
Banach J. Math. Anal. 11 (2017), no. 4, 880–898

http://dx.doi.org/10.1215/17358787-2017-0027

ISSN: 1735-8787 (electronic)

http://projecteuclid.org/bjma

DUALITY PROPERTIES FOR GENERALIZED FRAMES
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Abstract. We introduce the concept of Riesz-dual sequences for g-frames.
In this paper we show that, for any sequence of operators, we can construct
a corresponding sequence of operators with a kind of duality relation between
them. This construction is used to prove duality principles in g-frame theory,
which can be regarded as general versions of several well-known duality prin-
ciples for frames. We also derive a simple characterization of a g-Riesz basic
sequence as a g-R-dual sequence of a g-frame in the tight case.

1. Introduction and preliminaries

Throughout this paper H and K are separable Hilbert spaces, and I denotes
the countable (or finite) index set. Note that {Vi}i∈I and {Wj}j∈I are sequences
of closed subspaces of K and that B(H, Vi) denotes the collection of all bounded
linear operators from H into Vi.

Definition 1.1. A family Λ = {Λi ∈ B(H, Vi) : i ∈ I} is a generalized frame or
simply a g-frame for H with respect to {Vi}i∈I if there exist constants 0 < C ≤
D <∞ such that

C‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ D‖f‖2, ∀f ∈ H. (1.1)

The constants C and D are called g-frame bounds. If only the right-hand inequal-
ity of (1.1) is required, we call it a g-Bessel sequence. We call {Λi}i∈I a C-tight
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g-frame if C = D, and we call it a Parseval g-frame if C = D = 1. We denote
the representation space associated with a g-Bessel sequence {Λi}i∈I as follows:(∑

i∈I

⊕Vi
)
`2
=

{
{g′i}i∈I

∣∣∣ g′i ∈ Vi, ∀i ∈ I and
∑
i∈I

‖g′i‖2 <∞
}
. (1.2)

The analysis operator for a g-Bessel sequence Λ = {Λi}i∈I is defined as follows:

TΛ : H →
(∑

i∈I

⊕Vi
)
`2
, TΛf = {Λif}i∈I ∀f ∈ H, (1.3)

and its adjoint operator, which is given by

T ∗
Λ :

(∑
i∈I

⊕Vi
)
`2
→ H, T ∗

Λ

(
{g′i}i∈I

)
=

∑
i∈I

Λ∗
i g

′
i, (1.4)

is called the analysis operator of Λ. By composing TΛ and T ∗
Λ we obtain the

g-frame operator

SΛ : H → H, SΛf = T ∗
ΛTΛf =

∑
i∈I

Λ∗
iΛif, ∀f ∈ H, (1.5)

which is a positive, self-adjoint, and invertible operator, and CIH ≤ SΛ ≤ DIH.

The canonical dual g-frame for {Λi}i∈I is defined by {Λ̂i}i∈I , where Λ̂i = ΛiS
−1
Λ ,

which is also a g-frame for H with respect to {Vi}i∈I with 1
D

and 1
C
as its lower

and upper g-frame bounds, respectively. Also we have

f =
∑
i∈I

Λ∗
i Λ̂if =

∑
i∈I

Λ̂∗
iΛif, ∀f ∈ H.

(For more details about the theory of generalized frames, we refer the reader to
the articles [14], [18],and [19]. For details about its applications, see [9] and [12];
for fusion frames, see [3].) Since almost all applications require a finite model for
their numerical treatment, we restrict ourselves to a finite-dimensional space in
the following examples.

Example 1.2. Let H = CN , and let V1 = V2 = · · · = VN = CN+1. Define

Λ1 =


1 0 . . . 0
1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

 , Λ2 =


0 1 . . . 0
0 1 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 0

 , . . . ,

ΛN =


0 0 . . . 1
0 0 . . . 1
0 0 . . . 1
...

...
...

0 0 . . . 1

 .
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Thus the set Λ = {Λi}Ni=1 is a g-frame for CN with respect to CN+1 with g-frame
bounds A = 2 and B = N+1. To see this explicitly, note that, for any f = {zi}Ni=1

in CN , we have

N∑
i=1

‖Λif‖2 = 2|z1|2 + 3|z2|2 + · · ·+ (N + 1)|zN |2.

From this, we have

2‖f‖2 ≤
N∑
i=1

‖Λif‖2 ≤ (N + 1)‖f‖2.

Example 1.3. Let H = CN+1, and let V1 = V2 = · · · = VN+1 = CN . Define

Λ1 =


−1 0 . . . 0
1 0 . . . 0
...

...
...

1 0 . . . 0

 , . . . , ΛN =


0 0 . . . 1 0
0 0 . . . 1 0
...

...
...

...
0 0 . . . −1 0

 ,
and

ΛN+1 =


0 0 . . . 0 1
0 0 . . . 0 1
...

...
...

...
0 0 . . . 0 1

 .
Thus the set {Λi}N+1

i=1 is a N -tight g-frame for CN+1 with respect to CN . To see
this explicitly, note that, for any f = {zi}N+1

i=1 ∈ CN+1, we have

N+1∑
i=1

‖Λif‖2 = N
(
|z1|2 + |z2|2 + · · ·+ |zN+1|2

)
= N‖f‖2.

Duality principles in Gabor theory such as the Ron–Shen duality principle
[16] and the Wexler–Raz biorthogonality relations [20] play a fundamental role
in analyzing Gabor systems. Casazza, Kutyniok, and Lammers introduced the
concept of a Riesz-dual sequence (“R-dual sequence”) in [4] and further considered
it in [5]. In [4] Casazza et al. introduced a general approach to derive duality
principles in abstract frame theory. For each sequence in a separable Hilbert
space they defined an R-dual sequence dependent only on two orthonormal bases.
They characterized exact properties of the first sequence in terms of the R-dual
sequence, which yields duality relations for the frame setting.

Definition 1.4. Let {ei}i∈I and {hi}i∈I be orthonormal bases for a separable
Hilbert space H, and let f = {fi}i∈I be any sequence in H for which∑

i∈I

∣∣〈fi, ej〉∣∣2 <∞ ∀j ∈ I.
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Then the R-dual sequence of {fi}i∈I with respect to {ei}i∈I and {hi}i∈I as the

sequence {wf
j }j∈I is given by

wf
j =

∑
i∈I

〈fi, ej〉hi, ∀j ∈ I. (1.6)

There exists a symmetric relation between the sequences {wf
j }j∈I and {fi}i∈I

which is as follows:

fi =
∑
j∈I

〈wf
j , hi〉ej, ∀i ∈ I. (1.7)

In particular, this shows that {fi}i∈I is the R-dual sequence for {wf
j }j∈I with

respect to {hi}i∈I and {ei}i∈I . (We refer the reader to the articles [7], [8], [13], [17],
and [21] for an introduction to the theory and applications of R-dual sequences.)

