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Abstract. We introduce Banach spaces of vector-valued random variables
motivated from mathematical finance. So-called risk functionals are defined in
a natural way on these Banach spaces, and it is shown that these functionals are
Lipschitz continuous. Since the risk functionals cannot be defined on strictly
larger spaces of random variables, this creates an area of particular interest with
regard to the spaces presented. We elaborate key properties of these Banach
spaces and give representations of their dual spaces in terms of vector measures
with values in the dual space of the state space.

1. Introduction

In the first part of this article, we introduce Banach spaces for vector-valued
random variables. These spaces extend rearrangement spaces for functions in two
ways. First, random variables are considered on a probability space, and second,
we extend them to vector-valued (i.e., Rd, or more general Banach space-valued)
random variables.

It is natural to address differences and similarities between L1- and Lp-spaces,
and we elaborate on extensions in the second part of the article. We fully describe
the duals of the new spaces. The duality theory for these spaces differs essentially
from Lp-spaces. The new spaces are larger than L∞, but are not Lp-spaces in
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general, and furthermore, their duals are not even similar to those of Lp-spaces.
However, they are reflexive. The duality theory is particularly nice when the dual
of the state space enjoys the Radon–Nikodým property.

An important motivation for considering these spaces derives from recent devel-
opments in mathematical finance. Vector-valued functions or portfolio vectors are
naturally present in many real-life situations. To give one example, consider a
portfolio with investments in d, say, different currencies. The random outcome
is in Rd in this motivating example, and the related random variable is said to
be vector-valued. Here, we consider more generally Banach space-valued random
variables. The spaces can be associated with risk functionals, and we demonstrate
that the spaces introduced are as large as possible such that the associated risk
functionals remain continuous.

Rüschendorf [29] first introduced and considered vector-valued risk function-
als. Svindland [30], Filipović and Svindland [14], Kupper and Svindland [18], and
many other authors have considered and discussed different domain spaces for risk
measures on portfolio vectors, for example, Orlicz spaces (as done in Cheridito
and Li [6] and Bellini and Rosazza Gianin [4]). Ekeland and Schachermayer [13]
considered the domain space L∞ for these risk measures. Ekeland, Galichon, and
Henry [12] provided the first multivariate generalization of a Kusuoka represen-
tation for risk measures on vector-valued random variables on L2. In contrast,
the present article extends these spaces and presents the largest possible Banach
spaces for which those functionals remain continuous. The resulting spaces are
neither Orlicz nor Lebesgue spaces, as considered in the earlier literature.

The spaces that we consider are in a way related to function spaces (rearrange-
ment spaces) introduced by Lorentz [20], [21], following earlier results obtained
by Halperin [16]. For unexplained notions from the theory of vector measures, we
refer the reader to Diestel and Uhl [11].

Outline of the paper. The following section (Section 2) provides the mathemat-
ical setting including the relation to mathematical finance. The Banach spaces
Lp
σ(P,X) of X-valued random variables, introduced in Section 3, constitute the

natural domains of risk functionals. We demonstrate that risk functionals are con-
tinuous with respect to the norm of the space introduced. In Section 4, we give a
representation of the dual spaces of these Banach spaces in the scalar-valued case.
This representation is used in Section 5 to derive representations of the duals in
the general vector-valued case.

2. Mathematical setting and motivation

We consider a probability space (Ω,F , P ) and denote the distribution function
of an R-valued random variable Y by

FY (q) := P (Y ≤ q) = P
({
ω : Y (ω) ≤ q

})
.

The generalized inverse is the nondecreasing and left-continuous function

F−1
Y (α) := inf

{
q : P (Y ≤ q) ≥ α

}
,

also called the quantile or value-at-risk.



ON BANACH SPACES OF VECTOR-VALUED RANDOM VARIABLES 775

We denote byX = (X, ‖·‖) a Banach space, and we denote byX∗ its continuous
dual space. We use the notation 〈ϕ, x〉 for ϕ(x), ϕ ∈ X∗ and x ∈ X. As usual,
we denote for p ∈ [1,∞) by Lp(P,X) the Bochner–Lebesgue space of p-Bochner
integrable X-valued random variables Y on (Ω,F , P ) whose norm we denote by
‖ · ‖p. Recall that for Y ∈ Lp(P,X),

‖Y ‖p =
(∫ 1

0

F−1
‖Y ‖(u)

p du
)1/p

=
(∫ ∞

0

ptp−1
(
1− F‖Y ‖(t)

)
dt
)1/p

. (1)

In this article, Banach spaces of vector-valued, strongly measurable random
variables are introduced by weighting the quantiles in a different way than (1).
The present results extend and generalize characterizations obtained in Pich-
ler [26], where only real-valued random variables and p = 1 are considered (and
elaborated in a context of insurance).

Remark 1. We will assume throughout the paper that the probability space
(Ω,F , P ) is rich enough to carry a [0, 1]-valued, uniform distribution.1 If this
is not the case, then one may replace Ω by Ω̃ := Ω × [0, 1] with the product
measure P̃ (A × B) := P (A) · Lebesgue measure(B). Every random variable Y
on Ω extends to Ω̃ by Ỹ (ω, u) := Y (ω), and U(ω, u) := u is a uniform random
variable, as P̃ (U ≤ u) = P̃ (Ω × [0, u]) = u. We denote the set of [0, 1]-valued
uniform random variables on (Ω,F , P ) by U (0, 1).

With an R-valued random variable Y one may further associate its generalized
quantile transform

F (y, u) := (1− u) · lim
y′↑y

FY (y
′) + u · FY (y).

The random variable F (Y, U) is uniformly distributed again and F (Y, U) is
coupled in a comonotone way with Y ; that is, the inequality (F (Y, U)(ω) −
F (Y, U)(ω′))(Y (ω)− Y (ω′)) ≥ 0 holds P ⊗ P almost everywhere (see, e.g., Pflug
and Römisch [25, Proposition 1.3]).

Relation to mathematical finance: Risk measures and their continuity
properties. Risk measures on R-valued random variables have been introduced
in the pioneering work by Artzner et al. [3]. An R-valued random variable is
typically associated with the total, or accumulated, return of a portfolio in math-
ematical finance. (The prevalent interpretation in insurance is the size of a claim,
which happens with a probability specified by the probability measure P .)

The aggregated portfolio is composed of individual components such as stocks.
From the perspective of comprehensive risk management it is desirable to under-
stand not only the risk of the accumulated portfolio, but also its components.
These more general risk measures on Rd-valued random variables were consid-
ered first in Burgert and Rüschendorf [5], and further progress was made, for
example, by Rüschendorf [29], Ekeland, Galichon, and Henry [12], and Ekeland
and Schachermayer [13].

1U is uniform, if P (U ≤ u) = u for all u ∈ [0, 1].
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Ekeland and Schachermayer [13, Theorem 1.7] obtain a Kusuoka representation
(see [19]) for risk measures based on Rd-valued random variables. The risk func-
tional identified there in the “regular case” for the homogeneous risk functional
on random vectors is

ρZ(Y ) := sup
{
E〈Z, Y ′〉 : Y ′ ∼ Y

}
, (2)

where Y ∼ Y ′ indicates that Y and Y ′ enjoy the same law in Rd.2 The measure
ρZ is called the maximal correlation risk measure in direction Z.

The rearrangement inequality (see, e.g., McNeil, Frey, and Embrechts [22, The-
orem 5.25(2)], also known as Chebyshev’s sum inequality (see Hardy, Littlewood,
and Pólya [17, Section 2.17]), provides an upper bound for the natural linear form
in (2) by∣∣E〈Z, Y 〉

∣∣ ≤ E‖Z‖∗ · ‖Y ‖ ≤ EK · ‖Z‖`d1 · ‖Y ‖ ≤ K ·
∫ 1

0

F−1
‖Z‖

`d1

(u) ·F−1
‖Y ‖(u) du, (3)

where the norms ‖ · ‖ and ‖ · ‖∗ are dual to each other on Rd (here, K > 0 is the
constant linking the norms by ‖ · ‖∗ ≤ K · ‖ · ‖`d1 on (the dual of) Rd).

The maximal correlation risk measure (2) employs the linear form E〈Z, Y 〉,
which satisfies the bounds (3). This motivates fixing the function

σ(·) := F−1
‖Z‖

`d1

(·), (4)

and to consider an appropriate vector space of random variables endowed with
(see Pichler [27], [28] and Ahmadi-Javid and Pichler [2])

‖Y ‖σ :=

∫ 1

0

σ(u) · F−1
‖Y ‖(u) du.

It turns out that ‖ · ‖σ is a norm (Theorem 4 below) on this vector space of
random variables and that the maximal correlation risk measure is continuous
with respect to the norm (see Proposition 7).

3. The vector-valued Banach spaces Lp
σ(P,X)

Motivated by the observations made in the previous section, we introduce the
following notions.

Definition 2. A nondecreasing, nonnegative function σ : [0, 1) → [0,∞), which is

continuous from the left and normalized by
∫ 1

0
σ(u) du = 1, is called a distortion

function (also occasionally referred to in the literature as a spectrum function;
see Acerbi [1]).

Definition 3. For a distortion function σ, a Banach space (X, ‖·‖), and a probabil-
ity space (Ω,F , P ), we define for p ∈ [1,∞) and a strongly measurable X-valued
random variable Y on (Ω,F , P ),

‖Y ‖pσ,p := sup
U uniform

Eσ(U)‖Y ‖p = sup
U uniform

∫
Ω

σ
(
U(ω)

)∥∥Y (ω)
∥∥p
dP (ω),

2That is, P (Y1 ≤ y1, . . . , Yd ≤ yd) = P (Y ′
1 ≤ y1, . . . , Y

′
d ≤ yd) for all (y1, . . . , yd) ∈ Rd.
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where the supremum is taken over all U ∈ U (0, 1), that is, over all [0, 1]-valued,
uniformly distributed random variables U on (Ω,F , P ). Moreover, we set

Lp
σ(P,X) :=

{
Y : Ω → X strongly measurable and ‖Y ‖pσ,p <∞

}
,

where as usual we identify X-valued random variables which coincide P -almost
everywhere.

Obviously, for σ = 1 one obtains the classical Bochner–Lebesgue spaces
Lp(P,X) which are well known to be Banach spaces.

Theorem 4. We have that Lp
σ(P,X) is a vector space and that ‖ · ‖p,σ is a

norm on Lp
σ(P,X) turning it into a Banach space which embeds contractively

into Lp(P,X).
Moreover, for each X-valued, strongly measurable Y on (Ω,F , P ) and every

U ∈ U (0, 1) which is coupled in a comonotone way with ‖Y ‖, it follows that

‖Y ‖pσ,p = E
(
σ(U)‖Y ‖p

)
=

∫ 1

0

σ(u)F−1
‖Y ‖(u)

p du. (5)

Proof. We denote the probability measure on (Ω,F) with P -density σ ◦ U for
some U ∈ U (0, 1) by σ(U)P , and we denote the expectation of a nonnegative
random variable Z on (Ω,F , σ(U)P ) by EU(Z). We obviously have

‖Y ‖pσ,p = sup
U∈U (0,1)

EU‖Y ‖p,

which implies that Lp
σ(P,X) is a subspace of the intersection of Banach spaces⋂

U∈U (0,1) L
p(σ(U)P,X) and that ‖ · ‖σ,p is a seminorm on Lp

σ(P,X).

By the rearrangement inequality (see, e.g., [22, Theorem 5.25(2)]) and the
well-known fact that F−1

σ(U) = σ and (F−1
‖Y ‖)

p = F−1
‖Y ‖p , it follows that for every

U ∈ U (0, 1) and each X-valued, strongly measurable Y on (Ω,F , P ), we have

E
(
σ(U)‖Y ‖p

)
≤

∫ 1

0

σ(u)F−1
‖Y ‖(u)

p du

so that

‖Y ‖pσ,p ≤
∫ 1

0

σ(u)F−1
‖Y ‖(u)

p du. (6)

Moreover, if we fix for an X-valued, strongly measurable Y on (Ω,F , P ) some
U ∈ U (0, 1) such that U and ‖Y ‖ are coupled in a comonotone way (such U
exists due to our general assumption on (Ω,F , P ) made in Remark 1), then (see
Kusuoka [19])

E
(
σ(U)‖Y ‖p

)
=

∫ 1

0

σ(u)F−1
‖Y ‖(u)

p du.

