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Abstract. We study some properties of Lipschitz mappings which admit fac-
torization through an operator ideal. Lipschitz cross norms have been estab-
lished from known tensor norms in order to represent certain classes of Lipschitz
mappings. Inspired by the definition of p-summing linear operators, we derive
a new class of Lipschitz mappings that is called strictly Lipschitz p-summing.

1. Introduction and preliminaries

LetX be a metric space, and let E be a Banach space. Every Lipschitz mapping
T : X −→ E admits a factorization of the form

T = T̂ ◦ δX , (1.1)

where T̂ is the linearization of T , and δX is the canonical embedding. Let I be an
operator ideal. There is a constructive method for defining new classes of Lipschitz
mappings which consists of the composing of linear operators of I and Lipschitz
mappings, and the resulting space is denoted by I◦Lip0. This technique is usually
used to generate some ideals of multilinear mappings and homogeneous polynomi-
als (see [2], [11], and [12]). The study of the space I ◦Lip0 is well motivated; many
interesting spaces resulting from this technique belong to famous classes of Lips-
chitz mappings: for example, the spaces of Lipschitz–Cohen strongly p-summing,
Lipschitz compact, Lipschitz weakly compact, strongly Lipschitz p-integral, and
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strongly Lipschitz p-nuclear operators. Moreover, the appearance of a linear oper-
ator and a Lipschitz mapping in the formula (1.1) motivates us to investigate
the connection between the Lipschitz operator T and its linearization. Given an

operator ideal I, by considering the correspondence T ↔ T̂ , we can obtain the
following identification:

I ◦ Lip0(X;E) = I
(
F(X);E

)
. (1.2)

In this article, our main objective is to derive and study new classes of Lipschitz
mappings which satisfy (1.2). We are interested in representing these classes by
using Lipschitz cross norms, which were recently studied by Cabrera-Padilla et al.
in [3]. First, we establish some relations between tensor norms defined on tensor
product and Lipschitz cross norms, and then we prove that every tensor norm
generates a Lipschitz cross norm. Thus, if I is an operator ideal which admits a
representation through a tensor norm α, that is,

I(E;F ∗) = (E⊗̂αF )∗

for every Banach space E, F , then there is a Lipschitz cross norm αL for which
the space I ◦ Lip0 admits a Lipschitz tensor representation; that is,

I ◦ Lip0(X;E∗) = (X�̂αLE)∗,

for every metric space X and every Banach space E. Among our results, we will
investigate the Lipschitz cross norms corresponding with Chevet–Saphar norms.
We will define a new concept in the category of Lipschitz operators, which is
Lipschitz strictly p-summing. The operators of this class have a strong relation-
ship with their linearizations for the concept of p-summing. Certain results and
properties of this new class will be obtained.

This paper is organized as follows. First, we recall some standard notations
which will be used throughout. In Section 2, we define for a given operator ideal
I the class I ◦ Lip0 of Lipschitz mappings satisfying that their linearizations
belong to I. Some examples of classes of Lipschitz mappings which are represented
by this procedure are given. Section 3 contains the main results; we start by
studying Lipschitz cross norms generated by tensor norms. We then consider the
Chevet–Saphar norms, and we study the corresponding Lipschitz cross norms.
Inspired by the definition of p-summing, we introduce the concept of Lipschitz
strictly p-summing for which we prove that the Lipschitz mapping T is strictly

p-summing if and only if its linearization T̂ is p-summing. This notion coincides
with the notions of p-summing and Lipschitz p-summing operators when we are
considering only linear operators.

Now, we recall briefly some basic notation and terminology. Throughout this
paper, the letters E, F will denote Banach spaces and X, Y will denote metric
spaces with a distinguished point (pointed metric spaces), which we denote by 0.
Let E be a Banach space, and let n ∈ N. We denote by lnp (E), (1 ≤ p ≤ ∞), the
space of all sequences (xi)1≤i≤n in E equipped with the norm∥∥(xi)1≤i≤n

∥∥
lnp (E)

=
( n∑

1

‖xi‖p
) 1

p
,
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and by lnωp (E) we denote the space of all sequences (xi)1≤i≤n in E equipped with
the norm ∥∥(xi)1≤i≤n

∥∥
lnω
p (E)

= sup
‖x∗‖E∗=1

( n∑
1

∣∣x∗(xi)
∣∣p) 1

p
.

Let X be a pointed metric space. We denote by X# the Banach space of all
Lipschitz functions f : X −→ R which vanish at 0 under the Lipschitz norm
given by

Lip(f) = sup
{ |f(x)− f(y)|

d(x, y)
: x, y ∈ X, x 6= y

}
.