The structure of this paper is as follows. In the rest of this section we will briefly
review the necessary parts from g-bases, g-orthonormal bases, and g-Riesz bases
(for more information, see [1], [2], [6], [10], and [11]). Then we define the general-
ized R-dual sequence (“g-R-dual sequence”) from a g-Bessel sequence with respect
to a pair of g-orthonormal bases as a generalization of an R-dual sequence. We
characterize the extent to which the g-R-dual sequence depends upon the cho-
sen g-orthonormal bases. In Section 2, we obtain the g-frame conditions for a
sequence of operators and its g-R-dual sequence. In Section 3, we characterize
those pairs of g-frames and their g-R-dual sequences which are equivalent (uni-
tarily equivalent). Finally, Section 4 deals with duality properties for g-frames
by g-R-dual sequences; in it, we study properties of dual g-frames and canonical
dual g-frames.

Definition 1.5. Let {Ξi ∈ B(H,Wi) | i ∈ I} be a sequence of operators. Then

(i) {Ξi}i∈I is a g-complete set for H with respect to {Wi}i∈I if H =
Span{Ξ∗

i (Wi)}i∈I ;
(ii) {Ξi}i∈I is a g-orthonormal system for H with respect to {Wi}i∈I if ΞiΞ

∗
j =

δijIWj
for all i, j ∈ I;

(iii) a g-complete and g-orthonormal system {Ξi}i∈I is called a g-orthonormal
basis for H with respect to {Wi}i∈I .

The following well-known characterization of g-orthonormal bases is sometimes
more useful (see [2]).

Lemma 1.6. Let Ξ = {Ξi}i∈I be a g-orthonormal system for H with respect to
{Wi}i∈I . Then the following conditions are equivalent:

(i) Ξ is a g-orthonormal basis for H with respect to {Wi}i∈I ,
(ii)

∑
i∈I Ξ

∗
iΞi = IH,

(iii) ‖f‖2 =
∑

i∈I ‖Ξif‖2 ∀f ∈ H,
(iv) if Ξif = 0 for all i ∈ I, then f = 0.

Let Ξ = {Ξi}i∈I be a g-orthonormal basis for H with respect to {Wi}i∈I . If
f =

∑
i∈I Ξ

∗
i gi, then the coordinate representation of f ∈ H relative to the
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g-orthonormal basis Ξ is [f ]Ξ = {gi}i∈I . In this case {gi}i∈I ∈ (
∑

i∈I ⊕Wi)`2 , and
‖f‖ = ‖[f ]Ξ‖`2 .

Let Ξ = {Ξi}i∈I and Ξ′ = {Ξ′
i}i∈I be g-orthonormal bases for H with respect

to {Wi}i∈I and {Vi}i∈I , respectively. The transition matrix from Ξ to Ξ′ is the
matrix B = [Bij] whose (i, j)-entry is Bij = Ξ′

iΞ
∗
j for all i, j ∈ I. Then we have

B[f ]Ξ = [f ]Ξ′ , where [f ]Ξ is the coordinate representation of an arbitrary vector
f ∈ H in the basis Ξ and similarly for Ξ′. The transition matrix from Ξ′ to Ξ is
B−1 = B∗. Thus, if B∗ = [B∗

ij], then B
∗
ij = (Bji)

∗ = ΞiΞ
′∗
j for all i, j ∈ I.

Example 1.7. Let {ej}j∈N be an orthonormal basis for H, and let {Wj}j∈N be a
sequence of subspaces of H defined by

Wj = Span{e2j−1 + e2j} and

Ξjf =
1

2
〈f, e2j−1 + e2j〉(e2j−1 + e2j) ∀j ∈ N.

A direct calculation shows that ‖Ξj‖ = 1 and that ΞiΞ
∗
jgj = δijgj for all 1 ≤

i, j ≤ n and that gj ∈ Wj. Since 〈e1 − e2, e2j−1 + e2j〉 = 0 for all j ∈ N, then
H 6= Span{Ξ∗

j(Wj)}j∈J . Thus {Ξj}j∈N is a g-orthonormal system for H with
respect to {Wj}j∈I , but it is not a g-orthonormal basis for H.

Example 1.8. Let N ∈ N,H = CN+1, and let {ek}N+1
k=1 be the standard orthonor-

mal basis of H. Define

Wj = Span
{N+1∑

k=1
k 6=j

ek

}
, and Ξj

(
{ci}N+1

i=1

)
=

cj√
N

N+1∑
k=1
k 6=j

ek.

Then Ξ∗
j(λ

∑N+1
k=1
k 6=j

ek) =
√
Nλej for all 1 ≤ j ≤ N + 1. This shows that

Span
{
Ξ∗
j(Wj)

}N+1

j=1
= Span{ej}N+1

j=1 = H and that ΞiΞ
∗
j = δij.

Hence {Ξj}j∈N is a g-orthonormal basis for H with respect to {Wj}N+1
j=1 .

Example 1.9. Let H = C2N , and let W1 = W2 = · · · = WN = C2. Define

Ξ1 =

[
1 0 . . . 0 0
0 1 . . . 0 0

]
, . . . , ΞN =

[
0 0 . . . 1 0
0 0 . . . 0 1

]
.

A direct calculation shows that ‖Ξk‖ = 1 and that ΞkΞ
∗
` = δk` for any 1 ≤ k, ` ≤

N . We also have

N∑
k=1

‖Ξkf‖2 =
N∑
k=1

(
|z2k−1|2 + |z2k|2

)
= ‖f‖2, ∀f = {zi}2Ni=1 ∈ C2N .

Thus Ξ = {Ξk}Nk=1 is a g-orthonormal basis for C2N with respect to C2. Similarly,
the sequence Ψ = {Ψk}Nk=1 defined by

Ψ1 =

[
0 1 . . . 0 0
1 0 . . . 0 0

]
, . . . , ΨN =

[
0 0 . . . 0 1
0 0 . . . 1 0

]
,
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is also a g-orthonormal basis for C2N with respect to C2 and the matrix

B = [ΨiΞ
∗
j ]N×N =

A 0
. . .

0 A

 , where A =

[
0 1
1 0

]
,

is the transition matrix from Ξ to Ψ. Hence, for any f ∈ C2N , we have B[f ]Ξ =
[f ]Ψ.

Definition 1.10. A sequence Γ = {Γj ∈ B(H,Wj) | j ∈ I} is called a g-Riesz basis
for H with respect to {Wj}j∈I if {Γj}j∈I is a g-complete set for H with respect
to {Wj}j∈I and there exist constants 0 < A ≤ B <∞ such that

A
∑
j∈I

‖gj‖2 ≤
∥∥∥∑

j∈I

Γ∗
jgj

∥∥∥2

≤ B
∑
j∈I

‖gj‖2 (1.8)

for all sequences {gj}j∈I ∈ (
∑

j∈I ⊕Wj)`2 . We define the g-Riesz basis bounds

for {Γj}j∈I to be the largest number A and the smallest number B such that
this inequality (1.8) holds. If {Γj}j∈I is a g-Riesz basis only for Span{Γ∗

j(Wj)}j∈I ,
then we call it is a g-Riesz basic sequence for H with respect to {Wj}j∈I .

