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Abstract. We introduce new function spaces to handle the Fourier trans-
form on Morrey spaces and investigate fundamental properties of the spaces.
As an application, we generalize the Stein–Tomas Strichartz estimate to our
spaces. The geometric property of Morrey spaces and related function spaces
will improve some well-known estimates.

1. Introduction

Although the Fourier transform is fundamental in mathematics, only a little
is known about this transform. One of the traditional ways to understand its
mapping property is to use the Lebesgue space Lp, but Lp, p 6= 2, is not enough
to grasp the behavior of the Fourier transform. Among the properties of the
Fourier transform, the relation between the Strichartz estimate and the Fourier
transform is mysterious. In this article, we propose to use the Morrey space Mp

q ,
which properly includes Lp whenever 1 ≤ q ≤ p <∞.

For some time, we have been developing the theory of the Fourier transform
on Lp. There are so many results in this direction involving the application to
PDEs. Meanwhile, our experience shows that the Lp result can be generalized to
the Morrey space Mp

q , 1 ≤ q ≤ p < ∞ (see [1], [4], [9]). The Morrey space Mp
q ,
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1 ≤ q ≤ p <∞ is the set of all measurable functions f for which the norm

‖f‖Mp
q
≡ sup

Q
|Q|

1
p
− 1

q

(∫
Q

∣∣f(x)∣∣q dx) 1
q

is finite, where Q ranges over all cubes having their sides parallel to coordinate
axes. By the use of the Hölder inequality,

Lp = Mp
p ⊂ Mp

q2
⊂ Mp

q1
(1.1)

holds whenever 1 ≤ q1 ≤ q2 ≤ p. Some mathematicians improved the Lp results by
using Morrey or Morrey-type spaces. For example, in [2], the authors improved
the Stein–Tomas Strichartz estimate by using the Morrey-type space Xp,q (see
Theorem 5.1 below). In [7], the authors improved the sharp maximal inequality
by using Morrey spaces. We have many results together with applications to PDE
on the estimate of the form ‖f∇g‖Lp (see [8]). However, as far as we know, there
are no results on the Fourier transform on Morrey spaces. The purpose of this
paper is to introduce a new function space MF

p
q , to capture the behavior of the

Fourier transform on Morrey spaces, and to investigate their properties.
We establish some basic notation. For a parameter p ∈ [1,∞], we denote its

conjugate by p′; that is, 1/p + 1/p′ = 1. All cubes Q in Rn are assumed to have
their sides parallel to the coordinate axes. We denote by Q the family of all cubes
and by `(Q) the sidelength of Q ∈ Q. For c > 0 and Q ∈ Q, we denote by cQ
the cube with the same center as Q but with sidelength c`(Q). We denote a cube
centered at the origin with volume (2r)n by Q(r):

Q(r) ≡
{
x = (x1, x2, . . . , xn) ∈ Rn : max

(
|x1|, |x2|, . . . , |xn|

)
≤ r

}
.

The set Q(x0, r) with x0 ∈ Rn and r > 0 is the set of all points x ∈ Rn for which
x − x0 ∈ Q(r). We denote the Lebesgue measure of the measurable set E ⊂ Rn

by |E|. We define the Fourier transform and its inverse by

Ff(ξ) ≡
∫
Rn

e−2iπx·ξf(x) dx (ξ ∈ Rn),

F−1f(ξ) ≡
∫
Rn

e2iπx·ξf(x) dx (ξ ∈ Rn)

for f ∈ S. Now we define a new space denoted by MF
p
q .

Definition 1.1. Let 1 ≤ p, q ≤ ∞, and let ψ ∈ C∞
c satisfy

χQ(1) ≤ ψ ≤ χQ(4). (1.2)

For f ∈ S ′, the Fourier–Morrey space MF
p
q = MF

p
q(Rn) is the set of all f ∈ S ′

for which the norm

‖f‖MF
p
q
≡ sup

Q∈Q
|Q|

1
p
− 1

q

(∫
Rn

∣∣∣F−1
[
ψ
( · − c(Q)

`(Q)

)]
∗ f(x)

∣∣∣q′ dx) 1
q′

is finite. Here we denote the center of the cube Q by c(Q).
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Although the definition of MF
p
q makes sense for all 1 ≤ p, q < ∞, the case

1 ≤ p < q <∞ will be excluded (see Lemma 2.1). Since the function ψ( ·−c(Q)
`(Q)

) is

supported near Q and equals 1 on Q, we denote it by ψQ throughout this paper.
It is easy to see that the space MF

p
q does not depend on ψ satisfying (1.2). By

using our space MF
p
q , we can describe the boundedness of the Fourier transform

on Morrey spaces, which is our starting point for this research.

Theorem 1.2.

(1) If 1 ≤ q ≤ p <∞ and q < 2, then the Fourier transform is bounded from
Mp

q to MF
p
q; for some constant C > 1,

‖Ff‖MF
p
q
≤ C‖f‖Mp

q
(1.3)

for all f ∈ Mp
q.

(2) Let p ≥ 2. Then the Fourier transform is an isomorphism from Mp
2 to

MF
p
2; for some constant C > 1,

C−1‖f‖Mp
2
≤ ‖Ff‖MF

p
2
≤ C‖f‖Mp

2
(1.4)

for all f ∈ Mp
2.

Assertions (1) and (2) of Theorem 1.2 are not hard to prove. We can prove
them directly by applying the Hausdorff–Young inequality to the definition of
our norm. We also note that F−1ψ = Fψ(−·). Meanwhile, using the space MF

p
q ,

we can refine some well-known estimates, as follows.

Theorem 1.3. We have the following two estimates.

(1) The Fourier transform is bounded from MF
∞
∞ to L∞; for some constant

C > 1,

‖Ff‖L∞ ≤ C‖f‖MF∞
∞ (1.5)

for all f ∈ MF
∞
∞.

(2) For each t ∈ R, let T (t) denote the Schrödinger propagator; see (1.7) for
the precise definition. Then T (t) is bounded from MF

∞
∞ to L∞; for some

constant C > 1, ∥∥T (t)f(x)
∥∥
L∞
x
≤ Ct−

n
2 ‖f‖MF∞

∞ (1.6)

for all f ∈ MF
∞
∞.

By Proposition 2.5, which will be proved below, we have L1 ↪→ MF
∞
∞. Hence

Theorem 1.3 improves the well-known estimates F : L1 → L∞ and T (t) : L1 →
L∞. These results motivate us to consider the space MF

p
q . We also introduce a

new function space HF
p
q .

Definition 1.4. Let 1 ≤ p ≤ q ≤ ∞. An Lq
′
function b is said to be a (p, q)-Fourier

block if the support of Fb is contained in some cube Q and ‖b‖Lq′ ≤ |Q|
1
q
− 1

p holds.
The space HF

p
q is defined as the set of all Lp

′
functions f for which f is expressed

as

f =
∞∑
j=1

λjbj
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in Lp
′
, where the bk’s are (p, q)-Fourier blocks, and {λj}∞j=1 ∈ `1. One defines

‖f‖HF
p
q
≡ inf

{∥∥{λj}∞j=1

∥∥
`1
: f =

∞∑
j=1

λjbj

}
,

where the infimum is taken over all possible decompositions of f above.

It is useful to see the fact that there exists a constant C > 0 such that ‖b‖Lp′ ≤
C for all (p, q)-Fourier blocks. In fact, if we admit Corollary 2.4 for a moment,

then it follows that ‖b‖Lp′ ≤ C|Q|
1
q′−

1
p′ ‖b‖Lq′ ≤ C. This definition dates back to

1986 (see [16, p. 589]).
Our main results in this paper are the following theorems. The first one is

about a predual space of MF
p
q .

Theorem 1.5. Let 1 ≤ p ≤ q < ∞, and let q > 1. Then (HF
p
q)

∗ = MF
p′

q′ in the
following sense.

(0) The space S is dense in HF
p
q.

