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Abstract. In 1985, Coifman, Meyer, and Stein gave the duality of the tent

spaces; that is, (T p
q (R

n+1
+ ))∗ = T p′

q′ (R
n+1
+ ) for 1 < p, q < ∞, and (T 1

∞(Rn+1
+ ))∗ =

C (Rn+1
+ ), (T 1

q (R
n+1
+ ))∗ = T∞

q′ (R
n+1
+ ) for 1 < q < ∞, where C (Rn+1

+ ) denotes

the Carleson measure space on Rn+1
+ . We prove that (Cv(Rn+1

+ ))∗ = T 1
∞(Rn+1

+ ),

which we introduced recently, where Cv(Rn+1
+ ) is the vanishing Carleson mea-

sure space on Rn+1
+ . We also give the characterizations of T∞

q (Rn+1
+ ) by the

boundedness of the Poisson integral. As application, we give the boundedness
and compactness on Lq(Rn) of the paraproduct πF associated with the tent
space T∞

q (Rn+1
+ ), and we extend partially an interesting result given by Coif-

man, Meyer, and Stein, which establishes a close connection between the tent
spaces T p

2 (R
n+1
+ ) (1 ≤ p ≤ ∞) and Lp(Rn), Hp(Rn) and BMO(Rn) spaces.

1. Introduction

In 1985, Coifman, Meyer, and Stein [9] developed a theory of tent spaces.
Because tent spaces are closely related to many important concepts in harmonic
analysis, such as the Carleson measure, square operators, nontangential maximal
function, Hardy space, and BMO space, they have many interesting applications
in harmonic analysis and PDE (see, for example, [2], [8], [20], [23]). Recently,
P. Auscher et al. considered the boundedness of some operators in tent spaces
(see [3]–[5]).

Let us recall the definition of tent spaces given in [9].

Copyright 2017 by the Tusi Mathematical Research Group.
Received Jun. 20, 2016; Accepted Nov. 20, 2016.
First published online Aug. 17, 2017.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 42B35; Secondary 42B99.
Keywords. tent space, vanishing Carleson measure, vanishing tent space, Poisson integral,

paraproduct.
841

http://dx.doi.org/10.1215/17358787-2017-0020
http://projecteuclid.org/bjma


842 Y. DING and T. MEI

Definition 1.1 (Tent space). For 0 < q ≤ ∞ and a measurable function f on
Rn+1

+ , let

Aq(f)(x) =

{
(
∫
Γ(x)

|f(y, t)|q dy dt
tn+1 )

1
q , 0 < q < ∞,

sup(y,t)∈Γ(x) |f(y, t)|, q = ∞,

where in the following, Γα(x) = {(y, t) ∈ Rn+1
+ : |y − x| < αt}, and denote

Γ(x) = Γ1(x) briefly. For 0 < p < ∞ and 0 < q < ∞, the tent space T p
q (Rn+1

+ ) is
defined by

T p
q (Rn+1

+ ) =
{
f : ‖f‖T p

q
=

∥∥Aq(f)
∥∥
Lp < ∞

}
.

For q = ∞ and 0 < p < ∞, the tent space T p
∞(Rn+1

+ ) is defined by

T p
∞(Rn+1

+ )

=
{
f ∈ C(Rn+1

+ ) : ‖f‖T p
∞ =

∥∥A∞(f)
∥∥
Lp < ∞ and lim

ε→0
‖f − fε‖T p

∞ = 0
}
,

whereC(Rn+1
+ ) denotes all continuous functions on Rn+1

+ , and fε(x, t) = f(x, t+ε).
For p = ∞ and 1 < q < ∞, the tent space T∞

q (Rn+1
+ ) is defined by

T∞
q (Rn+1

+ ) =
{
f : ‖f‖T∞

q
= sup

a>0
Ma(f, q) < ∞

}
with

M(f,Q, q) =
( 1

|Q|

∫
Q̂

∣∣f(y, t)∣∣q dy dt
t

) 1
q

and Ma(f, q) = sup
|Q|=a

M(f,Q, q),

where a > 0, and Q̂ = {(x, t) ∈ Rn+1
+ : x ∈ Q, 0 < t < `(Q)} is the tent over Q.

It was shown in [9] that T p
∞(Rn+1

+ ) consists of exactly those f which are contin-
uous in Rn+1

+ , such that A∞(f) ∈ Lp(Rn), and for which f(x, t) has nontangential
limits at the boundary almost everywhere. Coifman, Meyer, and Stein also observe
that all tent spaces T p

q (Rn+1
+ ) (1 ≤ p, q ≤ ∞) are Banach spaces with the norm

‖·‖T p
q
. Note that the tent spaces are closely related to the Carleson measure; thus

we need to give the definition of the Carleson measure.

Definition 1.2 (Carleson measure). Suppose that µ is a positive measure on
Rn+1

+ . For any cube Q ⊂ Rn and a > 0, let

N (µ,Q) =
µ(Q̂)

|Q|
, and let Na(µ) = sup

|Q|=a

N (µ,Q).

A positive measure µ on Rn+1
+ is called a Carleson measure written by µ ∈

C (Rn+1
+ ) if there exists a constant C > 0 such that

‖µ‖C := sup
a>0

Na(µ) ≤ C,

where ‖µ‖C is called the Carleson constant of µ. It is well known that ‖ · ‖C is a
norm and that C (Rn+1

+ ) is a Banach space in the norm ‖ · ‖C .

Coifman, Meyer, and Stein gave the duality between the tent spaces and Car-
leson measure.
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Theorem A (See [9]). The tent spaces have the following duality:

(1) for 1 < q, p < ∞, (T p
q )

∗ = T p′

q′ ;

(2) for 1 < q < ∞, (T 1
q )

∗ = T∞
q′ ; and

(3) (T 1
∞)∗ = C (Rn+1

+ ).

The conclusion (1) in Theorem A shows that the tent spaces T p
q (Rn+1

+ ) are
self-adjoint if 1 < q, p < ∞. The conclusions (2) and (3) can be seen as the
endpoint cases of the conclusion (1). Obviously, T 1

q (Rn+1
+ ) (1 < q ≤ ∞) are not

self-adjoint.
In 1985, Wang [29] considered predual spaces of the tent spaces T 1

∞(Rn+1
+ ). He

introduced the subclass of C (Rn+1
+ )

VCM (Rn+1
+ ) =

{
µ ∈ C (Rn+1

+ ) : lim
a→0

Na(µ) = 0
}
,

and, using the method in [10], he argued (without proof) that the dual of
VCM (Rn+1

+ ) is the tent space T 1
∞(Rn+1

+ ). The examples we give in Remark 2.2
below show, however, that it is impossible for the space VCM (Rn+1

+ ) to become
a predual of the tent space T 1

∞(Rn+1
+ ).

In this paper, we introduce a subclass Cc(Rn+1
+ ) of the Carleson measure space

C (Rn+1
+ ) (see Section 2.1 for its definition). Then we show that

Cc(Rn+1
+ )

‖·‖C

= Cv(Rn+1
+ ),

where Cv(Rn+1
+ ) is the vanishing Carleson measure space, which was introduced

in [14] (see Definition 2.1 below). Then we prove that (Cv(Rn+1
+ ))∗ = T 1

∞(Rn+1
+ )

(see Theorem 2.1). An important fact is that, by their definitions, Cv(Rn+1
+ ) $

VCM (Rn+1
+ ) (see also [12]).

Another aim of this paper is to give a characterization of the tent space
T∞
q (Rn+1

+ ) (1 < q < ∞) and its subspace T∞
q,v(Rn+1

+ ) (see (2.14) for the defi-
nition) by Poisson integral. By Carleson’s famous works ([6], [7]), it is well known
that the Carleson measure space C (Rn+1

+ ) can be characterized by the bounded-
ness of the Poisson integral from Lp(Rn; dx) to Lp(Rn+1

+ ; dµ). Recently, in [14] we
proved that the vanishing Carleson measure space Cv(Rn+1

+ ) can be characterized
by the compactness of the Poisson integral from Lp(Rn; dx) to Lp(Rn+1

+ ; dµ). In
Section 3, we show simply that T∞

q (Rn+1
+ ) (1 < q < ∞) and that T∞

q,v(Rn+1
+ )

can also be characterized by Poisson integral, which is simply a direct applica-
tion of the characterizations of the Carleson measure and the vanishing Carleson
measure mentioned above.