We denote by F(X) the free Banach space over X; that is, the norm closed
linear subspace of Lip0(X)∗ spanned by the functions δ(x,y) with x, y ∈ X and
δ(x,y) : X

# → R defined as

δ(x,y)(f) = f(x)− f(y).

We have F(X)∗ = X#. (For a general theory of free Banach space, see [10], [11],
and [16].) Let X be a metric space, and let E be a Banach space. We denote
by Lip0(X;E) the Banach space of all Lipschitz functions T : X → E such that
T (0) = 0 with pointwise addition and Lipschitz norm. Note that, for any T ∈
Lip0(X;E), there exists a unique linear map (linearization of T ) T̂ : F(X) −→ E

such that T̂ ◦δX = T , and ‖T̂‖ = Lip(T ); that is, the following diagram commutes

X
T−→ E

δX ↓ ↗ T̂
F(X)

(1.3)

where δX is the canonical embedding so that 〈δX(x), f〉 = 〈δ(x,0), f〉 = f(x) for
f ∈ X#. The Lipschitz transpose map of a Lipschitz operator T : X → E is a
linear operator T t : E∗ → X#, which is defined by

T t(e∗)(x) = e∗
(
T (x)

)
.

We have

T t = Q−1
X ◦ T̂ ∗,

where QX is the isomorphism isometric between X# and F(X)∗ such that

QX(f)(m) = m(f) for every f ∈ X# and m ∈ F(X).

IfX is a Banach space and T : X → E is a linear operator, then the corresponding

linear operator T̂ is given by

T̂ = T ◦ βX , (1.4)

where βX : F(X) → X is the linear quotient map which verifies βX ◦ δX = idX ,
and ‖βX‖ ≤ 1 (see [13, p. 124] for more details about the operator βX). Let
X be a metric space, and let E be a Banach space. By X � E, we denote the
Lipschitz tensor product of X and E. This is the vector space spanned by the
linear functional δ(x,y) � e on Lip0(X;E∗) defined by

δ(x,y) � e(f) =
〈
f(x)− f(y), e

〉
.
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Let α be a norm on X � E; α is considered a Lipschitz cross norm if it satisfies
the condition

α(δ(x,y) � e) = d(x, y)‖e‖.
A Lipschitz cross norm α is called dualizable if, given f ∈ X# and e∗ ∈ E∗ for
all

∑n
i=1 δ(xi,yi) � ei ∈ X � E, we have∣∣∣ n∑

i=1

(
f(xi)− f(yi)

)
〈e∗, ei〉

∣∣∣ ≤ Lip(f)‖e∗‖α
( n∑

i=1

δ(xi,yi) � ei

)
.

Every Lipschitz mapping T : X → E∗ admits a linear functional ϕT defined on
the Lipschitz tensor product X � E by

ϕT

( n∑
i=1

δ(xi,yi) � ei

)
=

n∑
i=1

〈
f(xi)− f(yi), ei

〉
.

As in [1], a subclassA of Lip0 is said to be a normed (Banach) Lipschitz ideal if, for
every pointed metric spaceX and every Banach space E, the pair (A(X;E), ‖·‖A)
is a normed (Banach) space, and if the following hold:

(a) For every f ∈ X# and e ∈ E, the Lipschitz operator f � e : X → E
defined by f � e(x) = f(x)e is in A(X;E) and

‖f � e‖A ≤ Lip(f)‖e‖.

(b) For all T ∈ A(X;E), we have

Lip(T ) ≤ ‖T‖A.

(c) Ideal property : Let Z be a metric space, and let F be a Banach space.
The composed operator u ◦ T ◦ g is in A(Z;F ), and

‖u ◦ T ◦ g‖A ≤ ‖u‖‖T‖A Lip(g)

for every g ∈ Lip0(Z;X), T ∈ A(X;E), and u ∈ B(E;F ) (B(E;F ) is the
Banach space of all linear operators from E into F ).

2. Lipschitz spaces generated by the composition method

In this section, we apply composition ideals technique to generate new classes
of Lipschitz mappings. Given an operator ideal I, letX be a pointed metric space,
and let E be a Banach space. A Lipschitz operator T ∈ Lip0(X;E) is said to be of
type I◦Lip0 if there exist a Banach space Z, a Lipschitz operator L ∈ Lip0(X;Z),
and a linear operator u ∈ I(Z;E) such that the following diagram commutes:

X
T−→ E

L ↘ ↗ u
Z

On the other hand, T = L ◦ u. If (I, ‖ · ‖I) is a normed (Banach) ideal, then the
space I ◦ Lip0(X;E) is a normed (Banach) Lipschitz ideal with respect to the
following norm:

‖T‖I◦Lip0 = inf Lip(L)‖u‖I .
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In [1], the connection between the Lipschitz operators of I ◦ Lip0 and their lin-
earizations is established.

