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Abstract. Let G be a locally compact group. We examine the problem of
determining when nonzero functions in L2(G) have linearly independent left
translations. In particular, we establish some results for the case when G has an
irreducible, square-integrable, unitary representation. We apply these results
to the special cases of the affine group, the shearlet group, and the Weyl–
Heisenberg group. We also investigate the case when G has an abelian, closed
subgroup of finite index.

1. Introduction

Let G be a locally compact Hausdorff group with a fixed left Haar measure µ.
Denote by Lp(G) the set of complex-valued functions on G that are p-integrable
with respect to µ, where 1 < p ∈ R. As usual, the functions are identified in
Lp(G) when they differ only on a set of µ-measure zero. We shall write ‖ · ‖p
to indicate the usual Lp-norm on Lp(G). The regular representation of G on
Lp(G) is given by L(g)f(x) = f(g−1x), where g, x ∈ G, and f ∈ Lp(G). The
function L(g)f is known as the left translation of f by g (many papers use the
word “translate” instead of “translation”). In [22], Rosenblatt investigated the
problem of determining when the left translations of a nonzero function f in
L2(G) are linearly independent. In other words, when can there be a nonzero
function f ∈ L2(G), some nonzero complex constants ck, and distinct elements
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gk ∈ G, where 1 ≤ k ≤ n, k ∈ N (the positive integers) such that

n∑
k=1

ckL(gk)f = 0? (1.1)

In the introduction of [22], it was shown that, if G has a nontrivial element of
finite order, then there is a nonzero element in L2(G) that has a linear dependency
among its left translations. Thus, when trying to find nontrivial functions that
satisfy (1.1), it is more interesting to consider groups for which all nonidentity ele-
ments have infinite order. For G = Rn, it is known that every nonzero function in
L2(Rn) has no linear dependency among its left translations. Rosenblatt attacked
(1.1) by trying to determine if there is a relationship between the linear indepen-
dence of the translations of functions in L2(G) and the linear independence of
an element and its images under the action of G in an irreducible representation
of G. To gain insights into possible connections between these concepts, he com-
puted examples for specific groups, such as the Heisenberg group and the affine
group. In fact, he showed that these groups have irreducible representations that
are intimately related to a time-frequency equation. Recall that an equation of
the form

n∑
k=1

ck exp
(
ibkh(t)

)
f(ak + t) = 0 (1.2)

is a time-frequency equation, where ak, bk ∈ R, f ∈ L2(R), and h : R → R is a
nontrivial function. The case h(t) = t corresponds to the Heisenberg group, and
h(t) = et corresponds to the affine group.

Now, suppose that G is a group that has an irreducible representation related
to (1.2). Rosenblatt wondered if there existed a nontrivial f ∈ L2(R) that would
satisfy equation (1.2) such that f would produce a nonzero F ∈ L2(G) with a
linear dependency among its left translations. He then showed that there exists
a nonzero f ∈ L2(R) that satisfies the following time-frequency equation:

Cf(t) = f(t− log 2) + exp
(
− i

2
et
)
f(t− log 2), (1.3)

where C is a constant (see [22, Proposition 3.1]). This time-frequency equation
corresponds to the affine group A case since h(t) = et. This offers some hope
that there might be a nonzero function in L2(A) that has a linear dependency
among its left translations. However, there is no clear principle that can be used
to show the existence of such a function given a nontrivial f that satisfies (1.3).
Using the proof of the existence of f that satisfies (1.3) as a guide, a nonzero F
in L2(A) with linearly dependent left translations was shown to exist (see [22,
Proposition 3.2]).

Even less is known about the Heisenberg group Hn, n ∈ N. The relevant time-
frequency equation, which has been intensely studied in the context of Gabor
analysis, is

m∑
k=1

cke
2πibk·tf(t+ ak) = 0, (1.4)



LINEAR DEPENDENCY AND SQUARE-INTEGRABLE REPRESENTATIONS 947

where ck are nonzero constants, ak, bk ∈ Rn, and f ∈ L2(Rn). Linnell showed
that f = 0 is the only solution satisfying (1.4), when the subgroup generated
by (ak, bk) (k = 1, . . . ,m) is discrete. This gave a partial answer to a conjecture
posed by Heil, Ramanathan, and Topiwala [11, p. 2790] that f = 0 is the only
solution to (1.4) when n = 1. As far as we know, the conjecture is still open.

The motivation for this paper is to give a clearer picture of the link between
the linear independence of an element and its images under the action of G in an
irreducible representation of G and the linear independence of the left translations
of a function in L2(G). In Section 2 we will prove the following result.

Proposition 1.1. Let G be a locally compact group, and let π be an irreducible,
unitary, square-integrable representation of G on a Hilbert space Hπ. If there
exists a nonzero v in Hπ such that

n∑
k=1

ckπ(gk)v = 0

for some nonzero constants ck ∈ C and gk ∈ G, then there exists a nonzero
F ∈ L2(G) that satisfies

n∑
k=1

ckL(gk)F = 0.

In particular, if there exists a nonzero v in Hπ with linearly dependent transla-
tions, then there exists a nonzero F in L2(G) with linearly dependent translations.

In Section 3 we will use Proposition 1.1 to construct explicit examples of non-
trivial functions in L2(A), where A is the affine group and where they have a
linear dependency among their left translations.

In Section 4 we investigate the case where G is a discrete group. We show that
there is a connection between the linear independence of the left translations of
a nonzero function in `2(G) and the strong Atiyah conjecture. In fact, we briefly
review the strong Atiyah conjecture in Section 4.

