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Abstract. If µ is a positive Borel measure on the interval [0, 1), we let Hµ

be the Hankel matrix Hµ = (µn,k)n,k≥0 with entries µn,k = µn+k, where, for
n = 0, 1, 2, . . . , µn denotes the moment of order n of µ. This matrix formally
induces the operator

Hµ(f)(z) =

∞∑
n=0

( ∞∑
k=0

µn,kak

)
zn

on the space of all analytic functions f(z) =
∑∞

k=0 akz
k, in the unit disk D.

This is a natural generalization of the classical Hilbert operator. The action
of the operators Hµ on Hardy spaces has been recently studied. This article is
devoted to a study of the operators Hµ acting on certain conformally invariant
spaces of analytic functions on the disk such as the Bloch space, the space
BMOA, the analytic Besov spaces, and the Qs-spaces.

1. Introduction

Let D = {z ∈ C : |z| < 1} denote the open unit disk in the complex plane
C, and let Hol(D) be the space of all analytic functions in D endowed with the
topology of uniform convergence in compact subsets. We also let Hp (0 < p ≤ ∞)
be the classical Hardy spaces. (See [18] for notation and results regarding Hardy
spaces.)
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If µ is a finite positive Borel measure on [0, 1) and n = 0, 1, 2, . . . , we let µn

denote the moment of order n of µ (i.e., µn =
∫
[0,1)

tn dµ(t)), and we let Hµ be

the Hankel matrix (µn,k)n,k≥0 with entries µn,k = µn+k. The matrix Hµ formally
induces an operator, which will also be called Hµ, on spaces of analytic functions
by its action on the Taylor coefficients: an 7→

∑∞
k=0 µn,kak, n = 0, 1, 2, . . . . To be

precise, if f(z) =
∑∞

k=0 akz
k ∈ Hol(D), we define

Hµ(f)(z) =
∞∑
n=0

( ∞∑
k=0

µn,kak

)
zn

whenever the right-hand side makes sense and defines an analytic function in D.
If µ is the Lebesgue measure on [0, 1), then the matrix Hµ reduces to the

classical Hilbert matrix H = ((n+ k + 1)−1)n,k≥0, which induces the classical
Hilbert operator H which has been extensively studied recently (see [1], [13], [14],
[16], [24]).

Galanopoulos and Peláez [20] described the measures µ, so that the generalized
Hilbert operator Hµ becomes well defined and bounded on H1. Chatzifountas,
Girela, and Peláez [12] extended this work describing those measures µ for which
Hµ is a bounded operator from Hp into Hq, 0 < p, q < ∞. Obtaining an integral
representation of Hµ plays a basic role in these works. If µ is as above, we will
write

Iµ(f)(z) =

∫
[0,1)

f(t)

1− tz
dµ(t) (1.1)

throughout this article whenever the right-hand side makes sense and defines an
analytic function in D. It turns out that the operators Hµ and Iµ are closely
related. In fact, the authors in [20] and [12] have characterized the measures µ
for which the operator Iµ is well defined in Hp (0 < p < ∞), and it is proved
that for such measures we have Hµ(f) = Iµ(f) for all f ∈ Hp. These measures
are Carleson-type measures.

If I ⊂ ∂D is an arc, then |I| will denote the length of I. The Carleson square

S(I) is defined as S(I) = {reit : eit ∈ I, 1 − |I|
2π

≤ r < 1}. If s > 0 and µ is a
positive Borel measure on D, we will say that µ is an s-Carleson measure if there
exists a positive constant C such that

µ
(
S(I)

)
≤ C|I|s, for any interval I ⊂ ∂D.

If µ satisfies lim|I|→0
µ(S(I))
|I|s = 0, then we say that µ is a vanishing s-Carleson

measure. A 1-Carleson measure (resp., vanishing 1-Carleson measure) will simply
be called a Carleson measure (resp., vanishing Carleson measure). We recall that
Carleson [11] proved that Hp ⊂ Lp(dµ) (0 < p < ∞) if and only if µ is a Carleson
measure. This result was extended by Duren [17] (see also [18, Theorem 9.4]) who
proved that for 0 < p ≤ q < ∞, Hp ⊂ Lq(dµ) if and only if µ is a q/p-Carleson
measure.

Following [32], if µ is a positive Borel measure on D, 0 ≤ α < ∞ and 0 < s < ∞,
then we say that µ is an α-logarithmic s-Carleson measure if there exists a positive
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constant C such that

µ(S(I))(log 2π
|I| )

α

|I|s
≤ C for any interval I ⊂ ∂D.

If µ(S(I))(log 2π
|I| )

α = o(|I|s), as |I| → 0, we say that µ is a vanishing α-logarithmic

s-Carleson measure.
A positive Borel measure µ on [0, 1) can be seen as a Borel measure on D by

identifying it with the measure µ̃ defined by

µ̃(A) = µ
(
A ∩ [0, 1)

)
for any Borel subset A of D.

In this way, a positive Borel measure µ on [0, 1) is an s-Carleson measure if and
only if there exists a positive constant C such that

µ
(
[t, 1)

)
≤ C(1− t)s, 0 ≤ t < 1,

and we have similar statements for vanishing s-Carleson measures and for α-
logarithmic s-Carleson and vanishing α-logarithmic s-Carleson measures.

Our main aim in this article is to study the operators Hµ acting on conformally
invariant spaces. It is a standard fact that the set of all disk automorphisms (i.e.,
all one-to-one analytic maps f of D onto itself), denoted Aut(D), coincides with
the set of all Möbius transformations of D onto itself:

Aut(D) =
{
λϕa : |a| < 1, |λ| = 1

}
,

where ϕa(z) = (a−z)/(1−az). A space X of analytic functions in D, defined via a
seminorm ρ, is said to be conformally invariant or Möbius invariant if, whenever
f ∈ X, then also f ◦ ϕ ∈ X for any ϕ ∈ Aut(D) and moreover, ρ(f ◦ ϕ) ≤ Cρ(f)
for some positive constant C and all f ∈ X. (A great deal of information on
conformally invariant spaces can be found in [5], [15], and [30].)

We begin our consideration with the Bloch space and BMOA (the space of
analytic functions of bounded mean oscillation). The Bloch space B consists of
all analytic functions f in D with bounded invariant derivative:

f ∈ B ⇔ ‖f‖B
def
=

∣∣f(0)∣∣+ sup
z∈D

(
1− |z|2

)∣∣f ′(z)
∣∣ < ∞.

The little Bloch space B0 is the closure of the polynomials in the above norm of
B and consists of all functions f analytic in D for which

lim
|z|→1

(
1− |z|2

)∣∣f ′(z)
∣∣ = 0.

A classical source for the Bloch space is [3]; see also [34]. Rubel and Timoney [30]
proved that B is the biggest “natural” conformally invariant space. The space
BMOA consists of those functions f in H1 whose boundary values have bounded
mean oscillation on the unit circle ∂D as defined by John and Nirenberg. There
are many characterizations of BMOA functions. Let us mention the following.

If f is an analytic function in D, then f ∈ BMOA if and only if

‖f‖BMOA
def
=

∣∣f(0)∣∣+ ‖f‖? < ∞,
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where

‖f‖?
def
= sup

a∈D

∥∥f ◦ ϕa − f(a)
∥∥
H2 .

It is clear that the seminorm ‖ · ‖? is conformally invariant. If

lim
|a|→1

∥∥f ◦ ϕa − f(a)
∥∥
H2 = 0,

then we say that f belongs to the space VMOA (analytic functions of vanishing
mean oscillation). (We mention [9] and [21] as general references for the spaces
BMOA and VMOA.) Let us recall that

H∞ ( BMOA (
⋂

0<p<∞

Hp and BMOA ( B.