Theorem 2.1 ([1, Proposition 3.2]). Let I ◦ Lip0 be the space of Lipschitz map-
pings generated by the normed operator ideal I. The following properties are equiv-
alent.

(1) The Lipschitz operator T belongs to I ◦ Lip0(X;E).

(2) The linearization T̂ belongs to I(F(X);E).

In this case we have ‖T‖I◦Lip0 = ‖T̂‖I, and then

I ◦ Lip0(X;E) = I
(
F(X);E

)
holds isometrically.

Proposition 2.2. Let I2, I2 be two operator ideals, and then we proceed as
follows.

(1) If I1 ◦ Lip0(X;E) ⊂ I2 ◦ Lip0(X;E), then I1(F(X);E) ⊂ I2(F(X);E).
(2) If I ◦ Lip0(X;E) = Lip0(X;E), then I(F(X);E) = B(F(X);E).

Proof. (1) If we let u ∈ I1(F(X);E), then the Lipschitz operator T = u ◦ δX :
X −→ E verifies that

T̂ = u.

By Theorem 2.1, T ∈ I1 ◦ Lip0(X;E); hence T ∈ I2 ◦ Lip0(X;E). Consequently,

T̂ = u ∈ I2(F(X);E).
(2) If we let u ∈ B(F(X);E), then T = u ◦ δX ∈ Lip0(X;E); hence

T̂ = u ∈ I
(
F(X);E

)
. �

The next Proposition follows directly from the previous one.

Proposition 2.3. Let E be a Banach space. The following properties are equiv-
alent:

(1) idE ∈ I(E;E),
(2) I ◦ Lip0(X;E) = Lip0(X;E) for every pointed metric space X.

As in the linear case studied in [1], we give the definition of a Lipschitz dual of
a given operator ideal.

Definition 2.4 ([1, Definition 3.8]). The Lipschitz dual of a given operator ideal
I is defined by

ILip0 − dual(X;E) =
{
T ∈ Lip0(X;E) : T t ∈ I(E∗;X#)

}
.

If (I, ‖ · ‖I) is a normed (Banach) ideal, we define

‖T‖ILip0 − dual = ‖T t‖I ;

then the space ILip0 − dual(X;E) becomes a normed (Banach) Lipschitz ideal.



830 K. SAADI

An operator ideal I is symmetric if

I = Idual =
{
u ∈ I(F ;G) : u∗ ∈ I(G∗;F ∗)

}
.

If I is symmetric, then we have the following coincidence between a Lipschitz
ideal and its dual.

Proposition 2.5. The following properties are equivalent:

(1) I is symmetric,
(2) ILip0 − dual(X;E) = I◦Lip0(X;E) for every pointed metric space Xand

Banach space E.

In the rest of this section, we present some examples of classes of Lipschitz
mappings which were generated by known operator ideals using the composi-
tion method. In [15], we introduced the class DL

p of Lipschitz–Cohen strongly
p-summing operators. Proposition 3.1 in [15] asserts that T : X → E is Lipschitz–

Cohen strongly p-summing if and only if its linearization T̂ is strongly p-summing.
Combining this with Theorem 2.1, the class DL

p can be interpreted in terms of
the composition method as follows.

Theorem 2.6. Let X be a pointed metric space, and let E be a Banach space.
Let 1 < p ≤ ∞, and let p∗ be its conjugate (1

p
+ 1

p∗
= 1). We have

DL
p (X;E) = Dp ◦ Lip0(X;E) = Πdual

p∗ ◦ Lip0(X;E) = Π
Lip0 − dual
p∗ (X;E),

where Πp and Dp are the classes of p-summing and strongly p-summing linear
operators, respectively.

The classes of Lipschitz compact and weakly compact operators have been
introduced in [14]. By Lip0K and Lip0W , we denote the Banach–Lipschitz ideals
of Lipschitz compact and Lipschitz weakly compact operators, respectively. In [14,
Propositions 2.1, 2.2], a similar relation has been established, as in Theorem 2.1.

A simple consequence of the linear result given in [8, Corollary 1] asserts that
the Banach space F is reflexive if and only if, for every Banach space G and linear
operator v : F → G, v is weakly compact. We have the next characterization.

Theorem 2.7. Let X be a pointed metric space. The following properties are
equivalent.