Together with (6) we obtain that for each X-valued, strongly measurable Y on
(Ω,F , P ) there is U ∈ U (0, 1) such that

‖Y ‖pσ,p = E
(
σ(U)‖Y ‖p

)
=

∫ 1

0

σ(u)F−1
‖Y ‖(u)

p du,

proving (5).
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In order to see that the seminorm ‖ · ‖σ,p on Lp
σ(P,X) is in fact a norm, we

apply the continuous version of Chebyshev’s inequality (see, e.g., Gradshteyn and
Ryzhik [15, (12.314)]) to the nonnegative, nondecreasing functions σ and (F−1

‖Y ‖)
p

on [0, 1) to obtain∫ 1

0

σ(u)F−1
‖Y ‖(u)

p du ≥
∫ 1

0

σ(u) du·
∫ 1

0

F−1
‖Y ‖(u)

p du =

∫ 1

0

F−1
‖Y ‖(u)

p du = E
(
‖Y ‖p

)
,

where the last equality follows from (F−1
‖Y ‖)

p = F−1
‖Y ‖p . In particular, together

with (5) we obtain for every X-valued, strongly measurable Y ,

E
(
‖Y ‖p

)
≤ ‖Y ‖pσ,p,

which proves that Lp
σ(P,X) embeds contractively into Lp(P,X) and that ‖Y ‖σ,p =

0 implies Y = 0 so that ‖ · ‖σ,p is indeed a norm.
Finally, in order to prove that Lp

σ(P,X) is a Banach space when equipped with
the norm ‖·‖σ,p, we first note that a Cauchy sequence (Yn)n∈N in Lp

σ(P,X) is also a
Cauchy sequence in Lp(P,X) so that there is Y ∈ Lp(P,X) with Y = limn→∞ Yn
in Lp(P,X). From this we conclude that Y = limk→∞ Ynk

P -almost everywhere
on Ω for some subsequence (Ynk

)k∈N of (Yn)n∈N. Since for each ε > 0 there is
N ∈ N such that for all U ∈ U (0, 1),

εp > E
(
σ(U)‖Yn − Ym‖p

)
whenever n,m ≥ N , it follows with Fatou’s lemma that for every U ∈ U (0, 1)
and each n ≥ N , we have

E
(
σ(U)‖Y−Yn‖p

)
= E

(
lim
k→∞

σ(U)‖Ynk
−Yn‖p

)
≤ lim inf

k→∞
E
(
σ(U)‖Ynk

−Yn‖p
)
≤ εp;

that is, ‖Y − Yn‖σ,p ≤ εp for every n ≥ N . Thus, we conclude that

Y = (Y − YN) + YN ∈ Lp
σ(P,X)

and that (Yn)n∈N converges to Y in Lp
σ(P,X). �

Remark 5. By (5), Lp
σ(P,X)-membership of Y only depends on the quantile

function F−1
‖Y ‖ so that Lp

σ(P,X) is invariant with respect to rearrangements. From

the definition of ‖·‖σ,p, it follows immediately that Lp
σ(P,X) is an L∞(P )-module

and that ‖αY ‖σ,p ≤ ‖α‖∞‖Y ‖σ,p for all α ∈ L∞(P ) and each Y ∈ Lp
σ(P,X).

Next we show that the Lp
σ(P,X)-spaces behave like the classical Bochner–

Lebesgue spaces Lp(P,X) when one varies the exponent p ∈ [1,∞).

Proposition 6. Let p, p′ ∈ [1,∞) be such that p < p′.

(i) Lp′
σ (P,X) ⊆ Lp

σ(P,X) and ‖Y ‖σ,p ≤ ‖Y ‖σ,p′ for every Y ∈ Lp′
σ (P,X).

(ii) If with r := p′/(p′ − p) the distortion function σ satisfies
∫ 1

0
σr(u) du <

∞, then even Lp′(P,X) ⊆ Lp
σ(P,X) and ‖Y ‖σ,p ≤ ‖Y ‖p′ for every Y ∈

Lp′(P,X).
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Proof. Setting r := p′/(p′−p), it follows from (5), 1/r+1/(p′/p) = 1, and Hölder’s
inequality that for each X-valued, strongly measurable Y on (Ω,F , P ),

‖Y ‖pσ,p =
∫ 1

0

σ
1
r (u)σ

1
p′/p (u)F−1

‖Y ‖(u)
p du

≤
(∫ 1

0

σ(u) du
)1/r(∫ 1

0

σ(u)F−1
‖Y ‖(u)

p′ du
)p/p′

= ‖Y ‖pσ,p′ ,

which proves (i), while (ii) follows from (5), 1/r + 1/(p′/p) = 1, and Hölder’s
inequality since

‖Y ‖pσ,p =
∫ 1

0

σ(u)F−1
‖Y ‖(u)

p du ≤
(∫ 1

0

σr(u) du
)1/r(∫ 1

0

F−1
‖Y ‖(u)

p p′
p du

)p/p′

=
(∫ 1

0

σr(u) du
)1/r(

E‖Y ‖p′
)p/p′

holds for each X-valued, strongly measurable Y on (Ω,F , P ). �

For a Banach space X with (continuous) dual space X∗ we write, as usual,
〈x∗, x〉 := x∗(x), x ∈ X, x∗ ∈ X∗. The dual norm on X∗ will also be denoted
by ‖ · ‖. If Z is an X∗-valued, Bochner integrable random variable on (Ω,F , P )
such that E‖Z‖ = 1, then σZ := F−1

‖Z‖ is a distortion function. For two X-valued,

strongly measurable Y1, Y2 on (Ω,F , P ) we write Y1 ∼ Y2 if they have the same
law, that is, if P Y1 = P Y2 .

Proposition 7. Let X be a real Banach space, and let Z be an X∗-valued,
Bochner integrable random variable on (Ω,F , P ) such that E‖Z‖ = 1. Then,
for every p ∈ [1,∞),

ρZ : Lp
σZ
(P,X) → R, Y 7→ sup

{
E〈Z, Y ′〉 : Y ∼ Y ′}

is a well-defined subadditive, convex functional. Moreover, for Y1, Y2 ∈ Lp
σZ
(P,X)

we have ∣∣ρZ(Y1)− ρZ(Y2)
∣∣ ≤ ‖Y1 − Y2‖σ,p.

Proof. It follows from Y ∼ Y ′ that F−1
‖Y ‖ = F−1

‖Y ′‖. Hence, Y
′ ∈ Lp

σZ
(P,X) when-

ever Y ∈ Lp
σZ
(P,X) by (5) in Theorem 4. From the strong measurability of Z and

Y ∈ Lp
σZ
(P,X), it follows immediately that ω 7→ 〈Z(ω), Y (ω)〉 is an R-valued ran-

dom variable on (Ω,F , P ). The rearrangement inequality, the definition of σZ , (5)
in Theorem 4, and Proposition 6 imply that for Y ′ ∼ Y ∈ Lp

σZ
(P,X),∣∣E〈Z, Y ′〉

∣∣ ≤ E
(
‖Z‖‖Y ′‖

)
≤

∫ 1

0

σZ(u)F
−1
‖Y ‖(u) du = ‖Y ‖σ,1 ≤ ‖Y ‖σ,p,

which proves that ρZ is well defined and that∣∣ρZ(Y )
∣∣ ≤ ‖Y ‖σ,p. (7)

Obviously, ρZ(λY ) = λρZ(Y ) for all λ > 0. Moreover, from the definition of ρZ
and strong measurability, it follows immediately that ρZ is subadditive. Therefore,

ρZ(Y1) = ρ(Y2 + Y1 − Y2) ≤ ρZ(Y2) + ρZ(Y1 − Y2).
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Interchanging the roles of Y1, Y2 in the above inequality gives∣∣ρZ(Y1)− ρZ(Y2)
∣∣ ≤ ρZ(Y1 − Y2),

which together with (7) proves |ρZ(Y1)− ρZ(Y2)| ≤ ‖Y1 − Y2‖σ,p. �

In the remainder of this section, we will provide a closer look at the Banach
spaces Lp

σ(P,X).

Proposition 8. Let X 6= {0}. Then the following are equivalent.

(i) For all p ∈ [1,∞), the spaces Lp
σ(P,X) and Lp(P,X) are isomorphic as

Banach spaces.
(ii) There is p ∈ [1,∞) such that Lp

σ(P,X) = Lp(P,X) as sets.
(iii) We have that σ is bounded.

Proof. Obviously, (i) implies (ii). By Theorem 4, Lp
σ(P,X) embeds contractively

into Lp(P,X). Thus, if (ii) holds, this embedding is onto so that by Banach’s
isomorphism theorem, there is C > 0 such that

∀Y ∈ Lp(P,X): sup
U∈U (0,1)

∫
Ω

σ
(
U(ω)

)∥∥Y (ω)
∥∥p
dP (ω) ≤ C

∫
Ω

∥∥Y (ω)
∥∥p
dP (ω),

where U (0, 1) is defined as before. Choose f ∈ L1(P,R) and x ∈ X with ‖x‖ = 1.
Then Y (ω) := |f(ω)|1/px defines an element of Lp(P,X) so that for any U ∈
U (0, 1), we have∣∣∣∫

Ω

σ
(
U(ω)

)
f(ω) dP (ω)

∣∣∣ ≤ ∫
Ω

σ
(
U(ω)

)∥∥Y (ω)
∥∥p
dP (ω)

≤ C

∫
Ω

∥∥Y (ω)
∥∥p
dP (ω)

= C

∫
Ω

∣∣f(ω)∣∣ dP (ω) <∞.

Since f ∈ L1(P,R) was chosen arbitrarily, it follows that σ◦U ∈ L∞(P,R), which
by U ∈ U (0, 1) and by the fact that σ is nondecreasing implies boundedness of σ.
Thus, (iii) follows from (ii).

Finally, (iii) and the fact that Lp
σ(P,X) embeds contractively into Lp(P,X) for

any p ∈ [1,∞) implies (i) by Theorem 4. �

Proposition 9. We have the following.

(i) For every p ∈ [1,∞), L∞(P,X) embeds contractively into Lp
σ(P,X).

(ii) Simple functions are dense in Lp
σ(P,X) for every p ∈ [1,∞).

Proof. It follows from the definition of quantile functions that 0 ≤ F−1
‖Y ‖ ≤ ‖Y ‖∞

for every X-valued, strongly measurable Y on (Ω,F , P ), which implies by (5) in
Theorem 4 that

‖Y ‖pσ,p =
∫ 1

0

σ(u)F−1
‖Y ‖(u)

p du ≤ ‖Y ‖p∞,

proving (i).
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In order to prove (ii), let Y ∈ Lp
σ(P,X), and fix ε ∈ (0, 1). We choose uε ∈ (0, 1)

such that
∫ 1

uε
σ(u)F−1

‖Y ‖(u)
p du < εp. By the strong measurability of Y there

are N ∈ F with P (N) = 0 and a separable, closed subspace X1 of X such
that 1NcY is X1-valued. Let {xj; j ∈ N} be a dense subset of X1. Denoting
the open ball about xj with radius ε in X by Bε(xj), we choose Borel subsets
Ej ⊆ Bε(xj) such that X1 ⊆

⋃
j∈NEj and such that the Ej’s are pairwise dis-

joint. Then ((1NcY )−1(Ej))j∈N is a pairwise disjoint sequence in F such that
P (

⋃
j∈N(1NcY )−1(Ej)) = 1. Let n ∈ N be such that

n∑
j=1

P
(
(1NcY )−1(Ej)

)
> uε, (8)

and set E :=
⋃n

j=1(1NcY )−1(Ej).