After considering the discrete group case in Section 4, we shall return to study-
ing the linear dependency problem for groups that satisfy our original hypotheses.
Let K be a subgroup of a group G. If k ∈ K, x ∈ G, and f ∈ L2(G), then we say
that

L(k)f(x) = f(k−1x)

is a left K-translation of f . In Section 5, we prove the following main result.

Theorem 1.2. Let G be a locally compact, σ-compact group, and let K be a
torsion-free discrete subgroup of G. If K satisfies the strong Atiyah conjecture,
then each nonzero function in L2(G) has linearly independent K-translations.

In Section 6, we study the Weyl–Heisenberg group H̃n, a variant of the Heisen-
berg group,Hn. The group H̃n is of interest to us because it has an irreducible uni-
tary representation on L2(Rn), the Schrödinger representation, which is square-
integrable. Furthermore, the time-frequency equation (1.4) is related to the
Schrödinger representation. Now, if K is a torsion-free discrete subgroup of H̃n,
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then by Theorem 1.2 every nonzero element in L2(H̃n) has linearly independent
left K-translations. It will then follow from Proposition 1.1 that, if the subgroup
of R2n generated by (ak, bk), 1 ≤ k ≤ m is discrete and the product ah · bk ∈ Q
for all h, k, then f = 0 is the only solution to (1.4). This gives a new proof of a
special case of [16, Proposition 1.3] and sheds new insight on the problem.

In Section 7 we consider the problem of determining the linear independence
of the left translations of a function in L2(S), where S is the shearlet group. By
using Proposition 1.1, we show that this problem is related to the question of
determining the linear independence of a shearlet system of a function in L2(R2),
which was recently studied in [19].

In the last section of this paper we investigate the linear independence of left
translations of functions in Lp(G) for virtually abelian groupsG with no nontrivial
compact subgroups. In particular, we generalize [5, Theorem 1.2].

2. Proof of Proposition 1.1

In this section we will prove Proposition 1.1. First we prepare some necessary
preliminaries. A unitary representation of G is a homomorphism π from G into
the group U(Hπ) of unitary operators on a nonzero Hilbert space Hπ that is
continuous with respect to the strong operator topology. This means that π :
G → U(Hπ) satisfies π(xy) = π(x)π(y), π(x−1) = π(x)−1 = π(x)∗, and x →
π(x)u is continuous from G to Hπ for each u ∈ Hπ. A closed subspace W of
Hπ is said to be invariant if π(x)W ⊆ W for all x ∈ G. If the only invariant
subspaces of Hπ are Hπ and 0, then π is said to be an irreducible representation
of G. A representation is said to be reducible if it is not irreducible. If π1 and
π2 are unitary representations of G, then an intertwining operator for π1 and π2

is a bounded linear map T : Hπ1 → Hπ2 that satisfies Tπ1(g) = π2(g)T for all
g ∈ G. Throughout the paper, we assume that the inner product 〈·, ·〉 on Hπ is
conjugate-linear in the second component. If u, v ∈ Hπ, then a matrix coefficient
of π is the function Fv,u : G → C defined by

Fv,u(x) =
〈
v, π(x)u

〉
.

We indicate Fu,u by Fu. Moreover we say that u is admissible if Fu ∈ L2(G).
An irreducible representation π is said to be square-integrable if there exists a
nonzero u ∈ Hπ such that u is admissible. The set of admissible elements in
Hπ will be denoted by Ad(Hπ). A consequence of π being irreducible is that, if
there is a nonzero admissible element in Hπ, then Ad(Hπ) is dense in Hπ. In fact,
Ad(Hπ) = Hπ if G is unimodular, in addition to Ad(Hπ) containing a nonzero
element (see [23, Lemma 4.5.9.1]). According to [10, Theorem 3.1] there exists a
self-adjoint positive operator C : Ad(Hπ) → Hπ such that, if u ∈ Ad(Hπ), and
v ∈ Hπ, then ∫

G

∣∣〈v, π(x)u〉∣∣2 dµ =

∫
G

〈
v, π(x)u

〉〈
v, π(x)u

〉
dµ

= ‖Cu‖2‖v‖2,
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where ‖ · ‖ denotes the Hπ-norm. Thus, if u ∈ Ad(Hπ), then Fv,u ∈ L2(G) for all
v ∈ Hπ.

We now prove Proposition 1.1. Suppose that there exists a nonzero v ∈ Hπ for
which there exists a linear dependency among some of the elements π(g)v, where
g ∈ G. So there exist nonzero constants c1, c2, . . . , cn and elements g1, g2, . . . , gn
in G with π(gj) 6= π(gk) if j 6= k such that

n∑
k=1

ckπ(gk)v = 0. (2.1)

Let u ∈ Ad(Hπ). Then 0 6= Fv,u ∈ L2(G), and, since π is unitary, we have
〈π(g)v, π(x)u〉 = 〈v, π(g−1x)u〉 for all x and g in G. In other words, the continuous
linear map v 7→ Fv,u : H → L2(G) intertwines π with the regular representation L.
Combining this observation with (2.1) yields that, for all x ∈ G,

n∑
k=1

ckL(gk)Fv,u(x) = 0.

Thus, Fv,u has linearly dependent left translations. The proof of Proposition 1.1
is now complete.