(1) The metric space X is finite.
(2) For all Banach space E, we have Lip0W(X;E) = Lip0(X;E).

Proof. (1) ⇒ (2): This is immediate.
(2) ⇒ (1): Let E be a Banach space, and let v : F(X) → E be a linear

operator. We will show that v is weakly compact. By (2), the Lipschitz operator

T = v◦δX : X → E is Lipschitz weakly compact; hence T̂ = v is weakly compact.
Consequently, the space F(X) is reflexive; however, by [7, Theorem 1.1] the space
F(X) is never reflexive if X is an infinite metric space. �

Next we recall the definition of strongly p-nuclear operators introduced in [5].
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Definition 2.8. Let 1 ≤ p < ∞. A Lipschitz operator T ∈ Lip0(X;E) is regarded
as strongly Lipschitz p-nuclear (1 ≤ p < ∞) if there exist operators A ∈ B(lp;E),
b ∈ Lip0(X; l∞), and a diagonal operator Mλ ∈ B(l∞; lp) induced by a sequence
λ ∈ lp such that the following diagram commutes:

X
T−→ E

b ↓ ↑ A

l∞
Mλ−→ lp

The triple (A, b, λ) is called a strongly Lipschitz p-nuclear factorization of T . We
denote N SL

p (X;E) the Banach space of all strongly Lipschitz p-nuclear operators
from X into E with the norm

svL
p (T ) = inf ‖A‖‖Mλ‖Lip(b),

where the infimum is taken over all the above factorizations. For Banach spaces
F , G, we denote by Np(F ;G) the space of all p-nuclear linear operators which
admit a factorization as in the Lipschitz case, with the operator b being linear.

Proposition 2.9. Let 1 ≤ p < ∞. The Lipschitz operator T : X → E is strongly

Lipschitz p-nuclear if and only if its linearization T̂ is p-nuclear. Consequently,

N SL
p (X;E) = Np ◦ Lip0(X;E).

Proof. If we let T be a strongly Lipschitz p-nuclear operator, then we have

T = A ◦Mλ ◦ b.
If we use the Lipschitz factorization of T and b,

T̂ ◦ δX = A ◦Mλ ◦ b̂ ◦ δX ,
then by the uniqueness of linearization we obtain

T̂ = A ◦Mλ ◦ b̂;

hence T̂ is p-nuclear. The converse is immediate. �

This definition of strongly Lipschitz p-nuclear operator is analogous to the
definition of strongly Lipschitz p-integral operator introduced in [14]. In fact, the
same definition was also introduced in [5, p. 5275]. In the first definition [14], the
authors have considered a factorization in which the left operator is linear and
the right is Lipschitz. In the second definition [5], the role of these operators has
been changed.

Definition 2.10 ([14, Definition 2.4]). Let 1 ≤ p < ∞. A Lipschitz operator
T ∈ Lip0(X;E) is called strongly Lipschitz p-integral if there exist a finite measure
space (Ω,Σ, µ), a bounded linear operator A ∈ B(Lp(µ);E

∗∗), and a Lipschitz
operator b ∈ Lip0(X;L∞(µ)) such that the following diagram commutes:

X
T−→ E

KE−→ E∗∗

b ↓ ↑ A

L∞(µ)
I∞,p−→ Lp(µ)
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where I∞,p : L∞(µ) → Lp(µ) is the formal inclusion operator. The triple (A, b, µ)
is considered a strongly Lipschitz p-integral factorization of T . We denote by
ISL
p (X;E) the Banach space of all strongly Lipschitz p-integral operators from X

into E with the norm

siLp (T ) = inf Lip(b)‖A‖.
For Banach spaces F , G we denote by Ip(F ;G) the space of all p-integral linear

operators. Using the same argument in the proof of Proposition 2.9, we can prove
the following.

Proposition 2.11. Let 1 ≤ p < ∞. The Lipschitz operator T : X → E is strongly

Lipschitz p-integral if and only if its linearization T̂ is p-integral. Consequently

ISL
p (X;E) = Ip ◦ Lip0(X;E)

holds isometrically. If p = 1, then we have

ISL
1 (X;E) = I1 ◦ Lip0(X;E)

= Idual
1 ◦ Lip0(X;E).

As in the linear case, we give a factorization result for strongly Lipschitz
p-nuclear operators. For the proof, we use the linearization operators and the
result [9, Theorem 5.27].

Theorem 2.12. Let 1 ≤ p < ∞. A Lipschitz operator T : X → E is strongly
Lipschitz p-nuclear if and only if there exist a Banach space Z, a compact linear
operator v : Z → E, and a strongly Lipschitz p-integral operator L : X → Z such
that

T = v ◦ L.
In this case

svL
p (T ) = inf ‖v‖siLp (L).