Obviously, for t ≥ 0 we have {1Ec‖Y ‖p ≤ t} ⊇ {‖Y ‖p ≤ t} so that
F1Ec‖Y ‖p(t) ≥ F‖Y ‖p(t). Therefore,

∀u ∈ [0, 1]:
{
t ≥ 0;F1Ec‖Y ‖p(t) ≥ u

}
⊇

{
t ≥ 0;F‖Y ‖p(t) ≥ u

}
,

which implies F−1
1Ec‖Y ‖p ≤ F−1

‖Y ‖p . Furthermore,

F1Ec‖Y ‖p(0) = P
(
1Ec‖Y ‖p = 0

)
≥ P (E)

so that F−1
1Ec‖Y ‖p(u) = 0 for every u ∈ [0, P (E)], which together with F−1

‖Y ‖p =

(F−1
‖Y ‖)

p and (8) yields for all u ∈ [0, 1],

F−1
1Ec‖Y ‖p(u) ≤ 1(P (E),1](u)F

−1
‖Y ‖(u)

p ≤ 1(uε,1](u)F
−1
‖Y ‖(u)

p. (9)

Defining Yε :=
∑n

j=1 1(1NcY )−1(Ej)xj, it follows from the definition of E that

‖1NcY − Yε‖ ≤ ε on E while Yε = 0 on Ec. For every U ∈ U (0, 1), we obtain∫
Ω

σ(U)‖1NcY − Yε‖p dP =

∫
Ω

σ(U)1E‖1NcY − Yε‖p dP +

∫
Ω

σ(U)1Ec‖Y ‖p dP

≤ εp
∫
Ω

σ(U) dP +

∫ 1

0

σ(u)F−1
1Ec‖Y ‖p(u) du

≤ εp +

∫ 1

uε

σ(u)F−1
‖Y ‖p(u)

p du < 2εp,

where we used the rearrangement inequality (see [22, Theorem 5.25(2)]) in the
first inequality and (9) in the second one, while the last inequality follows from
the choice of uε. Thus, ‖Y − Yε‖ < p

√
2ε, proving (ii). �

Theorem 10. For X 6= {0}, the following are equivalent.

(i) Lp
σ(P,X) is a Hilbert space.

(ii) X is a Hilbert space, p = 2, and σ = 1 on (0, 1).

Proof. Obviously, (ii) implies (i).
Let Eα ∈ F be chosen with P (Eα) = α. For α ∈ (0, 1) and x ∈ X, a straight-

forward calculation gives for Y = 1Eαx that F−1
‖Y ‖ = ‖x‖1(1−α,1). Moreover, for

x1, x2 ∈ X with ‖x1‖ = ‖x2‖ = 1 and Y1 := 1Eαx1, Y2 := 1Ec
α
x2, we have
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‖Y1 ± Y2‖σ,p = 1. Thus, by the parallelogram identity and (5), we obtain for
arbitrary α ∈ [0, 1],

1 =
1

2
‖Y1 − Y2‖2σ,p +

1

2
‖Y1 + Y2‖2σ,p = ‖Y1‖2σ,p + ‖Y2‖2σ,p (10)

=
(∫ 1

1−α

σ(u) du
)2/p

+
(∫ 1

α

σ(u) du
)2/p

.

Pick α ∈ (0, 1) so that 0 <
∫ α

0
σ(u) du < 1. If p > 2, then

1 =
(∫ 1

1−α

σ(u) du
)2/p

+
(∫ 1

α

σ(u) du
)2/p

>

∫ 1

1−α

σ(u) du+

∫ 1

α

σ(u) du

≥
∫ α

0

σ(u) du+

∫ 1

α

σ(u) du = 1,

as σ is nondecreasing. This is a contradiction, and hence p ≤ 2.
Define the function

f(α) :=
(∫ 1

α

σ(u) du
)2/p

. (11)

Since σ is continuous from the left, f is differentiable from the left with increasing
left derivative; thus f is convex. Furthermore, we have f(α)+f(1−α) = 1 by (10)
so that f is concave as well. Hence, f is affine, that is, f(α) = b + c · α, and we
deduce from f(1) = 0, f(0) = 1 and (11) the particular form

σ(u) =
p

2
(1− u)

p
2
−1, (12)

which implies
∫ 1

1−α
σ(u) du = αp/2.

Next consider measurable sets A and B with A ⊆ B. The parallelogram
law (10), applied to the random variables Y1 := 1Ax and Y2 := 1Bx, reads

1

2

(
P (B)− P (A)

)
+

1

2

(
P (B)p/2 − P (A)p/2 + 2pP (A)p/2

)2/p
= P (A) + P (B),

that is,

P (B)p/2 + (2p − 1)P (A)p/2 =
(
3P (A) + P (B)

)p/2
.

We may specify the sets further by P (B) = 4P (A). Then the latter equality
reduces to

4p/2 + (2p − 1) = 7p/2,

so that we are left with solving the equation

2x− 1 = x
log 7

2 log 2

for x = 2p.

The convex function x
log 7

log 4 does not have more than two intersections with
the line 2x − 1, and these are x = 1 and x = 4, that is, p = 0 and p = 2.
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The intersection p = 0 does not qualify, and the distortion function for p = 2 is
σ(·) = 1, by (12). This concludes the proof. �

4. The dual space in the scalar-valued case

In this section, we are going to determine the dual space of Lp
σ := Lp

σ(P ) :=
Lp
σ(P,K), K ∈ {R,C}. For ϕ ∈ Lp

σ(P )
∗, we denote the dual norm of ϕ by ‖ϕ‖∗σ,p.

Some of the results presented in this section are inspired by Lorentz [21].

Definition 11. As usual, we denote by L0(P ) the set of K-valued random vari-
ables on (Ω,F , P ), where random variables which coincide P -almost surely are
identified. We define the Köthe dual of Lp

σ(P ) as

Lp
σ(P )

× :=
{
Z ∈ L0(P );∀Y ∈ Lp

σ(P ) : ZY ∈ L1(P )
}
.

Since L∞(P ) ⊆ Lp
σ(P ) for all p ∈ [1,∞), it follows from taking Y = 1{Z 6=0}

Z
|Z|

that Z ∈ L1(P ) whenever Z ∈ Lp
σ(P )

×.

Proposition 12. For every Z ∈ Lp
σ(P )

×,

sup
{∣∣E(ZY )

∣∣; ‖Y ‖σ,p ≤ 1
}
<∞.

Moreover,

ϕZ : Lp
σ(P ) → K, ϕZ(Y ) = E(ZY )

belongs to Lp
σ(P )

∗ and

Φ : Lp
σ(P )

× → Lp
σ(P )

∗, Z 7→ ϕZ

is a linear isomorphism with

∀Z ∈ Lp
σ(P )

×:
∥∥Φ(Z)∥∥∗

σ,p
= sup

{∣∣E(ZY )
∣∣; ‖Y ‖σ,p ≤ 1

}
. (13)

Proof. Obviously, ϕZ is a well-defined linear functional on Lp
σ(P ) for every Z ∈

Lp
σ(P )

×. The assumption

∞ = sup
{∣∣E(ZY )

∣∣; ‖Y ‖σ,p ≤ 1
}

implies the existence of a sequence (Yk)k∈N in the unit ball of Lp
σ(P ) such that

∀k ∈ N: k2 ≤
∣∣E(ZYk)∣∣ ≤ E

(
|ZYk|

)
.

Because Ỹk := 1{ZYk 6=0}
ZYk

|ZỸk|
Yk belongs to the unit ball of Lp

σ(P ), k ∈ N, the com-

pleteness of Lp
σ(P ) implies that (

∑n
k=1

1
k2
Ỹk)n∈N converges in Lp

σ(P ) to some Y .
As Z ∈ Lp

σ(P )
×, it follows that ZY ∈ L1(P ).

But on the other hand, since Lp
σ(P ) embeds contractively into Lp(P ) by Theo-

rem 4, it follows that some subsequence (
∑nl

k=1
1
k2
Ỹk)l∈N also converges P -almost

surely to Y . Therefore, P -almost surely we have

ZY = Z lim
l→∞

( nl∑
k=1

1

k2
Ỹk

)
= lim

l→∞

nl∑
k=1

1

k2
ZỸk = lim

l→∞

nl∑
k=1

1

k2
|ZYk|, (14)
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and by an application of the monotone convergence theorem, we conclude that

E(ZY ) = E
(
lim
l→∞

nl∑
k=1

1

k2
|ZYk|

)
= lim

l→∞

nl∑
k=1

1

k2
E
(
|ZYk|

)
≥ lim

l→∞

nl∑
k=1

1,

which contradicts ZY ∈ L1(P ). Hence,

∞ > sup
{∣∣E(ZY )

∣∣; ‖Y ‖σ,p ≤ 1
}

so that ϕZ ∈ Lp
σ(P )

∗ with

‖ϕZ‖∗σ,p = sup
{∣∣E(ZY )

∣∣; ‖Y ‖σ,p ≤ 1
}
. (15)

This implies that Φ is a well-defined linear mapping which satisfies (13). In order
to show that Φ is injective, choose Z ∈ Lp

σ(P )
× with Φ(Z) = 0. We set Y :=

1{Z 6=0}
Z
|Z| . Since simple functions belong to Lp

σ(P ), it follows easily that Y ∈
Lp
σ(P ). It follows that

0 = Φ(Z)(Y ) = E
(
|Z|

)
,

so that Z = 0.
In order to prove the surjectivity of Φ, let ϕ ∈ Lp

σ(P ). For E ∈ F and Y = 1E,
we have F−1

|Y | = 1(1−P (E),1] so that by (5),

∣∣ϕ(1E)
∣∣ ≤ ‖ϕ∗

σ,p‖‖1E‖σ,p = ‖ϕ‖∗σ,p
(∫ 1

1−P (E)

σ(u) du
)1/p

.

Using this inequality, it is straightforward to show that

µ : F → K, µ(E) := ϕ(1E)

is a complex measure which is P -continuous; that is, µ(E) = 0 whenever
P (E) = 0. An application of the Radon–Nikodým theorem yields some Z ∈ L1(P )
such that µ(E) =

∫
Ω

1EZ dP = E(Z1E) for all E ∈ F . For simple functions Y ,
it follows that ϕ(Y ) = E(ZY ). As soon as we have shown that Z ∈ Lp

σ(P )
×, it

follows from the above and Theorem 9 that ϕ = Φ(Z).
In order to show that Z ∈ Lp

σ(P )
×, we first observe that αY ∈ Lp

σ(P ) and
‖αY ‖σ,p ≤ ‖α‖∞‖Y ‖σ,p for every Y ∈ Lp

σ(P ) and each α ∈ L∞(P ). Therefore, by
setting En := {|Z| ≤ n}, n ∈ N, we have ‖1EnY ‖σ,p ≤ ‖Y ‖σ,p for each Y ∈ Lp

σ(P ),
which implies ϕn ∈ Lp

σ(P )
∗ and ‖ϕn‖∗σ,p ≤ ‖ϕ‖∗σ,p, where ϕn(Y ) := ϕ(1EnY ).

For simple functions Y , we have ϕn(Y ) = E(Z1EnY ). Additionally, by Hölder’s
inequality and Theorem 4, we obtain for arbitrary Y ∈ Lp

σ(P ),

E
(
|Z1EnY |

)
≤ nE

(
|Y |

)
≤ n‖Y ‖σ,p,

so that Z1En ∈ Lp
σ(P )

×. Because simple functions are dense in Lp
σ(P ) by Theo-

rem 9, we conclude from the above that Φ(Z1En) = ϕn. Finally, since

E
(
|Z1EnY |

)
=

∣∣∣ϕn

(
1{ZY 6=0}

ZY

|ZY |
Y
)∣∣∣ ≤ ‖ϕn‖∗σ,p

∥∥∥1{ZY 6=0}
ZY

|ZY |
Y
∥∥∥
σ,p

≤ ‖ϕ‖σ,p‖Y ‖σ,p,
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it follows with the aid of the monotone convergence theorem that

E
(
|ZY |

)
= lim

n→∞
E
(
|Z1EnY |

)
≤ ‖ϕ‖σ,p‖Y ‖σ,p

for each Y ∈ Lp
σ(P ) so that Z ∈ Lp

σ(P )
×. �

Remark 13. Given the fact that for α ∈ L∞(P ) the linear mapping Y 7→ αY is
well defined and continuous from Lp

σ(P ) into itself, it is straightforward to see that
|Z| ∈ Lp

σ(P )
× whenever Z ∈ Lp

σ(P )
× and that in this case ‖ϕZ‖∗σ,p = ‖ϕ|Z|‖∗σ,p.