In the last section, we give some applications of tent spaces T∞
q (Rn+1

+ ) and

T∞
q,v(Rn+1

+ ). To be precise, we define a paraproduct πF associated with F ∈
T∞
q (Rn+1

+ ), and we establish the boundedness and compactness of πF on Lq(Rn)
for 1 < q ≤ 2. Note that in [9], the authors established a connection between tent
spaces T p

2 (Rn+1
+ ) (1 ≤ p ≤ ∞) and Lp(Rn), Hp(Rn) and BMO(Rn) spaces. In this

section, we discuss the connection between T p
q (Rn+1

+ ) (1 < q ≤ 2, 1 ≤ p ≤ ∞)
and Lp(Rn), Hp(Rn), and we thereby partially extend the interesting result in [9]
mentioned above.
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In this paper, C will denote a positive constant that may change its value on
each statement without special instruction.

2. Predual of tent space T 1
∞(Rn+1

+ )

In our recent paper [14], we introduced a subclass of C (Rn+1
+ ), the vanishing

Carleson measure space Cv(Rn+1
+ ), and we gave a characterization of Cv(Rn+1

+ ) by
the compactness of Poisson integral (see [14, Corollary 2.2]).

Definition 2.1 (vanishing Carleson measure). A positive measure µ on Rn+1
+ is

said to be a vanishing Carleson measure if µ ∈ C (Rn+1
+ ), and it satisfies

(1) lima→0 Na(µ) = 0;
(2) lima→∞ Na(µ) = 0; and
(3) lim|x|→∞ N (µ,Q+ x) = 0, for any cube Q ⊂ Rn.

The set of all vanishing Carleson measures on Rn+1
+ is denoted by Cv(Rn+1

+ ).

In this section we will prove that the vanishing Carleson measure space
Cv(Rn+1

+ ) is just the predual of the tent space T 1
∞.

Theorem 2.1. The dual space of Cv(Rn+1
+ ) is the tent space T 1

∞(Rn+1
+ ), that is,

(Cv)
∗ = T 1

∞. More precisely, the pairing 〈f, dµ〉 =
∫
Rn+1
+

f(x, t) dµ(x, t) realizes

the duality of Cv(Rn+1
+ ) with T 1

∞(Rn+1
+ ).

Remark 2.2. Here we give three examples to show that each condition in Defi-
nition 2.1 is not removable for the desired duality result in Theorem 2.1.

Suppose that k ∈ Z+ and that Ek = Ik×Jk, where Ik and Jk are some intervals
in R and (0,∞), respectively. Choose ϕk ∈ C∞

c (R2
+) supported in Ek with 0 ≤

ϕk ≤ 1, which has nontangential limits at the boundary almost everywhere.
(i) Set Ek = [0, 1

k
]× (0, 1

k
), and set {f 1

k}k∈Z+ = {1
3
kϕk}k∈Z+ . Note that∫

R
sup

|x−y|<t

∣∣f 1
k (y, t)

∣∣ dx ≤ k

3

∫ 2
k

− 1
k

sup
|x−y|<t

∣∣ϕk(y, t)
∣∣ dx ≤ 1;

hence {f 1
k}k∈Z+ ⊂ B1(T

1
∞(R2

+)), the closed unit ball of the dual space T 1
∞(R2

+)
of Cv(R2

+). Since the closed unit ball of a dual space is weak* compact by the
Banach–Alaoglu theorem (see [22]), then there exists a weak* convergent subse-
quence of {f 1

k}k∈Z+ , which is denoted still by {f 1
k}. In fact, {f 1

k}k∈Z+ converges
to zero in weak*-topology. It is easy to see that, for any µ ∈ Cv(R2

+),∣∣∣∫
R2
+

f 1
k (x, t) dµ(x, t)

∣∣∣ ≤ k

3
µ
([

0,
1

k

]
×

(
0,

1

k

))
=

µ([̂0, 1
k
])

3|[0, 1
k
]|

→ 0 as k → ∞, (2.1)

since µ satisfies the condition (i) in Definition 2.1. Obviously, if µ ∈ C (R2
+), but

µ does not satisfy the condition (i), then the convergence in (2.1) does not hold
for any subsequence of {f 1

k}k∈Z+ .
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(ii) Set Ek = [0, k]× (0, k), and set {f 2
k}k∈Z+ = { 1

3k
ϕk}k∈Z+ . Noting that∫

R
sup

|x−y|<t

∣∣f 2
k (t, y)

∣∣ dx ≤ 1

3k

∫ 2k

−k

sup
|x−y|<t

∣∣ϕk(y, t)
∣∣ dx ≤ 1,

we see that {f 2
k}k∈Z+ ⊂ B1(T

1
∞(R2

+)) also. Thus for any µ ∈ Cv(R2
+),∣∣∣∫

R2
+

f 2
k (x, t) dµ(x, t)

∣∣∣ ≤ 1

3k
µ
(
[0, k]× (0, k)

)
=

µ([̂0, k])

3|[0, k]|
→ 0 as k → ∞, (2.2)

since µ satisfies the condition (ii) in Definition 2.1. If, however, µ ∈ C (R2
+), but

µ does not satisfy the condition (ii), then the convergence in (2.2) does not hold
for any subsequence of {f 2

k}k∈Z+ .
(iii) Set Ek = [k − 1, k + 1]× (0, 2), and set {f 3

k}k∈Z+ = {1
6
ϕk}k∈Z+ . Then∫

R
sup

|x−y|<t

∣∣f 3
k (y, t)

∣∣ dx ≤ 1

6

∫ k+3

k−3

sup
|x−y|<t

∣∣ϕk(y, t)
∣∣ dx ≤ 1,

which shows that {f 3
k}k∈Z+ ⊂ B1(T

1
∞(R2

+)). Note that∣∣∣∫
R2
+

f 3
k (x, t) dµ(x, t)

∣∣∣ ≤ 1

6
µ
(
[k − 1, k + 1]× (0, 2)

)
=

µ( ̂[k − 1, k + 1])

3|[k − 1, k + 1]|
. (2.3)

Using the similar discussion above, it is easy to see that, for any µ ∈ C (R2
+)

which does not satisfy the condition (iii), the right-hand side of (2.3) does not go
to zero as k → ∞. This leads to a contradiction.

To prove Theorem 2.1, we need some elementary properties of Cv(Rn+1
+ ) and

T 1
∞(Rn+1

+ ), which are given in Sections 2.1 and 2.2, respectively.

2.1. A dense subset of Cv(Rn+1
+ ). In this section, we introduce a subclass

Cc(Rn+1
+ ) of C (Rn+1

+ ), and we prove that Cc(Rn+1
+ ) is a dense subset of Cv(Rn+1

+ )
in the norm ‖ · ‖C . We begin with two lemmas; since the first one is obvious, we
omit its proof.

Lemma 2.3.

(1) lima→0 Na(µ) = 0 ⇐⇒ lima→0 sup|Q|≤a N (µ,Q) = 0;
(2) lima→∞ Na(µ) = 0 ⇐⇒ lima→∞ sup|Q|≥a N (µ,Q) = 0;
(3) lim|x|→∞ N (µ,Q + x) = 0 ⇐⇒ lima→∞ sup|x|>a N (µ,Q + x) = 0, where

Q is any cube in Rn.

Lemma 2.4. Cv(Rn+1
+ ) is a Banach space equipped with the norm ‖ · ‖C .

Proof. If we suppose that {µk} is a Cauchy sequence in Cv(Rn+1
+ ), then {µk}

is also the Cauchy sequence in C (Rn+1
+ ) since Cv(Rn+1

+ ) ⊂ C (Rn+1
+ ). Applying

the completeness of C (Rn+1
+ ), there exists a measure µ ∈ C (Rn+1

+ ) such that
‖µ− µk‖C → 0 as k → ∞. It remains to show that µ ∈ Cv(Rn+1

+ ).
For any a > 0, note that

Na(µ) ≤ Na(µk) + Na(µ− µk) ≤ Na(µk) + ‖µ− µk‖C .
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Thus for both cases, s = 0 and s = ∞, we have

lim
a→s

Na(µ) ≤ ‖µ− µk‖C → 0 as k → ∞.

We also notice that for any cube Q in Rn,

N (µ,Q) ≤ N (µk, Q) + N (µ− µk, Q) ≤ N (µk, Q) + ‖µ− µk‖C .

Hence

lim
|x|→∞

N (µ,Q+ x) ≤ ‖µ− µk‖C → 0 as k → ∞.