Proof. If we let T : X → E be a strongly Lipschitz p-nuclear operator, then

T̂ : F(X) → E is p-nuclear. Theorem 2.27 in [9] asserts that there exist a Banach
space Z, a compact operator linear v : Z → E, and a p-integral operator w :

F(X) → Z such that T̂ = v ◦ w. Hence

T̂ ◦ δX = v ◦ w ◦ δX ⇒ T = v ◦ L,
where L = w ◦ δX, which is strongly Lipschitz p-nuclear by Proposition 2.11.

Conversely, if we suppose that

T = v ◦ L,
where v is a compact operator and L is strongly Lipschitz p-integral, then

X
T→ E

δX ↓ ↑ v

F(X)
L̂→ Z

that is, T̂ = v ◦ L̂, with L̂ is p-integral. Thus T̂ = v ◦ L̂ is p-nuclear, and T is
strongly Lipschitz p-nuclear. �
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3. Main results

3.1. Results on Lipschitz tensor product. Let F , G be two Banach spaces.
We denote by F ⊗G its algebraic tensor product. There are various tensor norms
that may be defined on the tensor product F ⊗G. If we consider a pointed metric
space X and a Banach space E, there is an attempt to generalize the definition of
tensor product to the category of metric spaces. The authors in [3] have studied
the space X � E which is called Lipschitz tensor product. Some Lipschitz cross
norms have been defined on this space. In this section we give some relations
between Lipschitz cross norms and tensor norms. In the following section, we will
use the terminology of Lipschitz cross norms for norms defined on X � E and
tensor norms for norms defined on F ⊗G.

Theorem 3.1. Every tensor norm α generates a dualizable Lipschitz cross norm
αL such that, for all pointed metric space X and Banach space E, we have

αL
( n∑

i=1

δ(xi,yi) � ei

)
= α

( n∑
i=1

δ(xi,yi) ⊗ ei

)
, (3.1)

where
∑n

i=1 δ(xi,yi) � ei ∈ X � E. In this case, the linear map Φ : X �αL E →
F(X)⊗α E defined by

Φ
( n∑

i=1

δ(xi,yi) � ei

)
=

n∑
i=1

δ(xi,yi) ⊗ ei

is well defined and is an isometry.

Proof. Let α be a tensor norm. The properties of the norm αL have been inherited
from those of α. Let X be a pointed metric space, and let E be a Banach space.
Let x, y ∈ X, and let e ∈ E. Then

αL(δ(x,y) � e) = α(δ(x,y) ⊗ e) = ‖δ(x,y)‖‖e‖
= d(x, y)‖e‖.

Hence αL is a Lipschitz cross norm. Let f ∈ X# (= F(X)∗), and let e∗ ∈ E∗. We
have ∣∣∣ n∑

i=1

(
f(xi)− f(yi)

)
〈e∗, ei〉

∣∣∣ = ∣∣∣f ⊗ e∗(
n∑

i=1

δ(xi,yi) ⊗ ei)
∣∣∣

≤ Lip(f)‖e∗‖α
( n∑

i=1

δ(xi,yi) ⊗ ei

)
≤ Lip(f)‖e∗‖αL

( n∑
i=1

δ(xi,yi) � ei

)
.

Then we see that αL is dualizable. Now it is easy to show that Φ is linear. Let u =∑n
i=1 δ(xi,yi) � ei = 0, and we will show that Φ(u) = 0. Indeed, let f ∈ F(X)∗,
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and let e∗ ∈ E∗. Since F(X)∗ = X#, we then have by [3, Proposition 1.6]

n∑
i=1

(
f(xi)− f(yi)

)
e∗(ei) = 0.

Thus
n∑

i=1

f(δ(xi,yi))e
∗(ei) = 0.

Hence Φ(u) = 0 tells us that Φ is well defined. Let u =
∑n

i=1 δ(xi,yi)�ei ∈ X�αLE.
By (3.1) we have

α
(
Φ(u)

)
= α

( n∑
i=1

δ(xi,yi) ⊗ ei

)
= αL(u);

thus Φ is an isometry. �

Since Φ is a linear isometry, its range Φ(X �αL E) is closed. On the other
hand, the tensors of the form

∑n
i=1 δ(xi,yi)⊗ei are dense in F(X)⊗̂αE. This shows

that the range Φ(X �αL E) is dense in F(X)⊗̂αE; thus X�̂αLE is isometrically
isomorphic to F(X)⊗̂αE.