(1) Let f ∈ MF
p′

q′ be arbitrary. Then for any (p, q)-Fourier block b ∈ S,∣∣〈f, b〉∣∣ ≤ C‖f‖HF
p
q
;

hence, f can be extended to a bounded linear functional Lf on HF
p
q with

the estimate ‖Lf‖(HF
p
q)∗ ≤ C‖f‖MF

p′
q′
.

(2) For any L ∈ (HF
p
q)

∗ there uniquely exists f ∈ MF
p′

q′ such that

‖f‖MF
p′
q′
≤ ‖L‖(HF

p
q)∗ , L(g) = Lf (g) (g ∈ HF

p
q),

holds.

The next result generalizes the Stein–Tomas Strichartz estimate (see [11], [12],
[14]). To state our next result, we recall the Schrödinger propagator, and we
define the mixed-type norm space denoted by MF

p
q(Rn

x, L
r(Rt)). The Schrödinger

propagator T is defined by

T (t)g(x) ≡ F−1[e−i4π
2|ξ|2tFg](x) =

∫
Rn

e2iπ(x·ξ−2πt|ξ|2)Fg(ξ) dξ (1.7)

for g ∈ L2(Rn) and each (x, t) ∈ Rn+1. Since the transformation

FRnF (ξ, t) =

∫
Rn

F (x, t)e−2πix·ξ dx

is an isomorphism in S(Rn+1), T (t)g(x) can be regarded as an element in
S ′(Rn+1).

We introduce a suitable mixed-type space to discuss the Schrödinger propagator
on Morrey spaces.

Definition 1.6. Let 1 ≤ q ≤ p ≤ ∞ and 1 < r < ∞. Let ψ0 ∈ C∞
c (R) satisfy

χ[−1,1] ≤ ψ0 ≤ χ[−2,2], and set

ϕ0
j ≡ ψ0(2−j·)− ψ0(2−j+1·).
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Write

ψQ ⊗ ϕ0
j(x, t) ≡ ψQ(x)ϕ

0
j(t) (x, t) ∈ Rn+1 = Rn × R.

Define MF
p
q(Rn

x, L
r(Rt)) as the set of all distributions F ∈ S ′(Rn+1) for which

the norm

‖F‖MF
p
q(Rn

x ,L
r(Rt))

=
∥∥F (x, t)∥∥MF

p
q(Rn

x ,L
r(Rt))

≡ sup
Q∈D(Rn)

|Q|
1
p
− 1

q

(∫
Rn

(∫
R

∣∣F−1[ψQ ⊗ ψ0] ∗ F (x, t)
∣∣r dt) q′

r
dx

) 1
q′

+ sup
Q∈D(Rn)

|Q|
1
p
− 1

q

(∫
Rn

(∫
R

( ∞∑
j=1

∣∣F−1[ψQ ⊗ ϕ0
j ] ∗ F (x, t)

∣∣2) r
2
dt
) q′

r
dx

) 1
q′

is finite.

Although the above definition is quite complicated, we have the following for-
mula (see Lemma 1.7(1) below). It is the advantage of the above definition that
we can check the following embedding relation (see Lemma 1.7(2) below).

Lemma 1.7. Let 1 ≤ q ≤ p ≤ ∞, and let 1 < r <∞.

(1) If F ∈ S(Rn
x × Rt), then

‖F‖MF
p
q(Rn

x ,L
r(Rt)) ∼ sup

Q∈D(Rn)

|Q|
1
p
− 1

q

(∫
Rn

(∫
R

∣∣F−1[ψQ] ∗Rn F (x, t)
∣∣r dt) q′

r
dx

) 1
q′
.

Here the convolution F−1ψQ ∗Rn F (x, t) is taken in the sense of Rn; that
is, F−1ψQ ∗Rn F (x, t) ≡

∫
Rn F−1ψQ(x− y)F (y, t) dy.

(2) The space MF
p
q(Rn

x, L
r(Rt)) is continuously embedded into S ′(Rn+1).

We will prove this lemma in the beginning of Section 4. By using this mixed
norm, we generalize the Stein–Tomas Strichartz estimate. Using the Stein–Tomas
Strichartz estimate directly, we can show the following generalization easily.

Proposition 1.8. Let

q =
2(n+ 2)

n
(≥ 2), (1.8)

and let

s ∈ [q′, 2] =
[2(n+ 2)

n+ 4
, 2
]
. (1.9)

Define v = vs,q by

1

vs,q
=

1

q
+

1

s
− 1

2
. (1.10)

Then for all g ∈ S ′,∥∥T (t)g(x)
∥∥
MF

s
q′ (R

n
x ,L

q(Rt))
≤ C‖Fg‖Mv

2(Rn) ≤ C‖g‖MF
v
2(Rn). (1.11)
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Note that MF
q′

q′ = Lq; hence MF
q′

q′(Rn
x, L

q(Rt)) = Lq(Rn+1
x,t ). See Proposi-

tion 2.5 and the fact that the condition (1.10) turns into vs,q = 2 when s = q′.
Thus this proposition is a natural generalization of the Stein–Tomas Strichartz
estimate since (1.11) turns into∥∥T (t)g(x)

∥∥
Lq(Rn+1)

≤ C‖Fg‖L2(Rn), (1.12)

which corresponds to the original Stein–Tomas Strichartz estimate (see [12], [14])
when s = q′.

It is difficult to improve the inequality (1.12) in the same framework. However,
by using another function space, the inequality can be improved (see [2]). Mean-
while, we can improve the inequality (1.11) in the same framework as follows,
which is our second main theorem.

Theorem 1.9. Let q, s, and v = vs,q satisfy (1.8), (1.9), and (1.10), respectively.

(1) If ρ satisfies

max
[2(n+ 1)(n+ 2)

n2 + 3n+ 4
, v − vq

(
−1

s
+

1

q′

)]
< ρ ≤ v, (1.13)

then for all g ∈ S ′,∥∥T (t)g(x)
∥∥
MF

s
q′ (R

n
x ,L

q(Rt))
≤ C‖Fg‖Mv

ρ(Rn). (1.14)

(2) In the endpoint case, s = 2 if ρ satisfies

2(n+ 1)(n+ 2)

n2 + 3n+ 4
< ρ ≤ q; (1.15)

then for all g ∈ S ′, ‖T (t)g(x)‖MF
2
q′ (R

n
x ,L

q(Rt)) ≤ C‖Fg‖Mq
ρ(Rn).

A couple of remarks may be in order.

Remark 1.10.

(1) Note that (1.13) and (1.15) are identical when s = 2. Meanwhile, when
s = q′, the condition (1.13) turns into 2 < ρ ≤ 2. In this case it will be
understood that ρ = 2; hence the inequality corresponds to (1.12).

(2) When the parameter s moves from q′ to 2, the parameter v = vs,q moves
from 2 to q.

(3) In the condition (1.13), arithmetic shows v − vq(−1
s
+ 1

q′
) < 2 whenever

s ∈ (q′, 2]. Meanwhile, one knows that 2(n+1)(n+2)
n2+3n+4

< 2. Hence the param-
eter ρ can be strictly less than 2. This together with (1.1) implies that
Theorem 1.9 improves Proposition 1.8.

Throughout this article, we also use the following notation.

• For f ∈ S ′ and ϕ ∈ S, define ϕ(D)f ≡ F−1[ϕFf ].
• We will denote byD orD(Rn) the family of all dyadic cubes {Qjm}j∈Z,m∈Zn

in Rn, where Qjm ≡
∏n

i=1[2
−jmi, 2

−j(mi + 1)).



MORREY SPACES AND FOURIER TRANSFORM 7

This article is organized as follows. In Section 2, we investigate fundamental
properties of the space MF

p
q . In Section 3, we investigate fundamental properties

of the space HF
p
q and prove Theorem 1.5. In Section 4, as an application of

Theorem 1.5, we generalize the Fourier restriction theorem to our space HF
p
q . In

Section 5, we will prove Theorem 1.9.