The following result is a characterization of g-Riesz bases for H (for a proof of
this standard result, see, e.g., [1, Theorem 3.17]).

Lemma 1.11. Let {Ξj}j∈I be a g-orthonormal basis for H with respect to
{Wj}j∈I . Then the following hold.

(i) Here Γ = {Γj ∈ B(H,Wj)|j ∈ I} is a g-Riesz basis for H with respect to
{Wj}j∈I if and only if there exists a bounded bijective operator U : H → H
such that Γj = ΞjU

∗ for all j ∈ I.
(ii) Assume that Span{Γ∗

j(Wj)}j∈I = H and that ‖
∑

j∈I Γ
∗
jgj‖2 =

∑
j∈I ‖gj‖2,

for all sequences {gj}j∈I ∈ (
∑

j∈I ⊕Wj)`2. Then {Γj}j∈I is a g-

orthonormal basis for H with respect to {Wi}i∈I .

Example 1.12. Let H = C2n, and let W1 = W2 = · · · = W2n = C2. Define

Γ1 =

[
1 0 . . . 0 0
0 2 . . . 0 0

]
, . . . , Γn =

[
0 0 . . . 2n− 1 0
0 0 . . . 0 2n

]
.

If gi = (z2i−1, z2i) ∈ C2, then we have ‖
∑n

i=1 Γ
∗
i gi‖2 =

∑2n
i=1 i

2|zi|2. Thus {Γi}ni=1

is a g-Riesz basis for C2n with respect to C2 with g-Riesz bounds 1 and 4n2.
Moreover, we can write {Γi}ni=1 = {ΞiU

∗}ni=1, where U is a bounded bijective
operator defined by

U =


1 0 . . . 0
0 2 . . . 0
...

...
...

0 0 . . . 2n

 ,
and Ξ = {Ξk}nk=1 is the g-orthonormal basis defined in Example 1.9.
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A g-R-dual sequence is a natural generalization of an R-dual sequence which
provides a powerful tool in the analysis of duality relations in general g-frame
theory. In the following, we define the generalized Riesz-dual sequence from a
sequence of operators.

Definition 1.13. Let Ξ = {Ξi}i∈I and Ψ = {Ψi}i∈I be g-orthonormal bases for H
with respect to {Wi}i∈I and {Vi}i∈I , respectively. Let Λ = {Λi : H → Vi | i ∈ I}
be such that the series

∑
i∈I Λ

∗
i g

′
i is convergent for all {g′i}i∈I ∈ (

∑
i∈I ⊕Vi)`2 .

Define

ΓΛ
j : H → Wj, ΓΛ

j =
∑
i∈I

ΞjΛ
∗
iΨi, ∀j ∈ I. (1.9)

Then {ΓΛ
j }j∈I is the g-R-dual sequence for the sequence Λ with respect to (Ξ,Ψ).

The hypothesis that the series
∑

i∈I Λ
∗
i g

′
i is convergent for all {g′i}i∈I ∈

(
∑

i∈I ⊕Vi)`2 is always fulfilled if the sequence Λ = {Λi}i∈I is a g-Bessel sequence
with respect to {Vi}i∈I .
Example 1.14. Let H = C2N and {Ξi}Ni=1, {Ψi}Ni=1 be the g-orthonormal bases for
H with respect to C2 as defined in Example 1.9. Define

Λ1 =

[
1 1 . . . 0 0
0 1 . . . 0 0

]
, . . . , ΛN =

[
0 0 . . . 1 1
0 0 . . . 0 1

]
.

Then Λ = {Λi}Ni=1 is a g-Bessel sequence for H with respect to C2 with g-Bessel
bound B = 3. The g-R-dual sequence for the sequence Λ with respect to (Ξ,Ψ)
is defined as follows:

ΓΛ
1 =

[
0 1 . . . 0 0
1 1 . . . 0 0

]
, . . . , ΓΛ

N =

[
0 0 . . . 0 1
0 0 . . . 1 1

]
,

which is also a g-Bessel sequence for H with respect to C2 with g-Bessel bound
B = 3.

Now we need an algorithm to invert the process and to calculate {Λi}i∈I from
the sequence {ΓΛ

j }j∈I .

Theorem 1.15. Let Ξ = {Ξi}i∈I and Ψ = {Ψi}i∈I be g-orthonormal bases for
H with respect to {Wi}i∈I and {Vi}i∈I , respectively. Let {Λi}i∈I be a g-Bessel
sequence for H with respect to {Vi}i∈I . Then, for all i ∈ I,

Λi =
∑
j∈I

Ψi(Γ
Λ
j )

∗Ξj. (1.10)

In particular, this shows that {Λi}i∈I is the g-R-dual sequence for {ΓΛ
j }j∈I with

respect to (Ψ,Ξ).

Proof. The definition of {ΓΛ
j }j∈I implies that, for every i, j ∈ I,

Ψi(Γ
Λ
j )

∗ = Ψi

(∑
k∈I

ΞjΛ
∗
kΨk

)∗
=

∑
k∈I

ΨiΨ
∗
kΛkΞ

∗
j

=
∑
k∈I

δikΛkΞ
∗
j = ΛiΞ

∗
j .
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Thus Ψi(Γ
Λ
j )

∗ = ΛiΞ
∗
j . Now, by Lemma 1.6, we have

Λi = ΛiIH = Λi

(∑
j∈I

Ξ∗
jΞj

)
=

∑
j∈I

ΛiΞ
∗
jΞj =

∑
j∈I

Ψi(Γ
Λ
j )

∗Ξj.
�

In the following, we will characterize the extent to which the g-R-dual sequence
of a g-Bessel sequence depends upon the chosen g-orthonormal bases.

Definition 1.16. Let Ξ = {Ξj}j∈I be a g-orthonormal basis for H with respect
to {Wj}j∈I , and let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect to
{Vi}i∈I . Then the matrix A = [Aij] whose (i, j)-entry is Aij = ΛiΞ

∗
j for all i, j ∈ I

is called the analysis matrix for Λ with respect to Ξ. A direct calculation shows
that, for every f ∈ H, we have A[f ]Ξ = TΛf , and A

∗A = SΛ.

The following result is a generalization of [4, Proposition 3] to g-frames con-
cerning the dependence of the g-R-dual sequence {ΓΛ

j }j∈J in choosing the g-
orthonormal bases Ξ = {Ξi}i∈I and Ψ = {Ψi}i∈I .