Corollary 3.2. For every pointed metric space X and Banach space E, we have
that

X�̂αLE = F(X)⊗̂αE (3.2)

holds isometrically.

As a consequence of Theorem 2.1 and Corollary 3.2, we get the following result.

Corollary 3.3. Let I ◦ L be a Lipschitz ideal generated by the operator ideal I.
Suppose that I can be interpreted through a tensor product; that is, there is a
tensor norm α such that for every Banach spaces F , G we have

I(F ;G∗) = (F ⊗̂αG)∗.

Then there is a Lipschitz cross norm αL defined as in (3.1) such that

I ◦ Lip0(X;E∗) = (X�̂αLE)∗.

If we consider the projective tensor norm π and injective tensor norm ε, by using
(3.2) and the last corollary, it is not hard to see that

Lip0(X;E∗) = (X�̂πLE)∗ =
(
F(X)⊗̂πE

)∗
and that

I1

(
F(X);E∗) = (X�̂εLE)∗ =

(
F(X)⊗̂εE

)∗
= ISL

1 (X;E∗).
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3.2. Lipschitz Chevet–Saphar norms. We will consider the Chevet–Saphar
tensor norms, and we will discuss their corresponding Lipschitz cross norms. Let
F , G be two Banach spaces. The Chevet–Saphar norms gp and dp are defined on
a tensor product F ⊗G for 1 ≤ p ≤ ∞ as

dp(u) = inf
{∥∥(xi)i

∥∥
ln,w
p (F )

∥∥(gi)i∥∥ln
p∗ (G)

: u =
n∑

i=1

xi ⊗ gi

}
and as

gp(u) = inf
{∥∥(xi)i

∥∥
ln
p∗ (F )

∥∥(gi)i∥∥ln,w
p (G)

: u =
n∑

i=1

xi ⊗ gi

}
.

These norms are mainly introduced to study the classes of p-summing and strongly
p-summing linear operators. The dual spaces of the corresponding tensor products
coincide with these last spaces; that is,

Dp(F ;G∗) = (F ⊗̂gp∗G)∗ and Πp(F ;G∗) = (F ⊗̂dpG)∗.

We recall that a linear operator T : F → G is p-summing if there exists a positive
constant C such that, for every x1, . . . , xn ∈ F and g∗1, . . . , g

∗
n ∈ G∗, we have∣∣∣ n∑

i=1

〈
T (xi), g

∗
i

〉∣∣∣ ≤ Cdp(u), (3.3)

where u =
∑n

i=1 xi ⊗ g∗i . The space Πp(F,G) stands for the Banach space of all
p-summing linear operators and

‖T‖Πp = inf{C, verifying the equality (3.3)}.
Moreover, for the definition of strongly p-summing linear operators, we substitute
dp(u) with gp∗(u) in (3.3). Again Dp(F ;G) stands for the Banach space of all
strongly p-summing linear operators with the norm ‖T‖Dp . (For more details
about these notions see [6] and [9].) Now let X be a pointed metric space, and
let E be a Banach space. We define dLp , the corresponding norm of dp, as follows:
for every u = X � E we have

dLp (u) = dp
(
Φ(u)

)
= inf

{
‖mi‖ln,w

p (F(X))

∥∥(ei)i∥∥ln
p∗ (E)

}
,

where the infimum is taken over all representations of the form
∑n

i=1mi ⊗ ei ∈
F(X) ⊗ E such that Φ(u) =

∑n
i=1 mi ⊗ ei. By (3.2), we obtain the following

identification for 1 ≤ p < ∞

X�̂dLp
E = F(X)⊗̂dpE.

Let T ∈ Lip0(X;E) be a Lipschitz operator. The operator T can be see as a linear
functional on X � E∗ whose action on a tensor u =

∑n
i=1 δ(xi,yi) � e∗i is given by

〈T, u〉 =
n∑

i=1

〈
T (xi)− T (yi), e

∗
i

〉
.

Inspired by the definition of p-summing linear operators (3.3), we introduce a
new definition in the category of Lipschitz mappings.
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Definition 3.4. Let 1 ≤ p < ∞. Let X be a pointed metric space, and let E be
a Banach space. A Lipschitz operator T : X → E is said to be strictly Lipschitz
p-summing if there exists a positive constant C such that, for every xi, yi ∈ X
and e∗i ∈ E∗ (1 ≤ i ≤ n), we have∣∣∣ n∑

i=1

〈
T (xi)− T (yi), e

∗
i

〉∣∣∣ ≤ CdLp (u), (3.4)

where u =
∑n

i=1 δ(xi,yi) � e∗i . We denote by ΠSL
p (X;E) the Banach space of all

strictly Lipschitz p-summing operators from X into E of which its norm ‖T‖ΠSL
p

is the smallest constant C verifying (3.4).