That is, µ ∈ Cv, and Cv(Rn+1
+ ) is a Banach space. �

Now we introduce a subclass of C (Rn+1
+ ) as follows.

Cc(Rn+1
+ ) =

{
µ ∈ C : there exists a compact set K in Rn+1

+ such that for any µ

−measurable set E in Rn+1
+ , µ(E) = µ(E ∩K)

}
.

We claim that Cc(Rn+1
+ ) is dense in Cv(Rn+1

+ ) in the norm ‖ · ‖C .

Lemma 2.5. Cc(Rn+1
+ ) is dense in Cv(Rn+1

+ ) in the norm ‖ · ‖C (Rn+1
+ ). That is,

Cc(Rn+1
+ )

‖·‖C

= Cv(Rn+1
+ ).

Proof. We first prove that Cc ⊂ Cv. In fact, for any µ ∈ Cc, there exists a compact
set K ⊂ Rn+1

+ such that for any µ-measurable set E ⊂ Rn+1
+ , µ(E) = µ(E ∩K).

For a > 0 and any cube Q ⊂ Rn with |Q| = a, then we have the following facts:

(i) If a is small enough, then Q̂ ∩K = ∅; thus µ(Q̂)
|Q| = µ(Q̂∩K)

|Q| = 0.

(ii) If a is large enough, such that Q̂ ∩ K 6= ∅, then µ(Q̂)
|Q| ≤ a−1µ(K); thus

Na(µ) ≤ a−1µ(K) and lima→∞ Na(µ) = 0.

(iii) If |x| → ∞, then Q̂+ x ∩ K = ∅; thus µ(Q̂+ x) = 0, and

lim|x|→∞
µ(Q̂+x)

|Q| = 0. Hence Cc ⊂ Cv, and Cc
‖·‖C ⊂ Cv by Lemma 2.4.

Below we verify Cv ⊂ Cc
‖·‖C

. Let Ek = {(y, t) ∈ Rn+1
+ : |y| ≤ k, 1

k
≤ t ≤ k}

for k ∈ N. For µ ∈ Cv, denote µk(E) = µ(E ∩Ek) for any µ-measurable set E in
Rn+1

+ . It is then easy to see that µk ∈ Cc; thus to finish the proof of Lemma 2.5
it only remains to show that

lim
k→∞

‖µ− µk‖C = 0. (2.4)

Let

F 1
k =

{
(y, t) ∈ Rn+1

+ : t > k
}
,

F 2
k =

{
(y, t) ∈ Rn+1

+ : 0 < t <
1

k

}
,

F 3
k =

{
(y, t) ∈ Rn+1

+ : |y| > k,
1

k
≤ t ≤ k

}
.



TENT SPACES AT ENDPOINTS 847

Then it is easy to see that Rn+1
+ = Ek ∪F 1

k ∪F 2
k ∪F 3

k for any k ∈ N and that, for
any cube Q in Rn with center xQ and sidelength `(Q),

(µ− µk)(Q̂)

|Q|
≤ µ(Q̂ ∩ F 1

k )

|Q|
+

µ(Q̂ ∩ F 2
k )

|Q|
+

µ(Q̂ ∩ F 3
k )

|Q|
=: I1 + I2 + I3.

Thus to get (2.4) we need only show that

lim
k→∞

sup
Q⊂Rn

Ii = 0, for i = 1, 2, 3. (2.5)

Case i = 1. If `(Q) ≤ k/2, then Q̂ ∩ F 1
k = ∅, and we have sup|Q|≤( k

2
)n I1 = 0. If

`(Q) > k/2, then |Q| ≥ (k
2
)n → ∞ as k → ∞. Thus limk→∞ sup|Q|≥( k

2
)n I1 = 0 by

µ ∈ Cv and Lemma 2.3. Hence (2.5) holds for i = 1.
Case i = 2. If `(Q) ≤ 2

k
, since µ ∈ Cv and applying Lemma 2.3, we have

sup
`(Q)≤ 2

k

I2 ≤ sup
`(Q)≤ 2

k

µ(Q̂)

|Q|
→ 0 as k → ∞. (2.6)

If `(Q) > 2
k
, applying a Besicovitch covering lemma (see [19, p. 39]), then there

exists a sequence of cubes {Qj} and cn only depending on the dimension n such
that:

(i) `(Qj) ∈ ( 1
k
, 2
k
);

(ii) Q ⊂
⋃

j Qj; and

(iii)
∑

j χQj
(x) ≤ cn, for each x ∈ Rn.

Then it is easy to see that (Q̂ ∩ F 2
k ) ⊂

⋃
j Q̂j. Thus by (2.6) we have

I2 ≤
∑
j

µ(Q̂j)

|Q|
≤

∑
j

|Qj|
|Q|

sup
`(Q)≤ 2

k

µ(Q̂)

|Q|
≤ cn sup

`(Q)≤ 2
k

µ(Q̂)

|Q|
→ 0 as k → ∞.

From this we see that (2.5) holds for i = 2.
Case i = 3. Obviously we need only consider the limit of supQ̂∩F 3

k 6=∅ I3 as

k → ∞. By µ ∈ Cv and Lemma 2.3, we have

sup
Q̂∩F 3

k 6=∅
I3 ≤ sup

|xQ|≥k

I3 + sup
|xQ|<k

1
2 `(Q)>k−|xQ|

I3

≤ sup
|xQ|≥k

I3 + sup
|xQ|<k/2

1
2 `(Q)>k−|xQ|

I3 + sup
k/2≤|xQ|<k

1
2 `(Q)>k−|xQ|

I3

≤ sup
|xQ|≥k

I3 + sup
`(Q)>k

I3 + sup
k/2≤|xQ|<k

I3

≤ 2 sup
|xQ|≥k/2

µ(Q̂)

|Q|
+ sup

`(Q)>k

µ(Q̂)

|Q|
→ 0 as k → ∞.

Thus (2.5) still holds in this case. We therefore show that µ ∈ Cc
‖·‖C

and we
complete the proof of Lemma 2.5. �
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2.2. Some facts on the tent space T 1
∞(Rn+1

+ ). In this subsection, we give some
facts on the tent space T 1

∞(Rn+1
+ ), which will be used in the proof of Theorem 2.1.

Lemma 2.6. The norm of T 1
∞(Rn+1

+ ) can be characterized via Cc(Rn+1
+ ); more

precisely,

‖f‖T 1
∞ = sup

µ∈Cc
‖µ‖C ≤1

∣∣∣∫
Rn+1
+

f(y, t) dµ(y, t)
∣∣∣.

Proof. Since (T 1
∞(Rn+1

+ ))∗ = C (Rn+1
+ ), and Cc(Rn+1

+ ) ⊂ C (Rn+1
+ ), we have

‖f‖T 1
∞ = sup

µ∈C
‖µ‖C ≤1

∣∣∣∫
Rn+1
+

f(y, t) dµ(y, t)
∣∣∣ ≥ sup

µ∈Cc
‖µ‖C ≤1

∣∣∣∫
Rn+1
+

f(y, t) dµ(y, t)
∣∣∣. (2.7)

It remains to prove that for any ε > 0, there exists µ0 ∈ Cc(Rn+1
+ ) with ‖µ0‖C ≤ 1

such that ∣∣∣∫
Rn+1
+

f(y, t) dµ0(y, t)
∣∣∣ ≥ ‖f‖T 1

∞ − ε.

In fact, from (2.7), there exists a measure µ ∈ C (Rn+1
+ ) with ‖µ‖C ≤ 1 such that∣∣∣∫

Rn+1
+

f(y, t) dµ(y, t)
∣∣∣ ≥ ‖f‖T 1

∞ − ε

2
.

For k ∈ N, let χk = χ{(y,t)∈Rn+1
+ :|y|≤k, 1

k
≤t≤k}. Using the Lebesgue dominated con-

vergent theorem, it is easy to see that∣∣∣∫
Rn+1
+

f(y, t)
(
1− χk(y, t)

)
dµ(y, t)

∣∣∣ → 0 as k → ∞.

Thus there exists k0 > 0, such that∣∣∣∫
Rn+1
+

f(y, t)
(
1− χk0(y, t)

)
dµ(y, t)

∣∣∣ < ε

2
.

Hence ∣∣∣∫
Rn+1
+

f(y, t)χk0(y, t) dµ(y, t)
∣∣∣ ≥ ‖f‖T 1

∞ − ε.

