} is the proper extension of the symmetric operator $\widetilde{S}_{\text {min }}(5.5)$; that is, $\widetilde{S}_{\text {min }} \subset H_{a} \subset \widetilde{S}_{\text {max }}$, where $\widetilde{S}_{\text {max }}=\widetilde{S}_{\min }^{\dagger}$ is the adjoint of $\widetilde{S}_{\text {min }}$ (see Section 5.1).

We show that spectral properties of H_{a} are completely characterized by the pair $\left\{a, \widetilde{W}_{\lambda}\right\}$, where $a \in \mathbb{C}$ distinguishes H_{a} among all proper extensions of $\widetilde{S}_{\text {min }}$, while the Weyl-Titchmarsh function $\widetilde{W}_{\lambda}(5.10)$ characterizes the symmetric operator $\widetilde{S}_{\text {min }}$ which is the "common part" of all H_{a} 's (see Theorems 5.1, 5.4, and 5.7).

One of the interesting features of the model is the fact that $a \in \mathbb{C}$ determines the measure of non-self-adjointness of the operators H_{a}, while the choice of q defines the symmetric operator $\widetilde{S}_{\min }$ and, therefore, the structure of the holomorphic
function \widetilde{W}_{λ}. Such a "separation of responsibility" of parameters of the model allows one to preserve its solvability and illustrate the possible appearance of exceptional points and eigenvalues on a continuous spectrum (see Example 5.3 and Section 6).

The proposed approach to the construction of non-self-adjoint nonlocal point interaction models is not restricted to the case of δ-interactions only, and it can be applied to the wider class of ordinary point interaction models. We illustrate this point in Sections 2-4, which are devoted to the general case of one-point interactions, including combinations of δ - and δ^{\prime}-interactions.

Throughout the present article, $\mathcal{D}(H), \mathcal{R}(H)$, and ker H denote the domain, range, and null-space of a linear operator H, respectively, while $H \upharpoonright_{\mathcal{D}}$ stands for the restriction of H to the set \mathcal{D}. The adjoint of H with respect to the natural inner product (\cdot, \cdot) (linear in the second argument) in $L_{2}(\mathbb{R})$ is denoted by H^{\dagger}.

2. One-point interactions

2.1. Ordinary one-point interactions. A 1-dimensional Schrödinger operator with interactions supported at the point $x=0$ can be defined by the formal expression

$$
\begin{equation*}
-\frac{d^{2}}{d x^{2}}+a\langle\delta, \cdot\rangle \delta(x)+b\left\langle\delta^{\prime}, \cdot\right\rangle \delta(x)+c\langle\delta, \cdot\rangle \delta^{\prime}(x)+d\left\langle\delta^{\prime}, \cdot\right\rangle \delta^{\prime}(x) \tag{2.1}
\end{equation*}
$$

where δ and δ^{\prime} are, respectively, the Dirac δ-function and its derivative, the parameters a, b, c, d are complex numbers, and

$$
\langle\delta, f\rangle=f(0), \quad\left\langle\delta^{\prime}, f\right\rangle:=-f^{\prime}(0), \quad \forall f \in W_{2}^{2}(\mathbb{R})
$$

Denote

$$
\mathbf{T}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then (2.1) can be rewritten in more compact form as

$$
-\frac{d^{2}}{d x^{2}}+\left[\delta, \delta^{\prime}\right] \mathbf{T}\left[\begin{array}{c}
\langle\delta, \cdot\rangle \tag{2.2}\\
\left\langle\delta^{\prime}, \cdot\right\rangle
\end{array}\right]
$$

The expression (2.2) determines the symmetric (non-self-adjoint) operator

$$
S=-\frac{d^{2}}{d x^{2}}, \quad \mathcal{D}(S)=\left\{f \in W_{2}^{2}(\mathbb{R}): f(0)=f^{\prime}(0)=0\right\}
$$

in $L_{2}(\mathbb{R})$, which does not depend on the choice of a, b, c, d. In order to take into account the impact of these parameters, we should extend the action of δ and δ^{\prime} onto $W_{2}^{2}(\mathbb{R} \backslash\{0\})$. The most natural way is

$$
\langle\delta, f\rangle:=f_{r}(0)=\frac{f(0+)+f(0-)}{2}, \quad\left\langle\delta^{\prime}, f\right\rangle:=f_{r}^{\prime}(0)=-\frac{f^{\prime}(0+)+f^{\prime}(0-)}{2} .
$$

Furthermore, we assume that the second derivative in (2.2) acts on $W_{2}^{2}(\mathbb{R} \backslash\{0\})$ in the distributional sense, that is,

$$
-f^{\prime \prime}=-\left\{f^{\prime \prime}(x)\right\}_{x \neq 0}-f_{s}(0) \delta^{\prime}(x)-f_{s}^{\prime}(0) \delta(x), \quad f \in W_{2}^{2}(\mathbb{R} \backslash\{0\})
$$

where

$$
f_{s}(0)=f(0+)-f(0-), \quad f_{s}^{\prime}(0)=f^{\prime}(0+)-f^{\prime}(0-)
$$

Then the action of (2.2) on functions $f \in W_{2}^{2}(\mathbb{R} \backslash\{0\})$ can be represented as

$$
\begin{equation*}
-\left\{f^{\prime \prime}(x)\right\}_{x \neq 0}+\left[\delta, \delta^{\prime}\right]\left[\mathbf{T} \Gamma_{0} f-\Gamma_{1} f\right], \tag{2.3}
\end{equation*}
$$

where

$$
\Gamma_{0} f=\left[\begin{array}{c}
\langle\delta, f\rangle \\
\left\langle\delta^{\prime}, f\right\rangle
\end{array}\right]=\left[\begin{array}{c}
f_{r}(0) \\
-f_{r}^{\prime}(0)
\end{array}\right], \quad \Gamma_{1} f=\left[\begin{array}{c}
f_{s}^{\prime}(0) \\
f_{s}(0)
\end{array}\right]
$$

Obviously, (2.3) determines a function from $L_{2}(\mathbb{R})$ if and only if $\mathbf{T} \Gamma_{0} f=\Gamma_{1} f$. Therefore, the expression (2.1) gives rise to the operator $-d^{2} / d x^{2}$ in $L_{2}(\mathbb{R})$ with the domain of definition $\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): \mathbf{T} \Gamma_{0} f-\Gamma_{1} f=0\right\}$.
2.2. Nonlocal one-point interactions. Let us generalize the one-point interactions potential considered in (2.1) by adding a nonlocal point interactions part

$$
\langle\delta, \cdot\rangle q_{1}(x)+\left(q_{1}, \cdot\right) \delta(x)+\left(q_{2}, \cdot\right) \delta^{\prime}(x)+\left\langle\delta^{\prime}, \cdot\right\rangle q_{2}(x)
$$

where functions $q_{j} \in L_{2}(\mathbb{R})$ are assumed to be piecewise continuous and (\cdot, \cdot) is the standard inner product (linear in the second argument) of $L_{2}(\mathbb{R})$. Then the generalization of (2.2) takes the form

$$
-\frac{d^{2}}{d x^{2}}+\left[\delta, \delta^{\prime}\right]\left(\mathbf{T}\left[\begin{array}{c}
\langle\delta, \cdot\rangle \tag{2.4}\\
\left\langle\delta^{\prime}, \cdot\right\rangle
\end{array}\right]+\left[\begin{array}{c}
\left(q_{1}, \cdot\right) \\
\left(q_{2}, \cdot\right)
\end{array}\right]\right)+\left[q_{1}, q_{2}\right]\left[\begin{array}{c}
\langle\delta, \cdot\rangle \\
\left\langle\delta^{\prime}, \cdot\right\rangle
\end{array}\right] .
$$

Extending, by analogy with (2.2), the action of (2.4) onto $W_{2}^{2}(\mathbb{R} \backslash\{0\})$ we obtain

$$
\begin{equation*}
-\left\{f^{\prime \prime}(x)\right\}_{x \neq 0}+\left[\delta, \delta^{\prime}\right]\left[\mathbf{T} \Gamma_{0} f-\Gamma_{1} f\right]+\left[q_{1}, q_{2}\right] \Gamma_{0} f \tag{2.5}
\end{equation*}
$$

where

$$
\Gamma_{0} f=\left[\begin{array}{c}
\langle\delta, f\rangle \tag{2.6}\\
\left\langle\delta^{\prime}, f\right\rangle
\end{array}\right]=\left[\begin{array}{c}
f_{r}(0) \\
-f_{r}^{\prime}(0)
\end{array}\right], \quad \Gamma_{1} f=\left[\begin{array}{l}
f_{s}^{\prime}(0)-\left(q_{1}, f\right) \\
f_{s}(0)-\left(q_{2}, f\right)
\end{array}\right] .
$$

The expression (2.5) makes sense as a function from $L_{2}(\mathbb{R})$ if and only if the second term of (2.5) vanishes (i.e., if $\mathbf{T} \Gamma_{0} f-\Gamma_{1} f=0$). This means that the formal expression (2.4) allows one to define the operator in $L_{2}(\mathbb{R})$,

$$
\begin{equation*}
H_{\mathbf{T}} f=-\frac{d^{2} f}{d x^{2}}+\left[q_{1}, q_{2}\right] \Gamma_{0} f=-\left\{f^{\prime \prime}(x)\right\}_{x \neq 0}+f_{r}(0) q_{1}(x)-f_{r}^{\prime}(0) q_{2}(x) \tag{2.7}
\end{equation*}
$$

with the domain of definition

$$
\begin{equation*}
\mathcal{D}\left(H_{\mathbf{T}}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}):\left(\mathbf{T} \Gamma_{0}-\Gamma_{1}\right) f=0\right\} \tag{2.8}
\end{equation*}
$$

where the Γ_{i} 's are determined by (2.6) and $\mathbf{T}=\left[\begin{array}{cc}a & b \\ c & b\end{array}\right]$.
Each operator $H_{\mathbf{T}}$ is the restriction of the maximal operator

$$
\begin{equation*}
S_{\max } f=-\frac{d^{2} f}{d x^{2}}+\left[q_{1}, q_{2}\right] \Gamma_{0} f=-\left\{f^{\prime \prime}(x)\right\}_{x \neq 0}+f_{r}(0) q_{1}(x)-f_{r}^{\prime}(0) q_{2}(x) \tag{2.9}
\end{equation*}
$$

with $\mathcal{D}\left(S_{\max }\right)=W_{2}^{2}(\mathbb{R} \backslash\{0\})$ acting in $L_{2}(\mathbb{R})$.
The operator $S_{\text {max }}$ satisfies Green's identity

$$
\begin{equation*}
\left(S_{\max } f, g\right)-\left(f, S_{\max } g\right)=\left(\Gamma_{1} f\right) \cdot \Gamma_{0} g-\left(\Gamma_{0} f\right) \cdot \Gamma_{1} g, \tag{2.10}
\end{equation*}
$$

where the dot • in the right-hand side means the standard inner product in \mathbb{C}^{2}. Moreover, according to [6, Lemma 1], for any vectors $h_{0}, h_{1} \in \mathbb{C}^{2}$, there exists $f \in \mathcal{D}\left(S_{\text {max }}\right)$ such that $\Gamma_{0} f=h_{0}$ and $\Gamma_{1} f=h_{1}$.