Our next aim is to give a representation of Lp
σ(P )

× and thus of the dual space
of Lp

σ(P ). For this purpose, we introduce the following notion.

Definition 14. For a distortion function σ, we define

Sσ := S : [0, 1] → R, Sσ(α) =

∫ 1

α

σ(u) du.

Remark 15. Obviously, S is a continuous, nonincreasing function with S(0) = 1,
S(1) = 0. If we set u0 := inf{u > 0;σ(u) > 0}, we have u0 < 1, S|[0,u0] = 1, and
S|[u0,1] is an increasing bijection from [u0, 1] to [0, 1]. By abuse of notation, we
denote the inverse of S|[u0,1] by S

−1.
For α1, α2 ∈ [0, 1], α1 < α2, and λ ∈ (0, 1), it follows from the fact that σ is

nondecreasing that

S
(
λα1 + (1− λ)α2

)
− S(α1) =−

∫ λα1+(1−λ)α2

α1

σ(u) du

≥−σ
(
λα1 + (1− λ)α2

)
(1− λ)(α2 − α1)

and

S(α2)− S
(
λα1 + (1− λ)α2

)
=−

∫ α2

λα1+(1−λ)α2

σ(u) du

≤−σ
(
λα1 + (1− λ)α2

)
λ(α2 − α1)

so that

S(λα1 + (1− λ)α2)− S(α1)

(1− λ)(α2 − α1)
≥ −σ

(
λα1 + (1− λ)α2

)
≥ S(α2)− S(λα1 + (1− λ)α2)

λ(α2 − α1)
,

which implies S(λα1 + (1− λ)α2) ≥ λS(α1) + (1− λ)S(α2); that is, S is concave.
In particular, S is differentiable from the left and from the right on (0, 1] (resp.,
on [0, 1)) and since σ is continuous from the left, it is straightforward to show
that for the left derivative we have S ′

l(α) = −σ(u), u ∈ (0, 1].

Recall that for a nonnegative random variable Z the average value-at-risk of
level α ∈ [0, 1) is defined as AV@Rα(Z) =

1
1−α

∫ 1

α
F−1
Z (u) du.
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Definition 16. For a distortion function σ, Z ∈ L0(P ), and α ∈ [0, 1), we define

|Z|∗σ,∞ := sup
α∈[0,1)

AV@Rα(|Z|)
1

1−α
Sσ(α)

(
= sup

α∈[0,1)

∫ 1

α
F−1
|Z| (u) du∫ 1

α
σ(u) du

)
. (16)

Moreover, we say that Z ′ ∈ L0(P ) σ-dominates Z (in symbols Z ′
σ<Z) if there

is a uniform random variable U ∈ U (0, 1) such that

AV@Rα

(
σ(U)|Z ′|

)
≥ AV@Rα

(
|Z|

)
for all α < 1. (17)

Furthermore, we define, for p ∈ (1,∞),

|Z|∗σ,q := inf
{
‖Z ′‖σ,q : Z ′

σ<Z
}
, (18)

where q ∈ (1,∞) is the conjugate exponent to p, that is, 1/p + 1/q = 1, and
where as usual inf ∅ := ∞.

Finally, for p ∈ [1,∞) with conjugate exponent q, that is, 1/p + 1/q = 1, we
set L∗

σ,q(P ) := {Z ∈ L0(P ); |Z|∗σ,q <∞} (and we identify random variables which
coincide P -almost everywhere).

From the definition of quantile functions, it follows for Z1, Z2 ∈ L0(P ) with
|Z1| ≤ |Z2| that F−1

|Z1| ≤ F−1
|Z2|, which implies |Z1|∗σ,q ≤ |Z2|∗σ,q. Since also F−1

|αZ1| =

|α|F−1
|Z1| for α ∈ K, it follows also that |αZ1|∗σ,q = |α||Z1|∗σ,q. Since AV@Rα is sub-

additive (see Pflug and Römisch [25]), it follows easily that L∗
σ,q(P ) is a subspace

of L0(P ).

Remark 17 (Stochastic dominance of second order). The definition of | · |∗σ,∞
reflects the duality of risk functionals. Indeed, the supremum (16) can be restated
as

|Z|∗σ,∞ = inf
{
η ≥ 0 : AV@Rα

(
|Z|

)
≤ η

1− α
·
∫ 1

α

σ(u) du for all α < 1
}
.

By the rearrangement inequality (see [22, Theorem 5.25(2)]), this equivalent for-
mulation involves the statement

AV@Rα

(
|Z|

)
≤ AV@Rα

(
ησ(U)

)
, (19)

where U ∈ U (0, 1). Choosing U to be coupled in a comonotone way with |Z|, it
follows that

|Z|∗σ,∞ = inf
{
η ≥ 0, U ∈ U (0, 1) : AV@Rα

(
|Z|

)
≤ AV@Rα

(
ησ(U)

)
for all α < 1

}
.

Following Ogryczak and Ruszczyński [23], (19) is equivalent to saying that |Z| is
dominated by ‖Z‖∗σ · σ(U) in second stochastic order.3

Remark 18.

(i) By the choice α = 0 in (16), it follows that

|Z|∗σ,∞ ≥ AV@R0

(
|Z|

)
=

∫ 1

0

F−1
|Z| (u) du = E|Z| = ‖Z‖1, (20)

so that L∗
σ,∞(P ) ⊆ L1(P ).

3See Dentcheva and Ruszczyński [7]–[9] for stochastic dominance of second order.
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(ii) Since for Z, Z ′ ∈ L0(P ) with Z ′
σ<Z we have, for p ∈ [1,∞) with Propo-

sition 6,

‖Z‖1 =
∫ 1

0

F−1
|Z| (u) du ≤

∫ 1

0

σ(u)F−1
|Z′|(u) du = ‖Z ′‖σ,1 ≤ ‖Z ′‖σ,p,

it also follows that L∗
σ,q(P ) ⊆ L1(P ).

Proposition 19. For Z ∈ L0(P ), we have

|Z|∗σ,∞ = inf
{
η ≥ 0;∀F : [0, 1) → [0,∞) nondecreasing:∫ 1

0

F−1
|Z| (u)F (u) du ≤ η

∫ 1

0

σ(u)F (u) du
}
,

and for p ∈ (1,∞), we have

|Z|∗σ,q = inf
{
‖Z ′‖σ,q;Z ′ ∈ L0(P ) such that ∀F : [0, 1) → [0,∞) nondecreasing:∫ 1

0

F−1
|Z| (u)F (u) du ≤

∫ 1

0

σ(u)F−1
|Z′|(u)F (u) du

}
,

where as usual 1/p+ 1/q = 1.

Proof. Since 1[α,1] is a nondecreasing, nonnegative function for every α ∈ [0, 1),
it follows that{

η ≥ 0;∀F : [0, 1) → [0,∞) nondecreasing:∫ 1

0

F−1
|Z| (u)F (u) du ≤ η

∫ 1

0

σ(u)F (u) du
}

⊆
{
η ≥ 0;∀α ∈ [0, 1) :

∫ 1

α

F−1
|Z| (u) du ≤ η

∫ 1

α

σ(u) du
}
.

On the other hand, if for some η ≥ 0 we have

∀α ∈ [0, 1):

∫ 1

α

F−1
|Z| (u) du ≤ η

∫ 1

α

σ(u) du,

it follows for all γ1, . . . , γn ∈ [0,∞) and every choice of α1 < · · · < αn ∈ [0, 1)
that ∫ 1

0

F−1
|Z| (u)

n∑
j=1

γj1[αj ,1](u) du ≤ η

∫ 1

0

σ(u)
n∑

j=1

γj1[αj ,1](u) du.

Since every nonnegative, nondecreasing function F : [0, 1) → [0,∞) is the point-
wise limit of a nondecreasing sequence of such step functions

∑n
j=1 γj1[αj ,1], it

follows from the monotone convergence theorem that∫ 1

0

F−1
|Z| (u)F (u) du ≤ η

∫ 1

0

σ(u)F (u) du
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for all such F . Hence, it also holds that{
η ≥ 0;∀F : [0, 1) → [0,∞) nondecreasing:∫ 1

0

F−1
|Z| (u)F (u) du ≤ η

∫ 1

0

σ(u)F (u) du
}

⊇
{
η ≥ 0;∀α ∈ [0, 1) :

∫ 1

α

F−1
|Z| (u) du ≤ η

∫ 1

α

σ(u) du
}
,

which proves the first claim. The rest of the proposition is proved mutatis mutan-
dis. �

Proposition 20. For a distortion function σ and p ∈ [1,∞), we have L∗
σ,q(P ) ⊆

Lp
σ(P )

× and

sup
{∣∣E(ZY )

∣∣;Y ∈ Lp
σ(P ), ‖Y ‖σ,p ≤ 1

}
≤ |Z|∗σ,q (21)

for every Z ∈ L∗
σ,q(P ), where q is the conjugate exponent to p.

Proof. Let p = 1. For Z ∈ L∗
σ,∞(P ) it follows for arbitrary Y ∈ L1

σ(P ) from the
rearrangement inequality combined with Proposition 19 that

E
(
|ZY |

)
≤

∫ 1

0

F−1
|Z| (u)F

−1
|Y | (u) du ≤ |Z|∗σ,∞

∫ 1

0

σ(u)F−1
|Y | (u) du

= |Z|∗σ,∞‖Y ‖σ,1.

Hence, Z ∈ L1
σ(P )

× and the above inequality also implies that |Z|∗σ,∞ is an upper

bound for sup{|E(ZY )|;Y ∈ L1
σ(P ), ‖Y ‖σ,1 ≤ 1}.

Next let p ∈ (1,∞), and let q be the corresponding conjugate exponent. For
Z ∈ L∗

σ,q(P ), let Z
′ ∈ Lq

σ(P ) with Z ′
σ<Z. For arbitrary Y ∈ L1

σ(P ), it follows
from the rearrangement inequality combined with Proposition 19 and Hölder’s
inequality that

E
(
|ZY |

)
≤

∫ 1

0

F−1
|Z| (u)F

−1
|Y | (u) du ≤

∫ 1

0

σ(u)F−1
|Z′|(u)F

−1
|Y | (u) du

≤ ‖Z ′‖σ,q‖Y ‖σ,p.

Thus, Z ∈ Lp
σ(P )

× and because Z ′ ∈ Lq
σ(P ) with Z

′
σ<Z was chosen arbitrarily,

it follows that sup{|E(ZY )|;Y ∈ L1
σ(P ), ‖Y ‖σ,p ≤ 1} is bounded by |Z|∗σ,q. �

In order to show that in fact L∗
σ,q(P ) = Lp

σ(P )
× holds as well as equality in

inequality (21), we have to distinguish the cases p = 1 and p ∈ (1,∞). We begin
with the case p = 1.

Proposition 21. For a K-valued random variable Z on (Ω,F , P ) and α ∈ [0, 1),
there is Eα ∈ F such that P (Eα) = 1− α and

AV@Rα

(
|Z|

)
=

1

1− α
E
(
|Z|1Eα

)
.
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Proof. Let E ∈ F with{
|Z| > F−1

|Z| (α)
}
⊆ E ⊆

{
|Z| ≥ F|Z|(α)

}
be arbitrary. Denoting the positive part of an R-valued function f as usual by
f+, it follows that

AV@Rα

(
|Z|

)
=

1

1− α

∫ 1

α

F−1
|Z| (u) du

= F−1
|Z| (α) +

1

1− α

∫ 1

0

(
F−1
|Z| (u)− F−1

|Z| (α)
)
+
du

= F−1
|Z| (α) +

1

1− α
E
((
|Z| − F−1

|Z| (α)
)
1E

)
(22)

= F−1
|Z| (α) +

1

1− α
E
(
|Z|1E

)
− 1

1− α
F−1
|Z| (α)P (E)

=
1

1− α
E
(
|Z|1E

)
+
(
1− 1

1− α
P (E)

)
F−1
|Z| (α).