3. The affine group

In this section we give examples of nonzero functions in L2(G), where G is
the affine group and where there is a linear dependency among some of its left
translations. Let R denote the real numbers, and let R∗ be the set R \ {0}.
Recall that R is a group under addition and that R∗ is a group with respect to
multiplication. The affine group, also known as the ax+ b group, is defined to be
the semidirect product of R∗ and R; that is,

G = R∗ oR.

Let (a, b) and (c, d) be elements of G. The group operation on G is given by
(a, b)(c, d) = (ac, b + ad). The identity element of G is (1, 0), and (a, b)−1 =
(a−1,−a−1b). The left and right Haar measures on G are dµ = da db

a2
and dµ = da db

|a| ,

respectively. Thus, G is a nonunimodular group because the right and left Haar
measures do not agree. So f ∈ L2(G) if and only if∫

R

∫
R∗

∣∣f(a, b)∣∣2da db
a2

< ∞.

An irreducible unitary representation of G can be defined on L2(R) by

π(a, b)f(x) = |a|−1/2f
(x− b

a

)
,

where (a, b) ∈ G and f ∈ L2(R). Before we show that π is square-integrable, we
recall some facts from Fourier analysis.

If we let f ∈ L1(R) ∩ L2(R), then the Fourier transform of f is defined as

f̂(ξ) =

∫
R
f(x)e−2πiξx dx,
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where ξ ∈ R. The Fourier transform can be extended to a unitary operator on
L2(R). For y ∈ R we also have the following unitary operators on L2(R):

Tyf(x) = f(x− y), Eyf(x) = e2πiyxf(x)

and

Dyf(x) = |y|−1/2f
(x
y

)
(y 6= 0).

Given f, g ∈ L2(R), the following relations are true: 〈f, Tyg〉 = 〈T−yf, g〉,
〈f, Eyg〉 = 〈E−yf, g〉, and 〈f,Dyg〉 = 〈Dy−1f, g〉. Furthermore, T̂yf = E−yf̂ and

D̂yf = Dy−1 f̂ . Observe that, for (a, b) ∈ G and f ∈ L2(R),

π(a, b)f(x) = TbDaf(x) = |a|−1/2f
(x− b

a

)
.

Using the above relations it can be shown that, for f ∈ L2(R),∫
G

〈
f, π(a, b)f

〉
dµ =

∫
R

∫
R∗

∣∣〈f, TbDaf〉
∣∣2da db

a2
= ‖f‖22

∫
R∗

|f̂(ξ)|2

|ξ|
dξ

(see [12, Theorem 3.3.5]). Thus, f ∈ L2(R) is admissible if
∫
R∗

|f̂(ξ)|2
|ξ| dξ < ∞.

Combining [20, Proposition 2.2.5] with [20, Example 2.2.7], the function f(x) =√
2πxe−πx2

satisfies this criterion since f̂(ξ) = −
√
2πiξe−πξ2 . Hence, π is a square-

integrable, irreducible unitary representation of the affine group G. We are now
ready to construct a nonzero function in L2(G) that has linearly dependent left
translations.

Let χ[0,1) be the characteristic function on the interval [0, 1). It follows from
the refinement equation

χ[0,1)(x) = χ[0,1)(2x) + χ[0,1)(2x− 1)

that

π(1, 0)χ[0,1)(x) = 2−1/2π(2−1, 0)χ[0,1)(x) + 2−1/2π(2−1, 2−1)χ[0,1)(x). (3.1)

Thus, χ[0,1) has a linear dependency among the π(a, b)χ[0,1), where (a, b) ∈ G.
We now use χ[0,1) to construct a nontrivial function in L2(G) that has linearly
dependent left translations. Let f ∈ L2(R) be an admissible function for π, and
let (a, b) ∈ G. Then, the function

F (a, b) =
〈
χ[0,1), π(a, b)f

〉
=

∫ 1

0

|a|−1/2f
(x− b

a

)
dx

belongs to L2(G). By Proposition 1.1, F (a, b) has linearly dependent left trans-
lations. More specifically,

L(1, 0)F (a, b) = 2−1/2L(2−1, 0)F (a, b) + 2−1/2L(2−1, 2−1)F (a, b),

which translates to∫ 1

0

|a|−1/2f
(x− b

a

)
dx =

∫ 1/2

0

|a|−1/2f
(x− b

a

)
dx+

∫ 1

1/2

|a|−1/2f
(x− b

a

)
dx.
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Equation (3.1) above was used in the proof of [22, Proposition 3.1] to show that
the time-frequency equation (1.3) with C =

√
2 has a nonzero solution. Basically,

equation (1.3) is a reinterpretation of the above refinement equation where the
representation π is replaced by an equivalent representation (see [22, Section 3]).

We now turn our attention to the subgroup K of the affine group G consist-
ing of all (a, b) ∈ G for which a > 0. This was the version of the affine group
considered in [22]. Up to unitary equivalence there are two irreducible unitary
infinite-dimensional representations of K (see [7, Section 6.7]). One of these rep-
resentations is given by

π+(a, b)f(x) = a1/2e2πibxf(ax) = EbDa−1f(x),

where (a, b) ∈ K and f ∈ L2(0,∞). The representation π+ is square-integrable.
We are now ready to produce a nontrivial function in L2(K) that has linearly
dependent left translations. From (3.1), we have

χ[0,1) = 2−1/2D2−1χ[0,1) + 2−1/2T2−1D2−1χ[0,1).

By taking Fourier transforms we obtain

χ̂[0,1)(ξ) = 2−1/2D2χ̂[0,1)(ξ) + 2−1/2E−2−1D2χ̂[0,1)(ξ)

= 2−1/2π+(2−1, 0)χ̂[0,1)(ξ) + 2−1/2π+(2−1,−2−1)χ̂[0,1)(ξ).