The next operator plays an important role in what follows:

$$
\begin{equation*}
H_{\infty}=S_{\max } \upharpoonright_{\mathcal{D}\left(H_{\infty}\right)}, \quad \mathcal{D}\left(H_{\infty}\right)=\left\{f \in \mathcal{D}\left(S_{\max }\right): \Gamma_{0} f=0\right\} . \tag{2.11}
\end{equation*}
$$

In view of (2.6) and (2.9),

$$
H_{\infty} f=-\frac{d^{2} f}{d x^{2}}, \quad f \in \mathcal{D}\left(H_{\infty}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): f_{r}(0)=f_{r}^{\prime}(0)=0\right\}
$$

It is easy to check that H_{∞} is a positive (since $\left(H_{\infty} f, f\right)=\int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x>0$ for nonzero $f \in \mathcal{D}\left(H_{\infty}\right)$) self-adjoint operator in $L_{2}(\mathbb{R})$.

Taking into account [12, Corollary 2.5], the self-adjointness of H_{∞}, Green's identity (2.10), and the surjectivity of the mapping $\left(\Gamma_{0}, \Gamma_{1}\right): \mathcal{D}\left(S_{\max }\right) \rightarrow \mathbb{C}^{2} \oplus \mathbb{C}^{2}$, one is led to the conclusion that the operator $S_{\text {min }}=S_{\text {max }} \upharpoonright_{\mathcal{D}\left(S_{\text {min }}\right)}$ with domain of definition $\mathcal{D}\left(S_{\text {min }}\right)=\left\{f \in \mathcal{D}\left(S_{\text {max }}\right): \Gamma_{0} f=\Gamma_{1} f=0\right\}$ is a closed symmetric operator in $L_{2}(\mathbb{R})$. Precisely, $S_{\min } f=-\frac{d^{2} f}{d x^{2}}$ with the domain

$$
\mathcal{D}\left(S_{\text {min }}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): \begin{array}{l}
f_{r}(0)=0 f_{s}(0)=\left(q_{2}, f\right) \tag{2.12}\\
f_{r}^{\prime}(0)=0 f_{s}^{\prime}(0)=\left(q_{1}, f\right)
\end{array}\right\} .
$$

Moreover, the relation $S_{\min }^{\dagger}=S_{\max }$ holds and the collection $\left(\mathbb{C}^{2}, \Gamma_{0}, \Gamma_{1}\right)$ is a boundary triplet (see the Appendix) of $S_{\max }$. The latter property is especially important because the operators $H_{\mathbf{T}}$ are intermediate extensions between $S_{\text {min }}$ and $S_{\max }$ and their domains are determined in terms of boundary operators Γ_{j}. Precisely, the definition (2.7) and domain of definition (2.8) of $H_{\mathbf{T}}$ can be rewritten as follows:

$$
\begin{equation*}
H_{\mathbf{T}}=S_{\max } \upharpoonright_{\mathcal{D}\left(H_{\mathbf{T}}\right)}, \quad \mathcal{D}\left(H_{\mathbf{T}}\right)=\left\{f \in \mathcal{D}\left(S_{\max }\right): \mathbf{T} \Gamma_{0} f=\Gamma_{1} f\right\} . \tag{2.13}
\end{equation*}
$$

Therefore, the well-developed methods of the theory of boundary triplets (see [27]) can be applied for the investigation of $H_{\mathbf{T}}$.

3. Special cases of nonlocal one-point interactions

3.1. Self-adjoint nonlocal one-point interactions.

Lemma 3.1. If the entries of \mathbf{T} satisfy the conditions $a, d \in \mathbb{R}, b=c^{*}$, then the corresponding operator $H_{\mathbf{T}}$ defined by (2.7) is self-adjoint in $L_{2}(\mathbb{R})$ for any choice of $q_{j} \in L_{2}(\mathbb{R})$.

Proof. It follows from the theory of boundary triplets (see the Appendix) that $H_{\mathbf{T}}^{\dagger}=H_{\mathbf{T}^{\dagger}}$, where $\mathbf{T}^{\dagger}=\left(\mathbf{T}^{*}\right)^{t}$. Therefore, $H_{\mathbf{T}}$ is a self-adjoint operator if and only if the matrix \mathbf{T} is Hermitian. The latter is equivalent to the conditions $a, d \in \mathbb{R}$, $b=c^{*}$.
3.2. $\mathcal{P} \mathcal{T}$-symmetric nonlocal one-point interactions. As usual (see [14]), we consider the space parity operator $\mathcal{P} f(x)=f(-x)$ and the conjugation operator $\mathcal{T} f=f^{*}$. An operator H acting in $L_{2}(\mathbb{R})$ is called $\mathcal{P} \mathcal{T}$-symmetric if $\mathcal{P} \mathcal{T} H=$ $H \mathcal{P T}$.

Lemma 3.2. If the entries of \mathbf{T} and the functions q_{j} satisfy the conditions

$$
\begin{equation*}
a, d \in \mathbb{R}, b, c \in i \mathbb{R}, \quad \mathcal{P} \mathcal{T} q_{1}=q_{1}, \quad \mathcal{P} \mathcal{T} q_{2}=-q_{2}, \tag{3.1}
\end{equation*}
$$

then the corresponding operator $H_{\mathbf{T}}$ defined by (2.7) is $\mathcal{P} \mathcal{T}$-symmetric.
Proof. It is easy to check that, for any $f \in W_{2}^{2}(\mathbb{R} \backslash\{0\})$,

$$
\begin{aligned}
(\mathcal{P} f)_{r}(0) & =f_{r}(0), & (\mathcal{P} f)_{s}(0)=-f_{s}(0) \\
(\mathcal{P} f)_{r}^{\prime}(0) & =-f_{r}^{\prime}(0), & (\mathcal{P} f)_{s}^{\prime}(0)=f_{s}^{\prime}(0)
\end{aligned}
$$

These relations, definition (2.6) of Γ_{j}, and (3.1) lead to the conclusion that

$$
\Gamma_{j} \mathcal{P} \mathcal{T} f=\sigma_{3} \mathcal{T} \Gamma_{j} f, \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \tag{3.2}\\
0 & -1
\end{array}\right], \quad j=0,1
$$

(The same symbol \mathcal{T} is used for the conjugation operators in $L_{2}(\mathbb{R})$ and \mathbb{C}^{2}.) Therefore, if (3.1) holds, then the operator $S_{\text {max }}$ defined by (2.9) is $\mathcal{P} \mathcal{T}$-symmetric:

$$
\mathcal{P} \mathcal{T} S_{\max } f=-\frac{d^{2}}{d x^{2}} \mathcal{P} \mathcal{T} f+\left[q_{1}, q_{2}\right] \sigma_{3} \mathcal{T} \Gamma_{0} f=S_{\max } \mathcal{P} \mathcal{T} f
$$

Since $H_{\mathbf{T}}$ is the restriction of $S_{\max }$ onto $\mathcal{D}\left(H_{\mathbf{T}}\right)$, the invariance of $\mathcal{D}\left(H_{\mathbf{T}}\right)$ with respect to $\mathcal{P} \mathcal{T}$ will guarantee the $\mathcal{P} \mathcal{T}$-symmetricity of $H_{\mathbf{T}}$.

Let us prove that $\mathcal{P} \mathcal{T}: \mathcal{D}\left(H_{\mathbf{T}}\right) \rightarrow \mathcal{D}\left(H_{\mathbf{T}}\right)$. To do that, we consider an arbitrary $f \in \mathcal{D}\left(H_{\mathbf{T}}\right)$. Then, according to (2.8), $\mathbf{T} \Gamma_{0} f=\Gamma_{1} f$ and the inclusion $\mathcal{P} \mathcal{T} f \in$ $\mathcal{D}\left(H_{\mathbf{T}}\right)$ is equivalent to the condition $\mathbf{T} \Gamma_{0} \mathcal{P} \mathcal{T} f=\Gamma_{1} \mathcal{P} \mathcal{T} f$. By virtue of (3.2), $\mathbf{T} \Gamma_{0} \mathcal{P} \mathcal{T} f=\mathbf{T} \sigma_{3} \mathcal{T} \Gamma_{0} f$ and

$$
\Gamma_{1} \mathcal{P} \mathcal{T} f=\sigma_{3} \mathcal{T} \Gamma_{1} f=\sigma_{3} \mathcal{T} \mathbf{T} \Gamma_{0} f=\sigma_{3} \mathbf{T}^{*} \mathcal{T} \Gamma_{0} f .
$$

This means that the required identity $\mathbf{T}_{0} \mathcal{P} \mathcal{T} f=\Gamma_{1} \mathcal{P} \mathcal{T} f$ is true if and only if $\mathbf{T} \sigma_{3}=\sigma_{3} \mathbf{T}^{*}$. The latter matrix relation holds if the entries of \mathbf{T} satisfy (3.1).
3.3. \mathcal{P}-self-adjoint nonlocal one-point interactions. An operator $H_{\mathbf{T}}$ defined by (2.7) is called \mathcal{P}-self-adjoint if $\mathcal{P} H_{\mathbf{T}}=H_{\mathbf{T}}^{\dagger} \mathcal{P}$.

Lemma 3.3. If the entries of \mathbf{T} and the functions q_{j} satisfy the conditions

$$
\begin{equation*}
a, d \in \mathbb{R}, b=-c^{*}, \quad \mathcal{P} q_{1}=q_{1}, \quad \mathcal{P} q_{2}=-q_{2} \tag{3.3}
\end{equation*}
$$

then the operator $H_{\mathbf{T}}$ is \mathcal{P}-self-adjoint.
Proof. Similarly to the proof of Lemma 3.2, we check that $\Gamma_{j} \mathcal{P} f=\sigma_{3} \Gamma_{j} f$ and show that the conditions (3.3) ensure the commutation relation $S_{\max } \mathcal{P}=\mathcal{P} S_{\max }$. The operators $H_{\mathbf{T}}$ and $H_{\mathbf{T}}^{\dagger}$ are restrictions of $S_{\max }$. Therefore, the condition \mathcal{P} : $\mathcal{D}\left(H_{\mathbf{T}}\right) \rightarrow \mathcal{D}\left(H_{\mathbf{T}}^{\dagger}\right)$ means the identity $\mathcal{P} H_{\mathbf{T}}=H_{\mathbf{T}}^{\dagger} \mathcal{P}$.

Let us verify that $\mathcal{P}: \mathcal{D}\left(H_{\mathbf{T}}\right) \rightarrow \mathcal{D}\left(H_{\mathbf{T}}^{\dagger}\right)$. Since $H_{\mathbf{T}}^{\dagger}=H_{\mathbf{T}^{*}}$, the domains of definition $\mathcal{D}\left(H_{\mathbf{T}}\right)$ and $\mathcal{D}\left(H_{\mathbf{T}}^{\dagger}\right)$ are determined by (2.8) with the matrices \mathbf{T}
and $\mathbf{T}^{* t}$, respectively. Let $f \in \mathcal{D}\left(H_{\mathbf{T}}\right)$. Then $\mathbf{T} \Gamma_{0} f=\Gamma_{1} f$ and the inclusion $\mathcal{P} f \in \mathcal{D}\left(H_{\mathbf{T}}^{\dagger}\right)$ is equivalent to the condition $\mathbf{T}^{* t} \Gamma_{0} \mathcal{P} f=\Gamma_{1} \mathcal{P} f$.

Taking into account that $\Gamma_{j} \mathcal{P} f=\sigma_{3} \Gamma_{j} f$, we obtain $\mathbf{T}^{* t} \Gamma_{0} \mathcal{P} f=\mathbf{T}^{* t} \sigma_{3} \Gamma_{0} f$ and $\Gamma_{1} \mathcal{P} f=\sigma_{3} \Gamma_{1} f=\sigma_{3} \mathbf{T} \Gamma_{0} f$. Hence, $\mathbf{T}^{* t} \Gamma_{0} \mathcal{P} f=\Gamma_{1} \mathcal{P} f$ holds if and only if $\mathbf{T}^{* t} \sigma_{3}=\sigma_{3} \mathbf{T}$. This matrix relation holds if the entries a, b, c, d of \mathbf{T} satisfy (3.3).