Theorem 1.17. Let Ξ = {Ξj}j∈I , Ξ′ = {Ξ′
j}j∈I and Ψ = {ψi}i∈I , Ψ′ = {ψ′

i}i∈I
be g-orthonormal bases for H with respect to {Wj}j∈I and {Vi}i∈I , and let Λ =
{Λi}i∈I be a g-Bessel sequence for H with respect {Vi}i∈I . Denote the analysis
matrix for Λ with respect to Ξ by A and the g-R-dual sequences of Λ with respect
to (Ξ,Ψ) and (Ξ′,Ψ′) by {ΓΛ

j }j∈J , {Γ′Λ
j }j∈J , respectively. Then the following con-

ditions are equivalent:

(i) ΓΛ
j = Γ′Λ

j for all j ∈ I,
(ii) if B and C are the transition matrices from Ξ to Ξ′ and Ψ to Ψ′, respec-

tively, then AB∗ = CA.

Proof. Let B = [Bij], and let C = [Cij]. By the definition of {ΓΛ
j }j∈J , {Γ′Λ

j }j∈J
for every i, j ∈ I, we have Ψi(Γ

Λ
j )

∗ = ΛiΞ
∗
j and Ψ′

i(Γ
′Λ
j )∗ = ΛiΞ

′∗
j . Since

[AB∗]ij =
∑
k∈I

AikB
∗
kj =

∑
k∈I

ΛiΞ
∗
kΞkΞ

′∗
j = Λi

(∑
k∈I

Ξ∗
kΞk

)
Ξ′∗
j

= ΛiΞ
′∗
j = Ψ′

i(Γ
′Λ
j )∗,

and

[CA]ij =
∑
k∈I

CikAkj =
∑
k∈I

Ψ′
iΨ

∗
kΛkΞ

∗
j =

∑
k∈I

Ψ′
iΨ

∗
kΨk(Γ

Λ
j )

∗

= Ψ′
i

(∑
k∈I

Ψ∗
kΨk

)
(ΓΛ

j )
∗ = Ψ′

i(Γ
Λ
j )

∗,

and from this the claim follows immediately. �

Corollary 1.18. In addition to the hypothesis of Theorem 1.17, if Λ = {Λi}i∈I is
a g-frame for H with respect to {Vi}i∈I with g-frame operator SΛ and {ΓΛ

j }j∈I =
{Γ′Λ

j }j∈I , then A∗C∗AS−1
Λ B∗ = I, where I is the identity matrix.

Proof. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I . Definition 1.16
implies that S−1

Λ A∗A = I. Thus, if ΓΛ
j = Γ′Λ

j for all j ∈ I, then by Theorem 1.17,
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AB∗ = CA. This implies that B∗ = S−1
Λ A∗CA; however, B has to be unitary,

which yields A∗C∗AS−1
Λ B∗ = I. �

2. Existence of g-frame bounds

In this section, we characterize all sequences with lower g-frame bounds, and
we obtain the g-frame conditions for a sequence of operators and its g-R-dual
sequence. Recall that a family {Λi}i∈I is a g-frame sequence with respect to
{Vi}i∈I if it is a g-frame for Span{Λ∗

i (Vi)}i∈I with respect to {Vi}i∈I . The next
result gives a characterization of g-frame sequences which keeps the information
about the g-frame bounds.

Proposition 2.1. Let Λ = {Λi ∈ B(H, Vi) : i ∈ I}. Then the following conditions
are equivalent:

(i) Λ = {Λi}i∈I is a g-frame sequence with respect to {Vi}i∈I with g-frame
bounds A and B,

(ii) the synthesis operator T ∗
Λ is well defined on (

∑
i∈I ⊕Vi)`2 such that

A‖g′‖2`2 ≤ ‖T ∗
Λg

′‖2 ≤ B‖g′‖2`2 , ∀g′ ∈ (kerT ∗
Λ
)⊥.

Proof. We note that, if f ∈ Span{Λ∗
i (Vi)}⊥i∈I , then ‖Λif‖2 = 〈f,Λ∗

iΛif〉 = 0 for
all i ∈ I. This implies that the upper g-frame sequence condition with bound B is
equivalent to the right-hand inequality in (ii). We therefore assume that {Λi}i∈I
is a g-Bessel sequence for H with respect to {Vi}i∈I , and we prove the equivalence
of the lower g-frame sequence condition with the left-hand inequality in (ii). First,
assume that {Λi}i∈I satisfies the lower g-frame sequence condition with bound A.
Then RT ∗

Λ
is closed because RTΛ

is closed. Hence (kerT ∗
Λ
)⊥ = RTΛ

= RTΛ
; that is,

(kerT ∗
Λ
)⊥ = {TΛf : f ∈ H}. Now, for any f ∈ H we have

‖TΛf‖4`2 =
∣∣〈T ∗

ΛTΛf, f〉
∣∣2 = ∣∣〈SΛf, f〉

∣∣2 ≤ ‖SΛf‖2‖f‖2

≤ 1

A
‖SΛf‖2

∑
i∈I

‖Λif‖2 =
1

A
‖SΛf‖2‖TΛf‖2`2 .

This implies that

A‖TΛf‖2`2 ≤ ‖SΛf‖2 =
∥∥T ∗

Λ(TΛf)
∥∥2
,

as desired. For the other implication, assume that the left-hand inequality in (ii) is
satisfied. We prove that RT ∗

Λ
is closed. Let {fn}∞n=1 ⊂ RT ∗

Λ
, and let limn→∞ fn = f

for some f ∈ H. There exists a sequence {g′n}∞n=1 ⊂ (kerT ∗
Λ
)⊥ such that T ∗

Λg
′
n = fn.

Now (ii) implies that {g′n}∞n=1 is a Cauchy sequence. Therefore {g′n}∞n=1 converges
to some g′ ∈ (

∑
i∈I ⊕Vi)`2 , which by continuity of T ∗

Λ satisfies T ∗
Λg

′ = f . Thus RT ∗
Λ

is closed. If we let (T ∗
Λ)

† denote the pseudoinverse of T ∗
Λ, then we have T ∗

Λ(T
∗
Λ)

†T ∗
Λ =

T ∗
Λ, and the operator (T ∗

Λ)
†T ∗

Λ is the orthogonal projection onto (kerT ∗
Λ
)⊥, and

the operator T ∗
Λ(T

∗
Λ)

† is the orthogonal projection onto RT ∗
Λ
. Thus, for any g′ ∈

(
∑

i∈I ⊕Vi)`2 , the inequality (ii) implies that

A
∥∥(T ∗

Λ)
†T ∗

Λg
′∥∥2 ≤

∥∥T ∗
Λ(T

∗
Λ)

†T ∗
Λg

′∥∥2
= ‖T ∗

Λg
′‖2.
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Since ker(T ∗
Λ)

† = R⊥
T ∗
Λ
, then ‖(T ∗

Λ)
†‖2 ≤ A−1; however, T †

ΛTΛ is the orthogonal
projection onto

RT †
Λ
= (ker(T †

Λ)
∗)

⊥ = (ker(T ∗
Λ)

†)⊥ = RT ∗
Λ
,

and thus, for all f ∈ Span{Λ∗
i (Vi)}i∈I = RT ∗

Λ
, we obtain

‖f‖2 = ‖T †
ΛTΛf‖

2 ≤ 1

A
‖TΛf‖2 =

1

A

∑
i∈I

‖Λif‖2.