Hence there is a linear dependency among the π+(a, b)χ̂[0,1), where (a, b) ∈ K. It
follows from

χ̂[0,1)(ξ) =
e−2πiξ − 1

−2πiξ

that χ̂[0,1) ∈ L2(0,∞). Pick an admissible function f ∈ L2(0,∞) for π+. Then,
the function

F (a, b) =
〈
χ̂[0,1), π

+(a, b)f
〉
=

∫ ∞

0

χ̂[0,1)(ξ)a
1/2e−2πibξf(ξ) dξ

is a member of L2(K). Proposition 1.1 yields the following linear dependency in
L2(K) among the left translations of F (a, b):

F (a, b) = 2−1/2L(2−1, 0)F (a, b) + 2−1/2L(2−1,−2−1)F (a, b).

This equation can easily be verified using the relations

χ̂[0,1)

(ξ
2

)
(1 + e−πiξ) =

(e−πiξ − 1)(1 + e−πiξ)

−2πiξ
= χ̂[0,1)(ξ).

4. Discrete groups and the Atiyah conjecture

In this section we connect the problem of linear independence of left translations
of a function to the Atiyah conjecture. Unless otherwise stated, we make the
assumption that all groups in this section are discrete. Let f be a complex-valued
function on a group G. We will represent f as a formal sum

∑
g∈G agg, where ag ∈

C and f(g) = ag. Denote by `2(G) those formal sums for which
∑

g∈G |ag|2 < ∞,
and CG, the group ring of G over C, will consist of all formal sums that satisfy
ag = 0 for all but finitely many g. The group ring CG can also be thought of
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as the set of all functions on G with compact support, and `2(G) is a Hilbert
space with Hilbert basis {g | g ∈ G}. If g ∈ G and f =

∑
x∈G axx ∈ `2(G), then

the left translation of f by g is represented by the formal sum
∑

x∈G ag−1xx since
L(g)f(x) = f(g−1x). Suppose that α =

∑
g∈G agg ∈ CG and that f =

∑
g∈G bgg ∈

`2(G). We define a multiplication, known as convolution, CG× `2(G) → `2(G) by

α ∗ f =
∑
g,h∈G

agbhgh =
∑
g∈G

(∑
h∈G

agh−1bh

)
g.

Sometimes, we will write αf instead of α∗f . Left multiplication by an element of
CG is a bounded linear operator on `2(G). So CG can be considered as a subring
of B(`2(G)), the space of bounded linear operators on `2(G). We say that G is
torsion-free if the only element of finite order in G is the identity element of G.
The strong Atiyah conjecture for the group G is concerned with the values that
the L2-Betti numbers can take, and it implies the following conjecture, which can
also be considered as an analytic version of the zero divisor conjecture.

Conjecture 4.1. Let G be a torsion-free group. If 0 6= α ∈ CG and 0 6= f ∈
`2(G), then α ∗ f 6= 0.

The hypothesis that G is torsion-free is essential. Indeed, let 1 be the identity
element of G, and let g ∈ G such that g 6= 1, and gn = 1 for some n ∈ N.
Then, (1 + g + · · · + gn−1) ∗ (1 − g) = 0. The Atiyah conjecture is important in
the study of von Neumann dimension (see [3], [14], [15], and [18, Section 10]).
In particular, Conjecture 4.1 is known for free groups, left-ordered groups, and
elementary amenable groups.

The following proposition gives the relation between zero divisors and the linear
independence of left translations of a function.

Proposition 4.2. Let G be a discrete group, and let f ∈ `2(G). Then, f has
linearly independent left translations if and only if α ∗ f 6= 0 for all nonzero
α ∈ CG.

Proof. Let g ∈ G, and let f =
∑

x∈G axx ∈ `2(G). Then,

g ∗ f =
∑
x∈G

axgx =
∑
x∈G

ag−1xx = L(g)f.

Consequently, if g1, . . . , gn ∈ G are distinct, and c1, . . . , cn are constants, then
n∑

k=1

ckL(gk)f =
n∑

k=1

ckgk ∗ f =
( n∑

k=1

ckgk

)
∗ f.

The proposition now follows since
∑n

k=1 ckgk ∈ CG. �

As we mentioned in Section 3, there are nontrivial, square-integrable functions
on the affine group that have a linear dependency among their left translations.
Since all nonidentity elements of the affine group have infinite order, by taking
a discrete subgroup D of the affine group, such as 1 o Z, we might be able to
construct a nonzero function in `2(D) that has a linear dependency among its left
translations. It would then be an immediate consequence of Proposition 4.2 that
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Conjecture 4.1 is false. However, for discrete subgroups D of the affine group, it
is not true that there exists a nonzero function in `2(D) with a linear dependency
among its left translations. Indeed, it is well known that the affine group with
a > 0 is a connected solvable Lie group, and all discrete subgroups of connected
solvable Lie groups are polycyclic (see [24, Proposition 4.1]). According to [14,
Theorem 2], Conjecture 4.1 is true for torsion-free elementary amenable groups,
a class of groups that contains all torsion-free polycyclic groups.

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let G be a σ-compact group, let
g1, . . . , gn be elements of G, and let c1, . . . , cn ∈ C be some constants. Set θ =∑n

k=1 ckL(gk). Hence θ ∈ B(L2(G)), the set of bounded linear operators on L2(G).
Define

CG =
{∑

g∈G

agL(g)
∣∣∣ ag = 0 for all but finitely many g ∈ G

}
.