If we denote dµ0 := χk0 dµ, then it is easy to see thatµ0 ∈ Cc(Rn+1
+ ) and that

‖µ0‖C ≤ 1. Hence we prove Lemma 2.6. �

In [9], Coifman, Meyer, and Stein gave the atom decomposition of the tent
space T 1

q with 1 < q ≤ ∞. A function a on Rn+1
+ is said to be a T 1

q atom if:

(i) a is supported in Q̂ (for some cube Q ⊂ Rn); and
(ii) ‖a‖Lq(Rn+1

+ ; dy dt
t

) ≤ |Q|−1/q′ .

Lemma 2.7 (See [9]). Suppose that f ∈ T 1
q (1 < q ≤ ∞). Then f =

∑∞
i=1 λiai,

where each ai is a T 1
q atom, λi ∈ C, and

∑∞
i=1 |λi| ≤ C‖f‖T 1

q
, where the constant

C is independent of {λi} and f .



TENT SPACES AT ENDPOINTS 849

Notice that in the atom decomposition given above, the relationship of the
support set of each atom is not clear. In [29], Wang gave a more delicate atom
decomposition of T 1

∞(Rn+1
+ ).

Lemma 2.8 (See [29]). For every fixed k ∈ Z, there is a sequence {Qjk}j of cubes
in Rn which satisfies

(1) |Qjk| = βk, β = 3n, for any j = 1, 2, . . .;
(2)

⋃∞
j=1 Qjk = Rn;

(3)
∑∞

j=1 χQjk
(x) ≤ β for any x ∈ Rn; and

(4) for each f ∈ T 1
∞(Rn+1

+ ), we have f =
∑

k∈Z
∑∞

j=1 λjkajk, where ajk is the

T 1
∞(Rn+1

+ ) atom supported in Q̂jk, and
∑

k∈Z
∑∞

j=1 |λjk| ≤ C‖f‖T 1
∞, and

the constant C is independent of the sequence {λjk} and f .

In order to prove Theorem 2.1, we also need the following lemma which is given
by Coifman and Weiss in [10].

Lemma 2.9 (See [10]). If we suppose that λjk ≥ 0, j, k = 1, 2, . . . satisfies∑∞
j=1 λjk ≤ 1 for each k = 1, 2, . . . , then there exists an increasing sequence of

natural numbers, k1 < k2 < · · · < kl < · · · such that liml→∞ λjkl = λj for each j,
and

∑∞
j=1 λj ≤ 1.

The following result plays a key role in the proof of Theorem 2.1.

Lemma 2.10. Suppose that {fl}l∈N ⊂ T 1
∞(Rn+1

+ ) with ‖fl‖T 1
∞ ≤ D, where D > 0

is independent of l = 1, 2, . . . . Then there exists a function f ∈ T 1
∞(Rn+1

+ ) and a
subsequence {fls}s such that

lim
s→∞

∫
Rn+1
+

fls(y, t) dµ(y, t) =

∫
Rn+1
+

f(y, t) dµ(y, t) for any µ ∈ Cc(Rn+1
+ ). (2.8)

Proof. Applying Lemma 2.8, fl =
∑

k∈Z
∑∞

j=1 λl,jkal,jk with
∑

k∈Z
∑∞

j=1 |λl,jk| ≤
C‖fl‖T 1

∞ , where C is independent of {λl,jk} and fl. For any fixed k ∈ Z and j ∈ N,
by Lemma 2.9, there exist subsequences {λls,jk}s and λjk such that

lim
s→∞

|λls,jk| = |λjk|, and
∑
k∈Z

∞∑
j=1

|λjk| ≤ C‖fl‖T 1
∞ ≤ CD.

Notice that all al,jk are T 1
∞(Rn+1

+ ) atoms supported in Q̂jk with Qjk satisfying
(1), (2), (3) in Lemma 2.8. From the proof of Lemma 2.8, it is easy to see that
the cube sequence {Qjk} is independent of ls. As to (j, k) fixed,

‖als,jk‖L∞(Q̂jk;
dy dt

t
) ≤ |Qjk|−1 = β−k < ∞ (2.9)

holds uniformly with the bound independent of ls. Hence there exist a subse-
quence, which still is denoted by {als,jk}s, and a function ajk ∈ L∞(Q̂jk;

dy dt
t
)

such that for g ∈ L1(Q̂jk;
dy dt
t
),

lim
s→∞

∫
Q̂jk

als,jk(y, t)g(y, t)
dy dt

t
=

∫
Q̂jk

ajk(y, t)g(y, t)
dy dt

t
. (2.10)
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Thus, by (2.10), it is easy to see that

‖ajk‖L∞(Q̂jk;
dy dt

t
) = sup

‖g‖
L1(Q̂jk;

dy dt
t )

≤1

∣∣∣∫
Q̂jk

ajk(y, t)g(y, t)
dy dt

t

∣∣∣
= sup

‖g‖
L1(Q̂jk;

dy dt
t )

≤1

lim
s→∞

∣∣∣∫
Q̂jk

als,jk(y, t)g(y, t)
dy dt

t

∣∣∣
≤ sup

‖g‖
L1(Q̂jk;

dy dt
t )

≤1

|Qjk|−1‖g‖L1(Q̂jk;
dy dt

t
)

≤ |Qjk|−1.

Hence ajk is a T 1
∞(Rn+1

+ ) atom. If we let f =
∑

k∈Z
∑∞

j=1 λjkajk, then f ∈
T 1
∞(Rn+1

+ ). Below we prove that f satisfies (2.8).
Assume that µ ∈ Cc(Rn+1

+ ) and that there exists a compact set K ⊂ Rn+1
+ such

that for any µ-measurable set E ⊂ Rn+1
+ , µ(E) = µ(E ∩K), and then∫

Rn+1
+

fls(y, t) dµ(y, t) =

∫
Rn+1
+

( ∑
−N≤k≤N

+
∑

k<−N

+
∑
k>N

) ∞∑
j=1

λls,jkals,jk(y, t) dµ(y, t)

=: II 1 + II 2 + II 3.

Since K is a compact set in Rn+1
+ , then there is a t0 > 0 such that K ⊂ {(x, t) ∈

Rn+1
+ : t > t0}. We now make N large enough so that β−N

n < t0.

Estimate of II 2. Note that `(Qjk) = β
k
n < β−N

n < t0 for all j ∈ N. Thus( ⋃
k<−N

∞⋃
j=1

Q̂jk

)
∩K = ∅.

Hence II 2 = 0.
Estimate of II 3. By (2.9), it is easy to see that

|II 3| ≤
∑
k>N

∞∑
j=1

|λls,jk|‖als,jk‖L∞(Q̂jk;
dy dt

t
)µ(K)

≤ CK‖µ‖C

∑
k>N

∞∑
j=1

|λls,jk||Qjk|−1

≤ CDCK‖µ‖Cβ
−N → 0 as N → ∞.

Estimate of II 1. Notice that, for any k ∈ [−N,N ] fixed, the set {j ∈ N :

Q̂jk ∩K 6= ∅} is a finite set; that is, there exists an integer m > 0 such that

II 1 =

∫
Rn+1
+

∑
−N≤k≤N

m∑
j=1

λls,jkals,jk(y, t) dµ(y, t)

=
∑

−N≤k≤N

m∑
j=1

λls,jk

∫
Rn+1
+

als,jk(y, t) dµ(y, t).
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Notice that tdµ ∈ L1(Q̂jk;
dy dt
t
); then from (2.10), notice that

lim
s→∞

II 1 =
∑

−N≤k≤N

m∑
j=1

λjk

∫
Rn+1
+

ajk(y, t) dµ(y, t);

hence

lim
s→∞

lim
N→∞

II 1 = lim
N→∞

∑
−N≤k≤N

m∑
j=1

λjk

∫
Rn+1
+

ajk(y, t) dµ(y, t)

= lim
N→∞

∫
Rn+1
+

∑
−N≤k≤N

∞∑
j=1

λjkajk(y, t) dµ(y, t)

=

∫
Rn+1
+

f(y, t) dµ(y, t).

We thus complete the proof of Lemma 2.10. �

2.3. Proof of Theorem 2.1. The proof of Theorem 2.1 needs to use a general
result in functional analysis. Let us give the definition of the total set, which can
be found in [16, p. 58].

Definition 2.2 (total set). A set W of maps which map a vector space X into
another vector space Y is called a total set if x = 0 is the only vector for which
φ(x) = 0 for all φ ∈ W .