In [4], the author has studied the class ΠL
p (X;E) of Lipschitz p-summing oper-

ators. He has defined a norm on the space of molecules F(X;E) of which we have
the next duality

ΠL
p (X;E∗) = Fcsp(X;E)∗,

where csp is defined by

csp(u) = inf
{
‖δ(xi,yi)‖ln,w

p∗ (F(X))

∥∥(ei)i∥∥lnp (E)

}
,

and where the infimum is taken over all representations of u of the form u =∑n
i=1 δ(xi,yi) � ei ∈ F(X;E). Note that the space of molecules F(X;E) plays the

same role of Lipschitz tensor product X�E whose norms can be defined on both
spaces. Definitions csp and dLp look very similar; however, they do not coincide.
In the definition of csp we are only using elements in F(X) of the form δ(x,y), but
in the second case we have to consider all elements of F(X). Thus the infimum
in dLp will in general be smaller. This means that

ΠSL
p (X;E) ⊂ ΠL

p (X;E).

In [15], we have seen that, if the linearization T̂ of T is p-summing, then T
is Lipschitz p-summing, but the converse is not true in general. In our case, we
show that it is true for the concept of strictly Lipschitz p-summing.

Theorem 3.5. Let 1 ≤ p < ∞. Let X be a metric space, and let E be a Banach
space. The following properties are equivalent.

(1) The Lipschitz operator T belongs to ΠSL
p (X;E).

(2) The linearization T̂ belongs to Πp(F(X);E).

Proof. (2) ⇒ (1): Suppose that T̂ ∈ Πp(F(X);E). Let xi, yi ∈ X, and let e∗i ∈ E∗

(1 ≤ i ≤ n). If we put u =
∑n

i=1 δ(xi,yi) � e∗i , then∣∣∣ n∑
i=1

〈
T (xi)− T (xi), e

∗
i

〉∣∣∣ = ∣∣∣ n∑
i=1

〈
T̂ (δ(xi,yi)), e

∗
i

〉∣∣∣
≤ ‖T̂‖Πpdp

(
Φ(u)

)
= ‖T̂‖Πpd

L
p (u);

hence T is strictly Lipschitz p-summing, and

‖T‖ΠSL
p

≤ ‖T̂‖Πp .
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(1) ⇒ (2): Suppose that T ∈ ΠSL
p (X;E). Let mi ∈ F(X) (mi =

∑ki
j=1 λ

j
iδ(xj

i ,y
j
i )
:

λj
i ∈ R), and let e∗i ∈ E (1 ≤ i ≤ n)∣∣∣ n∑

i=1

〈
T̂ (mi), e

∗
i

〉∣∣∣ = ∣∣∣ n∑
i=1

ki∑
j=1

〈
T (xj

i )− T (yji ), λ
j
ie

∗
i

〉∣∣∣
≤ ‖T‖ΠSL

p
dLp (u) = ‖T‖ΠSL

p
dp
(
Φ(u)

)
,

where

u =
n∑

i=1

ki∑
j=1

λj
iδ(xj

i ,y
j
i )
� e∗i ,

and Φ(u) =
∑n

i=1 mi ⊗ e∗i . Hence T̂ is p-summing, and ‖T̂‖Πp ≤ ‖T‖ΠSL
p
. �

As immediate consequences, we have the following results.

Corollary 3.6. For every pointed metric space X and Banach space E, we have

ΠSL
p (X;E) = (X�̂dLp

E∗)∗ =
(
F(X)⊗̂dpE

∗)∗ = Πp

(
F(X);E

)
.

Corollary 3.7. The next inclusion is strict:

ΠSL
p

(
R; l1(R)

)
⊂ ΠL

p

(
R; l1(R)

)
.

Proof. We know that δR : R →F(R), (F(R) = l1(R), in fact) is Lipschitz p-
summing. Its linearization is the identity on F(R) which cannot be p-summing
becauseF(R) is infinite-dimensional. Hence δR is not strictly Lipschitz p-summing.

�

If X is a Banach space, and T : X → E is a linear operator, then we have the
following result.

Proposition 3.8. Let X, E be two Banach spaces, and let T : X → E be a
linear operator. The following properties are equivalent.

(1) T is Lipschitz p-summing.
(2) T is p-summing.
(3) T is strictly Lipschitz p-summing.

In this case we have

‖T‖Πp = ‖T‖ΠL
p
= ‖T‖ΠSL

p
.