Note that there exists a nonzero f ∈ L2(G) with linearly dependent left transla-
tions if and only if there exists a nonzero θ ∈ CG with θf = 0.

For the rest of this section, H will denote a discrete subgroup of G. The sub-
group H acts on G by left multiplication. By [1, Proposition B.2.4], there exists a
Borel fundamental domain for this action of H on G. In fact, there exists a Borel
subset B of G such that hB ∩ B = ∅ for all h ∈ H \ 1 and G = HB (thus, B is
a system of right coset representatives of H in G which is also a Borel subset).
If X is a Borel subset of G, then we identify L2(X) with the subspace of L2(G)
consisting of all functions on G whose support is contained in X.

Let {qi | i ∈ I} be a Hilbert basis for L2(B). We prove that S := {L(h)qi |
h ∈ H, i ∈ I} is a Hilbert basis for L2(G). First we show that S is orthonormal.
Write hqi for L(h)qi. If h 6= k, then 〈hqi, kqj〉 = 0 because the supports of hqi and
hqj are contained in hB and kB, respectively, which are disjoint subsets of G.
On the other hand, if h = k, then 〈hqi, hqj〉 = 〈qi, qj〉. This proves that S is
orthonormal. Finally we show that the closure of the linear span S of S is L2(G).
Denote by χhB the characteristic function on hB. If f ∈ L2(G), then we may
write f =

∑
h∈H fh, where fh = χhBf (hence, fh has support contained in hB).

Thus, it is sufficient to show that L2(hB) ⊆ S. Since S is invariant under H, it
will be sufficient to show that L2(B) ⊆ S, which is obvious because the qi form a
Hilbert basis for L2(B).

For i ∈ I, let Si = {L(h)qi | h ∈ H}, and let Si denote the closure of the
linear span of Si. Now, L

2(G) =
⊕

i∈I Si , where
⊕

indicates the Hilbert direct

sum. The spaces Si are isometric to `2(H). Indeed, define a map Ti from the
Hilbert basis Si of Si to the Hilbert basis H of `2(H) via L(h)qi 7→ h. Extend
Ti linearly to obtain an isometry Ti : Si → `2(H). Moreover, the isometry Ti

intertwines the natural left actions of H on Si and `2(H). Also, let πi denote the
projection of L2(G) onto Si. Then, πi also intertwines the natural left actions of
H on L2(G) and Si. Now, suppose that there exists a nonzero f ∈ L2(G) and
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a nonzero θ ∈ CH that satisfies θf = 0. Then, k := Tiπif 6= 0 for some i, and
θ ∗k = θk = 0 because Tiπi commutes with CH. Furthermore, k ∈ l2(H). We can
summarize the above as follows.

Proposition 5.1. Let H be a discrete subgroup of the σ-compact locally compact
group G, and let θ ∈ CH. If θf = 0 for some nonzero f ∈ L2(G), then θ ∗ k = 0
for some nonzero k ∈ `2(H).

Now, let H be a torsion-free group which satisfies the strong Atiyah conjecture,
for example, a torsion-free elementary amenable group. Then, for 0 6= θ ∈ CH,
we know that θ ∗ k 6= 0 for all nonzero k ∈ `2(H). It follows from Proposition 5.1
that θf 6= 0 for all nonzero f ∈ L2(G); in other words, any nonzero element of
L2(G) has linearly independent H-translations. The proof of Theorem 1.2 is now
complete.

Similarly we have the following result.

Theorem 5.2. Let G be a locally compact σ-compact group, and let H be an
amenable discrete subgroup of G. If α is a non-zerodivisor in CH, then α ∗ f 6= 0
for all nonzero f ∈ L2(G).

Proof. Since αβ 6= 0 for all nonzero β ∈ CH, then it follows that αβ 6= 0 for all
nonzero β ∈ `2(H) by [6, Theorem] (see also [18, Theorem 6.37]). The result now
follows from Proposition 5.1. �

We saw in Section 3 that for the affine group A there exists a nonzero function
f in L2(A) with linearly dependent left translations. However, Z can be identified
with the discrete subgroup 1 o Z of A. A direct consequence of Theorem 1.2 is
as follows.

Corollary 5.3. Let A be the affine group. Then every nonzero f in L2(A) has
linearly independent left Z-translations.

As noted in Section 4, if H is a discrete group, then we may regard CH as a
subalgebra of B(`2(H)). Recall that the reduced group C∗-algebra of H, denoted
by C*

r (H), is the operator norm closure of CH in B(`2(H)) and that the group
von Neumann algebra of H, denoted by N (H), is the weak closure of CH in
B(`2(H)). We can also identify the norm and weak closures of CH in B(L2(G))
with C*

r (H) and N (H), respectively. Though this is not needed in the sequel, we
hope it may be useful to record this.

For θ ∈ B(L2(G)) or B(`2(H)), let ‖θ‖ or ‖θ‖′, respectively, denote the corre-
sponding operator norms. We retain the notation used in the proof of Proposi-
tion 5.1. Observe that we have a natural isomorphism B(Si) → B(`2(H)) induced
by Ti. Furthermore, L2(G) =

⊕
i∈I Si, where

⊕
indicates the Hilbert direct sum,

and this a decomposition of L2(G) as left CH-modules. The following lemma will
be required.