4. Spectral analysis of H_{T}

It follows from the definition (2.11) of the self-adjoint operator H_{∞} that its spectrum $\sigma\left(H_{\infty}\right)=[0, \infty)$ is purely continuous. This means that $\left(H_{\infty}-\lambda I\right)^{-1}$ is unbounded for any $\lambda \in[0, \infty)$. Since H_{∞} is an extension of the symmetric operator $S_{\min }$ with finite defect numbers, we conclude that the operator $\left(S_{\min }-\lambda I\right)^{-1}$ is also unbounded. This means that the spectrum of each $H_{\mathbf{T}}$ contains $[0, \infty)$. Furthermore, only eigenvalues of $H_{\mathbf{T}}$ may appear in $\rho\left(H_{\infty}\right)=\mathbb{C} \backslash[0, \infty)$. This fact follows from the definition (2.13) of $H_{\mathbf{T}}$ and the relation (A.2) describing $\sigma\left(H_{\mathbf{T}}\right) \cap \rho\left(H_{\infty}\right)$. (An eigenfunction of $H_{\mathbf{T}}$ should be the eigenfunction of $S_{\max }$ corresponding to the same eigenvalue (since $S_{\max }$ is an extension of $H_{\mathbf{T}}$).)

The kernel subspace $\operatorname{ker}\left(S_{\max }-\lambda I\right)$ has dimension 2 for any choice of $\lambda \in$ $\mathbb{C} \backslash[0, \infty)$. Let u_{λ}, v_{λ} be a basis of $\operatorname{ker}\left(S_{\max }-\lambda I\right)$. Then, any $f \in \operatorname{ker}\left(S_{\max }-\lambda I\right)$ has the form $f=c_{1} u_{\lambda}+c_{2} v_{\lambda}$, and f turns out to be the eigenfunction of $H_{\mathbf{T}}$ corresponding to the eigenvalue λ if and only if f belongs to the domain $\mathcal{D}\left(H_{\mathbf{T}}\right)$ determined by (2.13), that is, if c_{1}, c_{2} are nonzero solutions of the linear system

$$
c_{1}\left(\mathbf{T} \Gamma_{0}-\Gamma_{1}\right) u_{\lambda}+c_{2}\left(\mathbf{T} \Gamma_{0}-\Gamma_{1}\right) v_{\lambda}=0
$$

Therefore, the eigenvalues $\lambda \in \mathbb{C} \backslash[0, \infty)$ of $H_{\mathbf{T}}$ coincide with the roots of the characteristic equation

$$
\begin{equation*}
\operatorname{det}\left[\left(\mathbf{T} \Gamma_{0}-\Gamma_{1}\right) u_{\lambda},\left(\mathbf{T} \Gamma_{0}-\Gamma_{1}\right) v_{\lambda}\right]=0 . \tag{4.1}
\end{equation*}
$$

Let us assume without loss of generality that the eigenfunctions u_{λ}, v_{λ} are chosen in such a way that

$$
\Gamma_{0} u_{\lambda}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \Gamma_{0} v_{\lambda}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Then the characteristic equation (4.1) for the determination of eigenvalues of $H_{\mathbf{T}}$ takes the form

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{T}-W_{\lambda}\right)=0 \tag{4.2}
\end{equation*}
$$

where the (2×2)-matrix $W_{\lambda}=\left[\Gamma_{1} u_{\lambda}, \Gamma_{1} v_{\lambda}\right]$ is called the Weyl-Titchmarsh function associated to the boundary triplet $\left(\mathbb{C}^{2}, \Gamma_{0}, \Gamma_{1}\right)$. The Weyl-Titchmarsh function W_{λ} is holomorphic on $\mathbb{C} \backslash[0, \infty)$ and it satisfies the relation $\left(W_{\lambda}^{*}\right)^{t}=W_{\lambda^{*}}$ (see the Appendix).
4.1. Eigenfunctions of $S_{\max }$. Let us write any $\lambda \in \mathbb{C} \backslash[0, \infty)$ as $\lambda=k^{2}$, where $k \in \mathbb{C}_{+}=\{k \in \mathbb{C}: \operatorname{Im} k>0\}$, and consider the function

$$
G(x)=\frac{i}{2 k} e^{i k|x|}
$$

Obviously, $G(\cdot)$ belongs to $W_{2}^{2}(\mathbb{R} \backslash\{0\})$ and

$$
-G^{\prime \prime}-k^{2} G=0, \quad-\left(G^{\prime}\right)^{\prime \prime}-k^{2} G^{\prime}=0, \quad x \neq 0
$$

Moreover,

$$
\begin{aligned}
& G_{r}(0)=\frac{i}{2 k}, \quad G_{r}^{\prime}(0)=0, \quad G_{r}^{\prime \prime}(0)=-\frac{i k}{2}, \\
& G_{s}(0)=0, \quad G_{s}^{\prime}(0)=-1, \quad G_{s}^{\prime \prime}(0)=0 .
\end{aligned}
$$

The convolution

$$
f=(G * q)(x)=\int_{-\infty}^{\infty} G(x-s) q(s) d s
$$

($q \in L_{2}(\mathbb{R})$ is a piecewise continuous function) is the solution of the differential equation $-f^{\prime \prime}-k^{2} f=q$ in $L_{2}(\mathbb{R})$.

Lemma 4.1. The functions

$$
\begin{aligned}
& u(x)=-\left(G * q_{1}\right)(x)-2 i k\left[1+\left(G * q_{1}\right)(0)\right] G(x)+\frac{2 i}{k}\left(G^{\prime} * q_{1}\right)(0) G^{\prime}(x), \\
& v(x)=-\left(G * q_{2}\right)(x)-2 i k\left(G * q_{2}\right)(0) G(x)-\frac{2 i}{k}\left[1-\left(G^{\prime} * q_{2}\right)(0)\right] G^{\prime}(x)
\end{aligned}
$$

form the basis of the eigenfunction subspace $\operatorname{ker}\left(S_{\max }-k^{2} I\right)$.
Proof. An elementary analysis shows that the functions u, v belong to $W_{2}^{2}(\mathbb{R} \backslash\{0\})$ and

$$
\begin{array}{rlrl}
u_{r}(0) & =1, & u_{s}(0)=-\frac{2 i}{k}\left(G^{\prime} * q_{1}\right)(0) \\
v_{r}(0)=0, & v_{s}(0)=\frac{2 i}{k}\left[1-\left(G^{\prime} * q_{2}\right)(0)\right] \tag{4.3}\\
u_{r}^{\prime}(0)=0, & u_{s}^{\prime}(0)=2 i k\left[1+\left(G * q_{1}\right)(0)\right] \\
v_{r}^{\prime}(0)=-1, & v_{s}^{\prime}(0)=2 i k\left(G * q_{2}\right)(0)
\end{array}
$$

The first column in (4.3) means that u and v are linearly independent, and

$$
\Gamma_{0} u=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \Gamma_{0} v=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Furthermore, taking into account (2.9) and (4.3), we obtain for almost all $x \in \mathbb{R}$,

$$
\left(S_{\max }-k^{2} I\right) u=-u^{\prime \prime}-k^{2} u+q_{1}=-q_{1}+q_{1}=0
$$

Similarly, $\left(S_{\max }-k^{2} I\right) v=-v^{\prime \prime}-k^{2} v+q_{2}=-q_{2}+q_{2}=0$. Hence, the functions u, v belong to $\operatorname{ker}\left(S_{\max }-k^{2} I\right)$ and they form a basis of this subspace.
4.2. The Weyl-Titchmarsh function associated to ($\mathbb{C}^{2}, \Gamma_{0}, \Gamma_{1}$). Since

$$
\Gamma_{0} u=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \Gamma_{0} v=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

the Weyl-Titchmarsh function associated to $\left(\mathbb{C}^{2}, \Gamma_{0}, \Gamma_{1}\right)$ has the form $W_{\lambda}=$ [$\left.\Gamma_{1} u, \Gamma_{1} v\right]$, where, in view of (2.6) and (4.3),

$$
\begin{aligned}
\Gamma_{1} u & =\left[\begin{array}{c}
2 i k\left[1+\left(G * q_{1}\right)(0)\right]-\left(q_{1}, u\right) \\
-\frac{2 i}{k}\left(G^{\prime} * q_{1}\right)(0)-\left(q_{2}, u\right)
\end{array}\right], \\
\Gamma_{1} v & =\left[\begin{array}{c}
2 i k\left(G * q_{2}\right)(0)-\left(q_{1}, v\right) \\
\frac{2 i}{k}\left[1-\left(G^{\prime} * q_{2}\right)(0)\right]-\left(q_{2}, v\right)
\end{array}\right] .
\end{aligned}
$$

Making some additional rudimentary calculations (mainly related to the calculation of scalar products $(q, u),(q, v)$ for functions u, v from Lemma 4.1), we obtain

$$
W_{\lambda}=\left[\begin{array}{ll}
\left(q_{1}, G * q_{1}\right) & \left(q_{1}, G * q_{2}\right) \tag{4.4}\\
\left(q_{2}, G * q_{1}\right) & \left(q_{2}, G * q_{2}\right)
\end{array}\right]+\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right],
$$

where

$$
\begin{aligned}
& r_{11}=2 i k\left[1+\left(G * q_{1}\right)(0)\right]\left[1+\left(G * q_{1}^{*}\right)(0)\right]+\frac{2 i}{k}\left(G^{\prime} * q_{1}\right)(0)\left(G^{\prime} * q_{1}^{*}\right)(0), \\
& r_{22}=\frac{2 i}{k}\left[1-\left(G^{\prime} * q_{2}\right)(0)\right]\left[1-\left(G^{\prime} * q_{2}^{*}\right)(0)\right]+2 i k\left(G * q_{2}\right)(0)\left(G * q_{2}^{*}\right)(0), \\
& r_{12}=2 i k\left(G * q_{2}\right)(0)\left[1+\left(G * q_{1}^{*}\right)(0)\right]-\frac{2 i}{k}\left(G^{\prime} * q_{1}^{*}\right)(0)\left[1-\left(G^{\prime} * q_{2}\right)(0)\right], \\
& r_{21}=2 i k\left(G * q_{2}^{*}\right)(0)\left[1+\left(G * q_{1}\right)(0)\right]-\frac{2 i}{k}\left(G^{\prime} * q_{1}\right)(0)\left[1-\left(G^{\prime} * q_{2}^{*}\right)(0)\right] .
\end{aligned}
$$

Denote

$$
B_{q_{1}, q_{2}}=\left[\begin{array}{cc}
1+\left(G * q_{1}\right)(0) & \left(G * q_{2}\right)(0) \\
-\left(G^{\prime} * q_{1}\right)(0) & 1-\left(G^{\prime} * q_{2}\right)(0)
\end{array}\right] .
$$

Then (4.4) can be rewritten as follows:

$$
W_{\lambda}=\left[\begin{array}{cc}
\left(q_{1}, G * q_{1}\right) & \left(q_{1}, G * q_{2}\right) \tag{4.5}\\
\left(q_{2}, G * q_{1}\right) & \left(q_{2}, G * q_{2}\right)
\end{array}\right]+B_{q_{1}, q_{2}^{*}}^{t}\left[\begin{array}{cc}
2 i k & 0 \\
0 & \frac{2 i}{k}
\end{array}\right] B_{q_{1}, q_{2}} .
$$

Substituting (4.5) into (4.2), we obtain the characteristic equation for eigenvalues $\lambda \in \mathbb{C} \backslash[0, \infty)$ of $H_{\mathbf{T}}$. In particular, if $q_{1}=q_{2}=0$, the Weyl function W_{λ} coincides with $\left[\begin{array}{ccc}2 i k & 0 \\ 0 & 2 i / k\end{array}\right]$ and the equation (4.2) is transformed to the polynomial

$$
\begin{equation*}
2 d k^{2}+i k(\operatorname{det} \mathbf{T}-4)+2 a=0, \tag{4.6}
\end{equation*}
$$

which determines spectra of ordinary point interactions considered in Section 2.1.