Other important Möbius invariant spaces are the analytic Besov spaces Bp (1 <
p < ∞) and the Qs-spaces (s > 0). These spaces will be considered in Section 3.

We close this section by noting that, as usual, we will be using the convention
that C = C(p, α, q, β, . . . ) denotes a positive constant which depends only upon
the displayed parameters p, α, q, β . . . (which sometimes will be omitted) but the
value of C may not necessarily be the same at different occurrences. Moreover,
for two real-valued functions E1, E2 we will write E1 . E2 or E1 & E2, if there
exists a positive constant C independent of the arguments such that E1 ≤ CE2,
respectively, E1 ≥ CE2. If we have E1 . E2 and E1 & E2 simultaneously, then
we say that E1 and E2 are equivalent and we write E1 � E2.

2. The operator Hµ acting on BMOA and the Bloch space

We start by characterizing those µ’s for which the operator Iµ is well defined
in BMOA and in the Bloch space. It turns out that they coincide.

Theorem 2.1. Let µ be a positive Borel measure on [0, 1). Then the following
conditions are equivalent.

(i) The measure µ satisfies
∫
[0,1)

log 2
1−t

dµ(t) < ∞.

(ii) For any given f ∈ B, the integral in (1.1) converges for all z ∈ D and the
resulting function Iµ(f) is analytic in D.

(iii) For any given f ∈ BMOA, the integral in (1.1) converges for all z ∈ D
and the resulting function Iµ(f) is analytic in D.

Proof. (i) ⇒ (ii). It is well known (see [3, p. 13]) that there exists a positive
constant C such that∣∣f(z)∣∣ ≤ C‖f‖B log

2

1− |z|
, (z ∈ D), for every f ∈ B. (2.1)

Assume (i), and set A =
∫
[0,1)

log 2
1−t

dµ(t). Using (2.1) we see that∫
[0,1)

∣∣f(t)∣∣ dµ(t) ≤ C‖f‖B
∫
[0,1)

log
2

1− t
dµ(t) = AC‖f‖B, f ∈ B. (2.2)
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This implies that∫
[0,1)

|f(t)|
|1− tz|

dµ(t) ≤ AC‖f‖B
1− |z|

, (z ∈ D), f ∈ B. (2.3)

Using (2.2), (2.3), and Fubini’s theorem, we see that if f ∈ B, then
• for every n ∈ N, the integral

∫
[0,1)

tnf(t) dµ(t) converges absolutely and

sup
n≥0

∣∣∣∫
[0,1)

tnf(t) dµ(t)
∣∣∣ < ∞;

• the integral
∫
[0,1)

f(t)
1−tz

dµ(t) converges absolutely, and∫
[0,1)

f(t)

1− tz
dµ(t) =

∞∑
n=0

(∫
[0,1)

tnf(t) dµ(t)
)
zn, z ∈ D.

Thus, if f ∈ B, then Iµ(f) is a well-defined analytic function in D and

Iµ(f)(z) =
∞∑
n=0

(∫
[0,1)

tnf(t) dµ(t)
)
zn, z ∈ D.

(ii) ⇒ (iii) is clear because BMOA ⊂ B.
(iii) ⇒ (i). Suppose (iii). Since the function F (z) = log 2

1−z
belongs to BMOA,

Iµ(F )(z) is well defined for every z ∈ D. In particular,

Iµ(F )(0) =

∫
[0,1)

log
2

1− t
dµ(t)

is a complex number. Since µ is a positive measure and log 2
1−t

> 0 for all t ∈ [0, 1),
(i) follows. �

Our next aim is characterizing the measures µ so that Iµ is bounded in BMOA
or B and seeing whether or not Iµ and Hµ coincide for such measures. We have
the following results.

Theorem 2.2. Let µ be a positive Borel measure on [0, 1) with
∫
[0,1)

log 2
1−t

dµ(t) <

∞. Then the following three conditions are equivalent.

(i) The measure ν defined by dν(t) = log 2
1−t

dµ(t) is a Carleson measure.
(ii) The operator Iµ is bounded from B into BMOA.
(iii) The operator Iµ is bounded from BMOA into itself.

Theorem 2.3. Let µ be a positive Borel measure on [0, 1) with
∫
[0,1)

log 2
1−t

dµ(t) <

∞. If the measure ν defined by dν(t) = log 2
1−t

dµ(t) is a Carleson measure, then
Hµ is well defined on the Bloch space and

Hµ(f) = Iµ(f), for all f ∈ B.

Theorem 2.2 and Theorem 2.3 together yield the following.

Theorem 2.4. Let µ be a positive Borel measure on [0, 1) such that the measure
ν defined by dν(t) = log 2

1−t
dµ(t) is a Carleson measure. Then the operator Hµ

is bounded from B into BMOA.
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Proof of Theorem 2.2. Since
∫
[0,1)

log 2
1−t

dµ(t) < ∞, (2.1) implies that∫
[0,1)

∣∣f(t)∣∣ dµ(t) < ∞, for all f ∈ B,

and this implies that∫ 2π

0

∫
[0,1)

∣∣∣f(t)g(eiθ)
1− reiθt

∣∣∣ dµ(t) dθ < ∞, 0 ≤ r < 1, f ∈ B, g ∈ H1.

Using this, Fubini’s theorem, and Cauchy’s integral representation ofH1-functions
(see [18, Theorem 3.6]), we deduce that whenever f ∈ B and g ∈ H1, we have∫ 2π

0

Iµ(f)(re
iθ)g(eiθ) dθ =

∫ 2π

0

(∫
[0,1)

f(t) dµ(t)

1− reiθt

)
g(eiθ) dθ

=

∫
[0,1)

f(t)
(∫ 2π

0

g(eiθ) dθ

1− reiθt

)
dµ(t)

=

∫
[0,1)

f(t)g(rt) dµ(t), 0 ≤ r < 1. (2.4)

(i) ⇒ (ii). Assume that ν is a Carleson measure, and take f ∈ B and g ∈ H1.
Using (2.4) and (2.1), we obtain∣∣∣∫ 2π

0

Iµ(f)(re
iθ)g(eiθ) dθ

∣∣∣ = ∣∣∣∫
[0,1)

f(t)g(rt) dµ(t)
∣∣∣

. ‖f‖B
∫
[0,1)

∣∣g(rt)∣∣ log 2

1− t
dµ(t)

= ‖f‖B
∫
[0,1)

∣∣g(rt)∣∣ dν(t).
Since ν is a Carleson measure, we have∫

[0,1)

∣∣g(rt)∣∣ dν(t) . ‖gr‖H1 ≤ ‖g‖H1 .

Here, gr is the function defined (as usual) by gr(z) = g(rz) (z ∈ D). Thus, we
have proved that∣∣∣∫ 2π

0

Iµ(f)(re
iθ)g(eiθ) dθ

∣∣∣ . ‖f‖B‖g‖H1 , f ∈ B, g ∈ H1.

Using Fefferman’s duality theorem (see [21, Theorem 7.1]), we deduce that if
f ∈ B, then Iµ(f) ∈ BMOA and∥∥Iµ(f)∥∥BMOA

. ‖f‖B.

(ii) ⇒ (iii) is trivial because BMOA ⊂ B.
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(iii) ⇒ (i). Assume (iii). Then there exists a positive constant A such that
‖Iµ(f)‖BMOA ≤ A‖f‖BMOA for all f ∈ BMOA. Set

F (z) = log
2

1− z
, z ∈ D.

It is well known that F ∈ BMOA. Then Iµ(F ) ∈ BMOA and∥∥Iµ(F )
∥∥
BMOA

≤ A‖F‖BMOA.