Lemma 2.11 ([16, p. 439]). Let X be a locally convex linear topological space,
and let W be a linear subspace of X∗. Then W is X-dense in X∗ if and only if
W is a total set of functionals on X.

Proof of Theorem 2.1. Note that (T 1
∞(Rn+1

+ ))∗ = C (Rn+1
+ ) ⊃ Cv(Rn+1

+ ) (see the
conclusion (3) in Theorem A), so T 1

∞ ⊂ (Cv)
∗.

On the other hand, if there exists a µ ∈ Cv(Rn+1
+ ) such that∫

Rn+1
+

f(y, t) dµ(y, t) = 0 for all f ∈ T 1
∞(Rn+1

+ ), (2.11)

then by (T 1
∞)∗ = C (Rn+1

+ ), we see that

‖µ‖C = sup
‖f‖

T1∞
≤1

∣∣∣∫
Rn+1
+

f(y, t) dµ(y, t)
∣∣∣ = 0.

Thus µ = 0. In particular, since Cv(Rn+1
+ ) is a Banach space, then it is obvious

that µ is the only measure in Cv(Rn+1
+ ) such that (2.11) holds. Thus T 1

∞(Rn+1
+ ) is

a total set on Cv(Rn+1
+ ) by Definition 2.2. Clearly, Cv(Rn+1

+ ) is a locally convex
linear topological space by Lemma 2.4. Applying Lemma 2.11, T 1

∞(Rn+1
+ ) is weak*

dense in (Cv)
∗. Hence, for any ` ∈ (Cv)

∗, there exists a sequence of functions
{fk} ⊂ T 1

∞(Rn+1
+ ) such that

`(µ) = lim
k→∞

〈fk, µ〉 = lim
k→∞

∫
Rn+1
+

fk(y, t) dµ(y, t) for all µ ∈ Cv(Rn+1
+ ).
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From this we see that, for each fixed µ ∈ Cv(Rn+1
+ ),

sup
k

∣∣∣∫
Rn+1
+

fk(y, t) dµ(y, t)
∣∣∣ < ∞. (2.12)

The uniform boundedness principle (Banach–Steinhaus theorem) and (2.12) imply
that

sup
k

∣∣∣∫
Rn+1
+

fk(y, t) dµ(y, t)
∣∣∣ ≤ C‖µ‖C for any µ ∈ Cv(Rn+1

+ );

thus, by Lemma 2.6, we get ‖fk‖T 1
∞ ≤ C where C is independent of k. Now,

applying Lemma 2.10, we can obtain a subsequence {fkj}j and an f ∈ T 1
∞(Rn+1

+ )
such that

lim
j→∞

∫
Rn+1
+

fkj(y, t) dµ(y, t) =

∫
Rn+1
+

f(y, t) dµ(y, t) for any µ ∈ Cc(Rn+1
+ );

hence

`(µ) =

∫
Rn+1
+

f(y, t) dµ(y, t) for any µ ∈ Cc(Rn+1
+ ). (2.13)

Finally, by the density of Cc(Rn+1
+ ) in Cv(Rn+1

+ ) (i.e., Lemma 2.5), we can check
(2.13), which still holds for all µ ∈ Cv(Rn+1

+ ) and which shows that the linear
functional ` on Cv(Rn+1

+ ) can be represented by a function f in T 1
∞(Rn+1

+ ). We
therefore prove that (Cv)

∗ ⊂ T 1
∞, and we complete the proof of Theorem 2.1. �

Remark 2.12. Using the idea of proving Theorem 2.1, we also can consider
a predual of the tent space T 1

q (Rn+1
+ ) (1 < q < ∞). Similar to the definition

of the vanishing Carleson measure, we can introduce a subclass of T∞
q (Rn+1

+ )

(1 < q < ∞), the vanishing tent space T∞
q,v(Rn+1

+ ) (1 < q < ∞), which is defined
by

T∞
q,v(Rn+1

+ ) =
{
f ∈ T∞

q : lim
a→0

Ma(f, q) = 0, lim
a→∞

Ma(f, q) = 0,

and for any cube Q ⊂ Rn, lim
|x|→∞

M(f,Q+ x, q) = 0
}
, (2.14)

whereMa(f, q) andM(f,Q+x, q) are defined in Definition 1.1. This is completely
similar to the proof of Theorem 2.1; thus we can obtain (T∞

q′,v)
∗ = T 1

q (1 < q < ∞).

3. Characterizations of tent space T∞
q (Rn+1

+ ) and its subspace

T∞
q,v(Rn+1

+ )

In this section, we give the characterizations of tent space T∞
q (Rn+1

+ ) and sub-

space T∞
q,v(Rn+1

+ ), respectively. Let us first recall the characterizations of the Car-

leson measure space C (Rn+1
+ ) via the boundedness of the Poisson integral. For

f ∈ Lp(Rn) (1 ≤ p ≤ ∞), the Poisson integral of f is defined by u(x, t) := pt∗f(x)
(t > 0), where pt(x) = cn

t
(|x|2+t2)(n+1)/2 with cn =

Γ(n+1
2

)

π(n+1)/2 is the Poisson kernel on

Rn+1
+ .
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Theorem B (see [6], [7]). The following are equivalent:

(1) µ ∈ C (Rn+1
+ );

(2) the Poisson integral is bounded from Lp(Rn; dx) to Lp(Rn+1
+ ; dµ) for all

1 < p < ∞; and
(3) the Poisson integral is bounded from Lp(Rn; dx) to Lp(Rn+1

+ ; dµ) for some
1 < p < ∞.

The following Theorem C is an extension of Theorem B. Suppose that the
function ϕ on Rn satisfies∣∣ϕ(x)∣∣ ≤ C

(
1 + |x|

)−n−θ
for some C, θ > 0 and that all x ∈ Rn. (3.1)

The convolution operator associated with ϕ is denoted by

Lϕ(f) : f 7→ ϕt ∗ f, (3.2)

where ϕt(x) = t−nϕ(x/t) for t > 0.

Theorem C (see [18, p. 177]). Suppose that ϕ satisfies (3.1).

(1) If the measure µ on Rn+1
+ is a Carleson measure, then for every 1 <

p < ∞, the operator Lϕ defined in (3.2) is bounded from Lp(Rn; dx) to

Lp(Rn+1
+ ; dµ) with the norm ‖Lϕ‖Lp(dx)→Lp(dµ) ≤ Cn,p‖µ‖1/pC .

(2) If ϕ ≥ 0 and
∫
|x|≤1

ϕ(x) dx > 0 yet, and a measure µ is defined on Rn+1
+

such that the operator Lϕ is bounded from Lp(Rn; dx) to Lp(Rn+1
+ ; dµ)

for some 1 < p < ∞, then µ is a Carleson measure, and ‖µ‖C ≤
‖Lϕ‖pLp(dx)→Lp(dµ).

Remark 3.1. Theorem C still holds if the condition (3.1) assumed on ϕ is
replaced by φ ∈ L1 ∩ L∞ with φ(x) := ess sup|x|≤|y| |ϕ(y)| (see [17]).

3.1. A characterization of the tent space T∞
q (Rn+1

+ ). Applying Theorem C,

we can show simply that the tent space T∞
q (Rn+1

+ ) can be characterized via the
boundedness of the operator Lϕ.

Theorem 3.2. Suppose that ϕ satisfies (3.1) and that 1 < q < ∞.

(1) If g ∈ T∞
q (Rn+1

+ ), then for every 1 < p < ∞, the operator Lϕ is bounded

from Lp(Rn; dx) to Lp(Rn+1
+ ; |g(y, t)|q dy dt

t
) with the norm ‖Lϕ‖ ≤

C‖g‖
q
p

T∞
q
.

(2) If ϕ ≥ 0 and
∫
|x|≤1

ϕ(x) dx > 0 yet, and g is defined on Rn+1
+ such that

the operator Lϕ is bounded from Lp(Rn; dx) to Lp(Rn+1
+ ; |g(y, t)|q dy dt

t
) for

some 1 < p < ∞, then g ∈ T∞
q (Rn+1

+ ), and ‖g‖T∞
q

≤ C‖Lϕ‖
p
q .