This shows that Λ = {Λi}i∈I satisfies in the lower g-frame sequence condition
with bound A as desired. �

The next result shows a basic connection between a sequence of operators and
its g-R-dual sequence.

Theorem 2.2. Let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect {Vi}i∈I .
Then for every {gj}j∈I ∈ (

∑
j∈I ⊕Wj)`2, {g′i}i∈I ∈ (

∑
i∈I ⊕Vi)`2 satisfying f =∑

j∈I Ξ
∗
jgj and h =

∑
i∈I Ψ

∗
i g

′
i, we have∥∥∥∑

j∈I

(ΓΛ
j )

∗gj

∥∥∥2

=
∑
i∈I

‖Λif‖2 and
∥∥∥∑

i∈I

Λ∗
i g

′
i

∥∥∥2

=
∑
j∈I

‖ΓΛ
j h‖2.

Proof. It is easy to check that∥∥∥∑
j∈I

(ΓΛ
j )

∗gj

∥∥∥2

=
∥∥∥∑

j∈I

(∑
i∈I

ΞjΛ
∗
iΨi

)∗
gj

∥∥∥2

=
∥∥∥∑

i∈I

Ψ∗
iΛif

∥∥∥2

=
〈∑

i∈I

Ψ∗
iΛif,

∑
j∈I

Ψ∗
jΛjf

〉
=

∑
i∈I

∑
j∈I

〈Λif,ΨiΨ
∗
jΛjf〉

=
∑
i∈I

∑
j∈I

〈Λif, δijΛjf〉 =
∑
i∈I

‖Λif‖2.

Similarly, the second claim follows from Theorem 1.15. �

Corollary 2.3. If we let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect
{Vi}i∈I , then ∥∥T ∗

ΓΛ

(
[f ]Ξ

)∥∥ = ‖TΛf‖`2 ,
∥∥T ∗

Λ

(
[f ]Ψ

)∥∥ = ‖TΓΛf‖`2
for every f ∈ H.

Proof. This follows immediately from Theorem 2.2. �

There exists an interesting relation between the synthesis operator of Λ =
{Λi}i∈I and the span of {(ΓΛ

j )
∗(Wj)}j∈I , which will turn out to be very useful in

the sequel.

Theorem 2.4. Let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect to
{Vi}i∈I with g-R-dual sequence {ΓΛ

j }j∈I with respect to (Ξ,Ψ). Then the following
statements hold.

(i) f ∈ (Span{(ΓΛ
j )

∗(Wj)}j∈I)⊥ if and only if [f ]Ψ ∈ kerT ∗
Λ.

(ii) f ∈ (Span{Λ∗
j(Vj)}j∈I)⊥ if and only if [f ]Ξ ∈ kerT ∗

ΓΛ.
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Proof. Let f ∈ H. First, for each j ∈ J and gj ∈ Wj, we observe that〈
f, (ΓΛ

j )
∗gj

〉
=

∑
i∈J

〈f,Ψ∗
iΛiΞ

∗
jgj〉 =

〈∑
i∈J

Λ∗
iΨif,Ξ

∗
jgj

〉
=

〈
T ∗
Λ

(
[f ]Ψ

)
,Ξ∗

jgj
〉
.

Since Ξ = {Ξj}j∈J is a g-orthonormal basis for H with respect to {Wj}j∈I , then
〈T ∗

Λ([f ]Ψ),Ξ
∗
jgj〉 = 0 for all j ∈ I, and gj ∈ Wj if and only if T ∗

Λ([f ]Ψ) = 0. Thus

f ∈ (Span{(ΓΛ
j )

∗(Wj)}j∈I)⊥ is equivalent to [f ]Ψ ∈ kerT ∗
Λ. Similarly, the second

claim follows from Theorem 1.15. �

Corollary 2.5. Let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect to
{Vi}i∈I with g-R-dual sequence {ΓΛ

j }j∈I with respect to (Ξ,Ψ). Then

dim
(
Span

{
(ΓΛ

j )
∗(Wj)

}
j∈I

)⊥
= dimkerT ∗

Λ, and

dim
(
Span

{
Λ∗

j(Vj)
}
j∈I

)⊥
= dimkerT ∗

ΓΛ .

Proof. This follows immediately from the Theorem 2.4. �

The next result shows a kind of equilibrium between a sequence of operators and
its R-dual sequence. It can be viewed as a general version of [4, Proposition 13].

Corollary 2.6. The following conditions are equivalent.

(i) Λ = {Λi}i∈I is a g-frame sequence with respect to {Vi}i∈I with g-frame
bounds A, B.

(ii) {ΓΛ
j }j∈I is a g-frame sequence with respect to {Wj}j∈I with g-frame bounds

A, B.
(iii) {ΓΛ

j }j∈I is a g-Riesz basic sequence with respect to {Wj}j∈I with g-frame
bounds A, B.

Proof. (i) ⇔ (ii) Proposition 2.1 and Theorem 2.4 conclude that Λ = {Λi}i∈I is a
g-frame sequence with respect to {Vi}i∈I with g-frame bounds A, B if and only if

A
∥∥[f ]Ψ∥∥2

`2
≤

∥∥T ∗
Λ

(
[f ]Ψ

)∥∥2 ≤ B
∥∥[f ]Ψ∥∥2

`2

for all f ∈ Span{(ΓΛ
j )

∗(Wj)}j∈I . Now, Corollary 2.3 implies that

A‖f‖2 ≤ ‖TΓΛf‖2`2 ≤ B‖f‖2.

(i) ⇔ (iii) This equivalence follows immediately from Theorem 2.2. �

The dimension condition in Corollary 2.5 will play a crucial role for the g-R-dual
sequence. Using Corollary 2.5 we can derive a simple characterization of an g-Riesz
basic sequence being a g-R-dual sequence of a g-frame in the tight case.