2. The fundamental properties of MF
p
q

We prove Theorem 1.2. For example, we prove (1.3) as follows. Fix a cube Q.
Then we have

|Q|
1
p
− 1

q

(∫
Rn

∣∣F−1ψQ ∗ F−1f(x)
∣∣q′ dx) 1

q′ ≤ C|Q|
1
p
− 1

q

(∫
Rn

∣∣ψQ(x)f(x)∣∣q dx) 1
q

≤ C‖f‖Mp
q

by Young’s inequality. The proof of (1.4) is similar. We also prove Theorem 1.3
here. To obtain (1.5), we employ the estimate F : L1 → L∞ as follows:

‖Ff‖L∞ = sup
Q∈Q

‖ψQFf‖L∞ ≤ C sup
Q∈Q

‖F−1ψQ ∗ f‖L1 = C‖f‖MF∞
∞ .

Meanwhile, to show (1.6), note that MF
1
1 = L∞, which we will prove in Propo-

sition 2.5 below. Further, we use the estimate ‖T (t)g(x)‖L∞
x

≤ Ct−
n
2 ‖g‖L1 (see,

e.g., [5]). With these in mind, we see that∥∥T (t)f(x)
∥∥
L∞
x
∼

∥∥T (t)f(x)
∥∥
MF

1
1(Rn

x)

= sup
Q∈Q

∥∥F−1ψQ ∗
[
T (t)f(·)

]∥∥
L∞

= sup
Q∈Q

∥∥T (t)[F−1ψQ ∗ f ]
∥∥
L∞

≤ sup
Q∈Q

Ct−
n
2 ‖F−1ψQ ∗ f‖L1

= Ct−
n
2 ‖f‖MF∞

∞ .

Having thus proved the fundamental theorem, we proceed to investigate the space
MF

p
q .

According to the next lemma, it does not make sense to consider the case of
p < q.

Lemma 2.1. If 1 ≤ p < q <∞ and if f ∈ S ′ satisfies ‖f‖MF
p
q
<∞, then f = 0.

Proof. For N ∈ N, we define

fN ≡ F−1
[
ψ
( ·
2N

)]
∗ f.

Then each fN satisfies ‖fN‖Lq′ ≤ (2N)−
n
p
+n

q ‖f‖MF
p
q
. Hence fN → 0 in Lq

′
as

N → ∞. Meanwhile, fN tends to f in S ′ as N → ∞ since f ∈ S ′. Thus f = 0. �

Before the next topic, we investigate the scaling property of MF
p
q .
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Proposition 2.2. Let 1 ≤ q ≤ p < ∞, R > 0, and let f ∈ S ′. Write fR(x) ≡
f(Rx) for x ∈ Rn. Then

‖fR‖MF
p
q
= R

− n
p′ ‖f‖MF

p
q
. (2.1)

Proof. To calculate ‖fR‖MF
p
q
, we first observe that

F−1ψQ ∗ fR(x) =
∫
Rn

F−1ψQ(x− y)f(Ry) dy

=

∫
Rn

R−nF−1ψQ
(
R−1(Rx− w)

)
f(w) dw

= F−1[ψQ]R ∗ f(Rx),

where [ψQ]R(x) ≡ ψQ(Rx) = ψQR
(x) and where QR = {x ∈ Rn : Rx ∈ Q}. Then

we see that

‖fR‖MF
p
q
= sup

Q∈Q
|Q|

1
p
− 1

q

(∫
Rn

∣∣F−1ψQR
∗ f(Rx)

∣∣q′ dx) 1
q′

= R
n( 1

p
− 1

q
)− n

q′ sup
Q∈Q

|QR|
1
p
− 1

q

(∫
Rn

∣∣F−1ψQR
∗ f(y)

∣∣q′ dy) 1
q′

= R
− n

p′ ‖f‖MF
p
q
. �

To investigate the fundamental embedding properties ofMF
p
q , we recall the fol-

lowing result, which is a consequence of the Planchrel–Polya–Nikol’skii inequality.

Lemma 2.3 ([15, p. 18]). Let 0 < p ≤ p1 ≤ ∞, and let R > 0. Then it holds that

‖f‖Lp1 ≤ CR
n( 1

p
− 1

p1
)‖f‖Lp for all f ∈ S ′

Q(R) ≡ {f ∈ S ′ : supp(Ff) ⊂ Q(R)}.

As a direct corollary, we obtain the following.

Corollary 2.4. Let 0 < p ≤ p1 ≤ ∞, let R > 0, and let x0 ∈ Rn be arbitrary.

Then it also holds that ‖f‖Lp1 ≤ CR
n( 1

p
− 1

p1
)‖f‖Lp for all f ∈ S ′

Q(x0,R) ≡ {f ∈
S ′ : supp(Ff) ⊂ Q(x0, R)}.

Employing the above Planchrel–Polya–Nikol’skii-type inequality, we obtain the
embedding relation similar to the case of Morrey spaces.

Proposition 2.5 (Fundamental embedding and special cases).

(1) Let 1 ≤ q ≤ q1 ≤ p ≤ ∞. Then Lp
′
↪→ MF

p
q1
↪→ MF

p
q in the sense of

continuous embedding.
(2) Let 1 ≤ p <∞. Then

MF
p
p = Lp

′
. (2.2)

(3) Denote by δ0 the Dirac delta massed at the origin. Then δ0 ∈ MF
∞
∞.
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Proof.

(1) Since q ≤ q1 ≤ p implies that p′ ≤ q′1 ≤ q′, using Corollary 2.4 we obtain,
for all Q ∈ Q,

|Q|
1
p
− 1

q

(∫
Rn

∣∣F−1ψQ ∗ f(x)
∣∣q′ dx) 1

q′

≤ C|Q|
( 1
p
− 1

q
+ 1

q′1
− 1

q′ )
(∫

Rn

∣∣F−1ψQ ∗ f(x)
∣∣q′1 dx) 1

q′1

= C|Q|
1
p
− 1

q1

(∫
Rn

∣∣F−1ψQ ∗ f(x)
∣∣q′1 dx) 1

q′1 ,

which implies that ‖f‖MF
p
q
≤ C‖f‖MF

p
q1
. In particular, by taking q1 = p,

we see that

‖f‖MF
p
q
≤ C‖f‖MF

p
p
= C sup

Q∈Q

(∫
Rn

∣∣F−1ψQ ∗ f(x)
∣∣p′ dx) 1

p′ ≤ C‖f‖Lp′

by the Young inequality.
(2) Thanks to (1), we know that Lp

′
↪→ MF

p
p. To show the converse inclusion,

we fix any f ∈ MF
p
p. Let us denote ψ(2

−j·) = ψj. First, we consider the
case of 1 < p <∞. If f is in S, then it is easy to see that

‖f‖MF
p
p
≥ sup

j∈Z

(∫
Rn

∣∣F−1ψj ∗ f(x)
∣∣p′ dx) 1

p′

≥ lim
j→∞

(∫
Rn

∣∣F−1ψj ∗ f(x)
∣∣p′ dx) 1

p′
= ‖f‖Lp′

by p > 1. However, since we have only f ∈ MF
p
p ⊂ S ′, we need to

take care. We need to show f ∈ L1
loc. Notice that f ∈ MF

p
p implies that

{F−1[ψj] ∗ f}j∈Z forms a bounded set in Lp
′
:

sup
j∈Z

(∫
Rn

∣∣F−1ψj ∗ f(x)
∣∣p′ dx) 1

p′ ≤ ‖f‖MF
p
p
<∞.

We notice from p <∞ that Lp
′
= (Lp)∗. Therefore, by Banach–Alaoglu’s

theorem, we may choose a subsequence {jl}l∈N such that F−1[ψjl ] ∗ f
converges weakly to some g ∈ Lp

′
as l → ∞. In this case, we can show

that g = f in the sense of S ′ as follows: take any η ∈ S, and calculate
that

〈g, η〉 = lim
l→∞

〈
F−1[ψjl ] ∗ f, η

〉
= lim

l→∞

〈
f,F−1[ψjl ] ∗ η

〉
= 〈f, η〉.