Proof. (1) For any g ∈ T∞
q (Rn+1

+ ), let dν(y, t) = |g(y, t)|q dy dt
t
, then ν is a Carleson

measure on Rn+1
+ by the definition of T∞

q (Rn+1
+ ). Applying the conclusion (1) of

Theorem C, the operator Lϕ is bounded from Lp(Rn; dx) to Lp(Rn+1
+ ; dν) =

Lp(Rn+1
+ ; |g(y, t)|q dy dt

t
) for all 1 < p < ∞, and ‖Lϕ‖ ≤ Cn,p‖ν‖1/pC = Cn,p‖g‖

q
p

T∞
q
.
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(2) If dν(y, t) = |g(y, t)|q dy dt
t
, then ν is a positive measure on Rn+1

+ , and the
condition of the conclusion (2) in Theorem 3.2 implies that the operator Lϕ

is bounded from Lp(Rn; dx) to Lp(Rn+1
+ ; dν) for some 1 < p < ∞. Hence ν

is a Carleson measure on Rn+1
+ by Theorem C(2). Consequently, there exists a

constant C > 0 such that for any cube Q in Rn,

ν(Q̂)

|Q|
=

1

|Q|

∫
Q̂

∣∣g(y, t)∣∣q dy dt
t

≤ C,

which shows that g ∈ T∞
q (Rn+1

+ ) and that ‖g‖T∞
q

= ‖ν‖1/qC ≤ C‖Lϕ‖
p
q . �

Remark 3.3. Theorem 3.2 still holds if the condition (3.1) assumed on ϕ is
replaced by φ ∈ L1 ∩ L∞ with φ(x) := ess sup|x|≤|y| |ϕ(y)|.

The following corollary is a direct result of Theorem 3.2.

Corollary 3.4. The following are equivalent:

(1) g ∈ T∞
q (Rn+1

+ ) (1 < q < ∞);

(2) the Poisson integral is bounded from Lp(Rn; dx) to Lp(Rn+1
+ ; |g(y, t)|q dy dt

t
)

for all 1 < p < ∞; and
(3) the Poisson integral is bounded from Lp(Rn; dx) to Lp(Rn+1

+ ; |g(y, t)|q dy dt
t
)

for some 1 < p < ∞.

3.2. A characterization of the vanishing tent space T∞
q,v(Rn+1

+ ). The char-

acterization of T∞
q,v(Rn+1

+ ) (1 < q < ∞) defined in (2.14) which will be given below
is closely related to the characterization of the vanishing Carleson measure space
Cv(Rn+1

+ ). The latter has been given by the authors in [14] recently.

Theorem D ([14, Theorem 2.1]). Suppose that ϕ satisfies (3.1).

(1) If the measure µ on Rn+1
+ is a vanishing Carleson measure, then for every

1 < p < ∞, the operator Lϕ is compact from Lp(Rn; dx) to Lp(Rn+1
+ ; dµ).

(2) If ϕ ≥ 0 and
∫
|x|≤1

ϕ(x) dx > 0 yet, and a measure µ is defined on Rn+1
+

such that the operator Lϕ is compact from Lp(Rn; dx) to Lp(Rn+1
+ ; dµ) for

some 1 < p < ∞, then µ is a vanishing Carleson measure.

Corollary E ([14, Corollary 2.2]). The following are equivalent:

(1) µ ∈ Cv(Rn+1
+ );

(2) the Poisson integral is compact from Lp(Rn; dx) to Lp(Rn+1
+ ; dµ) for all

1 < p < ∞; and
(3) the Poisson integral is compact from Lp(Rn; dx) to Lp(Rn+1

+ ; dµ) for some
1 < p < ∞.

By Theorem D, it is easy to obtain the characterization of the vanishing tent
space T∞

q,v(Rn+1
+ ).

Theorem 3.5. Suppose that ϕ satisfies (3.1) and that 1 < q < ∞.

(1) If g ∈ T∞
q,v(Rn+1

+ ), then for every 1 < p < ∞, the operator Lϕ is compact

from Lp(Rn; dx) to Lp(Rn+1
+ ; |g(y, t)|q dy dt

t
).
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(2) If ϕ ≥ 0 with
∫
|x|≤1

ϕ(x) dx > 0 yet, and g is defined on Rn+1
+ such that

the operator Lϕ is compact from Lp(Rn; dx) to Lp(Rn+1
+ ; |g(y, t)|q dy dt

t
) for

some 1 < p < ∞, then g ∈ T∞
q,v(Rn+1

+ ).

Proof. (1) For any g ∈ T∞
q,v(Rn+1

+ ), let dν(y, t) = |g(y, t)|q dy dt
t
, and it is easy to

check that ν ∈ Cv(Rn+1
+ ). Applying the conclusion (1) of Theorem D, Lϕ is a

compact operator from Lp(Rn; dx) to Lp(Rn+1
+ ; dν) = Lp(Rn+1

+ ; |g(y, t)|q dy dt
t
) for

all 1 < p < ∞.
(2) If dν(y, t) = |g(y, t)|q dy dt

t
, then ν is a positive measure on Rn+1

+ , and the con-
dition of Theorem 3.5(2) shows that the operator Lϕ is compact from Lp(Rn; dx)
to Lp(Rn+1

+ ; dν) for some 1 < p < ∞. Thus, by the conclusion (2) of Theorem D,
the measure ν ∈ Cv(Rn+1

+ ) ⊂ C (Rn+1
+ ). Hence it is obvious that g ∈ T∞

q (Rn+1
+ ). In

particular, since ν satisfies (1)∼(3) in the Definition 2.1, then g ∈ T∞
q,v(Rn+1

+ ). �

Remark 3.6. Theorem 3.5 still holds if the condition (3.1) assumed on ϕ is
replaced by φ ∈ L1 ∩ L∞ with φ(x) := ess sup|x|≤|y| |ϕ(y)|.

The following consequence of Theorem 3.5 is obvious.

Corollary 3.7. The following are equivalent:

(1) g ∈ T∞
q,v(Rn+1

+ ) (1 < q < ∞);

(2) Poisson integral is compact from Lp(Rn; dx) to Lp(Rn+1
+ ; |g(y, t)|q dy dt

t
) for

all 1 < p < ∞; and
(3) Poisson integral is compact from Lp(Rn; dx) to Lp(Rn+1

+ ; |g(y, t)|q dy dt
t
) for

some 1 < p < ∞.

4. Applications

In the last part of this paper, we first introduce a paraproduct πF associated
with the tent spaces T∞

q (Rn+1
+ ) (1 < q < ∞), and we then give the bounded-

ness and compactness of πF with smooth kernel and rough kernel, respectively.
We shall also extend partially an interesting result in [9], which gives the rela-
tion between the tent spaces T p

2 (Rn+1
+ ) (1 ≤ p ≤ ∞) and Lp(Rn), Hp(Rn) and

BMO(Rn) spaces.

4.1. Boundedness and compactness of paraproducts with smooth ker-
nel. Let us begin by giving the definition of a general Littlewood–Paley
g-function, which plays an important role in the study of paraproducts.

Definition 4.1 (The general Littlewood–Paley g-function). Suppose that 1 <
q < ∞ and that η ∈ S (Rn) (the Schwartz class on Rn), which satisfies∫

Rn

η(x) dx = 0. (4.1)

For f ∈ Lp(Rn) (1 < p < ∞), the general Littlewood–Paley g-function gη,q is
defined by

gη,q(f)(x) =
(∫ ∞

0

∣∣f ∗ ηt(x)
∣∣q dt

t

) 1
q
.
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It is well known that if q = 2, then gη,2 is just the classical Littlewood–Paley
g-function, which is a bounded operator on Lp(Rn) for 1 < p < ∞ (see, for
example, [28, p. 159] or [18, p. 356]). For 2 < q < ∞, the following conclusion is
obvious:

Lemma 4.1. For 2 < q < ∞, gη,q is a bounded operator on Lp(Rn) for
1 < p < ∞.

In fact, it is clear that for 2 < q < ∞,

gη,q(f)(x) ≤ Cgη,2(f)(x)
2
qMf(x)

q−2
q ,

where M is the classical Hardy–Littlewood maximal operator defined by

Mf(x) = sup
r>0

1

rn

∫
|x−y|≤r

∣∣f(y)∣∣ dy.
Thus for any fixed 1 < p < ∞, Hölder’s inequality, the Lp (1 < p < ∞)-bounded-
ness of gη,2, and M (see [27]) imply that(∫

Rn

∣∣gη,q(f)(x)∣∣p dx) 1
p ≤ C

∥∥gη,2(f)∥∥ 2
q

p
‖Mf‖

q−2
q

p ≤ C‖f‖p. (4.2)

Now we introduce a paraproduct associated with the tent space.