5. Nonlocal δ-Interaction

5.1. Definition and description of eigenvalues. The classical one-point δ-interaction is given by the formal expression

$$
\begin{equation*}
-\frac{d^{2}}{d x^{2}}+a\langle\delta, \cdot\rangle \delta(x), \quad a \in \mathbb{C} \tag{5.1}
\end{equation*}
$$

It is natural to suppose that the generalization of (5.1) to the nonlocal case consists in the addition of the nonlocal part $\langle\delta, \cdot\rangle q(x)+(q, \cdot) \delta(x)$ of δ-interaction. For this reason, a nonlocal one-point δ-interaction can be defined via the formal expression

$$
-\frac{d^{2}}{d x^{2}}+a\langle\delta, \cdot\rangle \delta(x)+\langle\delta, \cdot\rangle q(x)+(q, \cdot) \delta(x), \quad a \in \mathbb{C}, q \in L_{2}(\mathbb{R})
$$

which is a particular case of (2.4) with $\mathbf{T}=\left[\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right], q_{1}=q$, and $q_{2}=0$. This means that the corresponding operator $H_{\mathbf{T}} \equiv H_{a}$ defined by (2.7) and (2.8) acts as

$$
\begin{equation*}
H_{a} f=-\frac{d^{2} f}{d x^{2}}+f_{r}(0) q(x) \tag{5.2}
\end{equation*}
$$

on the domain of definition

$$
\mathcal{D}\left(H_{a}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): \begin{array}{l}
f_{s}(0)=0 \tag{5.3}\\
f_{s}^{\prime}(0)=a f_{r}(0)+(q, f)
\end{array}\right\} .
$$

In view of Lemma 3.2, the operator H_{a} is $\mathcal{P} \mathcal{T}$-symmetric if $a \in \mathbb{R}$ and $\mathcal{P} \mathcal{T} q=q$. In this case, due to Lemma 3.1, the operator H_{a} should be self-adjoint. Therefore, $\mathcal{P} \mathcal{T}$-symmetric nonlocal δ-interactions are realized via self-adjoint operators. The same result is true for the case of \mathcal{P}-self-adjoint operators H_{a} (see Lemma 3.3).
Theorem 5.1. The operator H_{a} defined by (5.2) has an eigenvalue $\lambda=k^{2} \in$ $\mathbb{C} \backslash[0, \infty)$ if and only if the following relation holds:

$$
\begin{equation*}
a=(q, G * q)+2 i k[1+(G * q)(0)]\left[1+\left(G * q^{*}\right)(0)\right], \quad k \in \mathbb{C}_{+} \tag{5.4}
\end{equation*}
$$

Proof. If $q=q_{1}$ and $q_{2}=0$, then the Weyl-Titchmarsh function (4.5) has the form

$$
W_{\lambda}=\left[\begin{array}{cc}
(q, G * q)+r_{11} & -\frac{2 i}{k}\left(G^{\prime} * q^{*}\right)(0) \\
-\frac{2 i}{k}\left(G^{\prime} * q\right)(0) & \frac{2 i}{k}
\end{array}\right],
$$

where $r_{11}=2 i k[1+(G * q)(0)]\left[1+\left(G * q^{*}\right)(0)\right]+\frac{2 i}{k}\left(G^{\prime} * q\right)(0)\left(G^{\prime} * q^{*}\right)(0)$. By virtue of (4.2), $\lambda \in \sigma_{p}\left(H_{a}\right)$ if and only if $\operatorname{det}\left(\mathbf{T}-W_{\lambda}\right)=0$, where $\mathbf{T}=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$. The direct calculation of $\operatorname{det}\left(\mathbf{T}-W_{\lambda}\right)$ in the latter equation gives (5.4).

Each operator H_{a} satisfies the relation $S_{\min } \subset H_{a} \subset S_{\max }$ because $H_{a}=H_{\mathbf{T}}$ with the matrix \mathbf{T} determined above. This important general relation (which holds for any $H_{\mathbf{T}}$) can be made more precise for the particular case of operators H_{a}. Indeed, it follows from (5.3) that the H_{a} 's are extensions of the following operator:

$$
\widetilde{S}_{\min } f=-\frac{d^{2} f}{d x^{2}}, \quad \mathcal{D}\left(\widetilde{S}_{\min }\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): \begin{array}{c}
f_{s}(0)=f_{r}(0)=0 \tag{5.5}\\
f_{s}^{\prime}(0)=(q, f)
\end{array}\right\} .
$$

It is easy to see (comparing $\mathcal{D}\left(\widetilde{S}_{\text {min }}\right)$ with the domain $\mathcal{D}\left(S_{\text {min }}\right)$ determined by (2.12)) that $\widetilde{S}_{\min }$ is an extension of $S_{\min }$, that is, $S_{\min } \subset \widetilde{S}_{\min }$. Moreover, the operator $\widetilde{S}_{\text {min }}$ is symmetric. This fact follows from Green's identity (4.2) because $\Gamma_{1} f=0$ for all $f \in \mathcal{D}\left(\widetilde{S}_{\text {min }}\right)$.

Denote $\widetilde{S}_{\text {max }}=\widetilde{S}_{\text {min }}^{\dagger}$. The calculation of the adjoint operator gives

$$
\widetilde{S}_{\max } f=-\frac{d^{2} f}{d x^{2}}+f_{r}(0) q(x), \quad \mathcal{D}\left(\widetilde{S}_{\max }\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): f_{s}(0)=0\right\}
$$

It is easy to check that $S_{\text {min }} \subset \widetilde{S}_{\text {min }} \subset H_{a} \subset \widetilde{S}_{\text {max }} \subset S_{\text {max }}$. Thus, H_{a} is a proper extension of the symmetric operator $\widetilde{S}_{\text {min }}$. Furthermore, an elementary analysis shows that:
(i) the kernel subspace $\operatorname{ker}\left(\widetilde{S}_{\max }-\lambda I\right)$ is 1-dimensional and that it is generated by the function (cf. Lemma 4.1)

$$
\begin{equation*}
u_{\lambda}(x)=-(G * q)(x)-2 i k[1+(G * q)(0)] G(x) \tag{5.6}
\end{equation*}
$$

(ii) the triple $\left(\mathbb{C}, \widetilde{\Gamma}_{0}, \widetilde{\Gamma}_{1}\right)$, where

$$
\begin{equation*}
\widetilde{\Gamma}_{0} f=f_{r}(0), \quad \widetilde{\Gamma}_{1} f=f_{s}^{\prime}(0)-(q, f), \quad f \in \mathcal{D}\left(\widetilde{S}_{\max }\right) \tag{5.7}
\end{equation*}
$$

is the boundary triplet of $\widetilde{S}_{\text {max }}$ and

$$
\begin{equation*}
\widetilde{\Gamma}_{0} u_{\lambda}=1, \quad \widetilde{\Gamma}_{1} u_{\lambda}=(q, G * q)+2 i k[1+(G * q)(0)]\left[1+\left(G * q^{*}\right)(0)\right] \tag{5.8}
\end{equation*}
$$

where u_{λ} is determined by (5.6);
(iii) the operators H_{a} initially defined by (5.2) and (5.3) can be rewritten in terms of the boundary triplet $\left(\mathbb{C}, \widetilde{\Gamma}_{0}, \widetilde{\Gamma}_{1}\right)$:

$$
\begin{equation*}
H_{a}=\widetilde{S}_{\max } \upharpoonright_{\mathcal{D}\left(H_{a}\right)}, \quad \mathcal{D}\left(H_{a}\right)=\left\{f \in \mathcal{D}\left(\widetilde{S}_{\max }\right): a \widetilde{\Gamma}_{0} f=\widetilde{\Gamma}_{1} f\right\} \tag{5.9}
\end{equation*}
$$

(iv) the operator

$$
\widetilde{H}_{\infty}=\widetilde{S}_{\max } \upharpoonright_{\mathcal{D}\left(\widetilde{H}_{\infty}\right)}, \quad \mathcal{D}\left(\widetilde{H}_{\infty}\right)=\left\{f \in \mathcal{D}\left(\widetilde{S}_{\max }\right): \widetilde{\Gamma}_{0} f=0\right\}
$$

is positive self-adjoint and its spectrum $\sigma\left(\widetilde{H}_{\infty}\right)=[0, \infty)$ is purely continuous.
The items (i)-(iv) allow one to simplify the investigation of H_{a}. First of all we note that the Weyl-Titchmarsh function \widetilde{W}_{λ} associated to the boundary triplet $\left(\mathbb{C}, \widetilde{\Gamma}_{0}, \widetilde{\Gamma}_{1}\right)$ is a holomorphic function on $\rho\left(\widetilde{H}_{\infty}\right)=\mathbb{C} \backslash[0, \infty)$ and that, due to (5.8), it has the form

$$
\begin{equation*}
\widetilde{W}_{\lambda}=\widetilde{\Gamma}_{1} u_{\lambda}=(q, G * q)+2 i k[1+(G * q)(0)]\left[1+\left(G * q^{*}\right)(0)\right] . \tag{5.10}
\end{equation*}
$$

The obtained formula immediately justifies (5.4) because $\lambda \in \mathbb{C} \backslash[0, \infty)$ is an eigenvalue of H_{a} if and only if $\operatorname{det}\left(a-\widetilde{W}_{\lambda}\right)=0$ (or, which is equivalent, if $a=\widetilde{W}_{\lambda}$). The latter identity shows that at least one of the subspaces $\mathbb{C}_{ \pm}$belongs to $\rho\left(H_{a}\right)$. Indeed, if $a \in \mathbb{R}$, then $\rho\left(H_{a}\right) \supset \mathbb{C}_{ \pm}$. If $a \in \mathbb{C} \backslash \mathbb{R}$, then only nonreal eigenvalues of H_{a} might be in $\mathbb{C}_{ \pm}$. Let us assume that $\lambda_{ \pm} \in \sigma_{p}\left(H_{a}\right)$ with $\operatorname{Im} \lambda_{+}>0$ and $\operatorname{Im} \lambda_{-}<0$. Then, simultaneously, $\operatorname{Im} a>0$ and $\operatorname{Im} a<0$ (since $\widetilde{W}_{\lambda \pm}=a$
and $(\operatorname{Im} \lambda)\left(\operatorname{Im} \widetilde{W}_{\lambda}\right)>0$ for $\operatorname{Im} \lambda \neq 0$; see the Appendix), which is impossible. Therefore, at least one of the $\mathbb{C}_{ \pm}$'s does not belong to $\sigma\left(H_{a}\right)$. This result is not true for the general case of one-point interactions considered in Section 2. For instance, if $q_{1}=q_{2}=0$ and $a=d=0, b c=4$, then the characteristic equation (4.6) vanishes and the eigenvalues of $H_{\mathbf{T}}$ fill the whole domain $\mathbb{C} \backslash[0, \infty)$.

Corollary 5.2. The existence of a real eigenvalue of H_{a} means that H_{a} is a self-adjoint operator in $L_{2}(\mathbb{R})$.