Hence we see that f = g ∈ Lp
′
. Moreover, we have

‖f‖Lp′ = ‖g‖Lp′ ≤ sup
j∈Z

(∫
Rn

∣∣F−1ψj ∗ f(x)
∣∣p′ dx) 1

p′ ≤ ‖f‖MF
p
p
,

which implies that MF
p
p ↪→ Lp

′
. For the case of p = 1, we recall that

‖f‖L∞ ∼ ‖f‖H∞ ≡
∥∥sup
j∈Z

|F−1ψQ(2j) ∗ f |
∥∥
L∞ .
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Hence we see that

‖f‖L∞ ∼
∥∥sup
j∈Z

|F−1ψQ(2j) ∗ f |
∥∥
L∞ ≤ sup

Q∈Q
‖F−1ψQ ∗ f‖L∞ = ‖f‖MF

1
1
,

which implies that L∞ = MF
1
1.

(3) Note that F−1ψQ ∗ δ0 = F−1ψQ and that ‖F−1ψQ‖L1 = ‖F−1ψ‖L1 . Hence
‖F−1ψQ ∗ δ0‖L1 = ‖F−1ψ‖L1 follows. �

Example 2.6. We give a couple of examples. Let 1 ≤ q ≤ p <∞, and let ψ satisfy
(1.2). Write

Cψ,q ≡
(∫

Rn

∣∣F−1ψQ0(x)
∣∣q′ dx) 1

q′
> 0.

(1) Let Q0 ∈ D with `(Q0) = 1. Then we claim that

‖F−1χQ0‖MF
p
q
∼ Cψ,q > 0.

In particular, by using the scaling law (2.1), we see that ‖F−1χQ‖MF
p
q
∼

|Q|
1
p′Cψ,q.

(2) Let 1 ≤ q ≤ min(p, 2). Let E0 ≡ [0, 1]n, and construct a set Em ⊂ E0

inductively. Supposing that we have defined E0, E1, . . . , Em−1, we define
Em by

Em ≡
⋃

e∈{0,1−γ}n
(e+ γEm−1).

We can choose γ ∈ (0, 1/2), which depends on p, q so that

‖χEm‖Mp
q
∼ ‖χEm‖Lq ∼ γ

mn
p . (2.3)

Then we have ‖F−1χEm‖MF
p
q
∼ γ

mn
p . Hence we have an example of f

satisfying f ∈ MF
p
q0
\MF

p
q1

with 1 ≤ q0 < q1 ≤ 2.

One may observe that the norm of MF
p
q is similar to the norm of the Besov

space B
n( 1

p
− 1

q
)

q′∞ . To see this, we recall the Besov norm. Let us denote the
Littlewood–Paley decomposition by {ϕj}∞j=0; that is, the sequence {ϕj}∞j=0 ⊂ S
is defined as follows. Assume that ϕ0, ϕ ∈ C∞

c (Rn) satisfy

χQ(4) ≤ ϕ0 ≤ χQ(8), χQ(4)\Q(2) ≤ ϕ ≤ χQ(8)\Q(1),

and let ϕj ≡ ϕ(2−j·) for j ∈ N. Let s ∈ R, and let 0 < p, q ≤ ∞. The Besov norm
of f ∈ S ′ is defined by

‖f‖Bs
pq
≡

(∑
j∈N0

∥∥2jsϕj(D)f
∥∥q
Lp

) 1
q
,

where ϕj(D)f ≡ F−1ϕj ∗ f .

Proposition 2.7. Let 1 ≤ q ≤ p ≤ ∞. The following embedding holds:

Lp
′
↪→ MF

p
q ↪→ B

n( 1
p
− 1

q
)

q′∞ = B
n( 1

q′−
1
p′ )

q′∞ .
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Proof. The left embedding is (2.2) itself; let us concentrate on the right embed-
ding.

Let us abbreviate Q(2j) to Qj, and let {ϕj}∞j=0 denote a Littlewood–Paley
decomposition as above. If we notice that ϕj = ϕj · ψQj+10

, then it follows that

‖f‖
B

n( 1p− 1
q )

q′∞

= sup
j∈N0

2jn(
1
p
− 1

q
)‖F−1ϕj ∗ F−1ψQj+10

∗ f‖Lq′

≤ C sup
j∈N0

|Qj|
1
p
− 1

q ‖F−1ψQj+10
∗ f‖Lq′ ≤ C‖f‖MF

p
q
.

�

From Proposition 2.7, we particularly have

L1 ↪→ MF
∞
∞ ↪→ B0

1∞.

In addition, we already know that F : B0
1∞ → L∞; that is,

‖Ff‖L∞ ≤ C‖f‖B0
1∞

(f ∈ B0
1∞). (2.4)

Hence our first observation (1.5) is weaker than the known estimate (2.4). How-
ever, it is possible to improve the estimate (2.4) further by defining the Besov-type
space of MF

p
q .

Definition 2.8. Let us denote the Littlewood–Paley decomposition by {ϕj}j∈N0 .
For f ∈ S ′, we define

‖f‖N 0
MF

∞∞,∞
≡ sup

j∈N0

∥∥ϕj(D)f
∥∥
MF∞

∞

and the spaceN 0
MF∞

∞,∞ by all the functions f ∈ S ′ for which the norm ‖f‖N 0
MF

∞∞,∞

is finite.

This space is closely related to the Besov–Morrey spaces (see [6, Definition 1.3]).
Using the space N 0

MF∞
∞,∞, we may improve the estimate (2.4), as follows.

Proposition 2.9.

(1) We have the following embedding relation:

B0
1∞ ↪→ N 0

MF∞
∞,∞.

(2) The Fourier transform F is bounded from N 0
MF∞

∞,∞ to L∞:

‖Ff‖L∞ ≤ C‖f‖N 0
MF

∞∞,∞
.

Proof. The embedding (1) follows directly from the embedding L1 ↪→ MF
∞
∞.

Indeed,

‖f‖N 0
MF

∞∞,∞
= sup

j∈N0

∥∥ϕj(D)f
∥∥
MF∞

∞
≤ C sup

j∈N0

∥∥ϕj(D)f
∥∥
L1 = ‖f‖B0

1∞
.

To show (2), we employ (1.5) to obtain

‖Ff‖L∞ = sup
j∈N0

‖ϕjFf‖L∞ ≤ C sup
j∈N0

‖F−1ϕj ∗ f‖MF∞
∞ = C‖f‖N 0

MF
∞∞,∞

.
�

We next show the completeness of the space MF
p
q . We employ the argument

in [10, Lemma 2.15] to show the completeness of MF
p
q .
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Theorem 2.10. Let 1 ≤ q ≤ p ≤ ∞.

(1) (Fatou property) Let {fj}∞j=1 ⊂ S ′ converge to f in S ′. Then

‖f‖MF
p
q
≤ lim inf

j→∞
‖fj‖MF

p
q
. (2.5)

(2) (Completeness) The space MF
p
q is complete; that is, for any sequence

{fj}∞j=1 ⊂ MF
p
q satisfying

lim
j,k→∞

‖fj − fk‖MF
p
q
= 0, (2.6)

there exists f ∈ MF
p
q such that fj → f in MF

p
q.

Proof. We may apply the argument as in the case of Besov spaces. Note that
fj → f in S ′ implies that F−1ψQ ∗ fj(x) → F−1ψQ ∗ f(x) for each x ∈ Rn and
each Q ∈ Q. With this in mind, we calculate that

‖f‖MF
p
q
= sup

Q∈Q
|Q|

1
p
− 1

q

(∫
Rn

lim
j→∞

∣∣F−1ψQ ∗ fj(x)
∣∣q′ dx) 1

q′

≤ lim inf
j→∞

sup
Q∈Q

|Q|
1
p
− 1

q

(∫
Rn

∣∣F−1ψQ ∗ fj(x)
∣∣q′ dx) 1

q′
.