Lemma 5.4. Let θ ∈ CH. Then ‖θ‖ = ‖θ‖′.
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Proof. Note that θ can be considered as an operator on L2(G) or `2(H). If u ∈
L2(G), then we may write u =

∑
i∈I ui with ui ∈ Si; hence,

‖θ‖ = sup
u∈L2(G),‖u‖2=1

‖θu‖2 = sup
u∈L2(G),‖u‖2=1

∥∥∥θ∑
i∈I

ui

∥∥∥
2

≤ sup
u∈L2(G),‖u‖2=1

√∑
i∈I

‖θ‖′2‖ui‖22 = ‖θ‖′.

Fix ι ∈ I. Then,

‖θ‖′ = sup
u∈Sι,‖u‖2=1

‖θu‖2 ≤ sup
u∈L2(G),‖u‖2=1

‖θu‖2 ≤ ‖θ‖.

Thus, ‖θ‖ = ‖θ‖′. �

Denote the operator norm closure of CH in B(L2(G)) by O(H), and denote the
weak closure of CH in B(L2(G)) by W(H). The space W(H) is a von Neumann
algebra; by the double commutant theorem, it is equal to the strong closure of
CH in B(L2(G)). Note that O(H) ⊆ W(H) and that C*

r (H) ⊆ N (H). We now
relate these various algebras.

Proposition 5.5. There is a ∗-isomorphism α : W(H) → N (H). Moreover, α
preserves the operator norm and maps O(H) onto C*

r (H).

Proof. Recall that, for u ∈ L2(G), we can uniquely write u =
∑

i∈I ui with

ui ∈ Si. Let θ ∈ W(H). Then there exists a net (θi) in CH which converges
strongly to θ. Thus, for every u ∈ L2(G), the net (θiu) is convergent in L2(G);
consequently, the net (θiuj) is convergent for every j. In particular, (θif) is a
Cauchy net in `2(H) for every f ∈ `2(H). We deduce that (θi) is a Cauchy net
in B(`2(H)) (in the strong operator topology); hence, it converges to an operator
θ′ ∈ N (H). We note that θ′ does not depend on the choice of the net (θi);
therefore, we have a well-defined map α : W(H) → N (H), defined as α(θ) = θ′,
and α is the identity on CH.

We now construct the inverse of α by reversing the above steps. Let φ ∈
N (H). By the Kaplansky density theorem, there exists a net (θi) in CH which
converges strongly to φ, and ‖θi‖′ is bounded. Thus, ‖θi‖ is bounded because
‖θi‖ = ‖θi‖′ for each i by Lemma 5.4. Now let u ∈ L2(G). If J is a finite subset
of I, set vJ =

∑
j∈J uj. Then, (θivj) converges in L2(G) for every J . Since ‖θi‖

is bounded, it follows that (θiu) is convergent in L2(G), and we conclude that (θi)

converges strongly to an operator φ̃ ∈ B(L2(G)). Thus, we obtain a well-defined

map φ → φ̃ : N (H) → W(H), which is the inverse to α.
It is easily checked that α is a ∗-isomorphism and that it therefore is an iso-

morphism of C∗-algebras, in particular that it preserves the operator norm. We
deduce that α maps O(H) onto C*

r (H). �

Remark 5.6. Proposition 5.5 can be used to give a different proof of Proposi-
tion 5.1 (see [21, Chapter 2.5]).
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6. The Weyl–Heisenberg group

In this section we use techniques developed in this paper to determine when
f = 0 is the only solution to the time-frequency equation (1.4). The relevant group
here is the Weyl–Heisenberg group since it has an irreducible representation that
is square-integrable.

Let n ∈ N. The Heisenberg group Hn is the set of (n+ 2)× (n+ 2) matrices of
the form 1 a z

0 1n b
0 0 1

 ,

where a is a (1×n)-matrix, b is an (n×1)-matrix, the zero in the (2, 1) position is
the (n× 1)-zero matrix, the zero in the (3, 2) position is the (1× n)-zero matrix,
and the 1n in the (2, 2) position is the (n × n)-identity matrix. Another way to

represent Hn is as the product R× R̂n ×Rn. Here, we view Rn as (n× 1)-column

matrices and R̂n as (1 × n)-row matrices. For (z1, a1, b1), (z2, a2, b2) ∈ Hn the
group law becomes (z1, a1, b1)(z2, a2, b2) = (z1+ z2+a1 · b2, a1+a2, b1+ b2). Thus,
the identity element in Hn is (0, 0, 0), and (z, a, b)−1 = (a · b − z,−a,−b). For
f ∈ L2(Rn) and (z, a, b) ∈ Hn, define

π(z, a, b)f(x) = e2πize−2πia·be2πia·xf(x− b).

It turns out that π is a representation of Hn on L2(Rn). Indeed, let (z1, a1, b1),
(z2, a2, b2) ∈ Hn. Then,

π(z1, a1, b1)
(
π(z2, a2, b2)f(x)

)
= π(z1, a1, b1)

(
e2πiz2e−2πia2·b2e2πia2·xf(x− b2)

)
= e2πiz1e2πiz2e−2πia1·b1e−2πia2·b2e2πia1·xe2πia2·(x−b1)f(x− b2 − b1)

= e2πi(z1+z2)e−2πi(a1·b1+a2·b2)e−2πia2·b1e2πia2·xf
(
x− (b1 + b2)

)
= e2πi(z1+z2+a1·b2)e−2πi(a1+a2)·(b1+b2)e2πi(a1+a2)·xf

(
x− (b1 + b2)

)
=

(
π(z1, a1, b1)π(z2, a2, b2)

)
f(x).