Theorem 2.7. Let Λ = {Λi}i∈I be a A-tight g-frames for H with respect to
{Vi}i∈I , and let {Γj}j∈I be an A-tight g-Riesz basic sequence in H with respect to
{Wj}j∈I . Then {Γj}j∈I is a g-R-dual sequence of {Λi}i∈I with respect to (Ξ,Ψ) if
and only if

dim
(
Span

{
Γ∗
j(Wj)

}
j∈I

)⊥
= dimkerT ∗

Λ. (2.1)
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Proof. The necessity of the condition in (2.1) follows from Corollary 2.5. Now
assume that (2.1) holds. Then, according to Lemma 1.11, the sequence { 1√

A
Γj}j∈I

is a g-orthonormal system for H with respect to {Wj}j∈I . Suppose that Ξ =
{Ξj}j∈I and Ψ = {Ψi}i∈I are g-orthonormal bases for H with respect to {Wj}j∈I
and {Vi}i∈I , respectively. Consider the g-R-dual {Θj}j∈I of Λ = {Λi}i∈I with
respect to (Ξ,Ψ) (i.e., Θj =

∑
i∈I ΞjΛ

∗
iΨi, j ∈ I). By Corollary 2.6, {Θj}j∈I is

an A-tight g-Riesz basic sequence with respect to {Wj}j∈I ; hence { 1√
A
Θj}j∈I is

also a g-orthonormal system for H with respect to {Wj}j∈I . By Corollary 2.5 and
(2.1),

dim
(
Span

{
Θ∗

j(Wj)
}
j∈I

)⊥
= dimkerT ∗

Λ = dim
(
Span

{
Γ∗
j(Wj)

}
j∈I

)⊥
. (2.2)

In case (Span{Θ∗
j(Wj)}j∈I)⊥ = (Span{Γ∗

j(Wj)}j∈I)⊥ = {0}, the g-orthonormality

of the sequences { 1√
A
Θi}i∈I and { 1√

A
Γi}i∈I implies that there exists unitary oper-

ator

U : H → H, by Γj = ΘjU
∗, ∀j ∈ I.

In case (Span{Θ∗
j(Wj)}j∈I)⊥ 6= {0}, if we let {Φj}j∈I and {Ωj}j∈I be g-

orthonormal bases for(
Span

{
Θ∗

j(Wj)
}
j∈I

)⊥
and

(
Span

{
Γ∗
j(Wj)

}
j∈I

)⊥
,

respectively, with respect to {Wj}j∈I , then (2.2) implies that there exists unitary
operator

U : H → H, by Γj = ΘjU
∗, Ωj = ΦjU

∗ ∀j ∈ I.

In both cases, we have

Γj = ΘjU
∗ =

(∑
i∈I

ΞjΛ
∗
iΨi

)
U∗ =

∑
i∈I

ΞjΛ
∗
iΨiU

∗, ∀j ∈ I,

which shows that {Γj}j∈I is a g-R-dual sequence of {Λi}i∈I with respect to {Ξj}j∈I
and {ΨiU

∗}i∈I . �

3. Characterizations of equivalence by the g-R-dual sequence

In this section we characterize those pairs of g-frames which are equivalent
(unitarily equivalent) by their g-R-dual sequences.

Definition 3.1. Two sequences {Γj ∈ B(H,Wi) | j ∈ I} and {Γ′
j ∈ B(H,Wi) |

j ∈ I} are regarded as unitarily equivalent in H with respect to {Wj}j∈I if there
is a unitary T : H → H such that TΓ∗

j = Γ′∗
j for all j ∈ I. We will say that they

are equivalent if there is a bounded linear invertible operator T : H → H such
that TΓ∗

j = Γ′∗
j for all j ∈ I.

The following result is about different types of equivalence of g-frames, which
is taken from [15, Proposition 4.2]. This result will then be employed in several
proofs thereafter.
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Proposition 3.2. Let Λ = {Λi}i∈I and Λ′ = {Λ′
i}i∈I be Parseval g-frames for H1

and H2 with respect to {Vi}i∈I , respectively. Then Λ is unitarily equivalent to Λ′

if and only if the analysis operators TΛ and TΛ′ have the same range. Likewise,
two g-frames with respect to {Vi}i∈I are equivalent if and only if their analysis
operators have the same range.

Theorem 3.3. Let {Λi}i∈I and {Λ′
i}i∈I be g-frames for H with respect to {Vi}i∈I .

Then

(i) {Λi}i∈I is equivalent to {Λ′
i}i∈I in H with respect to {Vi}i∈I if and only if

Span
{
(ΓΛ

j )
∗(Wj)

}
j∈I = Span

{
(ΓΛ′

j )∗(Wj)
}
j∈I ,

(ii) {Λi}i∈I is unitarily equivalent to {Λ′
i}i∈I in H with respect to {Vi}i∈I if

and only if SΓΛ = SΓΛ′ ,
(iii) {ΓΛ

j }j∈I is unitarily equivalent to {ΓΛ′
j }j∈I in H with respect to {Wj}j∈I

if and only if SΛ = SΛ′.

Proof. (i) By Proposition 3.2, {Λi}i∈I and {Λ′
i}i∈I are equivalent inH with respect

to {Vi}i∈I if and only ifRTΛ
= RTΛ′ ; hence kerT

∗
Λ = kerT ∗

Λ′ . Now the claim follows
from Theorem 2.4.

(ii) Using Propositions 2.1 and 3.2, {Λi}i∈I is unitarily equivalent to {Λ′
i}i∈I if

and only if ∥∥∥∑
i∈I

Λ∗
i g

′
i

∥∥∥2

=
∥∥∥∑

i∈I

Λ′∗
i g

′
i

∥∥∥2

, ∀{g′i}i∈I ∈ (kerT ∗
Λ)

⊥.

By Theorem 2.2, this is in turn equivalent to

〈SΓΛf, f〉 =
∑
j∈I

‖ΓΛ
j f‖2 =

∑
j∈I

‖ΓΛ′

j f‖2 = 〈SΓΛ′f, f〉

for all f ∈ H and g′i = Ψif(i ∈ I). It follows that SΓΛ = SΓΛ′ , as required.
(iii) The proof follows immediately from (ii) and Theorem 1.15. �

Corollary 3.4. Let {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I . Then let

Span
{
(ΓΛ

j )
∗(Wj)

}
j∈I = Span

{
(ΓΛ̂

j )
∗(Wj)

}
j∈I ,

where {Λ̂i}i∈I is the canonical dual g-frame of {Λi}i∈I .

Proof. Since {Λ̂i}i∈I is equivalent to {Λi}i∈I , this claim follows from Theorem 3.3.
�

To have a better understanding of the different types of equivalence of the
g-R-dual sequences, we prove the following characterization result.

Theorem 3.5. Let Ξ = {Ξj}j∈I , Ξ′ = {Ξ′
j}j∈I and Ψ = {ψi}i∈I , Ψ′ = {ψ′

i}i∈I be
g-orthonormal bases for H with respect {Wj}j∈I and {Vi}i∈I , and let Λ = {Λi}i∈I
be a g-Bessel sequence for H with respect to {Vi}i∈I . Denote the analysis matrix
for Λ with respect to Ξ by A and the g-R-dual sequences of Λ with respect (Ξ,Ψ)
and (Ξ′,Ψ′) by {ΓΛ

j }j∈J , {Γ′Λ
j }j∈J , respectively. If Γ = {ΓΛ

j }j∈I and Γ′ = {Γ′Λ
j }j∈I

are g-frames for H with respect to {Wj}j∈I , then the following statements hold.
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(i) {ΓΛ
j }j∈I is equivalent to {Γ′Λ

j }j∈I in H with respect to {Wj}j∈I if and only
if ker(A) = ker(AB∗).