This proves (2.5).
Next we will show the completeness. Let {fj}∞j=1 satisfy (2.6). Since we have the

embedding MF
p
q ↪→ B

n( 1
p
− 1

q
)

q′∞ by Proposition 2.7, at least the sequence {fj}∞j=1

converges some f ∈ B
n( 1

p
− 1

q
)

q′∞ in the sense of S ′. Hence we employ the Fatou
property of MF

p
q to obtain

‖f − fj‖MF
p
q
≤ lim inf

k→∞
‖fk − fj‖MF

p
q
→ 0

as j → ∞. �

We have defined the norm ‖ · ‖MF
p
q
without restricting the position of cubes.

In the case of the central-type Fourier–Morrey norm, which we will define below,
the converse inclusion holds in a certain sense.

Definition 2.11. Let 1 ≤ q ≤ p ≤ ∞, and let f ∈ S ′. The central-type Fourier–
Morrey norm ‖ · ‖MF

p
cq
is defined by

‖f‖MF
p
cq
≡ sup

j∈Z
2jn(

1
p
− 1

q
)
(∫

Rn

∣∣F−1
[
ψ(2−j·)

]
∗ f(x)

∣∣q′ dx) 1
q′
.

The space MF
p
cq collects all f ∈ S ′ for which the norm ‖f‖MF

p
cq
is finite.

Observe that MF
p
q is continuously embedded into MF

p
cq.

Proposition 2.12. Let 1 ≤ q ≤ p ≤ ∞. Then

B
n( 1

p
− 1

q
)

q′1 ↪→ MF
p
cq ↪→ B

n( 1
p
− 1

q
)

q′∞ . (2.7)

When q = 2 ≤ p ≤ ∞, the left embedding in (2.7) can be improved:

B
n( 1

p
− 1

2
)

22 ↪→ MF
p
c2 ↪→ B

n( 1
p
− 1

2
)

2∞ . (2.8)
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Proof. Let ψ = ϕ0 be a function such that χQ(1) ≤ ψ ≤ χQ(2). For each j, define

ϕj ≡ ψ(2−j·) − ψ(2−j+1·). The embedding MF
p
cq ↪→ B

n( 1
p
− 1

q
)

q′∞ follows directly,
similar to Proposition 2.7.

Let us show that B
n( 1

p
− 1

q
)

q′1 ↪→ MF
p
cq. If we observe that ψQj

=
∑j+1

k=0 ϕk · ψQj
,

then

‖f‖MF
p
cq
= sup

j∈N0

2jn(
1
p
− 1

q
)‖F−1ψQj

∗ f‖Lq′

≤ sup
j∈N0

2jn(
1
p
− 1

q
)
j+1∑
k=0

‖F−1ϕk ∗ f‖Lq′ · ‖F−1ψ‖L1 .

In addition, since 1
p
− 1

q
≤ 0, we have 2jn(

1
p
− 1

q
) ≤ 2kn(

1
p
− 1

q
) for all k ≤ j. As a

result, it follows that

‖f‖MF
p
cq
≤ ‖F−1ψ‖L1

∑
k∈N0

2kn(
1
p
− 1

q
)‖F−1ϕk ∗ f‖Lq′ = Cψ‖f‖

B
n( 1p− 1

q )

q′1

,

which proves (2.7).
Let us prove (2.8). In the case of q = 2, since we may use Plancherel’s theorem,

it is possible to improve the above embedding. Note that

‖f‖MF
p
cq
= sup

j∈N0

2jn(
1
p
− 1

2
)‖ψQj

Ff‖L2 ∼ sup
j∈N0

2jn(
1
p
− 1

2
)
∥∥∥( j+1∑

k=0

ϕ2
k

) 1
2
ψQj

Ff
∥∥∥
L2
.

A direct calculation gives us∥∥∥( j+1∑
k=0

ϕ2
k

) 1
2
ψQj

Ff
∥∥∥
L2

=
(∫

Rn

j+1∑
k=0

ϕ2
k(ξ)ψ

2
Qj
(ξ)

∣∣Ff(ξ)∣∣2 dξ) 1
2

=
( j+1∑
k=0

‖ϕkψQj
Ff‖2L2

) 1
2

=
( j+1∑
k=0

‖F−1ψQj
∗ F−1ϕk ∗ f‖2L2

) 1
2
.

Thus, by recalling 1
p
− 1

2
< 0 , we obtain

‖f‖MF
p
cq
≤ ‖F−1ψ‖L1 ·

(∑
k∈N0

22jn(
1
p
− 1

2
)‖F−1ϕk ∗ f‖L2

) 1
2
= Cψ‖f‖

B
n( 1p− 1

2 )

22

.

�

3. The fundamental properties of HF
p
q

Now we investigate the predual space HF
p
q with 1 ≤ q ≤ p < ∞ defined in

Definition 1.4. The first one is a fundamental embedding.

Proposition 3.1. Let 1 ≤ p ≤ q1 ≤ q ≤ ∞.
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(1) The following embedding relation

HF
p
q ↪→ HF

p
q1
↪→ Lp

′
(3.1)

holds.
(2) If the bk’s are (p, q)-Fourier blocks and {λj}∞j=1 ∈ `1, then

∞∑
j=1

λjbj

converges in Lp
′
.

Proof. We first show the left embedding in (3.1). If b is a (p, q)-Fourier block, by
q′ ≤ q′1, then we have

‖b‖
Lq′1

≤ C|Q|
1
q′−

1
q′1 ‖b‖Lq′ ≤ C|Q|

1
q′−

1
q′1

+ 1
q
− 1

p = C|Q|
1
q1

− 1
p .

This implies that b is a (p, q1)-Fourier block; hence HF
p
q ↪→ HF

p
q1

holds.

Meanwhile, since for any f ∈ HF
p
q we can take {λj}∞j=1 ∈ `1 and (p, q)-Fourier

blocks {bj}∞j=1 such that f =
∑
λjbj and ‖{λj}∞j=1‖`1 ≤ 2‖f‖HF

p
q
hold, it follows

that

‖f‖Lp′ ≤
∞∑
j=1

|λj|‖bj‖Lp′ ≤ C
∞∑
j=1

|λj|‖bj‖Lq′ |Qj|
1
q′−

1
p′ ≤ C‖f‖HF

p
q
.

This implies that HF
p
q ↪→ Lp

′
, thereby implying assertion (2), as well. �

Let us consider further an example of (p, q)-Fourier blocks. We will employ the
following lemma in the proof of Theorem 1.5.

Lemma 3.2. Let 1 ≤ p ≤ q < ∞, and let Q ∈ Q. Let ψ and g satisfy (1.2) and

‖g‖Lq′ ≤ 1, respectively. Then |Q|
1
q
− 1

p (‖F−1ψ‖L1)−1ψQ(D)g is a (p, q)-Fourier
block. In particular,∥∥ψQ(D)g

∥∥
HF

p
q
≤ C‖F−1ψ‖L1|Q|

1
p
− 1

q ‖g‖Lq′ , (3.2)

where the constant C depends only on the dimension.

Proof. By the Young inequality,

|Q|
1
q
− 1

p
(
‖F−1ψ‖L1

)−1∥∥ψQ(D)g
∥∥
Lq′ ≤ ‖F−1ψQ‖L1

(
‖F−1ψ‖L1

)−1|Q|
1
q
− 1

p

= |Q|
1
q
− 1

p .

As for the frequency support, we have supp(FψQ(D)g) ⊂ supp(ψQ) ⊂ 4Q. Thus

|Q|
1
q
− 1

p (‖F−1ψ‖L1)−1ψQ(D)g with some constant is a (p, q)-Fourier block. �

Before the next topic, we investigate the scaling property of HF
p
q .