Proof. The equivalence (1) ⇔ (2) has been proved by Farmer and Johnson in
[11], and we have ‖T‖Πp = ‖T‖ΠL

p
. Now if T is p-summing, then by (1.4), T is

strictly Lipschitz p-summing, and we have

‖T‖ΠSL
p

= ‖T ◦ βX‖Πp ≤ ‖T‖Πp .

The last implication is immediate with ‖T‖ΠL
p
≤ ‖T‖ΠSL

p
. �
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In the linear case, every p-integral operator linear is p-summing. Then, by
Proposition 2.11 and Theorem 3.5, we conclude that every strongly Lipschitz
p-integral operator is strictly Lipschitz p-summing. In the next results, we give
some coincidence situations as in the linear case. For the proof, we use the lin-
earization of both classes and the linear results given in [9, p. 99].

Corollary 3.9. Let 1 ≤ p < ∞. Let Xbe a pointed metric space, and let E be an
injective Banach space. Then

ΠSL
p (X;E) = ISL

p (X;E),

with equality of norms.

Corollary 3.10. Let X be a pointed metric space, and letE be a Banach space.
Then

ΠSL
2 (X;E) = ISL

2 (X;E),

with equality of norms.

Corollary 3.11. If E is a subspace of an Lp-space, then 1 ≤ p ≤ 2, and, for
every pointed metric space X,

ΠSL
q (X;E) = ISL

q (X;E) = ISL
2 (X;E),

for all 2 ≤ q < ∞.

We next show a Lipschitz version of a well-known characterization of an L∞-
space which states that a Banach space X is an L∞-space if and only if, for every
Banach space E and 1-summing linear operator T : X → E, T is 1-integral (see
[9, Corollary 6.24] for more details about this characterization).

Theorem 3.12. Let X be a pointed metric space. The following properties are
equivalent.

(1) The space F(X) is an L∞-space.
(2) For all Banach space E we have ΠSL

1 (X;E) = ISL
1 (X;E).

Proof. (1) ⇒ (2): Suppose that F(X) is an L∞-space. Let E be a Banach space,

and let T ∈ ΠSL
1 (X;E); then T̂ : F(X) → E is 1-summing. By the characteriza-

tion of an L∞-space, T̂ is 1-integral. Consequently, T is in ISL
1 (X;E).

(2) ⇒ (1): Let v : F(X) → E be 1-summing linear operator. It is apparent
that v is 1-integral. If we let T = v ◦ δX , then T is strictly Lipschitz 1-summing,

and T̂ = v. By (2), T is strongly Lipschitz 1-integral, and then its linearization
is 1-integral. �

We finish this section by discussing the Lipschitz tensor norm associated with
the Chevet–Saphar norm gp. For every u =

∑n
i=1 δ(xi,yi) � ei ∈ X � E, we have

gLp (u) = gp
(
Φ(u)

)
.

Then

(X�̂gLp
E)∗ =

(
F(X)⊗̂gpE

)∗
.
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Proposition 3.1 in [15] states that there is an equivalence between a Lipschitz

mapping T and its linearization T̂ for the concept of strongly p-summing. More-
over, we have

Fµp(X;E)∗ = DL
p (X;E∗),

where the norm µp is defined as follows:

µp(u) = inf
{
‖δ(xi,yi)‖lnp (F(X))

∥∥(ei)i∥∥ln,w
p∗ (E)

: u =
n∑

i=1

δ(xi,yi)ei

}
.

Combining this definition with Theorem 2.1, we obtain the following identifica-
tion.

Theorem 3.13. Let X be a metric space, and let Ebe a Banach space. We have

(X�̂gLp
E)∗ =

(
F(X)⊗̂gpE

)∗
= DL

p∗(X;E∗) = Dp∗
(
F(X);E∗).

Corollary 3.14. The norms gLp and µpare the same.

Proof. Let u ∈ X � E. By the definition of gLp∗ , we have

gLp (u) ≤ µp∗(u).

On the other hand,

µp∗(u) = sup
T∈BFµp∗ (X;E)∗

∣∣〈T, u〉∣∣ = sup
T̂∈BDp∗ (F(X);E∗)

∣∣〈T̂ , u〉∣∣
= sup

T̂∈BDp∗ (F(X);E∗)

∣∣∣ n∑
i=1

〈
T̂ (δ(xi,yi)), ei

〉∣∣∣
≤ sup

T̂∈BDp∗ (F(X);E∗)

‖T̂‖Dp∗gp

( n∑
i=1

δ(xi,yi) ⊗ ei

)
≤ gp

(
Φ(u)

)
= gLp (u).

�
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