(ii) {ΓΛ
j }j∈I is unitarily equivalent to {Γ′Λ

j }j∈I in H with respect to {Wj}j∈I ,
if and only if

A∗A = (AB∗)∗(AB∗).

Moreover, if Λ = {Λi}i∈I is a g-frame for H with respect {Vi}i∈I with
g-frame operator SΛ, then the above is equivalent to SΛ = BSΛB

∗.

Proof. (i) Let g = {gj}j∈I ∈ (
∑

j∈I ⊕Wj)`2 be arbitrary. First we observe that∑
j∈I

(Γ′Λ
j )∗gj =

∑
k∈I

∑
j∈I

Ψ′∗
k ΛkΞ

′∗
j gj =

∑
k∈I

∑
j∈I

Ψ′∗
k Λk

(∑
i∈I

Ξ∗
iΞiΞ

′∗
j gj

)
=

∑
k∈I

∑
j∈I

∑
i∈I

Ψ′∗
k ΛkΞ

∗
iΞiΞ

′∗
j gj =

∑
k∈I

∑
j∈I

∑
i∈I

Ψ′∗
kAkiB

∗
ijgj

=
∑
k∈I

Ψ′∗
k

(∑
j∈I

[AB∗]kjgj

)
=

∑
k∈I

Ψ′∗
k (AB

∗g)k.

This implies that

AB∗g = 0 ⇔
∑
j∈I

(Γ′Λ
j )∗gj = 0.

Next we have ∑
j∈I

(ΓΛ
j )

∗gj =
∑
k∈I

∑
j∈I

Ψ∗
kΛkΞ

∗
jgj =

∑
k∈I

∑
j∈I

Ψ∗
kAkjgj

=
∑
k∈I

Ψ∗
k(Ag)k;

hence

Ag = 0 ⇔
∑
j∈I

(ΓΛ
j )

∗gj = 0.

Now {ΓΛ
j }j∈I is equivalent to {Γ′Λ

j }j∈I if and only if there exists a bounded linear

invertible operator T : H → H such that T (
∑

j∈I(Γ
Λ
j )

∗gj) =
∑

j∈I(Γ
′Λ
j )∗gj for all

{gj}j∈I ∈ (
∑

j∈I ⊕Wj)`2 . From this the claim follows immediately.

(ii) First, we prove that [A∗A]ij = ΓΛ
i (Γ

Λ
j )

∗ and that [(AB∗)∗(AB∗)]ij =

Γ′Λ
i (Γ′Λ

j )∗. To see this, we have

ΓΛ
i (Γ

Λ
j )

∗ =
(∑

k∈I

ΞiΛ
∗
kΨk

)(∑
m∈I

Ψ∗
mΛmΞ

∗
j

)
=

∑
k∈I

∑
m∈I

δkmΞiΛ
∗
kΛmΞ

∗
j =

∑
k∈I

ΞiΛ
∗
kΛkΞ

∗
j

=
∑
k∈I

A∗
ikAkj = [A∗A]ij.
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Then we obtain

Γ′Λ
i (Γ′Λ

j )∗ =
(∑

k∈I

Ξ′
iΛ

∗
kΨ

′
k

)(∑
m∈I

Ψ′∗
mΛmΞ

′∗
j

)
=

∑
k∈I

∑
m∈I

δkmΞ
′
iΛ

∗
kΛmΞ

′∗
j =

∑
k∈I

(ΛkΞ
′∗
i )

∗(ΛkΞ
′∗
j )

=
∑
k∈I

(∑
n∈I

ΛkΞ
∗
nΞnΞ

′∗
i

)∗(∑
m∈I

ΛkΞ
∗
mΞmΞ

′∗
j

)
=

∑
k∈I

(∑
n∈I

AknB
∗
ni

)∗(∑
m∈I

AkmB
∗
mj

)
=

∑
k∈I

(AB∗)∗ik(AB
∗)kj =

[
(AB∗)∗(AB∗)

]
ij
.

Now let A∗A = (AB∗)∗(AB∗). Define the operator T as follows:

T : Span
{
(ΓΛ

j )
∗(Wj)

}
j∈I → H, T

(∑
j∈J

(ΓΛ
j )

∗gj

)
=

∑
j∈J

(Γ′Λ
j )∗gj

for all finite sequences {gj : gj ∈ Wj}j∈J . If we let f1, f2 ∈ Span{(ΓΛ
j )

∗(Wj)}j∈I
as f1 =

∑
j∈J1(Γ

Λ
j )

∗g1j and we let f2 =
∑

j∈J2(Γ
Λ
j )

∗g2j, then we have

〈Tf1, T f2〉 =
〈∑
j∈J1

(Γ′Λ
j )∗g1j,

∑
k∈J2

(Γ′Λ
k )∗g2k

〉
=

∑
j∈J1

∑
k∈J2

〈
Γ′Λ
k (Γ′Λ

j )∗g1j, g2k
〉

=
〈∑
j∈J1

(ΓΛ
j )

∗g1j,
∑
k∈J2

(ΓΛ
k )

∗g2k

〉
= 〈f1, f2〉.

Thus the g-completeness of Γ for H with respect to {Wi}i∈I implies that T has
an extension isometry on H and that T is surjective. This makes sense because
if f ∈ Span{(Γ′Λ

j )∗(Wj)}j∈I , then we can write

f =
∑
j∈J

(Γ′Λ
j )∗gj = T

(∑
j∈J

(ΓΛ
j )

∗gj

)
for some finite sequence {gj : gj ∈ Wj}j∈J . Since Γ′ is g-complete for H with
respect to {Wi}i∈I , then by the continuity of T it follows that T is surjective on
H and that T (ΓΛ

j )
∗ = (Γ′Λ

j )∗ for all j ∈ I. This shows that Γ is unitarily equivalent
to Γ′ in H with respect to {Wj}j∈I . The converse implication is obvious. Finally,
if Λ = {Λi}i∈I is a g-frame for H with respect {Vi}i∈I , then we have A∗A = SΛ.
Thus

SΛ = A∗A = (AB∗)∗(AB∗) = BA∗AB∗ = BSΛB
∗. �
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4. Duality properties of the g-R-dual sequence

In this section we characterize all properties of a g-Bessel sequence in terms of
properties of their g-R-dual sequence. We will study properties of dual g-frames
and canonical dual g-frames. This is a general version of the duality principle for
g-frames which follows from the duality relations in [4].

The next result gives an explicit form for g-R-dual sequences of the canonical
dual g-frame.