Proof. Let $u_{\lambda} \in L_{2}(\mathbb{R})$ be an eigenfunction of H_{a} corresponding to a real eigenvalue λ. It follows from the definition of $\widetilde{S}_{\text {min }}$ that $\operatorname{ker}\left(\widetilde{S}_{\text {min }}-\lambda I\right)=\{0\}$. Therefore, the domain of H_{a} can be represented as

$$
\mathcal{D}\left(H_{a}\right)=\left\{f=v+c u_{\lambda}: v \in \mathcal{D}\left(\widetilde{S}_{\min }\right), c \in \mathbb{C}\right\}
$$

(since the symmetric operator $\widetilde{S}_{\text {min }}$ has the defect index 1) and

$$
H_{a} f=H_{a}\left(v+c u_{\lambda}\right)=\widetilde{S}_{\min } v+\lambda c u_{\lambda}
$$

Using the last expression we check that $\operatorname{Im}\left(H_{a} f, f\right)=0$ for all $f=v+c u_{\lambda}$ from the domain of H_{a}. Therefore, H_{a} is a self-adjoint operator.

In contrast to the case of ordinary one-point interactions considered in Section 2.1, the operators H_{a} may have real eigenvalues embedded into the continuous spectrum $[0, \infty)$ of \widetilde{H}_{∞}. To see this, we rewrite the function u_{λ} in (5.6) as

$$
u_{\lambda}(x)=\left\{\begin{array}{ll}
A_{k}(x) e^{i k x}+B_{k}(x) e^{-i k x}, & x>0, \tag{5.11}\\
C_{k}(x) e^{i k x}+D_{k}(x) e^{-i k x}, & x<0,
\end{array} \quad \lambda=k^{2},\right.
$$

where

$$
\begin{aligned}
& A_{k}(x)=1+\frac{i}{2 k} \int_{0}^{\infty} e^{i k s} q(s) d s-\frac{i}{2 k} \int_{0}^{x} e^{-i k s} q(s) d s \\
& D_{k}(x)=1+\frac{i}{2 k} \int_{-\infty}^{0} e^{-i k s} q(s) d s-\frac{i}{2 k} \int_{x}^{0} e^{i k s} q(s) d s \\
& B_{k}(x)=-\frac{i}{2 k} \int_{x}^{\infty} e^{i k s} q(s) d s \\
& C_{k}(x)=-\frac{i}{2 k} \int_{-\infty}^{x} e^{-i k s} q(s) d s
\end{aligned}
$$

If $\lambda=k^{2}$ with $k \in \mathbb{C}_{+}$, then the function u_{λ} belongs to $L_{2}(\mathbb{R})$ and it solves the differential equation $-f^{\prime \prime}(x)+f_{r}(0) q(x)=\lambda f(x)$ for $x \neq 0$. According to (5.8) and (5.10), u_{λ} belongs to the domain of definition (5.3) of the operator H_{a} with $a=\widetilde{W}_{\lambda}$. In other words, u_{λ} is the eigenfunction of H_{a}.

If $\lambda=k^{2}$ with $k \in \mathbb{R} \backslash\{0\}$, then the function u_{λ} defined by (5.11) turns out to be a generalized eigenfunction of H_{a}. This means that u_{λ} preserves all the above properties except the property of being in $L_{2}(\mathbb{R})$. It should be noted that u_{λ} may belong to $L_{2}(\mathbb{R})$. In this case, the generalized eigenfunction coincides with the ordinary eigenfunction and the corresponding operator H_{a} will have a positive
eigenvalue $\lambda=k^{2}$. In view of Corollary 5.2 , this phenomenon is possible only for self-adjoint operators H_{a}.

Example 5.3. We have the case of an even function with finite support. Let q be an even function with support in $[-\rho, \rho]$. The elementary calculation in (5.11) gives that, for all $|x|>\rho$,

$$
u_{\lambda}(x)=\beta_{k} e^{i k|x|}, \quad \beta_{k}=1-\frac{1}{k} \int_{0}^{\rho} \sin k s q(s) d s
$$

It is easy to see that u_{λ} will be in $L_{2}(\mathbb{R})$ if and only if $\beta_{k}=0$. If $k \in \mathbb{R} \backslash\{0\}$ is a solution of the last equation, then u_{λ} turns out to be an eigenfunction of the self-adjoint operator H_{a}, where $a=\widetilde{W}_{\lambda}$ and \widetilde{W}_{λ} is formally defined by (5.10) with $\lambda=k^{2} \in(0, \infty)$. It should be noted that the case of odd functions with finite support is completely different. Indeed, if q is odd with the support in $[-\rho, \rho]$, then

$$
u_{\lambda}(x)= \begin{cases}\left(1-\frac{1}{k} \int_{0}^{\rho} \sin k s q(s) d s\right) e^{i k x}, & x>\rho \\ \left(1+\frac{1}{k} \int_{0}^{\rho} \sin k s q(s) d s\right) e^{-i k x}, & x<-\rho\end{cases}
$$

Obviously, such a function u_{λ} does not belong to $L_{2}(\mathbb{R})$ and it cannot be an eigenfunction of H_{a}. Therefore, in the case of an odd function q with finite support, the corresponding operators $H_{a}(a \in \mathbb{C})$ have no positive eigenvalues.

Let us consider the simplest example of an even function

$$
q(x)=Z \chi_{[-\rho, \rho]}(x)=\left\{\begin{array}{ll}
Z, & x \in[-\rho, \rho], \tag{5.12}\\
0, & x \in \mathbb{R} \backslash[-\rho, \rho],
\end{array} \quad Z \in \mathbb{R}, \rho>0\right.
$$

The characteristic equation $\beta_{k}=0$ takes the form $Z(1-\cos k \rho)=k^{2}$. Let $k_{0} \in$ $\mathbb{R} \backslash\{0\}$ be the solution of this equation. Then the function

$$
u_{\lambda}(x)=\frac{Z\left(1-\cos k_{0}(\rho-|x|)\right)}{k_{0}^{2}} \chi_{[-\rho, \rho]}(x), \quad \lambda=k_{0}^{2}
$$

belongs to the domain of definition

$$
\mathcal{D}\left(H_{a}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): \begin{array}{l}
f(0-)=f(0+) \equiv f(0) \\
f^{\prime}(0+)-f^{\prime}(0-)=a f(0)+Z \int_{-\rho}^{\rho} f(x) d x
\end{array}\right\}
$$

of the self-adjoint operator $H_{a} f=-\frac{d^{2} f}{d x^{2}}+Z f(0) \chi_{[-\rho, \rho]}(x)$, where

$$
a=\left[u_{\lambda}^{\prime}\right]_{s}(0)-Z \int_{-\rho}^{\rho} u_{\lambda}(x) d x=\frac{Z^{2}}{k_{0}^{2}}\left(\frac{\sin 2 k_{0} \rho}{k_{0}}-2 \rho\right) .
$$

The function u_{λ} is an eigenfunction of H_{a} corresponding to the positive eigenvalue $\lambda=k_{0}^{2}$.
5.2. Exceptional points. The geometric multiplicity of any $\lambda \in \sigma_{p}\left(H_{a}\right)$ is 1 due to (i) and the fact that $\operatorname{ker}\left(\widetilde{S}_{\text {min }}-\lambda I\right)=\{0\}$. The algebraic multiplicity can be calculated with the use of [10, Corollary 4.4].

An eigenvalue of H_{a} is called an exceptional point if its geometrical multiplicity does not coincide with the algebraic multiplicity. The presence of an exceptional point means that H_{a} cannot be self-adjoint for any choice of inner product in $L_{2}(\mathbb{R})$. By virtue of Corollary 5.2 , the operators H_{a} may only have nonreal exceptional points.

Theorem 5.4. A nonreal eigenvalue λ_{0} of H_{a} is an exceptional point if and only if $\widetilde{W}_{\lambda_{0}}^{\prime}=0$, where $\widetilde{W}_{\lambda}^{\prime}=\frac{d}{d \lambda} \widetilde{W}_{\lambda}$.
Proof. The resolvent $\left(\widetilde{H}_{\infty}-\lambda I\right)^{-1}$ of a self-adjoint operator \widetilde{H}_{∞} is a holomorphic operator-valued function on $\rho\left(\widetilde{H}_{\infty}\right)=\mathbb{C} \backslash[0, \infty)$. On the other hand, the resolvent $\left(H_{a}-\lambda I\right)^{-1}$ may be a meromorphic function on $\mathbb{C} \backslash[0, \infty)$ with its poles being eigenvalues of H_{a}.

Let $\lambda_{0} \in \mathbb{C} \backslash \mathbb{R}$ be a pole of $\left(H_{a}-\lambda I\right)^{-1}$. Then its order coincides with the maximal length of Jordan vectors associated with λ_{0} (see, e.g., [9, Chapter 2]). Therefore, the existence of an exceptional point λ_{0} of H_{a} is equivalent to the existence of a pole λ_{0} of order greater than 1 for the meromorphic operator-valued function

$$
\begin{equation*}
\Xi(\lambda)=\left(H_{a}-\lambda I\right)^{-1}-\left(\widetilde{H}_{\infty}-\lambda I\right)^{-1} \tag{5.13}
\end{equation*}
$$

In other words, λ_{0} turns out to be an exceptional point of H_{a} if and only if there exists $v \in L_{2}(\mathbb{R})$ such that

$$
\begin{equation*}
\lim _{\lambda \rightarrow \lambda_{0}}\left\|\left(\lambda-\lambda_{0}\right) \Xi(\lambda) v\right\|=\infty \tag{5.14}
\end{equation*}
$$

It is sufficient to suppose in (5.14) that $v=u_{\lambda^{*}} \in \operatorname{ker}\left(\widetilde{S}_{\max }-\lambda^{*} I\right)$ (since H_{a} and \widetilde{H}_{∞} are extensions of $\widetilde{S}_{\text {min }}$ and, hence, $\left.\Xi(\lambda) \upharpoonright_{\mathcal{R}\left(\widetilde{S}_{\text {min }}-\lambda I\right)}=0\right)$.