Proposition 3.3. Let 1 ≤ p ≤ q ≤ ∞. Let f ∈ S ′, and write fR(x) ≡ f(Rx) for

R > 0. Then ‖fR‖HF
p
q
= R

− n
p′ ‖f‖HF

p
q
.
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Proof. If we let bR(x) ≡ b(Rx) for any (p, q)-Fourier block b with the associated
cube Q, then we notice that the support of FbR is contained in Q(R) = {x ∈
Rn : R−1x ∈ Q} and that

‖bR‖Lq′ = R
− n

q′ ‖b‖Lq′ ≤ R
− n

q′ |Q|
1
q
− 1

p = R
− n

p′ |RQ|
1
q
− 1

p ,

which implies that R
n
p′ bR is a (p, q)-Fourier block. Hence we see that ‖bR‖HF

p
q
=

R
− n

p′ and that ‖fR‖HF
p
q
= R

− n
p′ ‖f‖HF

p
q
. �

We also observe the diagonal case: p = q.

Proposition 3.4.

(1) If 1 < p ≤ ∞, then HF
p
p = Lp

′
.

(2) The Sobolev space W 1,∞ = {f ∈ L∞ : ∇f ∈ L∞} is dense in HF
1
1.

Proof.
The inclusion HF

p
p ⊂ Lp

′
is clear from the definition of (p, p)-Fourier blocks.

Let us check the reverse inclusion. Let f ∈ Lp
′ \ {0} to this end. Choose ψ ∈ S

so that it satisfies (1.2). Then limj→∞ ψ(2−jD)f = f in Lp
′
. This means that,

for fj ≡ ϕ(2−jD)f , there exists a strictly increasing sequence {jk} of positive
integers such that

‖fjk − fjk−1
‖Lp′ ≤ 2−k‖f‖Lp′

for all k = 1, 2, . . . and such that

‖fj1‖Lp′ ≤ 2‖f‖Lp′ .

In this case, 2k(‖f‖Lp′ )−1(fjk −fjk−1
), k ∈ N, and (2‖f‖Lp′ )−1fj1 are (p, p)-Fourier

blocks. As a result, we see that HF
p
p = Lp

′
holds. It is not so hard to see that

W 1,∞ is contained in HF
1
1. In fact, for any f ∈ W 1,∞, we have

f = ψ(D)f + lim
j→∞

j∑
l=1

(
ψ(2−lD)− ψ(2−l+1D)

)
f

in L∞ together with the estimate∥∥(ψ(2−lD)− ψ(2−l+1D)
)
f
∥∥
L∞ = O(2−l)

as l → ∞.
Let f ∈ HF

1
1. Then there exist {λj}∞j=1 ∈ `1 and {bj}∞j=1 ∈ L∞ such that

supp(Fbj) is compact, ‖bj‖L∞ ≤ 1, and

f =
∞∑
j=1

λjbj.

Since each bj is in W
1,∞, that is, bj,∇bj ∈ L∞, we see that f is in the closure of

W 1,∞. �

The following proposition is crucial when we discuss the Fourier restriction
problem on our spaces.
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Proposition 3.5. Let 1 ≤ p ≤ q ≤ ∞. If b ∈ HF
p
q has compact frequency support,

then there exists a finite decomposition

b =
N∑
j=1

λjbj,

where each bj is a (p, q)-Fourier block, and

N∑
j=1

|λj| ≤ ‖b‖HF
p
q
.

Furthermore, if the frequency support of b is contained in Q(2J), then we can
arrange that the frequency support be contained in Q(2J+4).

Proof. Without loss of generality, we may assume that ‖b‖HF
p
q
= 1. Since b ∈ HF

p
q ,

there exists an infinite decomposition

b =
∞∑
j=1

λjbj

in Lp
′
, where each bj is a (p, q)-Fourier block with respect to a cube Qj, and

∞∑
j=1

|λj| ≤ 2‖b‖HF
p
q
= 2. (3.3)

Let ψ satisfy (1.2). Then

b = ψQ(2J )(D)b =
∞∑
j=1

λjψQ(2J )(D)bj (3.4)

in Lp
′
. Note that if Qj satisfies |Qj| ≥ |Q(2J)|, then∥∥ψQ(2J )(D)bj

∥∥
Lq′ . ‖bj‖Lq′ ≤ |Qj|

1
q
− 1

p ≤
∣∣Q(2J)∣∣ 1q− 1

p .

Thus, by regarding ψQ(2J )(D)bj as a (p, q)-Fourier block with respect to Q(2J),

we may assume that |Qj| ≤ 2nJ .
Next we let τ ∈ S be a function such that the support of Fτ is contained in

Q(3) and such that τ(0) = 1. Then we have

lim
t↓0

∥∥b− τ(t·)b
∥∥
Lq′ = 0. (3.5)

With this in mind, we decompose

b = b− τ(t·)b+
∞∑
j=1

λjτ(t·)ψQ(2J )(D)bj.

In view of (3.5), we may choose t = t(J) � 2J such that ‖b − τ(t·)b‖Lq′ ≤
|Q(2J)|

1
q
− 1

p , which implies that b− τ(t·)b is a (p, q)-Fourier block with respect to
Q(2J) since t is sufficiently small.
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We also notice from t� 2J and supp(Fτ(t−1·)) ⊂ Q(10t) that

supp
(
F
[
τ(t·)ψQ(2J )(D)bj

])
⊂ Q(2J+4). (3.6)

Furthermore, we have ‖bj‖Lp′ ≤ 1; hence∥∥τ(t·)ψQ(2J )(D)bj
∥∥
L1 ≤

∥∥τ(t·)∥∥
Lp

∥∥ψQ(2J )(D)bj
∥∥
Lp′

≤ Ct−n/p‖bj‖Lp′ ≤ Ct−n/p. (3.7)

Additionally, we have a crude estimate:∥∥τ(t·)ψQ(2J )(D)bj
∥∥
Lp′ ≤ C‖bj‖Lp′ ≤ C. (3.8)

Since q′ is between 1 and p′, by interpolating these two estimates, (3.7) and (3.8),
it follows that ‖τ(t·)ψQ(2J )(D)bj‖Lq′ ≤ Ct. With this estimate in mind, we obtain

from {λj}∞j=1 ∈ `1 that

‖BN‖Lq′ ≡
∥∥∥ ∞∑
j=N+1

λjτ(t·)ψQ(2J )(D)bj

∥∥∥
Lq′

≤ Ct

∞∑
j=N+1

|λj| → 0 (3.9)

as N → ∞. Thus we take large N = NJ ∈ N so that ‖BN‖Lq′ ≤ |Q(2J+4)|
1
q
− 1

p .
This together with (3.6) means that BN is also a (p, q)-Fourier block.

Altogether, by letting

b = b− τ(t·)b+
N∑
j=1

λjτ(t·)ψQ(2J )(D)bj +BN

and multiplying the suitable constant, we obtain the desired finite decomposition.
�

As a dual of Proposition 2.7, the following holds.

Proposition 3.6. Let 1 ≤ p ≤ q ≤ ∞. Then the following inclusion holds:

S ↪→ B
n( 1

p
− 1

q
)

q′1 ↪→ HF
p
q ↪→ Lp

′
.

Proof. The first inclusion is well known (see [15, p. 48]). The last inclusion is

(3.1) itself, and so we concentrate on proving B
n( 1

p
− 1

q
)

q′1 ↪→ HF
p
q . Let ψ = ϕ0 ∈ S

be chosen so that χB(1) ≤ ψ ≤ χB(2). Define ϕj ≡ ψ(2−j·)− ψ(2−j+1·) for j ≥ 1.