Definition 4.2 (Paraproduct). For a fixed F ∈ T∞
q (Rn+1

+ ) (1 < q < ∞), we
define a paraproduct πF by

πF (f)(x) =

∫ ∞

0

ηt ∗
(
(f ∗ ϕt)(·)F (·, t)

)
(x)

dt

t
, (4.3)

where ϕ satisfies (3.1) and where η ∈ S (Rn) satisfies (4.1).

We can obtain the Lq (1 < q ≤ 2) boundedness of the paraproduct πF (f) if
F ∈ T∞

q (Rn+1
+ ).

Theorem 4.2. Denote φ(x) := ess sup|x|≤|y| |ϕ(y)|. If φ ∈ L1(Rn)∩L∞(Rn), and

F ∈ T∞
q (Rn+1

+ ) (1 < q ≤ 2), then πF defined in (4.3) is a bounded operator on
Lq(Rn).

Proof. Applying Remark 3.3 and g ∈ T∞
q (Rn+1

+ ), we know that(∫
Rn+1
+

∣∣f ∗ ϕt(x)
∣∣q∣∣F (x, t)

∣∣q dx dt
t

) 1
q ≤ C‖F‖T∞

q
‖f‖Lq .

For any h ∈ Lq′(Rn) with ‖h‖Lq′ ≤ 1, by (4.2) we have∣∣∣∫
Rn

πF (f)(x)h(x) dx
∣∣∣

=
∣∣∣∫

Rn

∫ ∞

0

ηt ∗
(
(f ∗ ϕt)(·)F (·, t)

)
(x)h(x)

dt

t
dx

∣∣∣
=

∣∣∣∫
Rn

∫ ∞

0

(f ∗ ϕt)(x)F (x, t)(h ∗ η̃t)(x)
dt

t
dx

∣∣∣
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≤
(∫

Rn+1
+

∣∣h ∗ η̃t(x)
∣∣q′ dx dt

t

) 1
q′
(∫

Rn+1
+

∣∣f ∗ ϕt(x)
∣∣q∣∣F (x, t)

∣∣q dx dt
t

) 1
q

≤ C
∥∥gη̃,q′(h)∥∥q′

‖F‖T∞
q
‖f‖Lq

≤ C‖F‖T∞
q
‖f‖Lq , (4.4)

where in the following, η̃(x) = η(−x). We thus complete the proof of Theorem 4.2.
�

Below we show that πg is a compact operator on Lq if F ∈ T∞
q,v(Rn+1

+ ) (1 < q ≤
2).

Theorem 4.3. Denote φ(x) := ess sup|x|≤|y| |ϕ(y)|. If φ ∈ L1 ∩ L∞, and F ∈
T∞
q,v(Rn+1

+ ) (1 < q ≤ 2), then πF is a compact operator on Lq(Rn).

Proof. Since F ∈ T∞
q,v(Rn+1

+ ), applying Remark 3.6, the operator Lϕ is a compact

operator from Lp(Rn; dx) to Lp(Rn+1
+ ; |F (x, t)|q dx dt

t
) for all 1 < p < ∞. Hence,

for any sequence {fk} in Lp(Rn) which converges weakly to zero, we have

lim
k→∞

∫
Rn+1
+

∣∣fk ∗ ϕt(x)
∣∣p∣∣F (x, t)

∣∣q dx dt
t

= 0. (4.5)

Notice that Lq(Rn) (1 < q ≤ 2) is a reflexive space. When combining that with
the fact in [25, p. 113, exe. 18] to prove that πF is a compact operator on Lq(Rn),
it suffices to verify that, for any sequence {fk} in Lq(Rn) which converges weakly
to zero, {πF (fk)} converges to zero in Lq norm. Equivalently, we need only show
that

lim
k→∞

sup
‖h‖q′≤1

∣∣∣∫
Rn

πF (fk)(x)h(x) dx
∣∣∣ = 0. (4.6)

In fact, for any h ∈ Lq′(Rn) with ‖h‖q′ ≤ 1, by (4.4) with f instead by fk and by
applying (4.2), we get

sup
‖h‖q′≤1

∣∣∣∫
Rn

πF (fk)(x)h(x) dx
∣∣∣

≤ sup
‖h‖q′≤1

(∫
Rn+1
+

∣∣h ∗ η̃t(x)
∣∣q′ dx dt

t

) 1
q′
(∫

Rn+1
+

∣∣f ∗ ϕt(x)
∣∣q∣∣F (x, t)

∣∣q dx dt
t

) 1
q

≤ C
(∫

Rn+1
+

∣∣fk ∗ ϕt(x)
∣∣q∣∣F (x, t)

∣∣q dx dt
t

) 1
q
.

Hence (4.6) holds from the above estimate and from (4.5). We therefore finish
the proof of Theorem 4.3. �

4.2. Boundedness and compactness of paraproducts with rough kernel.
From the proofs of Theorem 4.2 and Theorem 4.3, it can be seen that the Lq

boundedness of gη,q (2 ≤ q < ∞) plays a very important role. Now we point out
that, after removing the smoothness condition assumed on η in Definition 4.2, we
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still may get the Lq (1 < q ≤ 2) boundedness and compactness of πF by using
some known results.

Suppose that the function Ω on Rn \ {0} satisfies the following conditions:

(A) Ω(λx) = Ω(x), for any λ > 0 and x ∈ Rn\{0};
(B)

∫
Sn−1 Ω(x

′) dσ(x′) = 0; and
(C)

∫
Sn−1 |Ω(x′)| dσ(x′) < ∞.

Let η(x) = Ω(x)|x|1−nχ{|x|≤1}(x); then, for 1 < q < ∞, the general Littlewood–
Paley g-function gη,q is defined by

gη,q(f)(x) :=
(∫ ∞

0

∣∣f ∗ ηt(x)
∣∣q dt

t

) 1
q
=

(∫ ∞

0

∣∣∣∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y) dy

∣∣∣q dt

t1+q

) 1
q
.

Note that gη,2 is just the Marcinkiewicz integral gΩ, which was first introduced
by Stein [26]. It is easy to check that, for 2 < q < ∞,

gη,q(f)(x) ≤ CgΩ(f)(x)
2
qMΩf(x)

q−2
q , (4.7)

where MΩ denotes the rough maximal operator defined by

MΩf(x) = sup
r>0

1

rn

∫
|x−y|≤r

∣∣Ω(x− y)
∣∣∣∣f(y)∣∣ dy.

Thus the Lp boundedness of MΩ and the Marcinkiewicz integral gΩ imply the
Lp boundedness of gη,q by (4.7). Now let us recall some known results on the Lp

boundedness of MΩ and gΩ.

Theorem F (see [28]). If we suppose that Ω satisfies the conditions (A) and (C),
then MΩ is bounded on Lp for 1 < p ≤ ∞.

Theorem G. Suppose that Ω satisfies the conditions (A) and (B).

(1) If Ω ∈ Lipα(Sn−1) (0 < α ≤ 1), then gΩ is bounded on Lp for 1 < p ≤ 2
(see [26]) ;

(2) If Ω ∈ H1(Sn−1), then gΩ is bounded on Lp for 1 < p < ∞(see [13]);

(3) If Ω ∈ L(log+ L)
1
2 (Sn−1), then gΩ is bounded on Lp for 1 < p < ∞,

where H1(Sn−1) denotes the Hardy space on Sn−1 (see [1]). The definition and
some facts on H1(Sn−1) can be found in [11], [21] and [24].

Remark 4.4. Notice the following well-known containing relation between some
function spaces on Sn−1:

L∞(Sn−1) ( Lr(Sn−1) (1 < r < ∞) ( L log+ L(Sn−1) ( H1(Sn−1) ( L1(Sn−1).

Moreover, the spaces H1(Sn−1) and L(log+ L)
1
2 (Sn−1) do not contain each other.

Thus, applying Theorem F and Theorem G, we get

Lemma 4.5. Suppose that η(x) = Ω(x)|x|1−nχ{|x|≤1}(x) with Ω satisfying the
conditions (A) and (B). Then for 2 < q < ∞, gη,q is a bounded operator on

Lp(Rn) for 1 < p < ∞ if Ω ∈ H1(Sn−1) or Ω ∈ L(log+ L)
1
2 (Sn−1).
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Thus, by Lemma 4.5 and by using the same methods for proving Theorem 4.2
and Theorem 4.3, we can obtain the Lq(Rn) boundedness and compactness of the
rough paraproduct πF for 1 < q ≤ 2.