It follows from the Krein-Naimark resolvent formula (A.4) that

$$
\begin{equation*}
\left\|\left(\lambda-\lambda_{0}\right) \Xi(\lambda) u_{\lambda^{*}}\right\|=\left|\frac{\lambda-\lambda_{0}}{a-\widetilde{W}_{\lambda}}\right|\left\|\gamma(\lambda) \gamma\left(\lambda^{*}\right)^{\dagger} u_{\lambda^{*}}\right\| \tag{5.15}
\end{equation*}
$$

Let us evaluate the part $\left\|\gamma(\lambda) \gamma\left(\lambda^{*}\right)^{\dagger} u_{\lambda^{*}}\right\|$ in (5.15). In view of (A.3),

$$
\gamma\left(\lambda^{*}\right)^{\dagger} u_{\lambda^{*}}=\widetilde{\Gamma}_{1}\left(\widetilde{H}_{\infty}-\lambda I\right)^{-1} u_{\lambda^{*}}
$$

The operator \widetilde{H}_{∞} is defined in (iv) and it acts as $\widetilde{H}_{\infty} f=-\frac{d^{2} f}{d x^{2}}$ for all functions $f \in \mathcal{D}\left(\widetilde{H}_{\infty}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): f(0-)=f(0+)=0\right\}$. The resolvent of \widetilde{H}_{∞} is well known and it takes an especially simple form for $f=u_{\lambda^{*}}$:

$$
\left(\widetilde{H}_{\infty}-\lambda I\right)^{-1} u_{\lambda^{*}}=\frac{1}{2 i(\operatorname{Im} \lambda)}\left(u_{\lambda}-u_{\lambda^{*}}\right)
$$

The definition of the Weyl-Titchmarsh function \widetilde{W}_{λ} associated to the boundary triplet $\left(\mathbb{C}, \widetilde{\Gamma}_{0}, \widetilde{\Gamma}_{1}\right)$ and the relation $\widetilde{\Gamma}_{0} u_{\lambda}=1$ in (5.8) imply that $\widetilde{\Gamma}_{1} u_{\lambda}=\widetilde{W}_{\lambda}$ for
all $\lambda \in \mathbb{C} \backslash[0, \infty)$. Therefore,

$$
\gamma\left(\lambda^{*}\right)^{\dagger} u_{\lambda^{*}}=\widetilde{\Gamma}_{1}\left(\widetilde{H}_{\infty}-\lambda I\right)^{-1} u_{\lambda^{*}}=\frac{\widetilde{\Gamma}_{1}\left(u_{\lambda}-u_{\lambda^{*}}\right)}{2 i(\operatorname{Im} \lambda)}=\frac{\widetilde{W}_{\lambda}-\widetilde{W}_{\lambda^{*}}}{2 i(\operatorname{Im} \lambda)}=\frac{\operatorname{Im} \widetilde{W}_{\lambda}}{\operatorname{Im} \lambda}
$$

Furthermore, it follows from the definition of γ-field $\gamma(\cdot)$ associated with $\left(\mathbb{C}, \widetilde{\Gamma}_{0}\right.$, $\left.\widetilde{\Gamma}_{1}\right)$ (see the Appendix) and (5.8) that $\gamma(\lambda) c=c u_{\lambda}$ for all $c \in \mathbb{C}$. Hence, $\gamma(\lambda) \gamma\left(\lambda^{*}\right)^{\dagger} u_{\lambda^{*}}=\frac{\operatorname{Im} \widetilde{W}_{\lambda}}{\operatorname{Im} \lambda} u_{\lambda}$. Setting $f_{\lambda}=u_{\lambda}$ in (A.1), we decide that

$$
\begin{equation*}
\left\|u_{\lambda}\right\|^{2}=\frac{\operatorname{Im} \widetilde{W}_{\lambda}}{\operatorname{Im} \lambda}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R} \tag{5.16}
\end{equation*}
$$

Therefore,

$$
\alpha(\lambda)=\left\|\gamma(\lambda) \gamma\left(\lambda^{*}\right)^{\dagger} u_{\lambda^{*}}\right\|=\left(\frac{\operatorname{Im} \widetilde{W}_{\lambda}}{\operatorname{Im} \lambda}\right)^{3 / 2}
$$

The function $\alpha(\lambda)$ is continuous in a neighborhood of the nonreal point λ_{0} and $\alpha\left(\lambda_{0}\right) \neq 0$. Therefore, taking (5.15) into account, we decide that (5.14) is equivalent to the condition

$$
\lim _{\lambda \rightarrow \lambda_{0}} \frac{a-\widetilde{W}_{\lambda}}{\lambda-\lambda_{0}}=0
$$

Remembering that $a=\widetilde{W}_{\lambda_{0}}$ (since λ_{0} is an eigenvalue of H_{a}), we complete the proof.

Remark 5.5. A result of similar type (but in a different context) was published recently in [13, Lemma 2.4].
Corollary 5.6. If H_{a} has an exceptional point λ_{0}, then λ_{0}^{*} is an exceptional point for $H_{a^{*}}$

The proof follows from Theorem 5.4 and the relation $\widetilde{W}_{\lambda}^{*}=\widetilde{W}_{\lambda^{*}}$.
5.3. Spectral singularities. Let H_{a} be a non-self-adjoint operator with real spectrum. The operator H_{a} cannot have real eigenvalues due to Corollary 5.2. Therefore, the spectrum of H_{a} is continuous and it coincides with $[0, \infty)$.

If H_{a} turns out to be self-adjoint with respect to an appropriative choice of inner product of $L_{2}(\mathbb{R})$ (i.e., if H_{a} is similar to a self-adjoint operator in $L_{2}(\mathbb{R})$), then its resolvent $\left(H_{a}-\lambda I\right)^{-1}$ should satisfy the standard evaluation

$$
\begin{equation*}
\left\|\left(H_{a}-\lambda I\right)^{-1} f\right\| \leq \frac{C}{|\operatorname{Im} \lambda|}\|f\| \tag{5.17}
\end{equation*}
$$

where $C>0$ does not depend on $\lambda \in \mathbb{C} \backslash \mathbb{R}$ and $f \in L_{2}(\mathbb{R})$.
The case where H_{a} is not similar to a self-adjoint operator in $L_{2}(\mathbb{R})$ deals with the existence of special spectral points of H_{a} which are impossible for the spectra of self-adjoint operators. Traditionally, these spectral points are called spectral singularities if they are located on the continuous spectrum of H_{a}. This particular role pertaining to spectral singularities was discovered for the first time by Naimark [26]. Recently, various aspects of spectral singularities, including their
physical meaning and possible practical applications, have been analyzed with a wealth of technical tools (see, e.g., [20], [25]).

It is natural to suppose that a spectral singularity $\lambda_{0} \in(0, \infty)$ of H_{a} is characterized by atypical behavior of the resolvent $\left(H_{a}-\lambda I\right)^{-1}$ in a neighborhood of λ_{0}. This assumption leads to the following definition: a positive number λ_{0} is called a spectral singularity of H_{a} if there exists $f \in L_{2}(\mathbb{R})$ such that the evaluation (5.17) does not hold when a nonreal λ tends to λ_{0}.

Theorem 5.7. Let $\lambda_{0} \in(0, \infty)$, and let there exist a sequence of nonreal λ_{n} 's such that $\lambda_{n} \rightarrow \lambda_{0}$ and $\lim _{n \rightarrow \infty} \widetilde{W}_{\lambda_{n}}=a \in \mathbb{C} \backslash \mathbb{R}$. Then λ_{0} is a spectral singularity of the non-self-adjoint operators H_{a} and $H_{a^{*}}$.

Proof. The inequality (5.17) is equivalent to the inequality

$$
\begin{equation*}
\|\Xi(\lambda) f\| \leq \frac{C}{|\operatorname{Im} \lambda|}\|f\| \tag{5.18}
\end{equation*}
$$

where $\Xi(\lambda)$ is defined by (5.13). Moreover, it follows from the proof of Theorem 5.4 that it is sufficient to verify (5.18) for $f=u_{\lambda^{*}}$ only. By virtue of (5.15) and the proof of Theorem 5.4,

$$
\begin{equation*}
\left\|\Xi(\lambda) u_{\lambda^{*}}\right\|=\frac{\left\|\gamma(\lambda) \gamma\left(\lambda^{*}\right)^{\dagger} u_{\lambda^{*}}\right\|}{\left|a-\widetilde{W}_{\lambda}\right|}=\frac{\operatorname{Im} \widetilde{W}_{\lambda}}{\operatorname{Im} \lambda} \frac{\left\|u_{\lambda}\right\|}{\left|a-\widetilde{W}_{\lambda}\right|} . \tag{5.19}
\end{equation*}
$$

It follows from (5.16) that $\left\|u_{\lambda}\right\|=\left\|u_{\lambda^{*}}\right\|$. Replacing $\left\|u_{\lambda}\right\|$ by $\left\|u_{\lambda^{*}}\right\|$ in (5.19), we rewrite (5.18) in the following equivalent form:

$$
\begin{equation*}
\frac{\left|\operatorname{Im} \widetilde{W}_{\lambda}\right|}{\left|a-\widetilde{W}_{\lambda}\right|} \leq C, \quad \lambda \in \mathbb{C} \backslash \mathbb{R} \tag{5.20}
\end{equation*}
$$

If the condition of Theorem 5.7 is satisfied, then the inequality (5.20) cannot be true in a neighborhood of λ_{0}. Therefore, λ_{0} should be a spectral singularity of H_{a}. The same result holds for $H_{a^{*}}$ if we consider the sequences $\lambda_{n}^{*} \rightarrow \lambda_{0}$, $W_{\lambda_{n}^{*}}=W_{\lambda_{n}}^{*} \rightarrow a^{*}$ and take into account that $H_{a}^{\dagger}=H_{a^{*}}$.

If $\lambda=k^{2}$ with $k \in \mathbb{R} \backslash\{0\}$, then the formula (5.11) allows one to define two functions $u_{\lambda}^{ \pm}$corresponding to positive/negative values of k, respectively. In this case, the formula

$$
\widetilde{W}_{\lambda}^{ \pm}=\left[u_{\lambda}^{ \pm^{\prime}}\right]_{s}(0)-\left(q, u_{\lambda}^{ \pm}\right)=2 i k\left(1+\frac{i}{k} \int_{0}^{\infty} e^{i k s} q^{\mathrm{ev}}(s) d s\right)-\left(q, u_{\lambda}^{ \pm}\right)
$$

($q^{\text {ev }}$ is the even part of q) gives two values of the Weyl-Titchmarsh function \widetilde{W}_{λ} on $(0, \infty)$.

Let q be chosen such that the $\widetilde{W}_{\lambda}^{ \pm}$'s are well posed (i.e., $\widetilde{W}_{\lambda}^{ \pm} \neq \infty$). Then, the functions $\widetilde{W}_{\lambda}^{ \pm}$can be interpreted as limits on $(0, \infty)$ of the holomorphic functions \widetilde{W}_{λ} considered on $\mathbb{C}_{ \pm}$, respectively. Taking the relation $\widetilde{W}_{\lambda}^{*}=\widetilde{W}_{\lambda^{*}}, \lambda \in \mathbb{C} \backslash[0, \infty)$ into account, we deduce that $\left(\widetilde{W}_{\lambda}^{+}\right)^{*}=\widetilde{W}_{\lambda}^{-}$for $\lambda>0$. This relation and the definition of $\widetilde{W}_{\lambda}^{ \pm}$imply that u_{λ}^{+}and u_{λ}^{-}are generalized eigenfunctions of the operators H_{a} and $H_{a^{*}}$, respectively, with $a=\widetilde{W}_{\lambda}^{+}$.

If $a=\widetilde{W}_{\lambda}^{+}$is nonreal, then, due to Theorem 5.7, λ is a spectral singularity of the non-self-adjoint operators H_{a} and $H_{a^{*}}$. The corresponding generalized eigenfunctions coincide with u_{λ}^{+}and u_{λ}^{-}. If $a=\widetilde{W}_{\lambda}^{+}$is real, then the evaluation (5.17) holds (since H_{a} is self-adjoint) and λ cannot be a spectral singularity of H_{a}.

6. Examples

6.1. Ordinary δ-interaction. This simplest case corresponds to $q=0$. The operators $H_{a}=-\frac{d^{2}}{d x^{2}}$ have the domains

$$
\mathcal{D}\left(H_{a}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): \begin{array}{l}
f(0-)=f(0+) \equiv f(0) \\
f^{\prime}(0+)-f^{\prime}(0-)=a f(0)
\end{array}\right\}
$$

The Weyl-Titchmarsh function has the form $\widetilde{W}_{\lambda}=2 i k=2 i \sqrt{\lambda}$. There are no exceptional points for operators H_{a} because $\widetilde{W}_{\lambda}^{\prime}=i / \sqrt{\lambda}$ does not vanish on $\mathbb{C} \backslash[0, \infty)$.

The limit functions $\widetilde{W}_{\lambda}^{ \pm}=2 i k, k>0 / k<0$ take nonreal values. Hence, the operators $H_{\widetilde{W}_{\lambda}^{+}}$and $H_{\widetilde{W}_{\lambda}^{-}}$have the spectral singularity $\lambda=k^{2}$.