Theorem 4.1. Let {Λi}i∈I and {Ωi}i∈I be g-frames for H with respect to {Vi}i∈I .
Then {Ωi}i∈I is a dual g-frame of {Λi}i∈I if and only if g-R-dual sequences
{ΓΛ

j }j∈I and {ΓΩ
j }j∈I are g-biorthogonal; that is,

ΓΛ
i (Γ

Ω
j )

∗gj = ΓΩ
i (Γ

Λ
j )

∗gj = δijgj, ∀i, j ∈ I, gj ∈ Wj.

Proof. Let {Ωi}i∈I be a dual g-frame of {Λi}i∈I . By definition of {ΓΩ
j }j∈I and

{ΓΛ
j }j∈I , for every i, j ∈ I and gj ∈ Wj we have

ΓΛ
i (Γ

Ω
j )

∗gj =
∑
k∈I

ΞiΛ
∗
kΨk

(∑
m∈I

ΞjΩ
∗
mΨm

)∗
gj =

∑
k∈I

∑
m∈I

ΞiΛ
∗
kΨkΨ

∗
mΩmΞ

∗
jgj

=
∑
k∈I

ΞiΛ
∗
kΩkΞ

∗
jgj = Ξi

(∑
k∈I

Λ∗
kΩkΞ

∗
jgj

)
= ΞiΞ

∗
jgj = δijgj.

The converse implication follows from Theorem 1.15. �

Corollary 4.2. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I with

canonical dual g-frame denoted by {Λ̂i}i∈I . Then the g-R-dual sequences {ΓΛ
j }j∈I

and {ΓΛ̂
j }j∈I are g-biorthogonal, that is,

ΓΛ
i (Γ

Λ̂
j )

∗gj = ΓΛ̂
i (Γ

Λ
j )

∗gj = δijgj

for all i, j ∈ I and gj ∈ Wj. Thus {ΓΛ̂
j }j∈I is the dual g-Riesz basic sequence of

{ΓΛ
j }j∈I .

The next result is a characterization of tight g-frames in terms of their g-R-dual
sequences.

Corollary 4.3. We have that {Λi}i∈I is an A-tight g-frame for H with respect
to {Vi}i∈I if and only if g-R-dual sequence { 1√

A
ΓΛ
j }j∈I is a g-orthonormal system

for H with respect to {Wj}j∈I . Thus the sequence {Λi}i∈I is a Parseval g-frame
if and only if its g-R-dual sequence is an orthonormal system.

Proof. This follows immediately from the Lemma 1.11, Corollary 2.6, and Theo-
rem 4.2. �

Theorem 4.4. Let {Λi}i∈I and {Ωi}i∈I be g-frames for H with respect to {Vi}i∈I .
Then {Ωi}i∈I is a dual g-frame of {Λi}i∈I if and only if there exists a g-Bessel
sequence {Θj}j∈I for (Span{(ΓΛ

j )
∗(Wj)}j∈I)⊥ with respect to {Wj}j∈I such that

ΓΩ
j = ΓΛ̂

j +Θj for all j ∈ I.
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Proof. Suppose that {Ωi}i∈I is a dual g-frame of {Λi}i∈I . By Theorem 4.1, we
have 〈

(ΓΩ
i − ΓΛ̂

i )
∗gi, (Γ

Λ
j )

∗gj
〉
=

〈
gi, (Γ

Ω
i − ΓΛ̂

i )(Γ
Λ
j )

∗gj
〉

=
〈
gi,Γ

Ω
i (Γ

Λ
j )

∗gj
〉
−

〈
gi,Γ

Λ̂
i (Γ

Λ
j )

∗gj
〉

= 〈gi, δijgj〉 − 〈gi, δijgj〉 = 0

for all i, j ∈ I and gi ∈ Wi, gj ∈ Wj. Thus Definition 1.13 implies that Θj =

ΓΩ
j −ΓΛ̂

j is a g-Bessel sequence for (Span{(ΓΛ
j )

∗(Wj)}j∈I)⊥ with respect to {Wj}j∈I
and ΓΩ

j = ΓΛ̂
j + Θj. Now for the opposite implication, suppose that there exists

a g-Bessel sequence {Θj}j∈I for (Span{(ΓΛ
j )

∗(Wj)}j∈I)⊥ with respect to {Wj}j∈I
such that ΓΩ

j = ΓΛ̂
j +Θj for all j ∈ I. By Theorem 1.15, we have

Ωi = Λ̂i +
∑
j∈I

Ψi(Θj)
∗Ξj for all i ∈ I

Hence, for each f ∈ H, we have∑
i∈I

Λ∗
iΩif =

∑
i∈I

Λ∗
i

(
Λ̂i +

∑
j∈I

ΨiΘ
∗
jΞj

)
f

=
∑
i∈I

Λ∗
i Λ̂if +

∑
i∈I

∑
j∈I

Λ∗
iΨiΘ

∗
jΞjf

= f +
∑
j∈I

∑
i∈I

Λ∗
iΨiΘ

∗
jΞjf.

Since Θ∗
jΞjf ∈ (Span{(ΓΛ

j )
∗(Wj)}j∈I)⊥ for all j ∈ I. Theorem 2.4 implies that∑

i∈I

Λ∗
iΨiΘ

∗
jΞjf = 0.

This proves that {Ωi}i∈I is a dual g-frame of {Λi}i∈I . �

Among the dual g-frames the canonical dual g-frame is distinguished by the
following properties.

Theorem 4.5. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I with

canonical dual g-frame denoted by {Λ̂i}i∈I , and let {Ωi}i∈I be a dual g-frame of
{Λi}i∈I . Then

‖ΓΛ̂
j ‖ ≤ ‖ΓΩ

j ‖ for all j ∈ I

with equality if and only if {Ωj}j∈I = {Λ̂j}j∈I .

Proof. By Theorem 4.4, {Ωi}i∈I is a dual g-frame of {Λi}i∈I if and only if ΓΩ
j =

ΓΛ̂
j +Θj, where (Γ

Λ̂
j )

∗g ∈ Span{(ΓΛ
j )

∗(Wj)}j∈I , and Θ∗
jg ∈ (Span{(ΓΛ

j )
∗(Wj)}j∈I)⊥
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for all j ∈ I, g ∈ Wj; hence

‖ΓΩ
j ‖2 =

∥∥(ΓΩ
j )

∗∥∥2
= sup

‖g‖=1

∥∥(ΓΩ
j )

∗g
∥∥2

= sup
‖g‖=1

∥∥(ΓΛ̂
j )

∗g
∥∥2

+ sup
‖g‖=1

‖Θ∗
jg‖2

=
∥∥(ΓΛ̂

j )
∗∥∥2

+ ‖Θ∗
j‖2

= ‖ΓΛ̂
j ‖2 + ‖Θj‖2 ≥ ‖ΓΛ̂

j ‖2

with equality if and only if {Ωj}j∈I = {Λ̂j}j∈I . �
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