Let Z = 〈(2π, 0, 0)〉, the subgroup of Hn generated by (2π, 0, 0). Set H̃n = Hn/Z.
The group H̃n is known as the Weyl–Heisenberg group. Clearly, Z = kerπ; thus, π
induces a representation π̃ on H̃n. Observe that H̃n = {(t, a, b) | t ∈ T, a, b ∈ Rn}
(here T is the unit circle {z ∈ Z | |z| = 1}). The Lebesgue measure on Hn =

R × R̂n × Rn is the left and right Haar measure on Hn. Similarly, the Lebesgue

measure on T × R̂n × Rn is the left and right Haar measure on H̃n (here, the
Lebesgue measure on T is normalized so that

∫
T dt = 1). The next result was

proved in [12, Proposition 3.2.4] for the special case n = 1. By interchanging the
roles of a and b, the proof given there applies equally to our case.

Proposition 6.1. If f, g ∈ L2(Rn), then∫
R̂n

∫
Rn

∫
T

∣∣〈f, π̃(t, a, b)g〉∣∣2 dt db da = ‖f‖22‖g‖22.
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Corollary 6.2. The representation π̃ of H̃n on L2(Rn) is irreducible and square-
integrable, and every g ∈ L2(Rn) is admissible.

Proof. By taking f = g in the above proposition, we see immediately that every
element of L2(Rn) is admissible. Suppose that g ∈ L2(Rn) \ {0} is fixed, and
assume that f ∈ L2(Rn) satisfies 〈f, π̃(t, a, b)g〉 = 0 for all (t, a, b) ∈ H̃n. Then
‖f‖2‖g‖2 = 0, and it follows that f = 0; hence, π̃ is irreducible as desired. �

Proposition 6.3. Let n ∈ N, let (ak, bk) ∈ R2n be distinct nonzero elements such
that (ak, bk) generate a discrete subgroup of R2n, and ah ·bk ∈ Q for all h, k (where
k, h ∈ N). If r ∈ N, and

r∑
k=1

cke
2πibk·tf(t+ ak) = 0

with 0 6= ck ∈ C constants, then f = 0.

Proof. We have R2n = H̃n/T. Lift the (ak, bk) to the elements gk := (1, ak, bk) ∈
H̃n. Note that the hypothesis ah · bk ∈ Q ensures that 〈g1, . . . , gr〉 is a discrete
subgroup of H̃n. We claim that, if 0 6= dk ∈ C, then α :=

∑r
k=1 dkgk is a non-

zerodivisor in CH̃n. Indeed, if 0 6= β ∈ CH̃n and αβ = 0, then let T be a
transversal for T in H̃n containing {g1, . . . , gr}, and write β =

∑
t∈T βtt, where

βt ∈ CT. Since R2n is an ordered group, we can apply a leading term argument:
let k be such that gk ∈ T is largest, and let s ∈ T be the largest element such that
βs 6= 0. Then, by considering gks, we see that αβ 6= 0 because dkβs 6= 0, which is
a contradiction. The result now follows from Proposition 1.1, Corollary 6.2, and
Theorem 5.2. �

7. Shearlet groups

We now investigate the problem of linear independence of left translations of
functions in L2(S), where S denotes the shearlet group. This fits the theme of
our paper since S has an irreducible, square-integrable representation on L2(R2).
We begin by defining the shearlet group.

For a ∈ R+ (the positive real numbers) and s ∈ R, let

Aa =

[
a 0
0

√
a

]
,

let

Ss =

[
1 s
0 1

]
,

and let G = {SsAa | a ∈ R+, s ∈ R}. The shearlet group S is defined to be S =
GnR2. The group multiplication for S is given by (M, t)(M ′, t′) = (MM ′, t+Mt′),
where M ∈ G and t ∈ R2 (here, we are considering elements of R2 as column
vectors). The left Haar measure for S is da ds dt

a3
, and the right Haar measure for S

is da ds dt
a

; hence, S is a nonunimodular group. A representation π of S on L2(R2)
can be defined by

π(SsAa, t)f(x) = a−3/4f
(
(SsAa)

−1(x− t)
)
.
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The representation π is square-integrable and irreducible (see [4, Section 2]).
We write fast to indicate π(SsAa, t)f . The function fast is also known as the
shearlet transform of f . Since the shearlet transform is realized by an irreducible
square-integrable representation of S on L2(R2), the question of linear indepen-
dence of the left translations of a function in L2(S) is related to the question of
the linear independence of the shearlets of a function in L2(R2). The question of
linear independence of the shearlet transforms of f now becomes: Is f = 0 the
only solution in L2(R2) that satisfies

n∑
k=1

ckfaksktk = 0, (7.1)

where ck are nonzero constants, and (ak, sk, tk) ∈ R+ × R× R2?

Proposition 7.1. Let S be the shearlet group. There exists a nonzero function
in L2(S) that has linearly dependent left translations.

Proof. The proposition will follow immediately from Proposition 1.1 if we show
that there exists a nonzero f ∈ L2(R2) that satisfies (7.1). Combining [13, The-
orem 4.6] and [9, Example 5] we see that there exists a continuous nonzero
f ∈ L2(R2) that satisfies

f(x) =
∑
β∈Z2

a(β)f(A−1
4 x− β), (7.2)

where a(β) ∈ CZ2 and x ∈ R2. The function f is said to be refinable. In the
literature, a(β) is often referred to as a mask. The important thing here is that
a(β) has finite support. If

β =

[
b1
b2

]
,

then set

β′ =

[
4b1
2b2

]
.