Then using again Fefferman’s duality theorem, we obtain that∣∣∣∫ 2π

0

Iµ(F )(reiθ)g(eiθ) dθ
∣∣∣ . ‖g‖H1 , g ∈ H1.

Using (2.4) and the definition of F , this implies that∣∣∣∫
[0,1)]

g(rt) log
2

1− t
dµ(t)

∣∣∣ . ‖g‖H1 , g ∈ H1. (2.5)

Take g ∈ H1. Using Proposition 2 of [12], we know that there exists a function
G ∈ H1 with ‖G‖H1 = ‖g‖H1 and such that∣∣g(s)∣∣ ≤ G(s), for all s ∈ [0, 1).

Using these properties and (2.5) for G, we obtain∫
[0,1)

∣∣g(rt)∣∣ log 2

1− t
dµ(t) ≤

∫
[0,1)

G(rt) log
2

1− t
dµ(t)

≤ C‖Gr‖H1 ≤ C‖G‖H1 = C‖g‖H1

for a certain constant C > 0, independent of g. Letting r tend to 1, it follows
that ∫

[0,1)

∣∣g(t)∣∣ log 2

1− t
dµ(t) . ‖g‖H1 , g ∈ H1.

This is equivalent to saying that ν is a Carleson measure. �

It is worth noting that for µ and ν as in Theorem 2.1, ν being a Carleson
measure is equivalent to µ being a 1-logarithmic 1-Carleson measure. Actually,
we have the following more general result.

Proposition 2.5. Let µ be a positive Borel measure on [0, 1), and let s > 0 and
α ≥ 0. Let ν be the Borel measure on [0, 1) defined by

dν(t) =
(
log

2

1− t

)α

dµ(t).

Then the following two conditions are equivalent:

(a) ν is an s-Carleson measure, and
(b) µ is an α-logarithmic s-Carleson measure.
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Proof. (a) ⇒ (b). Assume (a). Then there exists a positive constant C such that∫
[t,1)

(
log

2

1− u

)α

dµ(u) ≤ C(1− t)s, t ∈ [0, 1).

Using this and the fact that the function u 7→ log 2
1−u

is increasing in [0, 1), we
obtain(

log
2

1− t

)α
∫
[t,1)

dµ(u) ≤
∫
[t,1)

(
log

2

1− u

)α

dµ(u) ≤ C(1− t)s, t ∈ [0, 1).

This shows that µ is an α-logarithmic s-Carleson measure.
(b) ⇒ (a). Assume (b). Then there exists a positive constant C such that(

log
2

1− t

)α

µ
(
[t, 1)

)
≤ C(1− t)s, 0 ≤ t < 1. (2.6)

For 0 ≤ u < 1, set F (u) = µ([0, u))− µ([0, 1)) = −µ([u, 1)). Integrating by parts
and using (2.6), we obtain

ν
(
[t, 1)

)
=

∫
[t,1)

(
log

2

1− u

)α

dµ(u)

=
(
log

2

1− t

)α

µ
(
[t, 1)

)
− lim

u→1−

(
log

2

1− u

)α

µ
(
[u, 1)

)
+ α

∫
[t,1)

µ
(
[u, 1)

)(
log

2

1− u

)α−1 du

1− u

=
(
log

2

1− t

)α

µ
(
[t, 1)

)
+ α

∫
[t,1)

µ
(
[u, 1)

)(
log

2

1− u

)α−1 du

1− u

≤ C(1− t)s + Cα

∫ 1

t

(1− u)s−1

log 2
1−u

du

. (1− t)s, 0 ≤ t < 1.

Thus, ν is an s-Carleson measure. �

The following lemma will be needed in the proof of Theorem 2.3.

Lemma 2.6. Let µ be a positive Borel measure in [0, 1) such that the measure
ν defined by dν(t) = log 1

1−t
dµ(t) is a Carleson measure. Then the sequence of

moments {µn} satisfies

µn = O
( 1

n log n

)
, as n → ∞.

Actually, we will prove the following more general result.

Lemma 2.7. Suppose that 0 ≤ α ≤ β, s ≥ 1, and let µ be a positive Borel
measure on [0, 1) which is a β-logarithmic s-Carleson measure. Then∫

[0,1)

tk
(
log

2

1− t

)α

dµ(t) = O
((log k)α−β

ks

)
, as k → ∞.
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Using Proposition 2.5, Lemma 2.6 follows taking α = 0, β = 1, and s = 1 in
Lemma 2.7.

Proof of Lemma 2.7. Arguing as in the proof of the implication (b) ⇒ (a) of
Proposition 2.5, integrating by parts, and using the fact that µ is a β-logarithmic
1-Carleson measure, we obtain∫

[0,1)

tk
(
log

2

1− t

)α

dµ(t)

= k

∫ 1

0

µ
(
[t, 1)

)
tk−1

(
log

2

1− t

)α

dt

+ α

∫ 1

0

µ
(
[t, 1)

)
tk
(
log

2

1− t

)α−1 dt

1− t

. k

∫ 1

0

(1− t)stk−1
(
log

2

1− t

)α−β

dt

+ α

∫ 1

0

(1− t)s−1tk
(
log

2

1− t

)α−β−1

dt. (2.7)

Now, we note that the weight functions

ω1(t) = (1− t)s
(
log

2

1− t

)α−β

and ω2(t) = (1− t)s−1
(
log

2

1− t

)α−β−1

are regular in the sense of [29, p. 6] (see also [2, Example 2]). Then, using
Lemma 1.3 of [29] and the fact that the ωj’s are also decreasing, we obtain∫ 1

0

(1− t)stk−1
(
log

2

1− t

)α−β

dt .
∫ 1

1− 1
k

(1− t)stk−1
(
log

2

1− t

)α−β

dt

.
(log k)α−β

ks+1

and ∫ 1

0

(1− t)s−1tk
(
log

2

1− t

)α−β−1

dt .
∫ 1

1− 1
n

(1− t)s−1tk
(
log

2

1− t

)α−β−1

dt

.
(log k)α−β−1

ks
.

Using these two estimates in (2.7) yields∫
[0,1)

tk
(
log

2

1− t

)α

dµ(t) .
(log k)α−β

ks
,

finishing the proof. �

We will also use the characterization of the coefficient multipliers from B into
`1 obtained by Anderson and Shields in [4].
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Theorem A. A sequence {λn}∞n=0 of complex numbers is a coefficient multiplier
from B into `1 if and only if

∞∑
n=1

( 2n+1∑
k=2n+1

|λk|2
)1/2

< ∞.

Bearing in mind Definition 1 of [4], Theorem A reduces to the case p = 1 in
Corollary 1 on p. 259 of [4].

We recall that if X is a space of analytic functions in D and Y is a space of
complex sequences, a sequence {λn}∞n=0 ⊂ C is said to be a multiplier of X into Y
if whenever f(z) =

∑∞
n=0 anz

n ∈ X, one has that the sequence {λnan}∞n=0 belongs
to Y . Thus, by saying that {λn}∞n=0 is a coefficient multiplier from B into `1, we
mean that

if f(z) =
∞∑
n=0

anz
n ∈ B, then

∞∑
n=0

|λnan| < ∞.

Actually, using the closed graph theorem, we can assert the following. A com-
plex sequence {λn}∞n=0 is a multiplier from B to `1 if and only if there exists a
positive constant C such that whenever f(z) =

∑∞
n=0 anz

n ∈ B, we have that∑∞
n=0 |λnan| ≤ C‖f‖B.

Proof of Theorem 2.3. Suppose that ν is a Carleson measure. Then, using
Lemma 2.6, we see that there exists C > 0 such that

|µn| ≤
C

n log n
, n ≥ 2. (2.8)

It is clear that

k2 log2 k ≥ 22nn2(log 2)2, if 2n + 1 ≤ k ≤ 2n+1 for all n.