Theorem 4.6. Suppose that the paraproduct πF is defined by (4.3), where

(1) F ∈ T∞
q (Rn+1

+ ) (1 < q ≤ 2);

(2) η(x) = Ω(x)|x|1−nχ{|x|≤1}(x) with Ω satisfying the conditions (A) and (B);
and

(3) ϕ satisfies (3.1) (or φ ∈ L1 ∩ L∞ with φ(x) := ess sup|x|≤|y| |ϕ(y)|).
If Ω ∈ H1(Sn−1) or Ω ∈ L(log+ L)

1
2 (Sn−1), then πF is a bounded operator on

Lq(Rn).

Theorem 4.7. Suppose that the paraproduct πF is defined by (4.3), where

(1) F ∈ T∞
q,v(Rn+1

+ ) (1 < q ≤ 2);

(2) η(x) = Ω(x)|x|1−nχ{|x|≤1}(x) with Ω satisfying the conditions (A) and (B);
and

(3) ϕ satisfies (3.1) and φ ∈ L1 ∩ L∞ with φ(x) := ess sup|x|≤|y| |ϕ(y)|.
If Ω ∈ H1(Sn−1) or Ω ∈ L(log+ L)

1
2 (Sn−1), then πF is a compact operator on

Lq(Rn).

4.3. The map from tent spaces to Lp and Hardy space. In [9], the authors
established a close connection between the tent space T p

2 (Rn+1
+ ) and Lp(Rn), the

Hardy space Hp(Rn) and BMO(Rn) space. Suppose that the function Φ satisfies
the following conditions:

(i) supp(Φ) ⊂ {x ∈ Rn : |x| < 1};
(ii) there exists a constant B > 0, such that |Φ(x)| ≤ B, |Φ(x+ h)−Φ(x)| ≤

B(|h|/|x|)ε for some ε > 0;
(iii)

∫
Φ(x) dx = 0; and

(iiiN)
∫
xγΦ(x) dx = 0, for all |γ| ≤ N .

The operator ΠΦ is defined by

ΠΦ(F )(x) =

∫ ∞

0

(
F (·, t) ∗ Φt

)
(x)

dt

t
, (4.8)

where Φt(x) = t−nΦ(x/t).

Theorem H ([9, p. 328]). If Φ satisfies (i), (ii), (iii), then the linear operator
ΠΦ defined in (4.8) can be extended to a bounded operator:

(1) from T p
2 (Rn+1

+ ) to Lp(Rn), if 1 < p < ∞;
(2) from T 1

2 (Rn+1
+ ) to H1(Rn); and

(3) from T∞
2 (Rn+1

+ ) to BMO(Rn).
(4) If (iiiN) is satisfied with N ≥ n[1/p − 1] ([x] indicates the integer part

of x), then ΠΦ can be extended to a bounded operator from T p
2 (Rn+1

+ ) to
Hp(Rn) for 0 < p ≤ 1.

Remark 4.8. In [9], the authors pointed out that Theorem H still holds if the
conditions (i) and (ii) assumed on Φ are replaced by the following condition:

(i′) there exists a constant B > 0, such that |Φ(x)|+ |∇Φ(x)| ≤ B(1+ |x|)−n−1.
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Below we show that the conclusions (1), (2), and (4) of Theorem H still hold
if replacing the space T p

2 (Rn+1
+ ) by T p

q (Rn+1
+ ) (1 < q < 2).

Theorem 4.9. If Φ satisfies (i)–(iii) (or (i′), (iii)), and 1 < q < 2, then the
operator ΠΦ can be extended to a bounded operator:

(1) from T p
q (Rn+1

+ ) to Lp(Rn), if 1 < p < ∞; and

(2) from T 1
q (Rn+1

+ ) to H1(Rn).
(3) If (iiiN) is satisfied with N ≥ n[1/p − 1] ([x] indicates the integer part

of x), then ΠΦ can be extended to a bounded operator from T p
q (Rn+1

+ ) to
Hp(Rn) for 0 < p ≤ 1.

The key to verifying Theorem 4.9 is to apply the Lp boundedness of the fol-
lowing general area integral operator, which is defined for 1 < q < ∞ by

SΦ,q(f)(x) =
(∫

Γ(x)

∣∣f ∗ Φt(y)
∣∣q dy dt
tn+1

) 1
q

for any f ∈ Lp (1 < p < ∞).

It is easy to see that SΦ,2(f) is the classical square function. Thus SΦ,2 is bounded
on Lp(Rn) for 1 < p < ∞. For 2 < q < ∞, it is easy to check that

SΦ,q(f)(x) ≤ CSΦ,2(f)(x)
2
qMf(x)

q−2
q .

For any 1 < p < ∞, as with (4.2), using Hölder’s inequality with the indexes q
2

and q
q−2

, we have(∫
Rn

∣∣SΦ,qf(x)
∣∣p dx) 1

p ≤ C
∥∥SΦ,2(f)

∥∥ 2
q

p
‖Mf‖

q−2
q

p ≤ C‖f‖p. (4.9)

Proof of Theorem 4.9. First we consider the conclusion (a). For any h ∈ Lp′(Rn)
with ‖h‖p′ ≤ 1, for 1 < q < 2, applying an estimate [9, (5.1)] and (4.9), we have∣∣∣∫

Rn

ΠΦ(F )(x)h(x) dx
∣∣∣ = ∣∣∣∫

Rn+1
+

(
F (·, t) ∗ Φt

)
(x)h(x)

dx dt

t

∣∣∣
=

∣∣∣∫
Rn+1
+

F (x, t)(h ∗ Φ̃t)(x)
dx dt

t

∣∣∣
≤ C

∫
Rn

Aq(F )(x)Aq′(h ∗ Φ̃t)(x) dx

≤ C‖F‖T p
q

∥∥SΦ̃,q′(h)
∥∥
p′

≤ C‖F‖T p
q
,

where Φ̃(x) = Φ(−x). Thus we show the conclusion (a). Using the conclusion
(a) and the idea of proving the conclusion (b) of Theorem H, we may get Theo-
rem 4.9(b). The proof of (c) is similar. Thus we finish the proof of Theorem 4.9.

Remark 4.10. We wonder whether the operator SΦ,q is the bounded Hardy space
H1(Rn) to L1(Rn) when q > 2. Thus it is also not clear whether the operator
ΠΦ can be extended to a bounded operator from T∞

q (Rn+1
+ ) to BMO(Rn) for

1 < q < 2.
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Remark 4.11. Notice that, for any F ∈ T p
2 (Rn+1

+ ) (1 < p < ∞) (or F ∈
T 1
2 (Rn+1

+ )) and any h ∈ Lp′(Rn) (or h ∈ BMO(Rn)), by Theorem H we see that

∞ >
〈
ΠΦ(F ), h

〉
=

∫
Rn+1
+

(
F (·, t) ∗ Φt

)
(x)h(x)

dx dt

t

=

∫
Rn+1
+

F (x, t)(h ∗ Φ̃t)(x)
dx dt

t

=

∫
Rn+1
+

F (x, t)LΦ̃(h)(x)
dx dt

t
. (4.10)

Thus (4.10) and Theorem A show that the adjoint operator of ΠΦ is LΦ̃ in some
sense; the latter is defined in (3.2). In other words, the operator LΦ̃ maps Lp′(Rn)

to T p′

2 (Rn+1
+ ) (or maps BMO to T∞

2 (Rn+1
+ )). Morever, it is easy to verify that the

operator LΦ̃ is actually a bounded operator from Lp′(Rn) to T p′

2 (Rn+1
+ ) and from

BMO(Rn) to T∞
2 (Rn+1

+ ).
If Φ satisfies (i)–(iii) (or (i′), (iii)), and h ∈ BMO(Rn), define the paraproduct

π as follows:

π(f)(x) =

∫ ∞

0

ηt ∗
(
(f ∗ ϕt)(·)(Φ̃t ∗ h)(·)

)
(x)

dt

t
, (4.11)

where ϕ and η are as Definition 4.2. The L2 boundedness and L2 compactness of
the paraproduct π were studied in [15] and [14], respectively.

Obviously, the paraproduct defined in (4.11) is only a particular case of the
paraproduct πF defined in (4.3) with F := (Φ̃t ∗ h)(x) = LΦ̃(h) ∈ T∞

2 (Rn+1
+ ).
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