From the definition of F−1
|Z| , it follows immediately that

P
(
|Z| < F−1

|Z| (α)
)
≤ α ≤ P

(
|Z| ≤ F−1

|Z| (α)
)

so that

P
(
|Z| > F−1

|Z| (α)
)
≤ 1− α and P

(
|Z| ≥ F−1

|Z| (α)
)
≥ 1− α.

Let U be a [0, 1]-valued, uniformly distributed random variable on (Ω,F , P ). We
define

Eβ :=
{
|Z| > F−1

|Z| (α)
}
∪
({

|Z| = F−1
|Z| (α)

}
∩
{
U ∈ [0, β]

})
for β ∈ [0, 1] and set

f : [0, 1] → [0, 1], f(β) := P (Eβ).

From the properties of a probability measure, it follows easily that f is continuous
as well as

f(0) = P
(
|Z| > F−1

|Z| (α)
)
≤ 1− α and f(1) = P

(
|Z| ≥ F−1

|Z| (α)
)
≥ 1− α.

Hence, there is β0 ∈ [0, 1] such that for Eβ0 we have P (Eβ0) = 1−α and it follows
from (22) that Eβ0 has the desired property. �

For the case p = 1 we can now give the desired intrinsic description of L1
σ(P )

×.

Proposition 22. For a distortion function σ, it holds that L1
σ(P )

× = L∗
σ,∞(P )

and for every Z ∈ L1
σ(P )

× we have

|Z|∗σ,∞ = sup
{∣∣E(ZY )

∣∣;Y ∈ L1
σ(P ), ‖Y ‖σ,1 ≤ 1

}
.
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Proof. Let Z ∈ L1
σ(P )

×. By Proposition 21, for any α ∈ [0, 1) there is Eα ∈ F such
that AV@Rα(|Z|) = 1

1−α
E(|Z|1Eα) and P (Eα) = 1 − α. Employing the notation

from Proposition 12, we obtain

AV@Rα

(
|Z|

)
=

∣∣∣ϕZ

( 1

1− α
1{Z 6=0}

Z

|Z|
1Eα

)∣∣∣ ≤ ‖ϕZ‖∗σ,1
1

1− α
‖1Eα‖σ,1

= ‖ϕZ‖∗σ,1
1

1− α

∫ 1

0

σ(u)F−1
1Eα

(u) du

= ‖ϕZ‖∗σ,1
1

1− α

∫ 1

1−P (Eα)

σ(u) du = ‖ϕZ‖∗σ,1
1

1− α
Sσ(α),

so that |Z|∗σ,∞ is finite and bounded above by

‖ϕZ‖∗σ,1 = sup
{∣∣E(ZY )

∣∣;Y ∈ L1
σ(P ), ‖Y ‖σ,1 ≤ 1

}
.

Proposition 20 now yields the rest of the claim. �

Combining Propositions 12 and 22, we immediately derive the next result.

Theorem 23. Let σ be a distortion function. Then | · |∗σ,∞ is a norm on L∗
σ,∞(P )

turning it into a Banach space. Moreover,

Φ :
(
L∗
σ,∞(P ), | · |∗σ,∞

)
→

(
L1
σ(P )

∗, ‖ · ‖∗σ,1
)
, Z 7→

(
Y 7→ Φ(Z)(Y ) := E(ZY )

)
is an isometric isomorphism.

In order to derive an analogous representation for the case p ∈ (1,∞), we
need an equivalent result to Proposition 22 for this case. This requires some
preparation. We begin by recalling a notion from Lorentz [21].

Definition 24. Let σ be a distortion function. A function H : [0, 1] → R is
called Sσ-concave if whenever y, b ∈ R are such that ySσ(α1) + b = H(α1) and
ySσ(α2) + b = H(α2) for some α1 < α2 ∈ [0, 1], then H(α) ≥ ySσ(α) + b for each
α ∈ [α1, α2].

The next proposition is essentially contained in Lorentz [21, Proof of Theo-
rem 3.6.2]. Nevertheless, we include its proof for the reader’s convenience.

Proposition 25. Let σ be a distortion function, and let u0 := inf{u > 0;
σ(u) > 0}. Moreover, let H be a set of Sσ-concave functions such that H|[0,u0] is
constant for every H ∈ H . Assume that

∀α ∈ [0, 1]: F (α) := inf
{
H(α);H ∈ H

}
> −∞.

Then, F is Sσ-concave.

Proof. Let y, b ∈ R, and let α1 < α2 ∈ [0, 1] be such that ySσ(αj) + b = F (αj),
j = 1, 2. Let H ∈ H be arbitrary. Since H|[0,u0] is constant, there are ȳ, b̄ ∈ R
such that ȳSσ(αj) + b̄ = H(αj), j = 1, 2.

In the case of y − ȳ ≥ 0 it follows that ȳSσ + b̄ − (ySσ + b) is nonincreasing,
while ȳSσ + b̄ − (ySσ + b) is nondecreasing in the case of y − ȳ ≤ 0. Therefore,
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Sσ-concavity of H together with ySσ(αj) + b ≤ ȳSσ(αj) + b̄, j = 1, 2 implies

∀α ∈ [α1, α2]: ySσ(α) + b ≤ ȳSσ(α) + b̄ ≤ H(α).

Since H ∈ H was arbitrary, we conclude that F ≥ ySσ + b on [α1, α2]. �

Proposition 26. Let σ be a distortion function, let u0 := inf{u > 0;σ(u) > 0},
and let y1, y2, b1, b2 ∈ R. Moreover, let H be Sσ-concave, continuous from the right
in u0 such that H|[0,u0] is constant.

If for y, b ∈ R and α1, α2 ∈ [0, 1] with α1 < α2 and u0 < α2 we have H(αj) =
ySσ(αj) + b, j = 1, 2, then it follows that ySσ + b ≥ H on [0, 1] \ (α1, α2).

Proof. It is straightforward to show that if for α, β ∈ [0, 1], α < β, it holds that
y1Sσ(α) + b1 = y2Sσ(α) + b2 and y1Sσ(β) + b1 > y2Sσ(β) + b2, then β > u0
and

∀γ ∈
(
max{α, u0}, β

]
: y1Sσ(γ) + b1 > y2Sσ(γ) + b2, (23)

while for α, β ∈ [u0, 1], α < β, the conditions y1Sσ(α) + b1 > y2Sσ(α) + b2 and
y1Sσ(β) + b1 = y2Sσ(β) + b2 imply

∀γ ∈ [α, β): y1Sσ(γ) + b1 > y2Sσ(γ) + b2. (24)

In case of α1 ≤ u0, it follows from the hypothesis that H|[0,u0] is constant that
trivially yS+b ≥ H on [0, α1]. Now let u0 < α1. We assume that yS(α)+b < H(α)

for some α ∈ (u0, α1). Because Sσ is strictly decreasing in [u0, 1], there are ỹ, b̃ ∈ R
such that

ỹSσ(α) + b̃ = H(α) and ỹS(α2) + b̃ = H(α2).

The Sσ-concavity of H hence implies that H ≥ ỹSσ + b̃ on [α, α2]. In particular,

ySσ(α1) + b = H(α1) ≥ ỹSσ(α2) + b̃. (25)

On the other hand,

ỹSσ(α)+ b̃ = H(α) > ySσ(α)+ b and ỹSσ(α2)+ b̃ = H(α2) = ySσ(α2)+ b

so that by (24) we obtain ỹSσ + b̃ > ySσ + b on [α, α2), which contradicts (25).
Therefore, yS + b ≥ H on (u0, α1). Since Sσ is continuous and H is continuous
from the right in u0, the same inequality holds on [u0, α1). Because Sσ and H are
constant on [0, u0], we obtain yS + b ≥ H on [0, α1].

It remains to show that yS+b ≥ H on [α2, 1] as well. Assume there is α ∈ [α2, 1]

with ySσ(α) + b < H(α). Since α2 > u0, there are again ỹ, b̃ ∈ R such that

ỹSσ(α1) + b̃ = H(α1) and ỹS(α) + b̃ = H(α).

Because H is Sσ-concave, this implies

∀β ∈ [α1, α]: H(β) ≥ ỹSσ(β) + b̃. (26)

On the other hand,

ỹSσ(α1)+ b̃ = H(α1) = ySσ(α1)+ b and ỹSσ(α)+ b̃ = H(α) > ySσ(α)+ b.
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By (23) it follows that ỹSσ + b̃ > ySσ + b on (max{α1, u0}, α]. In particular,

ỹSσ(α2) + b̃ > ySσ(α2) + b = H(α2),

which contradicts (26). �

Definition 27. Let σ be a distortion function. For a continuous function G :
[0, 1] → R, we define

G∗
σ : [0,∞) → R, G∗

σ(y) := inf
α∈[0,1]

ySσ(α)−G(α).

Then, G(α) +G∗
σ(y) ≤ ySσ(α) for all α ∈ [0, 1], y ≥ 0 so that

Gσ : [0, 1] → R, Gσ(α) := inf
y≥0

ySσ(α)−G∗
σ(y)

is well defined and satisfies Gσ ≥ G.

Remark 28.

(i) Setting as before u0 := inf{u > 0;σ(u) > 0}, we have that Sσ|[u0,1] is a
bijection from [u0, 1] onto [0, 1]. Denoting by abuse of notation its inverse
with S−1, it follows that

∀α ∈ [0, 1]: Gσ

(
S−1(α)

)
= inf

y≥0
yα−G∗

σ(y)

so that

G̃σ : [0, 1] → R, G̃σ(α) := inf
y≥0

yα−G∗
σ(y)

is well defined. Being the infimum of nondecreasing and concave functions,
G̃σ is nondecreasing and concave too. Therefore, G̃σ is differentiable from
the right on [0, 1) with nonnegative and nonincreasing right derivative.
We obviously have Gσ = G̃σ ◦ Sσ so that the concavity of Sσ implies that
Gσ is concave as well. Denoting left and right derivatives by dl

dα
and dr

dα
,

respectively, an appropriate adaptation of your favorite proof of the chain
rules yields

∀α ∈ (0, 1]:
dl
dα
Gσ(α) =

dr
dα
G̃σ

(
Sσ(α)

) dl
dα
Sσ(α) = − dr

dα
G̃σ

(
Sσ(α)

)
σ(α).

Combined with Gσ(1)−Gσ(α) =
∫ 1

α
dl
dα
Gσ(u) du, we obtain

∀α ∈ [0, 1]: Gσ(α) = Gσ(1) +

∫ 1

α

H(u)σ(u) du (27)

for a nonnegative, nondecreasing function H on [0, 1] which is continuous
from the left.

(ii) For y ≥ 0 the function ySσ −G∗
σ(y) is obviously Sσ-concave. It therefore

follows from Proposition 25 that Gσ is Sσ-concave. Moreover, being the
infimum of nonincreasing functions, Gσ is nonincreasing.
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(iii) Because Sσ|[0,u0] = 1, it follows that Gσ is constant on [0, u0]. Hence, for
all α1, α2 ∈ [0, 1], α1 < α2, there are y ≥ 0, b ≥ G∗

σ(y) with Gσ(αj) =

ySσ(αj) − b for j = 1, 2. Indeed, if α2 > u0, we choose y = Gσ(α2)−Gσ(α1)
Sσ(α2)−Sσ(α1)

,

which is well defined and nonnegative because Sσ is strictly decreasing on
[u0, 1] and Gσ is nonincreasing. Then

b = ySσ(α2)−Gσ(α2) ≥ inf
α∈[0,1]

ySσ(α)−Gσ(α)

= inf
α∈[0,1]

ySσ(α)−
(
inf
ỹ≥0

ỹSσ(α)−G∗
σ(ỹ)

)
≥ G∗

σ(y).