Then it follows that

∞∑
n=1

( 2n+1∑
k=2n+1

1

k2 log2 k

)1/2

.
∞∑
n=1

( 2n

n222n

)1/2

=
∞∑
n=1

1

n2n/2
< ∞.

Using this, (2.8), and Theorem A, we obtain:

The sequence of moments {µn}∞n=0 is a multiplier from B to `1. (2.9)

Now take f ∈ B, f(z) =
∑∞

n=0 anz
n (z ∈ D). Using the simple fact that the

sequence {µn}∞n=0 is a decreasing sequence of positive numbers and (2.9), we see
that there exists C > 0 such that

∞∑
k=0

|µn+kak| ≤
∞∑
k=0

|µkak| ≤ C‖f‖B, n = 0, 1, 2, . . . . (2.10)

This implies that Hµ(f)(z) is well defined for all z ∈ D and that, in fact, Hµ(f)
is an analytic function in D. Furthermore, since (2.10) also implies that we can
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interchange the order of summation in the expression defining Hµ(f)(z), we have

Hµ(f)(z) =
∞∑
n=0

( ∞∑
k=0

µn+kak

)
zn =

∞∑
k=0

ak

( ∞∑
n=0

µn+kz
n
)

=
∞∑
k=0

ak

( ∞∑
n=0

∫
[0,1)

tn+kzn dµ(t)
)
=

∞∑
k=0

∫
[0,1)

akt
k

1− tz
dµ(t)

=

∫
[0,1)

f(t)

1− tz
dµ(t) = Iµ(f)(z), z ∈ D.

�

We have the following result regarding compactness.

Theorem 2.8. Let µ be a positive Borel measure on [0, 1) with
∫
[0,1)

log 2
1−t

dµ(t) <

∞. If the measure ν defined by dν(t) = log 2
1−t

dµ(t) is a vanishing Carleson
measure, then

(i) the operator Iµ is a compact operator from B into BMOA,
(ii) the operator Iµ is a compact operator from BMOA into itself.

Before embarking on the proof of Theorem 2.8, it is convenient to recall some
facts about Carleson measures and to fix some notation. If µ is a Carleson measure
on D, we define the Carleson norm of µ, denoted N (µ), as

N (µ) = sup
I subarc of ∂D

µ(S(I))

|I|
.

We let also E(µ) denote the norm of the inclusion operator i : H1 → L1(dµ). It
turns out that these quantities are equivalent: There exist two positive constants
A1, A2 such that

A1N (µ) ≤ E(µ) ≤ A2N (µ), for every Carleson measure µ on D.

For a Carleson measure µ on D and 0 < r < 1, we let µr be the measure on D
defined by

dµr(z) = χ{r<|z|<1} dµ(z).

We have that µ is a vanishing Carleson measure if and only if

N (µr) → 0, as r → 1.

Proof of Theorem 2.8. Since BMOA is continuously contained in the Bloch
spaces, it suffices to prove (i). Suppose that ν is a vanishing Carleson measure. Let
{fn}∞n=1 be a sequence of Bloch functions with supn≥1 ‖fn‖B < ∞ and such that
{fn} → 0, uniformly on compact subsets of D. We have to prove that Iµ(fn) → 0
in BMOA. The condition supn≥1 ‖fn‖B < ∞ implies that there exists a positive
constant M such that∣∣fn(z)∣∣ ≤ M log

2

1− |z|
, z ∈ D, n ≥ 1. (2.11)

Recall that for 0 < r < 1, νr is the measure defined by

dνr(t) = χ{r<t<1} dν(t).
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Since ν is a vanishing Carleson measure, we have that N (νr) → 0, as r → 1, or,
equivalently,

E(νr) → 0 as t → 1. (2.12)

Take g ∈ H1 and r ∈ [0, 1). Using (2.11) we have∫
[0,1)

∣∣fn(t)∣∣∣∣g(t)∣∣ dµ(t) = ∫
[0,r)

∣∣fn(t)∣∣∣∣g(t)∣∣ dµ(t) + ∫
[r,1)

∣∣fn(t)∣∣∣∣g(t)∣∣ dµ(t)
≤
∫
[0,r)

∣∣fn(t)∣∣∣∣g(t)∣∣ dµ(t) +M

∫
[r,1)

log
2

1− t

∣∣g(t)∣∣ dµ(t)
=

∫
[0,r)

∣∣fn(t)∣∣∣∣g(t)∣∣ dµ(t) +M

∫
[0,1)

∣∣g(t)∣∣ dνr(t)
≤
∫
[0,r)

∣∣fn(t)∣∣∣∣g(t)∣∣ dµ(t) +ME(νr)‖g‖H1 .

Using (2.12) and the fact that {fn} → 0, uniformly on compact subsets of D, it
follows that

lim
n→∞

∫
[0,1)

∣∣fn(t)∣∣∣∣g(t)∣∣ dµ(t) = 0, for all g ∈ H1.

Bearing in mind (2.4), this yields

lim
n→∞

(
lim
r→1

∣∣∣∫ 2π

0

Iµ(fn)(re
iθ)g(eiθ) dθ

∣∣∣) = 0, for all g ∈ H1.

By the duality relation (H1)? = BMOA, this is equivalent to saying that Iµ(fn) →
0 in BMOA. �

3. The operator Hµ acting on Qs-spaces and Besov spaces

If 0 ≤ s < ∞, then we say that f ∈ Qs if f is analytic in D and

‖f‖Qs

def
=

(∣∣f(0)∣∣2 + ρQs(f)
2
)1/2

< ∞,

where

ρQs(f)
def
=

(
sup
a∈D

∫
D

∣∣f ′(z)
∣∣2g(z, a)s dA(z))1/2

.

Here, g(z, a) is the Green’s function in D, given by g(z, a) = log |1−az
z−a

|, while
dA(z) = dx dy

π
is the normalized area measure on D. All Qs-spaces (0 ≤ s < ∞)

are conformally invariant with respect to the seminorm ρQs (see, e.g., [31, p. 1]
or [15, p. 47]).

These spaces were introduced by Aulaskari and Lappan in [6] while looking for
new characterizations of Bloch functions. They proved that for s > 1, Qs is the
Bloch space. Using one of the many characterizations of the space BMOA (see,
e.g., [9, Theorem 5] or [21, Theorem 6.2]), we see that Q1 = BMOA. In the limit
case s = 0, Qs is the classical Dirichlet space D of those analytic functions f in
D satisfying

∫
D |f

′(z)|2 dA(z) < ∞.
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It is well known that D ⊂ VMOA. Aulaskari, Xiao, and Zhao [8] proved that

D ( Qs1 ( Qs2 ( BMOA, 0 < s1 < s2 < 1.

We mention the book [31] as an excellent reference for the theory of Qs-spaces.
It is well known that the functions F (z) = log 2

1−z
belong to Qs, for all s > 0 (in

fact, it is proved in [7] that the univalent functions in all Qs-spaces (0 < s < ∞)
are the same). Using this, we can easily see that Theorem 2.1 and Theorem 2.4
can be improved as follows.

Theorem 3.1. Let µ be a positive Borel measure on [0, 1). Then the following
conditions are equivalent.

(i) We have
∫
[0,1)

log 2
1−t

dµ(t) < ∞.

(ii) For any given s ∈ (0,∞) and any f ∈ Qs, the integral in (1.1) converges
for all z ∈ D and the resulting function Iµ(f) is analytic in D.

We remark that condition (ii) with s ≥ 1 includes the points (ii) and (iii) of
Theorem 2.1.