Using (7.2), we obtain

π(S0A1, 0)f(x) =
∑
β∈Z2

a(β)43/44−3/4f(A−1
4 x− β)

=
∑
β∈Z2

a(β)43/44−3/4f(A−1
4 x− A−1

4 β′)

=
∑
β∈Z2

43/4a(β)π(S0A4, β
′)f(x)

=
∑
β∈Z2

43/4a(β)f4,0,β′(x);

hence, there is a linear dependency among the shearlet transforms of f . This
proves the proposition. �



LINEAR DEPENDENCY AND SQUARE-INTEGRABLE REPRESENTATIONS 959

Remark 7.2. The refinable function f used in the proof of the previous proposition
has compact support since a(β) has finite support (see [9, Theorem 5]). Compare
this with [19, Theorem 4.3], where it was shown, in a slightly different setting,
that a compactly supported separable shearlet system is linearly independent.
Thus, it appears that in general the hypothesis of separability is important.

The next result gives a sufficient condition for linear independence of a shearlet
system.

Proposition 7.3. Let 0 6= f ∈ L2(R2). Then, {f1nt | n ∈ Z, t ∈ Z2} is a linearly
independent set.

Proof. If we let H = {SnA1 | n ∈ Z}, then K = H n Z2 is a torsion-free
discrete subgroup of S. Because H and Z2 are solvable, K is solvable and thus
satisfies the strong Atiyah conjecture. By Theorem 1.2, the K-left translations of
a function in L2(S) are linearly independent. The proposition now follows from
Proposition 1.1. �

The results obtained in this section are similar to the results from Section 3
for the affine group. This is not surprising since the shearlet transform involves a
dilation and a translation.

8. Virtually abelian groups

In this section, we consider virtually abelian groups, that is, groups with an
abelian subgroup of finite index.

Proposition 8.1. Let G be a locally compact group which has an abelian closed
subgroup A of finite index, and let 1 ≤ p ∈ R. Assume that, if 0 6= φ ∈ CA and
0 6= f ∈ Lp(A), then φf 6= 0. Let 0 6= f ∈ Lp(G), let H ≤ G, and let θ ∈ CH.

(a) If θ is a non-zerodivisor in CH, then θf 6= 0.
(b) If H is torsion-free and θ 6= 0, then θf 6= 0.

Proof. Note that CA is an integral domain. If we let B be the intersection of
the conjugates of A in G, then B is a closed abelian normal subgroup of finite
index in G. If we let {a1, . . . , am} be a set of coset representatives for B in A, then
Lp(A) =

⊕m
i=1 L

p(B)ai, and we see that, if 0 6= φ ∈ CB and 0 6= f ∈ Lp(B), then
φf 6= 0. If we let {g1, . . . , gn} be a set of coset representatives for B in G, then
Lp(G) =

⊕n
i=1 L

p(B)gi. We may view this as an isomorphism of CB-modules.
Set S = CB \ {0}. Then, we may form the ring of fractions S−1CG. Since every
element of S is a non-zerodivisor in CG, then it follows that S−1CG is a ring
containing CG. Furthermore, S−1CB is a field, and S−1CG has dimension n
over this field. Thus, S−1CG is an artinian ring, and, since S−1CB is a field of
characteristic zero, we see that S−1CG is a semisimple artinian ring, by Maschke’s
theorem. We deduce that non-zerodivisors in S−1CG are invertible. Using [8,
Theorem 10.8], we may form the S−1CG-module S−1Lp(G).

(a) If θ is a non-zerodivisor in CH, then θ is a non-zerodivisor in CG; hence, it
is invertible in S−1CG, and so θ−1 exists. We may regard f as an element
of S−1Lp(G) because S−1Lp(G) contains Lp(G). Thus, if θf = 0, then
θ−1θf = 0; consequently, f = 0, and we have a contradiction.
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(b) If H is torsion-free, then we know that every nonzero element of CH is
a non-zerodivisor in CH; this was first proved by K. A. Brown [2]. Thus,
the result follows from (a). �

We now use the previous result to give the following generalization of [5, The-
orem 1.2].

Theorem 8.2. Let G be a locally compact group with no nontrivial compact
subgroups, and suppose that G has an abelian closed subgroup of finite index.
Then every nonzero element of Lp(G), where 1 ≤ p ≤ 2, has linearly independent
translations.

Proof. Since G has no nontrivial compact subgroups, it is torsion-free. Further-
more, for 1 ≤ p ≤ 2, if 0 6= φ ∈ CA and 0 6= f ∈ Lp(A), then φf 6= 0 by [5,
Theorem 1.2]. The result now follows from Proposition 8.1(b). �

Theorem 8.3. Let G be a locally compact abelian group, let n ∈ N, and let
1 ≤ p ∈ R. Assume that p ≤ 2n/(n − 1). Suppose that G has a closed subgroup
of finite index isomorphic to Rn or Zn as a locally compact abelian group. Let
H ≤ G, let θ ∈ CH, let θ ∈ CG, and let 0 6= f ∈ Lp(G).

(a) If θ is a non-zerodivisor in CH, then θf 6= 0.
(b) If H is torsion-free and θ 6= 0, then θf 6= 0.

Proof. We apply Proposition 8.1 with A = Rn or Zn. We need to check the
hypothesis that, if 0 6= φ ∈ CA and 0 6= f ∈ Lp(A), then φf 6= 0. For the case
A = Rn, this follows from [22, Theorem 3], while for the case A = Zn, this follows
from [17, Theorem 2.1]. �
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