In case of α2 ≤ u0, we may choose y = 0 so that

b = −Gσ(α2) = −Gσ(0) = − inf
y≥0

y −G∗
σ(y) ≥ G∗

σ(0).

If additionally G is nonincreasing, it holds that

Gσ(0) = inf
y≥0

y −G∗
σ(y) ≤ −G∗

σ(0)

= − inf
α∈[0,1]

(
−G(α)

)
= sup

α∈[0,1]
G(α) = G(0)

so that, because G ≤ Gσ, we conclude that

b = −Gσ(0) = −G(0) = G∗
σ(0).

Proposition 29. Let G : [0, 1] → R be continuous and nonincreasing. If α ∈
(0, 1) is such that Gσ(α) > G(α), then there are 0 ≤ α1 < α < α2 ≤ 1 and y ≥ 0
such that

∀β ∈ (α1, α2): Gσ(β) = ySσ(β)−G∗
σ(y).

Proof. By continuity of Sσ and Gσ, there are 0 ≤ α1 < α < α2 ≤ 1 such that
Gσ(α2) > G(α1). From Remark 28(iii), we conclude the existence of y ≥ 0 and
b ≥ G∗

σ(y) such that Gσ(αj) = ySσ(αj) − b, j = 1, 2 and such that y = 0 in the
case of α2 ≤ u0.

Because Sσ and Gσ are nonincreasing and y ≥ 0, it follows from

inf
β∈(α1,α2)

Gσ(β) = Gσ(α2) > G(α1) = sup
β∈(α1,α2)

G(β)

that ySσ − b ≥ G on (α1, α2).
If α2 ≤ u0, we have seen in Remark 28(iii) that without loss of generality we

may assume y = 0 and b = −G(0). Since G is nonincreasing, it thus follows that
ySσ − b = G(0) ≥ G on [0, 1].

If α2 > u0, we apply Proposition 26 to Gσ to conclude ySσ − b ≥ Gσ on
[0, 1] \ (α1, α2). Since Gσ ≥ G and ySσ − b ≥ G on (α1, α2), we obtain also in this
case ySσ − b ≥ G on [0, 1].

So in both cases ySσ − b ≥ G or, equivalently, ySσ − G ≥ b on [0, 1] so that
G∗

σ(y) = infα ySσ(α)−G(α) ≥ b. Since also b ≥ G∗
σ(y), it follows b = G∗

σ(y).
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Finally, since Gσ is Sσ-concave and Gσ(αj) = ySσ(αj) − G∗
σ(αj) holds for

j = 1, 2, it follows for β ∈ (α1, α2) that

ySσ(β)−G∗
σ(y) ≤ Gσ(β) = inf

ỹ≥0
ỹSσ(β)−G∗

σ(ỹ) ≤ ySσ(β)−G∗
σ(y),

which proves the claim. �

Proposition 30. Assume that G : [0, 1] → R is continuous and nonincreasing
and that G(1) = 0. Then Gσ(0) = G(0) and Gσ(1) = 0.

Proof. We have already observed in Remark 28(iii) that Gσ(0) = G(0). Using the
compactness of [0, 1], G(1) = 0, and that Sσ(α) = 0 implies α = 1, it follows that

∀n ∈ N ∃kn ∈ N ∀α ∈ [0, 1]: G(α) > knSσ(α) +
1

n

which implies that for every n ∈ N there is kn ∈ N with −1/n ≤ G∗
σ(kn). Because

Sσ(1) = 0, we derive

Gσ(1) = inf
y≥0

(
−G∗

σ(y)
)
≤ inf

n∈N

(
−G∗

σ(kn)
)
≤ 0 = G(1) ≤ Gσ(1),

which gives Gσ(1) = 0. �

Combining Propositions 29 and 30, we immediately obtain the next result.

Proposition 31. Let G : [0, 1] → R be continuous and nonincreasing such that
G(1) = 0. If α ∈ (0, 1) satisfies Gσ(α) > G(α), there are 0 ≤ α1 < α < α2 ≤ 1
and y ≥ 0 such that Gσ = ySσ − G∗

σ(y) on (α1, α2) and Gσ(αj) = G(αj) for
j = 1, 2.

We now have everything at hand to derive the analogue of Proposition 22.

Lemma 32. Let σ be a distortion function, and let p ∈ (1,∞) with conjugate
exponent q. Then Lp

σ(P )
× = L∗

σ,q(P ), for every Z ∈ Lp
σ(P )

× it holds that |Z|∗σ,q =
‖ϕZ‖∗σ,p, and there is Y ∈ Lp

σ(P ) with ‖Y ‖σ,p = 1 such that ϕZ(Y ) = ‖ϕZ‖∗σ,p.

Proof. By Proposition 20, we only have to show that Lp
σ(P )

× ⊆ L∗
σ,q(P ) and that

sup
{∣∣E(ZY )

∣∣;Y ∈ Lp
σ(P ), ‖Y ‖σ,p ≤ 1

}
is an upper bound for |Z|∗σ,q for any Z ∈ Lp

σ(P )
×.

So we fix Z ∈ Lp
σ(P )

×. By Remark 13, we also have |Z| ∈ Lp
σ(P )

×. We define

G : [0, 1] → [0,∞), G(α) :=

∫ 1

α

F−1
|Z| (u) du

and observe that G is well defined by |Z| ∈ L1(P ). The function G is obviously
continuous, differentiable from the left, and nonincreasing with G(1) = 0. By
Proposition 31 and Remark 28(i), there is a nonnegative, nondecreasing function

H on [0, 1] which is continuous from that left such that Gσ(α) =
∫ 1

α
H(u)σ(u) du.



ON BANACH SPACES OF VECTOR-VALUED RANDOM VARIABLES 795

If there is α ∈ (0, 1) with Gσ(α) > G(α), it follows immediately from Proposi-
tion 31 that there are 0 ≤ α1 < α < α2 ≤ 1 and y ≥ 0 such that H(u) = y for
u ∈ (α1, α2) and Gσ(αj) = G(αj), j = 1, 2 so that∫ α2

α1

H(u)qσ(u) du = yq−1

∫ α2

α1

H(u)σ(u) du = yq−1
(
Gσ(α1)−Gσ(α2)

)
= yq−1

(
G(α1)−G(α2)

)
=

∫ α2

α1

H(u)q−1F−1
|Z| (u) du.

On the other hand, if Gσ(α) = G(α) by continuity, there is a maximal closed
interval [α1, α2] containing α such that G and Gσ coincide on [α1, α2]. Thus, on
(α1, α2) the left derivatives of G and Gσ coincide; that is, F−1

|Z| = Hσ on (α1, α2),

which implies again∫ α2

α1

H(u)qσ(u) du =

∫ α2

α1

H(u)q−1F−1
|Z| (u) du.

Combining these arguments gives

∀α1, α2 ∈ [0, 1]:
(
Gσ(α1) = G(α1), Gσ(α2) = G(α2)

⇒
∫ α2

α1

H(u)qσ(u) du =

∫ α2

α1

H(u)q−1F−1
|Z| (u) du

)
. (28)

In order to proceed, we distinguish two cases. First, we assume that there is a
strictly increasing sequence (αn)n∈N in (0, 1) converging to 1 such that G(αn) =
Gσ(αn). We define

Yn := (1[0,αn]H
q−1) ◦ U,

where U ∈ U (0, 1) is coupled in a comonotone way with |Z|. From 1/p+1/q = 1,
it follows that |Y p

n | = (1[0,αn]H
q) ◦ U , which implies

‖Yn‖pσ,p =
∫ 1

0

F−1
|Yn|(u)

pσ(u) du =

∫ αn

0

Hq(u)σ(u) du <∞ (29)

since H in nondecreasing and
∫ 1

0
σ(u) du = 1 so that Yn = |Yn| ∈ Lp

σ(P ). Using
the notation from Proposition 12, because |Z| and U are coupled in a comonotone
way, we have by (29) and (28) applied to α1 = 0 and α2 = αn,∫ αn

0

H(u)qσ(u) du =

∫ αn

0

Hq−1(u)F−1
|Z| (u) du = E

(
|Yn||Z|

)
≤ ‖ϕ|Z|‖∗σ,p‖Yn‖σ,p = ‖ϕ|Z|‖∗σ,p

(∫ αn

0

H(u)qσ(u) du
)1/p

,

which gives (∫ 1

0

1[0,αn]H(u)qσ(u) du
)1/q

≤ ‖ϕ|Z|‖∗σ,p
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for all n ∈ N. Using that limn→∞ αn = 1, an application of the monotone conver-
gence theorem yields (∫ 1

0

H(u)qσ(u) du
)1/q

≤ ‖ϕ|Z|‖∗σ,p (30)

so that Z ′ := H ◦U belongs to Lq
σ(P ). Because Z

′ = |Z ′| and F−1
|Z′| = H, it follows

from

∀α ∈ [0, 1]:

∫ 1

α

H(u)σ(u) du = Gσ(α) ≥ G(α) =

∫ 1

α

F−1
|Z| (u) du

that Z ′
σ<Z, which, combined with (30), yields Z ∈ L∗

σ,q and

|Z|∗σ,q ≤ ‖ϕ|Z|‖∗σ,p = ‖ϕZ‖∗σ,p,

where we have used Remark 13 in the last equality. Since also ‖Z‖∗σ,p ≤ |Z|∗σ,q, we
obtain from (30)

‖ϕZ‖∗σ,p =
(∫ 1

0

H(u)qσ(u) du
)1/q

= inf
{
‖Z ′‖σ,q;Z ′

σ<Z
}
. (31)

Now we define

Y := 1{Z 6=0}
Z

|Z|
Hq−1(U). (32)

Then the same arguments used in deriving (29) combined with (30) show that
Y ∈ Lp

σ(P ) and

‖Y ‖σ,p =
(∫ 1

0

Hq(u)σ(u) du
)1/p

.

Moreover, using that |Z| and U are coupled in a comonotone way, (28) applied
to α1 = 0 and α2 = 1, and (31) give

ϕZ(Y ) = E(ZY ) = E
(
|ZY |

)
=

∫ 1

0

H(u)q−1F−1
|Z| (u) du

=

∫ 1

0

H(u)qσ(u) du =
(∫ 1

0

H(u)qσ(u) du
)1/q(∫ 1

0

H(u)qσ(u) du
)1/p

= ‖ϕZ‖∗σ,p‖Y ‖σ,p.

Next, if there is no strictly increasing sequence (αn)n∈N in (0, 1) converging to
1 such that G(αn) = Gσ(αn), there is β ∈ (0, 1) such that G(u) < Gσ(u) for all
α ∈ (β, 1) and such that G(β) = Gσ(β). It therefore follows from Proposition 31
that there is y ≥ 0 such that H = y on (β, 1). Because H is nondecreasing, this
implies that H is bounded so that trivially∫ 1

0

H(u)qσ(u) <∞.

By repeating the arguments from the first part of the proof it follows for U ∈
U (0, 1) coupled in a comonotone way with |Z| that Z ′ := H ◦ U satisfies Z ′ ∈
Lq
σ(P ) and Z ′

σ<Z, which gives Z ∈ Lσ,q(P )
∗ and |Z|∗σ,q = ‖ϕZ‖∗σ,p = ‖Z ′‖σ,q.
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Defining Y as in (32) finally gives again ϕZ(Y ) = ‖ϕZ‖∗σ,p‖Y ‖σ,p, which proves
the claim. �

Combining Proposition 12 and Lemma 32, we immediately derive the next
result.