Theorem 3.2. Let µ be a positive Borel measure on [0, 1) with
∫
[0,1)

log 2
1−t

dµ(t) <

∞. Then the following two conditions are equivalent.

(i) The measure ν defined by dν(t) = log 2
1−t

dµ(t) is a Carleson measure.
(ii) For any given s ∈ (0,∞), the operator Iµ is bounded from Qs into BMOA.

We remark that (ii) with s > 1 reduces to condition (ii) of Theorem 2.2, while
(ii) with s = 1 reduces to condition (iii) of Theorem 2.2.

These results cannot be extended to the limit case s = 0. Indeed, the function
F (z) = log 2

1−z
does not belong to the Dirichlet space D.

The Dirichlet space is one among the analytic Besov spaces. For 1 < p < ∞,
the analytic Besov space Bp is defined as the set of all functions f analytic in D
such that

‖f‖Bp
def
=

(∣∣f(0)∣∣p + ρp(f)
p
)1/p

< ∞,

where

ρp(f) =
(∫

D

(
1− |z|2

)p−2∣∣f ′(z)
∣∣p dA(z))1/p

.

All Bp-spaces (1 < p < ∞) are conformally invariant with respect to the semi-
norm ρp (see [5, p. 112] or [15, p. 46]). We have that D = B2. (A lot of information
on Besov spaces can be found in [5], [15], [23], [33], [34].) Let us recall that

Bp ( Bq ( VMOA, 1 < p < q < ∞.

From now on, if 1 < p < ∞, we let p′ denote the exponent conjugate to p, that
is, p′ is defined by the relation 1

p
+ 1

p′
= 1. If f ∈ Bp (1 < p < ∞), then (see [23]

or [33]) ∣∣f(z)∣∣ = o
((

log
1

1− |z|

)1/p′)
, as |z| → 1, (3.1)
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and there exists a positive constant C > 0 such that

∣∣f(z)∣∣ ≤ C‖f‖Bp

(
log

2

1− |z|

)1/p′

, z ∈ D, f ∈ Bp. (3.2)

Clearly, (3.1) or (3.2) imply that the function F (z) = log 2
1−z

does not belong
to Bp (1 < p < ∞), a fact that we have already mentioned for p = 2. Our
substitutes of Theorem 2.1 and Theorem 2.2 for Besov spaces are the follow-
ing.

Theorem 3.3. Let 1 < p < ∞, and let µ be a positive Borel measure on [0, 1).
We have the following.

(i) If
∫
[0,1)

(log 2
1−t

)1/p
′
dµ(t) < ∞, then for any given f ∈ Bp, the integral in

(1.1) converges for all z ∈ D and the resulting function Iµ(f) is analytic
in D.

(ii) If for any given f ∈ Bp, the integral in (1.1) converges for all z ∈ D and
the resulting function Iµ(f) is analytic in D, then

∫
[0,1)

(log 2
1−t

)γ dµ(t) <

∞ for all γ < 1
p′
.

Theorem 3.4. Suppose that 1 < p < ∞, and let µ be a positive Borel measure
on [0, 1). Let ν be the measure defined by

dν(t) =
(
log

2

1− t

)1/p′

dµ(t).

(i) If ν is a Carleson measure, then the operator Iµ is bounded from Bp into
BMOA.

(ii) If ν is a vanishing Carleson measure, then the operator Iµ is compact from
Bp into BMOA.

These results follow using the growth condition (3.2), the fact that if γ < 1
p′
,

then the function f(z) = (log 2
1−z

)γ belongs to Bp (see [23, Theorem 1]), and with
arguments similar to those used in the proofs of Theorem 2.1, Theorem 2.2, and
Theorem 2.8. We omit the details.

Let us work next with the operator Hµ directly. In order to study its action
on the Besov spaces, we need some results on the Taylor coefficients of func-
tions in Bp. The following result was proved by Holland and Walsh in [23, The-
orem 2].

Theorem B.

(i) Suppose that 1 < p ≤ 2. Then there exists a positive constant Cp such that
if f ∈ Bp and f(z) =

∑∞
k=0 akz

k (z ∈ D), then

∞∑
k=1

kp−1|ak|p ≤ Cpρp(f)
p.
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(ii) If 2 ≤ p < ∞, then there exists Cp > 0 such that if f(z) =
∑∞

k=0 akz
k

(z ∈ D) with
∑∞

k=1 k
p−1|ak|p < ∞, then f ∈ Bp and

ρp(f)
p ≤ Cp

∞∑
k=1

kp−1|ak|p.

If p 6= 2, the converses to (i) and (ii) are false.

Theorem B is the analogue for Besov spaces of results of Hardy and Littlewood
for Hardy spaces (Theorems 6.2 and 6.3 of [18]). In spite of the fact that the
converse to (ii) is not true, the membership of f in Bp (p > 2) implies some
summability conditions on the Taylor coefficients {ak} of f . Indeed, Pavlović has
proved the following result in [28, Theorem 2.3].

Theorem C. Suppose that 2 < p < ∞. Then there exists a positive constant Cp

such that if f ∈ Bp and f(z) =
∑∞

k=0 akz
k (z ∈ D), then

∞∑
k=1

k|ak|p ≤ Cpρp(f)
p.

These results allow us to obtain conditions on µ which are sufficient to ensure
that Hµ is well defined on the Besov spaces.

Theorem 3.5. Let µ be a finite positive Borel measure on [0, 1).

(i) If 1 < p ≤ 2 and
∑∞

k=1

µp′
k

k
< ∞, then the operator Hµ is well defined

in Bp.

(ii) If 2 < p < ∞ and
∑∞

k=1

µp′
k

kp
′/p < ∞, then the operator Hµ is well defined

in Bp.

Proof. Suppose that 1 < p < ∞ and f ∈ Bp, f(z) =
∑∞

k=0 akz
k (z ∈ D). Since

the sequence of moments {µn}∞n=0 is clearly decreasing, we have

∞∑
k=1

|µn+k||ak| ≤
∞∑
k=1

|µk||ak|, for all n ≥ 0.

Consequently, we have the following.

(i) If 1 < p ≤ 2 and f ∈ Bp, f(z) =
∑∞

k=0 akz
k (z ∈ D), then

∞∑
k=1

|µn+kak| ≤
∞∑
k=1

|µk||ak| =
∞∑
k=1

k1− 1
p |ak|

µk

k1/p′
, n ≥ 0.

Then using Hölder’s inequality and Theorem B(i), we obtain

∞∑
k=1

|µn+kak| ≤
( ∞∑

k=1

kp−1|ak|p
)1/p( ∞∑

k=1

|µk|p
′

k

)1/p′

≤ Cρp(f)
( ∞∑

k=1

|µk|p
′

k

)1/p′

, n ≥ 0.
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Then it is clear that the condition
∑∞

k=1
|µk|p

′

k
< ∞ implies that the power

series appearing in the definition of Hµ(f) defines an analytic function
in D.

(ii) If 2 < p < ∞ and f ∈ Bp, f(z) =
∑∞

k=0 akz
k (z ∈ D), then

∞∑
k=1

|µn+kak| ≤
∞∑
k=1

|µk||ak| =
∞∑
k=1

k
1
p |ak|

µk

k1/p
, n ≥ 0.

Then using Hölder’s inequality and Theorem B(ii), we obtain

∞∑
k=1

|µn+kak| ≤
( ∞∑

k=1

k|ak|p
)1/p( ∞∑

k=1

|µk|p
′

kp′/p

)1/p′

≤ Cρp(f)
( ∞∑

k=1

|µk|p
′

kp′/p

)1/p′

, n ≥ 0.