Take f ∈ B
n( 1

p
− 1

q
)

q′1 , and decompose

f =
∑
j∈N0

F−1ϕj ∗ f

=
∑
j∈N0

|Qj|
1
p
− 1

q ‖F−1ϕj ∗ f‖Lq′ · |Qj|
1
q
− 1

p
F−1ϕj ∗ f

‖F−1ϕj ∗ f‖Lq′

=:
∑
j∈N0

|Qj|
1
p
− 1

q ‖F−1ϕj ∗ f‖Lq′ · bj,
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where Qj ≡ Q(0, 2j+2). Since bj is a (p, q)-Fourier block associated to Qj, we see
that

‖f‖HF
p
q
≤

∑
j∈N0

|Qj|
1
p
− 1

q ‖F−1ϕj ∗ f‖Lq′ = ‖f‖
B

n( 1p− 1
q )

q′1

.
�

Proposition 3.7. Let 1 ≤ p ≤ q ≤ ∞, q > 1. Then S is dense in HF
p
q.

Proof. First we note that if supp(Ff) is compact, then f is a C∞ function; hence a
Fourier block is also C∞. Take any f ∈ HF

p
q , and take {λj}∞j=1 ∈ `1 and a sequence

{bj}∞j=1 of Fourier blocks such that ‖λj‖`1 ≤ 2‖f‖HF
p
q
and f =

∑∞
j=1 λjbj hold

in Lp
′
.

First observe that fJ → f in HF
p
q , where fJ ≡

∑J
j=1 λjbj. In fact, since the

relation f − fJ =
∑∞

j=J+1 λjbj gives a Fourier block decomposition of f − fJ , we
have

‖f − fJ‖HF
p
q
≤

∞∑
j=J+1

|λj| → 0 (J → ∞).

Next we will approximate fJ by a Schwartz function. Fix any J ∈ N, and set
TJ ≡ min {`(Q1), . . . , `(QJ)}. Suppose that ψ ∈ S satisfies that supp(Fψ) ⊂ Q(1)
and ψ(0) = 1. For t ∈ (0, TJ), we define

f
(J)
t ≡

J∑
j=1

λjψ(t·)bj.

Note that supp(F(ψ(t·)bj)) is included in Q(TJ) +Qj. Thus supp(F(ψ(t·)bj)) ⊂
2Qj. Since we assume that q > 1, this implies that

‖fJ − f
(J)
t ‖HF

p
q
≤

J∑
j=1

|λj| · |2Qj|
1
p
− 1

q

∥∥(1− ψ(t·)
)
bj
∥∥
Lq′ → 0

as t → 0 by the Lebesgue convergence theorem. Here we need the assumption
q > 1 to justify ‖(1 − ψ(t·))bj‖Lq′ → 0. We also notice that ψ(t·)bj ∈ S; hence
f
(J)
t ∈ S for each fixed t ∈ (0, TJ) since bj is polynomially increasing. Thus f (J)

can be approximated by a Schwartz function. �

We now prove Theorem 1.5 by using Proposition 3.7.

Proof of Theorem 1.5. Since (0) is included in Proposition 3.7, we prove (1) and
(2).

(1) Take any f ∈ MF
p′

q′ and any (p, q)-Fourier block b ∈ S such that supp(Fb)
is contained in some cube Q and such that ‖b‖Lq′ ≤ |Q|

1
q
− 1

p . If we notice that
b = F−1ψQ ∗ b, then it follows that∣∣Lf (b)∣∣ = ∣∣〈f,F−1ψQ ∗ b〉

∣∣ ≤ ∥∥[F−1ψQ(−·)
]
∗ f

∥∥
Lq · ‖b‖Lq′

≤ |Q|
1
p′−

1
q′
∥∥[F−1ψQ(−·)

]
∗ f

∥∥
Lq ≤ ‖f‖MF

p′
q′
.
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Since we may approximate any f by f
(J)
t =

∑J
j=1 λjb

t
j, where ‖λj‖`1 ≤ 2‖f‖HF

p
q

and btj ∈ S, as in Proposition 3.7, the above Lf extends to the bounded operator
on HF

p
q with the estimate ‖Lf‖(HF

p
q)∗ ≤ C‖f‖MF

p′
q′
.

(2) We start with a setup. First, let L ∈ (HF
p
q)

∗ be arbitrary. Choose ψ satis-
fying (1.2). We fix Q ∈ Q. We write

ΨQ ≡ ψQ · ψQ +
∞∑
j=1

(ψ2jQ − ψ2j−1Q)
2 (3.10)

and

ϕ0,Q ≡ ψQ
ΨQ

, ϕj,Q ≡
ψ2jQ − ψ2j−1Q

ΨQ

(3.11)

for j = 1, 2, . . . . A direct consequence of (3.10) and (3.11) is that

ϕ0,Q · ψQ +
∞∑
j=1

ϕj,Q · (ψ2jQ − ψ2j−1Q) = 1. (3.12)

Finally we define

Lj(g) ≡ L
(
ψ2jQ(D)g

)
(3.13)

for g ∈ Lq
′
.

First, let us check that Lj is a bounded linear operator. Choose g ∈ Lq
′
with

norm 1 arbitrarily. Then∣∣Lj(g)∣∣ ≤ ‖L‖(HF
p
q)∗

∥∥ψ2jQ(D)g
∥∥
HF

p
q
≤ C2jn(

1
p
− 1

q
)|Q|

1
p
− 1

q ‖L‖(HF
p
q)∗

from (3.2). Thus Lj is a bounded linear functional on Lq
′

2jQ
with the estimate

‖Lj‖(Lq′
2jQ

)∗
≤ C2jn(

1
p
− 1

q
)|Q|

1
p
− 1

q ‖L‖(HF
p
q)∗ . (3.14)

Since we assumed that 1 < q ≤ ∞ or, equivalently, that 1 ≤ q′ < ∞, we
may employ the Lq

′
-Lq duality. Thus there exists a unique fj ∈ Lq such that

‖fj‖Lq = ‖Lj‖(Lq′
2jQ

)∗
and such that

Lj(g) = L(g) =

∫
Rn

fj(x)g(x) dx (g ∈ Lq
′

2jQ
). (3.15)

Define

fQ ≡ ϕ0,Q(D)f0 +
∞∑
j=1

ϕj,Q(D)(fj − fj−1). (3.16)

From (3.14) we see that fQ ∈ B
−n( 1

p
− 1

q
)

q∞ ↪→ S ′. Note that the definition of fQ is
independent of the choice of Q; that is, for any Q,Q′ ∈ Q we have fQ = fQ′ in
the sense of S ′. Hence we denote it by f .
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If b is a (p, q)-Fourier block which belongs to S, then ψQ(2J )(D)b = b for any
large J � 1. We decompose

L(b) = L
[
ϕ0,Q(1)(D)ψQ(1)(D)b

]
+

J+10∑
j=1

L
[(
ψQ(2j)(D)− ψQ(2j−1)(D)

)
ϕj,Q(1)(D)b

]
in view of (3.12). According to (3.13), we have

L
[
ϕ0,Q(1)(D)ψQ(1)(D)b

]
= L0

[
ϕ0,Q(1)(D)b

]
=

∫
Rn

ϕ0,Q(1)(D)b(x)f0(x) dx

and

L
[(
ψQ(2j)(D)− ψQ(2j−1)(D)

)
ϕj,Q(1)(D)b

]
=

∫
Rn

ϕj,Q(1)(D)b(x)fj(x) dx−
∫
Rn

ϕj,Q(1)(D)b(x)fj−1(x) dx.

Thus from (3.16), we have

L(b) =

∫
Rn

b(x)fQ(2J )(x) dx = 〈f, b〉.

It thus remains to show that f ∈ MF
p′

q′ . Once we prove f ∈ MF
p′

q′ , then it
follows from the assertions (0) and (1) that Lf can be extended to the bounded
linear operator on HF

p
q and can satisfy Lf (g) = L(g) for any g ∈ HF

p
q . To this

end, fix any Q ∈ Q. Define

g(x) ≡ sgn
(
F−1ψQ ∗ fQ(x)

)∣∣F−1ψQ ∗ fQ(x)
∣∣q−1

.