Theorem 33. Let σ be a distortion function, and let p ∈ (1,∞) with conjugate
exponent q. Then | · |∗σ,q is a norm on L∗

σ,q(P ) turning it into a Banach space.
Moreover,

Φ :
(
L∗
σ,q(P ), | · |∗σ,q

)
→

(
Lp
σ(P )

∗, ‖ · ‖∗σ,p
)
, Z 7→

(
Y 7→ Φ(Z)(Y ) := E(ZY )

)
is an isometric isomorphism. Furthermore, for every ϕ ∈ Lp

σ(P )
∗ there is Y ∈

Lp
σ(P ) with ‖Y ‖σ,p = 1 such that ϕ(Y ) = ‖ϕ‖∗σ,p.

Corollary 34. For a distortion function σ and p ∈ (1,∞), the Banach space
Lp
σ(P ) is reflexive.

Proof. This is an immediate consequence of James’s theorem (see, e.g., Diestel [10,
Theorem I.3]) and Theorem 33. �

Proposition 35. Simple functions (and thus L∞) are dense in L∗
σ,q(P ), whenever

q <∞.

Proof. Let F contain all finite sigma algebras F for which the measure P is
defined. Note that (F,⊆) is a filter, and the proof of Proposition 9 actually demon-
strates that ∥∥E(Y |F)− Y

∥∥
σ,p

−→
F

0

whenever F ∈ F increases.
Recall first that AV@Rα(E(Y |F)) ≤ AV@Rα(Y ). Indeed, it follows from the

conditional Jensen inequality (see Williams [31, Section 34]) that (E(Y |F)−q)+ ≤
E((Y − q)+|F), and hence, using Pflug [24],

AV@Rα

(
E(Y |F)

)
= min

q∈R
q +

1

1− α
E
(
E(Y |F)− q

)
+

≤ min
q∈R

q +
1

1− α
EE

(
(Y − q)+|F

)
= min

q∈R
q +

1

1− α
E
(
(Y − q)+|F

)
= AV@Rα(Y ).

Suppose that Z ′
σ<Z. It follows that∫ 1

α

σ(u)F−1
Z′ (u) du ≥

∫ 1

α

F−1
Z (u) du ≥

∫ 1

α

F−1
E(Z|F)(u) du

for every α ≤ 1, that is, Z ′
σ<E(Z|F), and thus ‖E(Z|F)‖∗σ,q ≤ ‖Z‖∗σ,q. The

assertion follows as {E(Z|F) : F ∈ F} is arbitrarily close to Z in the norm ‖ · ‖σ,q
by Proposition 9. �

We close this section by taking a closer look at L1
σ(P ) and its dual space.

Theorem 36. The dual space of L1
σ(P ) is not separable.
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Proof. It is enough to assume that σ is unbounded. As for bounded σ, we have
that L1

σ(P ) is isomorphic to L1(P ) by Proposition 8 and its dual L∞(P ) is not
separable.

For β ∈ [0, 1], consider the random variables

Zβ :=

{
σ(U) if U ≤ β,

σ(1 + β − U) if U > β,

for a (fixed) uniform random variable U ∈ U (0, 1). Note that ‖Zβ‖∗σ,1 = 1, since
Zβ is a rearrangement of σ(U). Assume that β < γ, and observe that

Zγ − Zβ = σ(1 + γ − U)− σ(1 + β − U)

≥ σ(1 + γ − U)− σ(1 + β − γ)

whenever U > γ. Then it holds that

‖Zγ − Zβ‖∗σ,1 ≥ lim sup
α→1

AV@Rα(Zγ − Zβ)
1

1−α

∫ 1

α
σ(u) du

≥ lim sup
α→1

AV@Rα(σ(1 + β − U)− σ(1 + β − γ))
1

1−α

∫ 1

α
σ(u) du

.

Now, as σ is unbounded, the denominator is unbounded as well (indeed, we have
1

1−α

∫ 1

α
σ(u) du ≥ σ(α)), and hence

‖Zγ − Zβ‖∗σ,1 ≥ lim sup
α→1

AV@Rα(σ(1 + β − U))− σ(1 + β − γ)
1

1−α

∫ 1

α
σ(u) du

= lim
α→1

1
1−α

∫ 1

α
σ(u) du− σ(1 + β − γ)

1
1−α

∫ 1

α
σ(u) du

= 1. (33)

Suppose finally that there is a dense sequence (Dk)k∈N ⊂ L1
σ(P )

∗. For β ∈ [0, 1]
fixed there is k ∈ N such that ‖Zβ − Dk‖∗σ,1 < 1

2
. But 1 ≤ ‖Zβ − Zγ‖∗σ,1 ≤

‖Zβ −Dk‖∗σ,1+ ‖Dk −Zγ‖∗σ,1, from which follows that ‖Dk −Zγ‖∗σ,1 > 1
2
whenever

γ 6= β. Hence only countably many Zβ’s can be approximated by the sequence
(Dk)k∈N with a distance ‖Zβ − Dk‖∗σ < 1

2
and (Dk)k∈N thus is not dense, giving

the desired contradiction. �

5. The dual space in the vector-valued case

In this section, we determine the dual space of Lp
σ(P,X) for arbitrary Banach

spaces X over K ∈ {R,C}. We denote the space of X-valued simple functions on
(Ω,F , P ) by S(X); that is,

S(X) =
{
Y : Ω → X;Y (Ω) is finite and ∀x ∈ X : Y −1

(
{x}

)
∈ F

}
.

Then it is straightforward to see and well known that{
ϕ : S(X) → K;ϕ linear and continuous with respect to ‖ · ‖∞

}
and

{µ : F → X∗;µ vector measure of bounded variation}
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are isomorphic via the linear mapping

Φ : ϕ 7→
(
µϕ(E)(x) := ϕ(1Ex), x ∈ X,E ∈ F

)
. (34)

For a vector measure µ, we denote by |µ| its variation.

Lemma 37. For a linear mapping ϕ : S(X) → K, we have

sup
{∣∣∣ϕ( n∑

j=1

1Ej
xj

)∣∣∣;Ej ∈ F partition of Ω, xj ∈ X,
∥∥∥ n∑

j=1

1Ej
xj

∥∥∥
σ,p

≤ 1
}

= sup
{ n∑

j=1

|αj|
∥∥µϕ(Ej)

∥∥;Ej ∈ F partition of Ω, αj ∈ K,
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

= sup
{∫

Ω

∣∣∣ n∑
j=1

αj1Ej

∣∣∣ d|µϕ|;

Ej ∈ F partition of Ω, αj ∈ K,
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}
,

where µϕ is defined as in (34).

Proof. For a partition E1, . . . , En ∈ F of Ω, α1, . . . , αn ∈ K, and z1, . . . , zn ∈ X
with ‖zj‖ = 1, we have∥∥∥ n∑

j=1

αj1Ej
zj

∥∥∥p

σ,p
= sup

U∈U(0,1)

∫
Ω

σ(U)
n∑

j=1

|αj|p1Ej
dP =

∥∥∥ n∑
j=1

αj,1Ej

∥∥∥p

σ,p
,

where the norm on the left-hand side is the one on Lp
σ(P,X), while the norm on

the right-hand side denotes the one on Lp
σ(P ). Therefore, we conclude that

sup
{∣∣∣ϕ( n∑

j=1

1Ej
xj

)∣∣∣;Ej ∈ F partition of Ω, xj ∈ X,
∥∥∥ n∑

j=1

1Ej
xj

∥∥∥
σ,p

≤ 1
}

= sup
{∣∣∣ϕ( n∑

j=1

αj1Ej
zj

)∣∣∣;
Ej ∈ F partition of Ω, αj ≥ 0, zj ∈ X, ‖zj‖ = 1 and

∥∥∥ n∑
j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

= sup
{ n∑

j=1

∣∣ϕ(αj1Ej
zj)

∣∣;
Ej ∈ F partition of Ω, αj ≥ 0, zj ∈ X, ‖zj‖ = 1 and

∥∥∥ n∑
j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

= sup
{ n∑

j=1

|αj|
∥∥µϕ(Ej)

∥∥;Ej ∈ F partition of Ω, αj ∈ K,
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}
,
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which gives the first equality. Using the definition of |µϕ|, we continue with

sup
{ n∑

j=1

|αj|
∥∥µϕ(Ej)

∥∥;Ej ∈ F partition of Ω, αj ∈ K,
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

= sup
{ n∑

i=1
αi pairwise different

|αi|
∑

j:αi=αj

∥∥µϕ(Ej)
∥∥;

Ej ∈ F partition of Ω, αj ∈ K and
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

= sup
{ n∑

i=1
αi pairwise different

|αi||µϕ|
( ⋃
j:αi=αj

Ej

)
;

Ej ∈ F partition of Ω, αj ∈ K and
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

= sup
{∫

Ω

∣∣∣ n∑
j=1

αj1Ej

∣∣∣ d|µϕ|;

Ej ∈ F partition of Ω, αj ∈ K,
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}
,

which proves the second equality. �

Definition 38. For a distortion function σ, p ∈ [1,∞) and a Banach space X, we
define

Lσ,p

(
S(X)

)
:=

{
ϕ : S(X) → K;ϕ linear and continuous

with respect to ‖ · ‖σ,p
}
.

Lemma 39. Let Φ be the natural isomorphism from (34). Then Φ(Lσ,p(S(X)))
coincides with the set{

µ : F → X∗;µ is a σ-additive vector measure of bounded variation

such that |µ| � P and
d|µ|
dP

∈ L∗
σ,q(P )

}
,

and

∀ϕ ∈ Lσ,p

(
S(X)

)
: ‖ϕ‖ =

∣∣∣d|µϕ|
dP

∣∣∣∗
σ,q
,

where q is the conjugate exponent to p.

Proof. For ϕ ∈ Lσ,p(S(X)), it follows from the density of S(X) in Lp
σ(P,X) that

ϕ extends to a unique element of Lp
σ(P,X)× which we still denote by ϕ. For a

pairwise disjoint sequence (Ej)j∈N in F and its union E, it follows for arbitrary
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x ∈ X that∣∣∣µϕ(E)(x)− µϕ

( m⋃
j=1

Ej

)
(x)

∣∣∣ = ∣∣∣µϕ

( ∞⋃
j=m+1

Ej

)
(x)

∣∣∣ = ∣∣ϕ(1⋃∞
j=m+1 Ej

x)
∣∣

≤ ‖ϕ‖∗σ,p‖x‖‖1⋃∞
j=m+1 Ej

‖σ,p

= ‖ϕ‖∗σ,p‖x‖
(∫ 1

1−
∑∞

j=m+1 P (Ej)

σ(u) du
)1/p

.

With the aid of Lebesgue’s dominated convergence theorem, it follows that∥∥∥µϕ(E)−
m∑
j=1

µϕ(Ej)
∥∥∥ ≤ ‖ϕ‖∗σ,p

(∫ 1

1−
∑∞

j=m+1 P (Ej)

σ(u) du
)1/p

→m→∞ 0.

Thus Φ(ϕ) = µϕ is a σ-additive vector measure. Moreover, for every finite parti-
tion E1, . . . , En ∈ F of Ω and x1, . . . , xn ∈ X with ‖xj‖ ≤ 1 we have

n∑
j=1

∣∣µϕ(Ej)(xj)
∣∣ = n∑

j=1

∣∣ϕ(1Ej
xj)

∣∣ = n∑
j=1

sign
(
ϕ(1Ej

xj)
)
ϕ(1Ej

xj)

=
∣∣∣ϕ( n∑

j=1

sign
(
ϕ(1Ej

xj)
)
1Ej

xj

)∣∣∣
≤ ‖ϕ‖∗σ,p

∥∥∥ n∑
j=1

sign
(
ϕ(1Ej

xj)
)
1Ej

xj

∥∥∥
σ,p

≤ ‖ϕ‖∗σ,p
(

sup
U∈U (0,1)

∫
Ω

n∑
j=1

sign
(
ϕ(1Ej

xj)
)p

1Ej
‖xj‖pσ(U) dP

)1/p

≤ ‖ϕ‖∗σ,p
(

sup
U∈U (0,1)

∫
Ω

σ(U) dP
)1/p

= ‖ϕ‖∗σ,p,

where, for a complex number α, as usual sign(α) = α
|α| in case α 6= 0 (resp.,

sign(0) = 0). Thus, for arbitrary ε > 0, it follows for suitable choices xεj ∈ X
from the above inequality that

n∑
j=1

∥∥µϕ(Ej)
∥∥ ≤

n∑
j=1

(∣∣µϕ(Ej)(x
ε
j)
∣∣+ ε

n

)
≤ ‖ϕ‖∗σ,p + ε,

that is,
∑n

j=1 ‖µϕ(Ej)‖ ≤ ‖ϕ‖∗σ,p, which in turn implies |µϕ|(Ω) ≤ ‖ϕ‖∗σ,p. Hence,
Φ(ϕ) = µϕ is of bounded variation.