Then we see that the condition
∑∞

k=1
|µk|p

′

kp
′/p < ∞ implies that the power

series appearing in the definition of Hµ(f) defines an analytic function
in D. �

Let us turn our attention to study when the operator Hµ is bounded from Bp

into itself. We mention that Bao and Wulan [10] considered an operator which
is closely related to the operator Hµ acting on the Dirichlet spaces Dα (α ∈ R)
which are defined as follows. For α ∈ R, the space Dα consists of those functions
f(z) =

∑∞
n=0 anz

n analytic in D for which

‖f‖Dα

def
=

( ∞∑
n=0

(n+ 1)1−α|an|2
)1/2

< ∞.

Let us remark that D0 is the Dirichlet space D = B2, while D1 = H2. Bao and
Wulan proved that if µ is a positive Borel measure on [0, 1) and 0 < α < 2, then
the operator Hµ is bounded from Dα into itself if and only if µ is a Carleson
measure. Let us remark that this does not include the case α = 0. In fact, the
following results are proved in [10].

Theorem D.

(i) There exists a positive Borel measure µ on [0, 1) which is a Carleson
measure but such that Hµ(B

2) 6⊂ B2.
(ii) Let µ be a positive Borel measure on [0, 1) such that the operator Hµ is a

bounded operator from B2 into itself. Then µ is a Carleson measure.

We can improve these results and, even more, we will obtain extensions of these
improvements to all Bp-spaces (1 < p < ∞). More precisely, we are going to prove
the following results.

Theorem 3.6. Suppose that 1 < p < ∞ and 0 < β ≤ 1
p
. Then there exists a

positive Borel measure µ on [0, 1) which is a β-logarithmic 1-Carleson measure
but such that the operator Hµ does not apply Bp into itself.
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Next we prove that µ being a β-logarithmic 1-Carleson measure for a certain
β is a necessary condition for Hµ being a bounded operator from Bp into itself.

Theorem 3.7. Suppose that 1 < p < ∞, and let µ be a positive Borel measure
on [0, 1) such that the operator Hµ is bounded from Bp into itself. Then µ is a
γ-logarithmic 1-Carleson measure for any γ < 1− 1

p
.

Finally, we obtain a sufficient condition for the boundedness of Hµ from Bp

into itself.

Theorem 3.8. Suppose that 1 < p < ∞, γ > 1, and let µ be a positive Borel
measure on [0, 1) which is a γ-logarithmic 1-Carleson measure. Then the operator
Hµ is a bounded operator from Bp into itself.

We will need a number of results on Besov spaces, as well as some lemmas, to
prove these last three theorems. First of all, we note that the Besov spaces can be
characterized in terms of “dyadic blocks.” In order to state this in a precise way,
we need to introduce some notation. For a function f(z) =

∑∞
n=0 anz

n analytic
in D, define the polynomials ∆jf as follows:

∆jf(z) =
2j+1−1∑
k=2j

akz
k, for j ≥ 1,

∆0f(z) = a0 + a1z.

Mateljević and Pavlović [25, Theorem 2.1] (see also [27, Theorem C]) proved the
following result.

Theorem E. Let 1 < p < ∞ and α > −1. For a function f analytic in D, we
define

Q1(f)
def
=

∫
D

∣∣f(z)∣∣p(1− |z|
)α

dA(z), Q2(f)
def
=

∞∑
n=0

2−n(α+1)‖∆nf‖pHp .

Then Q1(f) � Q2(f).

Theorem E readily implies the following result.

Corollary 3.9. Suppose that 1 < p < ∞ and that f is an analytic function in D.
Then

f ∈ Bp ⇔
∞∑
n=0

2−n(p−1)‖∆nf
′‖pHp < ∞.

Furthermore,

ρp(f)
p �

∞∑
n=0

2−n(p−1)‖∆nf
′‖pHp .

Using Corollary 3.9, we can prove that the converses of (i) and (ii) in Theorem B
hold if the sequence of Taylor coefficients {an} decreases to zero. This is the
analogue for Besov spaces of the result proved in [22, Theorem 5] by Hardy and
Littlewood for Hardy spaces (see also [27], [26, 7.5.9, p. 121], and [35, Chapter
XII, Lemma 6.6]).
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Theorem 3.10. Suppose that 1 < p < ∞, and let {an}∞n=0 be a decreasing
sequence of nonnegative numbers with {an} → 0, as n → ∞. Let f(z) =∑∞

n=0 anz
n (z ∈ D). Then

f ∈ Bp ⇔
∞∑
n=1

np−1apn < ∞.

Furthermore, ρp(f)
p �

∑∞
n=1 n

p−1apn.

Proof. For every n, we have

z(∆nf
′)(z) =

2n+1∑
k=2n+1

kakz
k.

Since the sequence λ = {k}∞k=0 is an increasing sequence of nonnegative numbers,
using Lemma A of [27] we see that∥∥z(∆nf

′)
∥∥p

Hp � 2np‖∆nf‖pHp . (3.3)

Now, set h(z) =
∑∞

n=0 z
n (z ∈ D). Since the sequence λ̃ = {an}∞n=0 is a decreasing

sequence of nonnegative numbers, using the second part of Lemma A of [27], we
see that

ap2n‖∆nh‖pHp . ‖∆nf‖pHp . ap2n−1‖∆nh‖pHp . (3.4)

Note that h(z) = 1
1−z

(z ∈ D). Then it is well known that Mp(r, h) � (1− r)
1
p
−1

(recall that 1 < p < ∞). Following the notation of [25], this can be written as
h ∈ H(p,∞, 1 − 1

p
). Then using Theorem 2.1 of [25] (see also [26, p. 120]), we

deduce that ‖∆n‖pHp � 2n(p−1). Using this and (3.4), it follows that

2n(p−1)ap2n . ‖∆nf‖pHp . 2n(p−1)ap2n−1 . (3.5)

Using Corollary 3.9, (3.3), and (3.5), we see that

ρp(f)
p �

∞∑
n=0

2−n(p−1)‖z∆nf
′‖pHp �

∞∑
n=0

2n‖∆nf‖pHp �
∞∑
n=0

2npap2n .

Now, the fact that {an} is decreasing implies that
∑∞

n=0 2
npap2n �

∑∞
n=1 n

p−1apn
and, then it follows that ρp(f)

p �
∑∞

n=1 n
p−1apn. �

Remark 3.11. If f is an analytic function in D, f(z) =
∑∞

n=0 anz
n (z ∈ D), and

1 < p < ∞, then any of the two conditions f ∈ Bp and
∑∞

n=1 n
p−1|an|p < ∞

implies that {an} → 0. Consequently, the condition {an} → 0 can be omitted in
the hypotheses of Theorem 3.10.

Suppose that β ≥ 0, s ≥ 1, 1 < p < ∞, and that µ is a positive Borel measure
on [0, 1) which is a β-logarithmic s-Carleson measure. Using Lemma 2.7 and
Theorem 3.5, it follows that Hµ is well defined on Bp. Also, it is easy to see that∫
[0,1)

(log 2
1−t

)1/p
′
dµ(t) < ∞, a fact that, using Theorem 3.3(i), shows that Iµ is

also well defined in Bp. Using standard arguments, it then follows that Iµ and
Hµ coincide in Bp. Let us state this as a lemma.
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Lemma 3.12. Suppose that β ≥ 0, s ≥ 1, 1 < p < ∞, and that µ is a positive
Borel measure on [0, 1) which is a β-logarithmic s-Carleson measure. Then the
operators Hµ and Iµ are well defined in Bp and Hµ(f) = Iµ(f), for all f ∈ Bp.

Proof of Theorem 3.6. Let µ be the Borel measure on [0, 1) defined by

dµ(t) =
(
log

2

1− t

)−β

dt.