The ordinary δ-interactions have been well studied (see [19], [22]), and the evolution of spectral properties of H_{a} when a runs \mathbb{C} can be illustrated as follows:

> \ self-adjointness
> \& spectral singularities (zero point is excluded)
> nonreal eigenvalues
> similarity to self-adjoint operator
6.2. The case of an odd function. Let q be an odd function. Then the WeylTitchmarsh function \widetilde{W}_{λ} takes the especially simple form

$$
\begin{equation*}
\widetilde{W}_{\lambda}=2 i k-\left(q, u_{\lambda}\right)=2 i k+(q, G * q), \quad \lambda=k^{2}, k \in \mathbb{C}_{+} \tag{6.1}
\end{equation*}
$$

The last equality in (6.1) follows from (5.10) since $(G * q)(0)=\left(G * q^{*}\right)(0)=0$ for odd functions q, while the first one is the consequence of (5.7) and the fact that $\left[u_{\lambda}^{\prime}\right]_{s}(0)=2 i k[1+(G * q)(0)]=2 i k$.

Let us consider, for simplicity, the odd function

$$
q(x)=Z \operatorname{sign}(x) \chi_{[-\rho, \rho]}(x)=\left\{\begin{array}{ll}
Z, & 0 \leq x \leq \rho \\
-Z, & -\rho \leq x<0, \\
0, & x \in \mathbb{R} \backslash[-\rho, \rho]
\end{array} \quad Z \in \mathbb{C}, \rho>0\right.
$$

The corresponding operators $H_{a} f=-\frac{d^{2} f}{d x^{2}}+f(0) Z \operatorname{sign}(x) \chi_{[-\rho, \rho]}(x)$ with domains of definition
$\mathcal{D}\left(H_{a}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): \begin{array}{l}f(0-)=f(0+) \equiv f(0) \\ f^{\prime}(0+)-f^{\prime}(0-)=a f(0)+Z^{*} \int_{-\rho}^{\rho} \operatorname{sign}(x) f(x) d x\end{array}\right\}$
have no positive eigenvalues (see Example 5.3). After the substitution of q into (6.1) and elementary calculations with the use of (5.11), we obtain the explicit expression of the Weyl-Titchmarsh function

$$
\begin{equation*}
\widetilde{W}_{\lambda}=2 i k-\frac{|Z|^{2}}{i k^{3}}\left[\left(e^{i k \rho}-2\right)^{2}+2 i k \rho-1\right], \quad \lambda=k^{2}, k \in \mathbb{C}_{+} \tag{6.2}
\end{equation*}
$$

The limit functions $\widetilde{W}_{\lambda}^{ \pm}$are determined by (6.2) for $k>0$ and $k<0$, respectively. It is easy to check that the imaginary part of $\widetilde{W}_{\lambda}^{ \pm}$,

$$
\operatorname{Im} \widetilde{W}_{\lambda}^{ \pm}=2 k+\frac{|Z|^{2}}{k^{3}}\left(2 \cos ^{2} k \rho-4 \cos k \rho+2\right)
$$

does not vanish when k runs $\mathbb{R} \backslash\{0\}$. Hence, any positive λ turns out to be a spectral singularity for some operators H_{a}. Namely, the operators H_{a} and $H_{a^{*}}$ with $a=\widetilde{W}_{\lambda}^{+}$will have the spectral singularity λ.
6.3. The case of an even function $q=c e^{-\mu|x|}(\mu>0)$. The corresponding operators $H_{a} f=-\frac{d^{2} f}{d x^{2}}+f(0) c e^{-\mu|x|}$ have the domains

$$
\mathcal{D}\left(H_{a}\right)=\left\{f \in W_{2}^{2}(\mathbb{R} \backslash\{0\}): \begin{array}{l}
f(0-)=f(0+) \equiv f(0) \\
f^{\prime}(0+)-f^{\prime}(0-)=a f(0)+c^{*} \int_{\mathbb{R}} e^{-\mu|x|} f(x) d x
\end{array}\right\}
$$

The eigenfunctions u_{λ} (see (5.11)) are given by the expression

$$
\begin{equation*}
u_{\lambda}=\left(1-\frac{c}{\mu^{2}+\lambda}\right) e^{i k|x|}+\frac{q(x)}{\mu^{2}+\lambda}, \quad \lambda=k^{2} . \tag{6.3}
\end{equation*}
$$

The Weyl-Titchmarsh function

$$
\begin{equation*}
\widetilde{W}_{\lambda}=2 i k-\left(q, u_{\lambda}\right)=2 i k-\frac{4 \operatorname{Re} c}{\mu-i k}+\frac{\|q\|^{2}}{(\mu-i k)^{2}} \tag{6.4}
\end{equation*}
$$

is defined on $\mathbb{C} \backslash[0, \infty)$ and its limit functions $\widetilde{W}_{\lambda}^{ \pm}$are determined by (6.4) with $k>0$ and $k<0$, respectively. Each $\lambda \in \mathbb{C} \backslash[0, \infty)$ is an eigenvalue of the operator H_{a} with $a=\widetilde{W}_{\lambda}$, and the corresponding eigenfunction is given by (6.3).

It follows from (6.3) that a positive eigenvalue λ exists for some operator H_{a} if and only if $c \geq \mu^{2}$. In this case, $\lambda=c-\mu^{2}$, the corresponding eigenfunction u_{λ} coincides with $\frac{q(x)}{\mu^{2}+\lambda}=e^{-\mu|x|}$, and u_{λ} is an eigenfunction of a self-adjoint operator H_{a} with $a=\widetilde{W_{\lambda}^{ \pm}}=-3 \mu-\frac{\lambda}{\mu}$.

Let us assume for the simplicity that $c \in i \mathbb{R}$ and $\|q\|^{2}=\frac{|c|^{2}}{\mu}=1$. Then

$$
\begin{equation*}
\widetilde{W}_{\lambda}=2 i k+\frac{1}{(\mu-i k)^{2}}=2 i \sqrt{\lambda}+\frac{1}{(\mu-i \sqrt{\lambda})^{2}} . \tag{6.5}
\end{equation*}
$$

If k is real in (6.5), then the imaginary part of $\widetilde{W}_{\lambda}^{ \pm}$,

$$
\operatorname{Im} \widetilde{W}_{\lambda}^{ \pm}=2 k+\frac{2 k \mu}{|\mu-i k|^{2}}
$$

does not vanish when $\lambda=k^{2} \in(0, \infty)$. Hence, any positive λ is a spectral singularity of operators H_{a} and $H_{a^{*}}$ with $a=\widetilde{W}_{\lambda}^{+}$.

It follows from (6.5) that

$$
\widetilde{W}_{\lambda}^{\prime}=\frac{i}{k}\left[1+\frac{1}{(\mu-i k)^{3}}\right]=\frac{i}{\sqrt{\lambda}}\left[1+\frac{1}{(\mu-i \sqrt{\lambda})^{3}}\right] .
$$

Therefore, $\widetilde{W}_{\lambda}^{\prime}=0$ for certain $\lambda \in \mathbb{C} \backslash[0, \infty)$ if and only if $(\mu-i k)^{3}=-1$ for $k \in \mathbb{C}_{+}$. The latter equation has two required solutions,

$$
k_{0}=\frac{\sqrt{3}}{2}+i\left(\frac{1}{2}-\mu\right), \quad k_{1}=-k_{0}^{*}
$$

when $0<\mu<\frac{1}{2}$. By virtue of Theorem 5.4, $\lambda_{0}=k_{0}^{2}$ is an exceptional point of the operator H_{a} with

$$
a=\widetilde{W}_{\lambda_{1}}=2 i k_{0}+\frac{1}{\left(\mu-i k_{0}\right)^{2}}=2 i k_{0}+\frac{\mu-i k_{0}}{\left(\mu-i k_{0}\right)^{3}}=3 i k_{0}-\mu
$$

while $\lambda_{1}=k_{1}^{2}=\lambda_{0}^{*}$ will be an exceptional point of its adjoint $H_{a^{*}}=H_{a}^{\dagger}$ (see Corollary 5.6).

The obtained result shows that the existence of exceptional points for some operators from the collection $\left\{H_{a}\right\}_{a \in \mathbb{C}}$ depends on the behavior of the function $q(x)=c e^{-\mu|x|}$. If $q(x)$ decreases (relatively) slowly on ∞ (the case $0<\mu<\frac{1}{2}$), then there exist two operators H_{a} and H_{a}^{\dagger} with exceptional points λ_{0} and λ_{0}^{*}, respectively.

Appendix: Boundary triplets

Let $S_{\text {min }}$ be a closed symmetric (densely defined) operator in a Hilbert space \mathfrak{H} with inner product (\cdot, \cdot). Denote $S_{\max }=S_{\min }^{\dagger}$. Obviously, $S_{\min } \subset S_{\max }$.

A triplet $\left(\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right)$, where \mathcal{H} is an auxiliary Hilbert space and Γ_{0}, Γ_{1} are linear mappings of $\mathcal{D}\left(S_{\max }\right)$ into \mathcal{H}, is called a boundary triplet of $S_{\max }$ if Green's identity

$$
\left(S_{\max } f, g\right)-\left(f, S_{\max } g\right)=\left(\Gamma_{1} f, \Gamma_{0} g\right)_{\mathcal{H}}-\left(\Gamma_{0} f, \Gamma_{1} g\right)_{\mathcal{H}}, \quad f, g \in \mathcal{D}\left(S_{\max }\right)
$$

is satisfied and the map $\left(\Gamma_{0}, \Gamma_{1}\right): \mathcal{D}\left(S_{\max }\right) \rightarrow \mathcal{H} \oplus \mathcal{H}$ is surjective.
The symmetric operator $S_{\text {min }}$ is the restriction of $S_{\text {max }}$ onto $\mathcal{D}\left(S_{\text {min }}\right)=\{f \in$ $\left.\mathcal{D}\left(S_{\max }\right): \Gamma_{0} f=\Gamma_{1} f=0\right\}$. The defect indices of $S_{\min }$ coincide with the dimension of \mathcal{H}. Boundary triplets of $S_{\max }$ are not determined uniquely and they exist only in the case where the symmetric operator $S_{\min }$ has self-adjoint extensions (see [5], [11], [17], [21] for various generalizations of boundary triplets).

Let $\left(\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right)$ be a boundary triplet of $S_{\max }$. Then the operator

$$
H_{\infty}=S_{\max } \upharpoonright_{\mathcal{D}\left(H_{\infty}\right)}, \quad \mathcal{D}\left(H_{\infty}\right)=\left\{f \in \mathcal{D}\left(S_{\max }\right): \Gamma_{0} f=0\right\}
$$

is a self-adjoint extension of $S_{\text {min }}$. The Weyl-Titchmarsh function W_{λ} associated to the boundary triplet $\left(\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right)$ is defined for all $\lambda \in \rho\left(H_{\infty}\right)$ (see [16]):

$$
W_{\lambda} \Gamma_{0} f_{\lambda}=\Gamma_{1} f_{\lambda}, \quad \forall f_{\lambda} \in \operatorname{ker}\left(S_{\max }-\lambda I\right)
$$

The operator-valued function W_{λ} is holomorphic on $\rho\left(H_{\infty}\right)$ and the adjoint of the operator W_{λ} in \mathcal{H} coincides with $W_{\lambda^{*}}$.

Let $f_{\lambda} \in \operatorname{ker}\left(S_{\max }-\lambda I\right)$. It follows from Green's identity that

$$
\begin{equation*}
(\operatorname{Im} \lambda)\left\|f_{\lambda}\right\|^{2}=\left(\Gamma_{0} f_{\lambda},\left(\operatorname{Im} W_{\lambda}\right) \Gamma_{0} f_{\lambda}\right), \quad \text { where } \operatorname{Im} W_{\lambda}=\frac{W_{\lambda}-W_{\lambda}^{\dagger}}{2 i} \tag{A.1}
\end{equation*}
$$

Therefore, $(\operatorname{Im} \lambda)\left(\operatorname{Im} W_{\lambda}\right)>0$ for nonreal λ. The latter means that W_{λ} is a Herglotz-Nevanlinna function (see [18]).