Since µϕ is σ-additive, the same holds for |µϕ| (see Diestel and Uhl [11, Propo-
sition I.1.9]); that is, |µϕ| is a (finite) measure on F . If E ∈ F satisfies P (E) = 0,
it follows for x ∈ X that

‖1Ex‖σ,p = ‖x‖
(

sup
u∈U (0,1)

∫
E

σ(U) dP
)1/p

= 0

and therefore ‖µϕ(E)‖ = 0. If E1, . . . , En ∈ F is a partition of E, it follows
that P (Ej) = 0 and thus

∑n
j=1 ‖µϕ(Ej)‖ = 0, which implies |µϕ|(E) = 0. By an
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application of the Radon–Nikodým theorem, we obtain gϕ ∈ L1(P ), gϕ ≥ 0 such
that

∀E ∈ F :

∫
E

gϕ dP = |µϕ|(E).

From the fact that S(X) is dense in Lp
σ(P,X) and S(K) is dense in Lp

σ(P ), it
follows with Lemma 39 that

‖ϕ‖∗σ,p = sup
{∣∣∣ϕ( n∑

j=1

1Ej
xj

)∣∣∣;
Ej ∈ F partition of Ω, xj ∈ X,

∥∥∥ n∑
j=1

1Ej
xj

∥∥∥
σ,p

≤ 1
}

= sup
{∫

Ω

∣∣∣ n∑
j=1

αj1Ej

∣∣∣ d|µϕ|;

Ej ∈ F partition of Ω, αj ∈ K and
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

= sup
{∫

Ω

∣∣∣ n∑
j=1

αj1Ej

∣∣∣gϕ dP ;
Ej ∈ F partition of Ω, αj ∈ K and

∥∥∥ n∑
j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

= sup
{∫

Ω

|fgϕ| dP ; f ∈ Lp
σ(P ), ‖f‖σ,p ≤ 1

}
,

so that in particular gϕ ∈ Lp
σ(P )

× = L∗
σ,q(P ) and ‖ϕ‖∗σ,p = |gϕ|∗σ,q. Since ϕ ∈

Lσ,p(S(X)) was chosen arbitrarily, this finally shows that Φ(Lσ,p(S(X))) is con-
tained in the set of X∗-valued, σ-additive vector measures of bounded variation
such that their bounded variation measure admits a P -density in L∗

σ,q(P ).

Next, let µ be such a measure, and set ϕ := Φ−1(µ). We have to show that
ϕ belongs to Lσ,p(S(X)). But from the density of S(K) in Lp

σ(P ), it follows
immediately together with Lemma 37 that

sup
{∣∣∣ϕ( n∑

j=1

1Ej
xj

)∣∣∣;Ej ∈ F partition of Ω, xj ∈ X,
∥∥∥ n∑

j=1

1Ej
xj

∥∥∥
σ,p

≤ 1
}

= sup
{∫

Ω

∣∣∣ n∑
j=1

αj1Ej

∣∣∣d|µ|
dP

dP ;

Ej ∈ F partition of Ω, αj ∈ K,
∥∥∥ n∑

j=1

αj1Ej

∥∥∥
σ,p

≤ 1
}

=
∣∣∣d|µ|
dP

∣∣∣∗
σ,p
<∞,

which shows ϕ ∈ Lσ,p(S(X)). �
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Definition 40. Let X be a Banach space, let σ be a distortion function, and let
p ∈ [1,∞) with conjugate exponent q. Then we define

L∗
σ,q(P,X

∗) :=
{
µ : F → X∗;µ is a σ-additive vector measure of bounded

variation such that |µ| � P and
d|µ|
dP

∈ L∗
σ,q(P )

}
,

which is obviously a subspace of the space of all X∗-valued vector measures on F .

Moreover, for µ ∈ L∗
σ,q(P,X

∗) we set |µ|∗σ,q := |d|µ|
dP

|∗σ,q. Then, | · |∗σ,q is obviously a
norm on L∗

σ,q(P,X
∗).

Remark 41. For µ ∈ L∗
σ,q(P,X

∗), it follows from Lemma 39 and the density

of S(X) in Lp
σ(P,X) that Φ−1(µ) can be extended in a unique way to a con-

tinuous linear functional on Lp
σ(P,X), which we again denote by Φ−1(µ). For

Y ∈ Lp
σ(P,X), we also write for obvious reasons∫

Ω

Y dµ := Φ−1(µ)(Y ).

With this notation, the following theorem is an immediate consequence of
Lemma 39, Proposition 22, and Lemma 32.

Theorem 42. Let X be a Banach space, let σ be a distortion function, and let
p ∈ [1,∞) with conjugate exponent q. Then (L∗

σ,q(P,X
∗), | · |∗σ,q) is a Banach space

and the mapping

Ψ :
(
L∗
σ,q(P,X

∗), | · |∗σ,q
)
7→

(
Lp
σ(P,X)∗, ‖ · ‖∗σ,p

)
, µ 7→

(
Y 7→

∫
Ω

Y dµ
)

is an isometric isomorphism.

Definition 43. For a Banach space X, p ∈ [1,∞) with conjugate exponent q, we
define

Lq∗
σ (P,X) :=

{
Z : Ω → X;Z strongly measurable, ‖Z‖ ∈ L∗

σ,q(P )
}
,

and for Z ∈ Lq∗
σ (P,X), we set |Z|q,∗σ := |‖Z‖|∗σ,q, where as usual we identify

random variables which coincide P -almost everywhere. It follows easily that
Lq∗
σ (P,X) is a vector space and that | · |q,∗σ is a norm.

Remark 44. For Z ∈ Lq∗
σ (P,X∗), it follows from ‖Z‖ ∈ L∗

σ,q(P ) ⊆ L1(P ) that

µZ : F → X∗, µZ(E) :=

∫
E

Z dP

is a well-defined, σ-additive vector measure of bounded variation with |µZ |(E) =∫
E
‖Z‖ dP (see, e.g., [11, Theorem II.2.4]). A straightforward calculation gives for

Y ∈ S(X) ∫
Ω

Y dµZ =

∫
Ω

〈
Z(ω), Y (ω)

〉
dP (ω).
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Moreover, for Z ∈ Lq∗
σ (P,X∗) and Y ∈ Lp

σ(P,X), it follows from ‖Z‖ ∈ L∗
σ,q(P )

and ‖Y ‖ ∈ Lp
σ(P ) that∫

Ω

∣∣〈Z(ω), Y (ω)
〉∣∣ dP (ω) ≤ ∫

Ω

∥∥Z(ω)∥∥∥∥Y (ω)
∥∥ dP (ω) ≤ ∣∣‖Z‖∣∣∗

σ,q

∣∣‖Y ‖
∣∣
σ,p

= |Z|q∗σ ‖Y ‖σ,p,

which implies that ψZ : Lp
σ(P,X) → K, Y 7→ E(〈Z, Y 〉) is a well-defined contin-

uous linear functional which coincides on the dense subspace S(X) with Ψ(µZ).
Together with Theorem 42, this shows that

ι :
(
Lq∗
σ (P,X∗), | · |q,∗σ

)
→ Lp

σ(P,X)∗, Z 7→
(
Y 7→ E

(
〈Z, Y 〉

))
is an isometry.

As in the case of Bochner–Lebesgue spaces, we have the following result.

Theorem 45. For a Banach space X, a distortion function σ, and p ∈ [1,∞)
with conjugate exponent q, the isometry

ι :
(
Lq∗
σ (P,X∗), | · |q,∗σ

)
→ Lp

σ(P,X)∗, Z 7→
(
Y 7→ E

(
〈Z, Y 〉

))
is an isomorphism if and only if X∗ has the Radon–Nikodým property with respect
to (Ω,F , P ).

Proof. Assume first that X∗ has the Radon–Nikodým property with respect to
(Ω,F , P ). By Remark 44 we only have to show surjectivity of ι. For an arbitrary
ϕ ∈ Lp

σ(P,X)∗, there is by Theorem 42 a σ-additive X∗-valued vector measure

of bounded variation such that |µ| � P and d|µ|
dP

∈ L∗
σ,q(P ) with ‖ϕ‖ = |d|µ|

dP
|∗σ,q.

By the Radon–Nikodým property of X∗, it follows that there is Z ∈ L1(P,X∗)
such that µ(E) =

∫
E
Z dP for all E ∈ F . Since |µ|(E) =

∫
E
‖Z‖ dP (see, e.g.,

[11, Theorem II.2.4]), it follows that Z ∈ Lq∗
σ (P,X∗) and ι(Z) = µ, showing the

surjectivity of ι.
Now, let ι be an isometric isomorphism. The proof that X∗ has the Radon–

Nikodým property is along the same lines as the proof of the corresponding impli-
cation of [11, Theorem IV.1.1]. However, we include the proof for the reader’s
convenience. So, let µ : F → X∗ be a P -continuous vector measure of bounded
variation, and fix E0 ∈ F such that P (E0) > 0. By the Hahn decomposition
theorem applied to the signed measure kP − |µ| for large enough k > 0 gives
the existence of B ∈ F , B ⊆ E0, P (B) > 0 such that |µ|(E) ≤ kP (E) for all
E ∈ F , E ⊆ B. For Y ∈ S(X), Y =

∑n
j=1 1Ej

xj with pairwise disjoint Ej ∈ F
and xj ∈ X, we define

ϕ(Y ) =
n∑

j=1

µ(Ej ∩B)(xj).

Denoting the norm in L1(P,X) as usual by ‖ · ‖1, Theorem 4 then gives∣∣ϕ(Y )
∣∣ ≤ n∑

j=1

k
∥∥µ(Ej ∩B)(xj)

∥∥ ≤ k‖Y ‖1 ≤ k‖Y ‖σ,p
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so that the obviously linear mapping ϕ on S(X) is continuous with respect to
‖ ·‖σ,p. By Proposition 9, ϕ extends (in a unique way) to an element of Lp

σ(P,X)∗

which we still denote by ϕ. Since ι is supposed to be surjective, there is Z ∈
Lq∗
σ (P,X∗) ⊆ L1(P,X∗) such that

∀Y ∈ Lp
σ(P,X): ϕ(Y ) = E

(
〈Z, Y 〉

)
.

Since µ(E ∩ B)(x) = ϕ(1Ex) =
∫
E
〈Z(ω), x〉 dP (ω) = 〈

∫
E
Z(ω) dP (ω), x〉 for all

E ∈ F , x ∈ X, it follows that µ(E ∩B) =
∫
E
Z dP .

Because E0 ∈ F with P (E0) > 0 was chosen arbitrarily, it follows from [11,
Corollary III.2.5] that there is Z ∈ L1(P,X∗) such that µ(E) =

∫
E
Z dP for

all E ∈ F , which proves the Radon–Nikodým property of X∗ with respect to
(Ω,F , P ). �

6. Summary

This article introduces Banach spaces, which naturally carry risk measures for
vector-valued returns. Risk measures are continuous on these spaces, and the
spaces are as large as possible. The spaces are built based on duality, and in this
sense are natural for risk measures involving vector-valued returns. We provide
a complete characterization of the topological dual, which essentially simplifies if
the dual of the state space enjoys the Radon–Nikodým property.

It is a key property of these spaces that the corresponding risk functional is
continuous (in fact, Lipschitz-continuous) with respect to any of the associated
norms introduced, such that they all qualify as a domain space for the risk mea-
sure.
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