Since the function x 7→ (log 2
1−x

)−β is decreasing in [0, 1), we have

µ
(
[t, 1)

)
=

∫ 1

t

(
log

2

1− x

)−β

dx ≤ (1− t)
(
log

2

1− t

)−β

, 0 ≤ t < 1.

Hence, µ is a β-logarithmic 1-Carleson measure. Then, taking α = 0 in Lemma 2.7,
we see that

µk = O
( 1

k(log k)β

)
.

On the other hand,

µk ≥
∫ 1− 1

k

0

tk
(
log

2

1− t

)−β

dt &
1

(log k)β

∫ 1− 1
k

0

tk dt &
1

k(log k)β
.

Thus, we have seen that µ is a β-logarithmic 1-Carleson measure which satisfies

µn � 1

n(log n)β
. (3.6)

Take p ∈ (1,∞) and α > 1
p
, and set

an =
1

(n+ 1)(log(n+ 2))α
, n = 0, 1, 2, . . . ,

and

g(z) =
∞∑
n=0

anz
n, z ∈ D.

Note that {an} ↓ 0 and that
∑∞

n=0 n
p−1|an|p < ∞. Hence, g ∈ Bp.

We are now going to prove that Hµ(g) /∈ Bp. This implies that Hµ(B
p) 6⊂ Bp,

proving the theorem. We have Hµ(g)(z) =
∑∞

n=0(
∑∞

k=0 µn+kak)z
n. Note that

ak ≥ 0 for all k and that the sequence of moments {µn} is a decreasing sequence
of nonnegative numbers. Then it follows that the sequence {

∑∞
k=0 µn+kak}∞n=0 of

the Taylor coefficients of Hµ(g) is decreasing. Consequently, we have that

Hµ(g) ∈ Bp ⇔
∞∑
n=1

np−1
∣∣∣ ∞∑
k=0

µn+kak

∣∣∣p < ∞. (3.7)
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Using the definition of the sequence {ak}, (3.6), and the simple inequalities k
n+k

≥
1

n+1
and log(n+ k) ≤ (log n)(log k) which hold whenever k, n ≥ 10, say, we obtain

∞∑
n=1

np−1
∣∣∣ ∞∑
k=0

µn+kak

∣∣∣p ≥ ∞∑
n=10

np−1
∣∣∣ ∞∑
k=10

µn+kak

∣∣∣p
&

∞∑
n=10

np−1
( ∞∑
k=10

[ 1

(n+ k)(log(n+ k))β
1

k(log k)α

])p

&
∞∑

n=10

1

n(log n)pβ

( ∞∑
k=10

1

k2(log k)α+β

)p

= ∞.

Bearing in mind (3.7), this implies that Hµ(g) /∈ Bp, as desired. �

Proof of Theorem 3.7. Suppose that 1 < p < ∞ and γ < 1 − 1
p
. Let µ be a

positive Borel measure on [0, 1) such that the operator Hµ is a bounded operator
from Bp into itself. Set α = 1− γ,

ak =
1

k(log k)α
, k ≥ 2,

and

f(z) =
∞∑
k=2

akz
k, z ∈ D.

Since α > 1
p
, using Theorem 3.10 we see that f ∈ Bp. By our assumption,

Hµ(f) ∈ BP , that is, ‖Hµ(f)‖Bp < ∞. We have

Hµ(f)(z) =
∞∑
n=0

( ∞∑
k=2

µn+kak

)
zn.

Since ak ≥ 0 for all k and {µn} is a decreasing sequence of nonnegative num-
bers, it follows that the sequence {

∑∞
k=2 µn+kak}∞n=0 is a decreasing sequence of

nonnegative numbers. Then, using Theorem 3.10 we obtain∥∥Hµ(f)
∥∥p

Bp &
∞∑
n=1

np−1
( ∞∑

k=2

µn+kak

)p

&
∞∑
n=1

np−1
( ∞∑

k=2

1

k(log k)α

∫
[0,1)

xn+k dµ(x)
)p

≥
∞∑
n=1

np−1
( ∞∑

k=2

1

k(log k)α

∫
[t,1)

xn+k dµ(x)
)p

≥
∞∑
n=1

np−1
( ∞∑

k=2

tn+k

k(log k)α

)p

µ
(
[t, 1)

)p
=

∞∑
n=1

np−1tnp
( ∞∑

k=2

tk

k(log k)α

)p

µ
(
[t, 1)

)p
, for all t ∈ (0, 1).
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Now, it is well known that
∑∞

k=2
tk

k(log k)α
� (log 2

1−t
)1−α = (log 2

1−t
)γ (see [35,

Volume I, p. 192]). Then it follows that∥∥Hµ(f)
∥∥p

Bp &
(
log

2

1− t

)γp( ∞∑
n=1

np−1tnp
)
µ
(
[t, 1)

)p
�

(
log

2

1− t

)γp 1

(1− t)p
µ
(
[t, 1)

)p
.

Since ‖Hµ(f)‖Bp < ∞, this shows that µ is a γ-logarithmic 1-Carleson measure.
�

The following lemma will be used to prove Theorem 3.8. It is an adaptation of
[19, Lemma 7] to our setting. The proof is very similar to that of the latter, but
we include it for the sake of completeness.

Lemma 3.13. Let p, γ, and µ be as in Theorem 3.8. Then, there exists a constant
C = C(p, γ, µ) > 0 such that if f ∈ Bp, g(z) =

∑∞
k=0 ckz

k ∈ Hol(D), and we set

h(z) =
∞∑
k=0

ck

(∫ 1

0

tk+1f(t) dµ(t)
)
zk,

then

‖∆nh‖Hp ≤ C
(∫ 1

0

t2
n−2+1

∣∣f(t)∣∣ dµ(t))‖∆ng‖Hp , n ≥ 3.

Proof. For each n = 1, 2, . . . , define

Υn(s) =

∫ 1

0

t2
ns+1f(t) dµ(t), s ≥ 0.

Clearly, Υn is a C∞(0,∞)-function and∣∣Υn(s)
∣∣ ≤ ∫ 1

0

t2
n−2+1

∣∣f(t)∣∣ dµ(t), s ≥ 1

2
. (3.8)

Furthermore, since sup0<x<1(log
1
x
)2x1/2 = C(2) < ∞, we have∣∣Υ′′

n(s)
∣∣ ≤ ∫ 1

0

[(
log

1

t2n

)2

t2
n−1

]
t2

ns+1−2n−1∣∣f(t)∣∣ dµ(t)
≤ C(2)

∫ 1

0

t2
ns+1−2n−1∣∣f(t)∣∣ dµ(t)

≤ C(2)

∫ 1

0

t2
n−2+1

∣∣f(t)∣∣ dµ(t), s ≥ 3

4
. (3.9)

Then, using (3.8) and (3.9), for each n = 1, 2, . . . , we can take a function Φn ∈
C∞(R) with supp(Φn) ∈ (3

4
, 4), and such that

Φn(s) = Υn(s), s ∈ [1, 2],

and

AΦn = max
s∈R

∣∣Φn(s)
∣∣+max

s∈R

∣∣Φ′′
n(s)

∣∣ ≤ C

∫ 1

0

t2
n−2+1

∣∣f(t)∣∣ dµ(t).
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Following the notation used in [19, p. 236], we can then write

∆nh(z) =
2n+1−1∑
k=2n

ck

(∫ 1

0

tk+1f(t) dµ(t)
)
zk

=
2n+1−1∑
k=2n

ckΦn

( k

2n

)
zk = WΦn

2n ∗∆ng(z).