Let \mathbf{T} be a bounded operator in the auxiliary Hilbert space \mathcal{H}. The operator

$$
H_{\mathbf{T}}=S_{\max } \upharpoonright_{\mathcal{D}\left(H_{\mathbf{T}}\right)}, \quad \mathcal{D}\left(H_{\mathbf{T}}\right)=\left\{f \in \mathcal{D}\left(S_{\max }\right): \mathbf{T} \Gamma_{0} f=\Gamma_{1} f\right\}
$$

is a proper extension of $S_{\min }$ (i.e., $S_{\min } \subset H_{\mathbf{T}} \subset S_{\max }$). Moreover, the adjoint operator $H_{\mathbf{T}}^{\dagger}$ is also a proper extension and $H_{\mathbf{T}}^{\dagger}=H_{\mathbf{T}^{\dagger}}$, where \mathbf{T}^{\dagger} is the adjoint operator of \mathbf{T} in the auxiliary space \mathcal{H}. Hence, the self-adjointness of the unbounded operator $H_{\mathbf{T}}$ in \mathfrak{H} is equivalent to the self-adjointness of the bounded operator \mathbf{T} in the auxiliary space \mathcal{H}.

The spectrum of $H_{\mathbf{T}}$ is described in terms of \mathbf{T} and W_{λ}. Namely (see [16]), $\lambda \in \rho\left(H_{\infty}\right)$ belongs to the point $\sigma_{p}\left(H_{\mathbf{T}}\right)$, to the residual $\sigma_{r}\left(H_{\mathbf{T}}\right)$, and to the continuous $\sigma_{c}\left(H_{\mathbf{T}}\right)$ parts of the spectrum of $H_{\mathbf{T}}$ if and only if 0 belongs to the same parts of the spectrum of $\mathbf{T}-W_{\lambda}$; that is,

$$
\begin{equation*}
\lambda \in \rho\left(H_{\infty}\right) \cap \sigma_{\alpha}\left(H_{\mathbf{T}}\right) \quad \Longleftrightarrow \quad 0 \in \sigma_{\alpha}\left(\mathbf{T}-W_{\lambda}\right), \quad \alpha \in\{p, r, c\} \tag{A.2}
\end{equation*}
$$

For each $\lambda \in \rho\left(H_{\infty}\right)$, the operator Γ_{0} is a bijective mapping of the subspace $\operatorname{ker}\left(S_{\max }-\lambda I\right)$ onto \mathcal{H}. Its bounded inverse

$$
\gamma(\lambda)=\left(\Gamma_{0} \upharpoonright_{\operatorname{ker}\left(S_{\max }-\lambda I\right)}\right)^{-1}: \mathcal{H} \rightarrow \operatorname{ker}\left(S_{\max }-\lambda I\right)
$$

is called the γ-field associated with $\left(\mathcal{H}, \Gamma_{0}, \Gamma_{1}\right)$.
The γ-field $\gamma(\cdot)$ is a holomorphic operator-valued function on $\rho\left(H_{\infty}\right)$ and (see [27, Propositions 14.14, 14.15])

$$
\begin{equation*}
\gamma\left(\lambda^{*}\right)^{\dagger}=\Gamma_{1}\left(H_{\infty}-\lambda I\right)^{-1}, \quad \frac{d}{d \lambda} W_{\lambda}=\gamma\left(\lambda^{*}\right)^{\dagger} \gamma(\lambda) \tag{A.3}
\end{equation*}
$$

where the adjoint operator $\gamma\left(\lambda^{*}\right)^{\dagger}$ maps $\operatorname{ker}\left(S_{\max }-\lambda^{*} I\right)$ into \mathcal{H}. For any $\lambda \in$ $\rho\left(H_{\infty}\right) \cap \rho\left(H_{\mathbf{T}}\right)$, the Krein-Naimark resolvent formula

$$
\begin{equation*}
\left(H_{\mathbf{T}}-\lambda I\right)^{-1}-\left(H_{\infty}-\lambda I\right)^{-1}=\gamma(\lambda)\left(\mathbf{T}-W_{\lambda}\right)^{-1} \gamma\left(\lambda^{*}\right)^{\dagger} \tag{A.4}
\end{equation*}
$$

holds (see [27, Theorem 14.18]).
Acknowledgment. M.Z. was supported by GAČR grant 16-22945S.

References

1. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2nd ed., with an appendix by P. Exner, Amer. Math. Soc., Providence, 2005. Zbl 1078.81003. MR2105735. 923
2. S. Albeverio, R. O. Hryniv, and L. Nizhnik, Inverse spectral problems for non-local Sturm-Liouville operators, Inverse Problems 23 (2007), no. 2, 523-535. Zbl 1121.34014. MR2309662. DOI 10.1088/0266-5611/23/2/005. 924
3. S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators: Solvable Schrödinger Type Operators, London Math. Soc. Lecture Note Ser. 271, Cambridge Univ. Press, Cambridge, 2000. Zbl 0945.47015. MR1752110. DOI 10.1017/CBO9780511758904. 923
4. S. Albeverio and S. Kuzhel, One-dimensional Schrödinger operators with \mathcal{P}-symmetric zerorange potentials, J. Phys. A 38 (2005), no. 22, 4975-4988. Zbl 1070.81048. MR2148637. DOI 10.1088/0305-4470/38/22/019. 924
5. S. Albeverio, S. Kuzhel, and L. Nizhnik, Singular perturbed self-adjoint operators in scales of Hilbert spaces (in Russian), Ukraïn. Mat. Zh. 59 (2007), no. 6, 723-743; English translation in Ukrainian Math. J. 59 (2007), 787-810. Zbl 1150.47013. MR2367916. DOI 10.1007/ s11253-007-0051-y. 941
6. S. Albeverio and L. Nizhnik, Schrödinger operators with nonlocal point interactions, J. Math. Anal. Appl. 332 (2007), no. 2, 884-895. Zbl 1122.47040. MR2324308. DOI 10.1016/ j.jmaa.2006.10.070. 924, 927
7. S. Albeverio and L. Nizhnik, Schrödinger operators with nonlocal potentials, Methods Funct. Anal. Topology. 19 (2013), no. 3, 199-210. Zbl 1289.34237. MR3136727. 924
8. F. Bagarello, J.-P. Gazeau, F. H. Szafraniec, and M. Znojil, eds., Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, Wiley, Hoboken, 2015. Zbl 1329.81021. MR3381694. 924
9. H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Oper. Theory Adv. Appl. 15, Birkhäuser, Basel, 1985. Zbl 0591.47013. MR0878974. 936
10. J. Behrndt, F. Gesztesy, H. Holden, and R. Nichols, Dirichlet-to-Neumann maps, abstract Weyl-Titchmarsh M-functions, and a generalized index of unbounded meromorphic operator-valued functions, J. Differential Equations 261 (2016), no. 6, 3551-3587. Zbl 1350.47009. MR3527638. DOI 10.1016/j.jde.2016.05.033. 936
11. J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal. 243 (2007), no. 2, 536-565. Zbl 1132.47038. MR2289696. DOI 10.1016/j.jfa.2006.10.009. 941
12. J. Behrndt and M. Langer, On the adjoint of a symmetric operator, J. Lond. Math. Soc. (2) $8 \mathbf{8}$ (2010), no. 3, 563-580. Zbl 1209.47010. MR2739056. DOI 10.1112/jlms/jdq040. 927
13. J. Behrndt, L. Leben, F. Martínez-Pería, R. Möws, and C. Trunk, Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces, J. Math. Anal. Appl. 439 (2016), no. 2, 864-895. Zbl 1341.47045. MR3475956. DOI 10.1016/ j.jmaa.2016.03.012. 937
14. C. M. Bender, "Ghost busting: Making sense of non-Hermitian Hamiltonians" in Algebraic Analysis of Differential Equations (Kyoto, 2005), Springer, Tokyo, 2007, 55-66. Zbl 1126.34002. MR2331294. DOI 10.1088/0034-4885/70/6/R03. 924, 928
15. J. Brasche and L. Nizhnik, One-dimensional Schrödinger operators with general point interactions, Methods Funct. Anal. Topology 19 (2013), no. 1, 4-15. Zbl 1289.47089. MR3088074. 924
16. V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95. Zbl 0748.47004. MR1087947. DOI 10.1016/0022-1236(91)90024-Y. 942
17. V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. (N. Y.) 73 (1995), no. 2, 141-242. Zbl 0848.47004.

MR1318517. DOI 10.1007/BF02367240. 941
18. F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61-138. Zbl 0961.30027. MR1784638. DOI 10.1002/ 1522-2616(200010)218:1〈61::AID-MANA61〉3.3.CO;2-4. 942
19. A. Grod and S. Kuzhel, Schrödinger operators with non-symmetric zero-range potentials, Methods Funct. Anal. Topology 20 (2014), no. 1, 34-49. Zbl 1313.81011. MR3242121. 924, 939
20. G. Sh. Guseinov, On the concept of spectral singularities, Pramana J. Phys. 73 (2009), no. $3,587-603$. DOI 10.1007/s12043-009-0111-y. 938
21. A. Kuzhel and S. Kuzhel, Regular Extensions of Hermitian Operators, VSP, Utrecht, 1998. Zbl 0930.47003. MR1687336. 941
22. A. Mostafazadeh, Delta-function potential with a complex coupling, J. Phys. A 39 (2006), no. 43, 13495-13506. Zbl 1105.81031. MR2269700. DOI 10.1088/0305-4470/39/43/008. 924, 939
23. A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 7, 1191-1306. Zbl 1208.81095. MR2749385. DOI 10.1142/S0219887810004816. 924
24. A. Mostafazadeh, Spectral singularities of a general point interaction, J. Phys. A 44 (2011), no. 37, Art. ID 375302. Zbl 1226.81067. MR2826566. DOI 10.1088/1751-8113/44/37/ 375302. 924
25. A. Mostafazadeh, "Physics of spectral singularities" in Geometric Methods in Physics, Trends Math., Birkhäuser/Springer, Cham, 2015, 145-165. Zbl 1337.34088. MR3629670. 938
26. M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis, Amer. Math. Soc. Transl. (2) 16 (1960), 103-193. MR0117382. 937
27. K. Schmüdgen, Unbounded Self-Adjoint Operators on Hilbert Space, Grad. Texts in Math. 265, Springer, Dordrecht, 2012. Zbl 1257.47001. MR2953553. DOI 10.1007/ 978-94-007-4753-1. 927, 942
28. M. Znojil and V. Jakubský, Solvability and PT-symmetry in a double-well model with point interactions, J. Phys. A 38 (2005), no. 22, 5041-5056. Zbl 1072.81058. MR2148642. DOI 10.1088/0305-4470/38/22/024. 924
${ }^{1}$ AGH University of Science and Technology, Kraków 30-059, Poland.
E-mail address: kuzhel@agh.edu.pl
${ }^{2}$ Nuclear Physics Institute ASCR, Hlavní 130, 25068 Řež, Czech Republic.
E-mail address: znojil@ujf.cas.c

[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received Sep. 4, 2016; Accepted Jan. 12, 2017.
 First published online Sep. 11, 2017.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47B25; Secondary 35P05.
 Keywords. 1-dimensional Schrödinger operator, nonlocal one-point interactions, boundary triplet.