So by using Theorem B(iii) of [19], we have

‖∆nh‖Hp = ‖WΦn
2n ∗∆ng‖Hp ≤ CpAΦn‖∆ng‖Hp

≤ C
(∫ 1

0

t2
n−2+1

∣∣f(t)∣∣ dµ(t))‖∆ng‖Hp . �

Proof of Theorem 3.8. By the closed graph theorem it suffices to show that
Hµ(B

p) ⊂ Bp. Take f ∈ Bp. Since µ is a γ-logarithmic 1-Carleson measure,
using Lemma 3.12, we see that

Hµ(f)(z) = Iµ(f)(z) =
∞∑
n=0

(∫
[0,1)

tnf(t) dµ(t)
)
zn, z ∈ D.

Also, using Corollary 3.9, we see that

Hµ(f) ∈ Bp ⇔
∞∑
n=1

2−n(p−1)
∥∥∆n

(
Hµ(f)

′)∥∥p

Hp < ∞. (3.10)

Now, we have

∆n

(
Hµ(f)

′)(z) = 2n+1−1∑
k=2n

(k + 1)
(∫

[0,1)

tk+1f(t) dµ(t)
)
zk.

Using Lemma 3.13, we obtain that∥∥∆n

(
Hµ(f)

′)∥∥
Hp .

(∫
[0,1)

t2
n−2+1

∣∣f(t)∣∣ dµ(t))‖∆nF‖Hp

with F (z) =
∑∞

k=0(k+ 1)zk (z ∈ D). Now, we have that Mp(r, F ) = O( 1

(1−r)
2− 1

p
),

and then it follows that ‖∆nF‖Hp = O(2n(2−
1
p
)) (see, e.g., [25]). Using this and

the estimate |f(t)| . (log 2
1−t

)1/p
′
, we obtain∥∥∆n

(
Hµ(f)

′)∥∥
Hp . 2n(2−

1
p
)
(∫

[0,1)

t2
n−2+1

(
log

2

1− t

)1/p′

dµ(t)
)
,

which, using the fact that µ is a γ-logarithmic 1-Carleson measure and Lemma 2.7,
implies that ∥∥∆n

(
Hµ(f)

′)∥∥
Hp . 2n(2−

1
p
)2−nn

1
p′−γ

= 2n/p
′
n

1
p′−γ

.
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This, together with the fact that γ > 1, implies that

∞∑
n=1

2−n(p−1)
∥∥∆n

(
Hµ(f)

′)∥∥p

Hp .
∞∑
n=1

2−n(p−1)2np/p
′
np(1−γ)−1

=
∞∑
n=1

np(1−γ)−1 < ∞.

Bearing in mind (3.10), this shows that Hµ(f) ∈ Bp and finishes the proof. �
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5. J. Arazy, S. D. Fisher, and J. Peetre, Möbius invariant function spaces, J. Reine Angew.
Math. 363 (1985), 110–145. Zbl 0566.30042. MR0814017. DOI 10.1007/BFb0078341. 376,
386

6. R. Aulaskari and P. Lappan, “Criteria for an analytic function to be Bloch and a harmonic or
meromorphic function to be normal” in Complex Analysis and Its Applications (Hong Kong,
1993), Pitman Res. Notes Math. Ser. 305, Longman Sci. Tech., Harlow, 1994, 136–146.
Zbl 0826.30027. MR1278928. 385

7. R. Aulaskari, P. Lappan, J. Xiao, and R. Zhao, On α-Bloch spaces and multipliers on Dirich-
let spaces, J. Math. Anal. Appl. 209 (1997), no. 1, 103–121. Zbl 0892.30030. MR1444515.
DOI 10.1006/jmaa.1997.5345. 386

8. R. Aulaskari, J. Xiao, and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis
15 (1995), no. 2, 101–121. Zbl 0835.30027. MR1344246. DOI 10.1524/anly.1995.15.2.101.
386

9. A. Baernstein, “Analytic functions of bounded mean oscillation” in Aspects of Contem-
porary Complex Analysis (Durham, 1979), edited by D. A. Brannan and J. G. Clunie,
Academic Press, London, 1980, 3–36. Zbl 0492.30026. MR0623463. 377, 385

10. G. Bao and H. Wulan, Hankel matrices acting on Dirichlet spaces, J. Math. Anal. Appl.
409 (2014), no. 1, 228–235. Zbl 1326.47028. MR3095033. DOI 10.1016/j.jmaa.2013.07.006.
389

11. L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of
Math. (2) 76 (1962), 547–559. Zbl 0112.29702. MR0141789. DOI 10.2307/1970375. 375

http://www.emis.de/cgi-bin/MATH-item?1268.47040
http://www.ams.org/mathscinet-getitem?mr=2996436
https://doi.org/10.1007/s00365-012-9157-z
https://doi.org/10.1007/s00365-012-9157-z
http://www.emis.de/cgi-bin/MATH-item?0951.47039
http://www.ams.org/mathscinet-getitem?mr=1481594
https://doi.org/10.1512/iumj.1997.46.1373
https://doi.org/10.1512/iumj.1997.46.1373
http://www.emis.de/cgi-bin/MATH-item?0292.30030
http://www.ams.org/mathscinet-getitem?mr=0361090
http://www.emis.de/cgi-bin/MATH-item?0352.30032
http://www.ams.org/mathscinet-getitem?mr=0419769
https://doi.org/10.2307/1997474
http://www.emis.de/cgi-bin/MATH-item?0566.30042
http://www.ams.org/mathscinet-getitem?mr=0814017
https://doi.org/10.1007/BFb0078341
http://www.emis.de/cgi-bin/MATH-item?0826.30027
http://www.ams.org/mathscinet-getitem?mr=1278928
http://www.emis.de/cgi-bin/MATH-item?0892.30030
http://www.ams.org/mathscinet-getitem?mr=1444515
https://doi.org/10.1006/jmaa.1997.5345
http://www.emis.de/cgi-bin/MATH-item?0835.30027
http://www.ams.org/mathscinet-getitem?mr=1344246
https://doi.org/10.1524/anly.1995.15.2.101
http://www.emis.de/cgi-bin/MATH-item?0492.30026
http://www.ams.org/mathscinet-getitem?mr=0623463
http://www.emis.de/cgi-bin/MATH-item?1326.47028
http://www.ams.org/mathscinet-getitem?mr=3095033
https://doi.org/10.1016/j.jmaa.2013.07.006
http://www.emis.de/cgi-bin/MATH-item?0112.29702
http://www.ams.org/mathscinet-getitem?mr=0141789
https://doi.org/10.2307/1970375


A GENERALIZED HILBERT OPERATOR 397
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ant spaces, J. Reine Angew. Math. 553 (2002), 43–72. Zbl 1006.30031. MR1944807. DOI
10.1515/crll.2002.102. 376, 385, 386
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Análisis Matemático, Universidad de Málaga, Campus de Teatinos, 29071
Málaga, Spain.

E-mail address: girela@uma.es; noel@uma.es

http://www.emis.de/cgi-bin/MATH-item?0733.30026
http://www.ams.org/mathscinet-getitem?mr=1112319
https://doi.org/10.1016/0022-247X(91)90091-D
http://www.emis.de/cgi-bin/MATH-item?1123.47001
http://www.ams.org/mathscinet-getitem?mr=2311536
https://doi.org/10.1090/surv/138
http://www.emis.de/cgi-bin/MATH-item?0085.05601
http://www.ams.org/mathscinet-getitem?mr=0107776
mailto:girela@uma.es
mailto:noel@uma.es

	1 Introduction
	2 The operator Hµ acting on BMOA and the Bloch space
	3 The operator Hµ acting on Qs-spaces and Besov spaces
	Acknowledgments
	References
	Author's addresses