Then we calculate that

|Q|
1
p′−

1
q′
(∫

Rn

∣∣F−1ψQ ∗ f(x)
∣∣q dx) 1

q
. (3.17)

By recalling that F−1ψQ ∗ f = F−1ψQ ∗ fQ, we learn that∫
Rn

∣∣F−1ψQ ∗ f(x)
∣∣q dx

= 〈F−1ψQ ∗ fQ, g〉 =
〈
fQ,

[
F−1ψQ(−·)

]
∗ g

〉
.

Therefore, we obtain∫
Rn

∣∣F−1ψQ ∗ f(x)
∣∣q dx = L

(
F−1ψQ(−·) ∗ g

)
≤ ‖L‖

(Lq′
Q )∗

·
∥∥F−1ψQ(−·) ∗ g

∥∥
Lq′ . (3.18)

In addition, by recalling ‖fQ‖Lq = ‖L‖
(Lq′

Q )∗
, we see that∥∥F−1ψQ(−·) ∗ g

∥∥
Lq′ ≤ C‖g‖Lq′ = C

∥∥|F−1ψQ ∗ fQ|q
′(q−1)

∥∥ 1
q′

L1

= C‖F−1ψQ ∗ fQ‖
q
q′

Lq ≤ C‖fQ‖
q
q′

Lq = C‖L‖
q
q′

(Lq′
Q )∗
.
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By inserting this inequality into (3.18), we obtain(∫
Rn

∣∣F−1ψQ ∗ f(x)
∣∣q dx) 1

q ≤ C‖L‖(1+q/q
′)·1/q

(Lq′
Q )∗

= C‖L‖
(Lq′

Q )∗
.

As a result, by using (3.14), we may estimate (3.17) as follows:

|Q|
1
p′−

1
q′
(∫

Rn

∣∣F−1ψQ ∗ f(x)
∣∣q dx) 1

q ≤ C|Q|
1
p′−

1
q′ ‖L‖

(Lq′
Q )∗

≤ C‖L‖(HF
p
q)∗ <∞,

which implies ‖f‖MF
p′
q′
≤ C‖L‖(HF

p
q)∗ . �

To investigate the role of HF
p
q , we now recall the predual space of Mp

q , which
is called the block space Hp

q .

Definition 3.8 (see [3]). Let 1 ≤ p ≤ q < ∞. A measurable function b is said to

be a (p, q)-block if there is a cube Q supporting b and ‖b‖Lq ≤ |Q|
1
q
− 1

p . The block
space Hp

q is defined by the set of all Lp functions f with the norm

‖f‖Hp
q
≡ inf

{
‖λj‖`1 : f =

∞∑
j=1

λjbj

}
,

where each bj is a (p, q)-block and the infimum is taken over all possible decom-
positions of f .

It is well known that the block space Hp
q is a predual space of the Morrey space

Mp′

q′ for 1 < p ≤ q <∞.

Theorem 3.9 ([3, Theorem 1]). Let 1 < p ≤ q < ∞. Then (Hp
q)

∗ = Mp′

q′ .
Moreover, it holds that

‖f‖Hp
q
= sup

{∣∣∣∫
Rn

f(x)g(x) dx
∣∣∣ : ‖g‖Mp′

q′
= 1

}
(f ∈ Hp

q).

If we combine Theorems 1.2, 1.5, and 3.9, then we can describe the boundedness
of the Fourier transform on HF

p
q .

Corollary 3.10. Let q ≥ 2, and let 1 ≤ p <∞.

(1) If q > 2 and q ≥ p, then the Fourier transform is bounded from HF
p
q to

Hp
q :

‖Ff‖Hp
q
≤ C‖f‖HF

p
q

(f ∈ HF
p
q). (3.19)

(2) If p ≤ 2 = q, then the Fourier transform is isomorphic from HF
p
2 to Hp

2:

C−1‖f‖HF
p
2
≤ ‖Ff‖Hp

2
≤ C‖f‖HF

p
2

(f ∈ HF
p
2). (3.20)

As in (1.5), we may improve the well-known inequality F : L1 → L∞ by using
HF

1
1 as follows.

Proposition 3.11. The Fourier transform is bounded from L1 to HF
1
1.
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Proof. Let f ∈ L1. Let ψ satisfy (1.2). Write ϕj ≡ ψ(2−j·) − ψ(2−j+1·) for j =
1, 2, . . . . Then

Ff = F [ψ · f ] +
∞∑
j=1

F [ϕj · f ].

Observe that 1
‖ϕj ·f‖L1

F [ϕj · f ] and 1
‖ψ·f‖L1

F [ψ · f ] are (1.1)-Fourier blocks for all

j ∈ N. Thus,

‖Ff‖HF
1
1
≤ ‖ψ · f‖L1 +

∞∑
j=1

‖ϕj · f‖L1 = ‖f‖L1 ,

as was to be shown. �

4. Some applications

We next generalize the Stein–Tomas Fourier restriction theorem to our spaces.
As a preparatory step, we prove Lemma 1.7.

Proof of Lemma 1.7.

(1) This is a consequence of the Littlewood–Paley theory.
(2) Note that(∫

Rn

(∫
R

∣∣F−1[ψQ(1) ⊗ ψ0] ∗ F (x, t)
∣∣r dt) q′

r
dx

) 1
q′ ≤ ‖F‖MF

p
q(Rn

x ,L
r(Rt)) (4.1)

and that for any j, k ∈ N,

2kn(
1
p
− 1

q
)
(∫

Rn

(∫
R

∣∣F−1[ψQ(2k) ⊗ ϕ0
j ] ∗ F (x, t)

∣∣rdt) q′
r
dx

) 1
q′

≤ C‖F‖MF
p
q(Rn

x ,L
r(Rt)). (4.2)

Thus F ∈ Bs
∞∞(Rn+1) ↪→ S ′(Rn+1) holds for any F ∈ MF

p
q(Rn

x, L
r(Rt))

and for some s ∈ R. �

We now move on to the application to PDEs. We first set up. Denote a C∞

hypersurface by M and a surface-carried measure on M by dσ. In this paper, we
always assume that M has nonzero Gauss curvature at each point of M .

For a cube Q in Rn, we denote `(Q ∩M) ≡ σ(Q ∩M)
1

n−1 , and always assume
that

|Q| ∼ σ(Q ∩M)
n

n−1 (4.3)

whenever Q is contained in a fixed compact set E and the center of Q lies in M .
Further, let R and R∗ denote the restriction operator and its dual operator,
respectively; that is,

Rf(ξ) ≡ Ff(ξ)|M =

∫
Rn

e−2iπx·ξf(x) dx|M (ξ ∈M),

R∗F (x) ≡
∫
M

e2iπx·ξF (ξ) dσ(ξ) (x ∈ Rn)

for f ∈ C∞
c (Rn) and F ∈ C0(M).
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We invoke the following result called the Stein–Tomas restriction theorem.

Theorem 4.1 ([13, Theorem 5.2]). Suppose thatM has nonzero Gauss curvature

at each point of M . Let E be a compact set of M . Then for pn ≡ 2(n+1)
n+3

, it holds
that

‖χERf‖L2(M) ≤ C‖f‖Lpn (Rn). (4.4)

By modifying the definition of (p, q)-blocks, we may define the space Hp
q onM .

In fact, we can redefine the (p, q)-blocks on the manifold M as follows.

Definition 4.2. A function b is said to be a (p, q)-block if there exists a cube

Q ∈ Q(Rn) such that supp(b) ⊂M ∩Q and ‖b‖Lq(M) ≤ σ(Q ∩M)
1
q
− 1

p .

The following theorem generalizes and strengthens Theorem 4.1.

Theorem 4.3. Let pn = 2(n+1)
n+3

, p ≤ 2, and take rp ≥ pn (⇔ r′p ≤ p′n) so that

1

p′n
≤ 1

r′p
≤ 1

p′n
+
(1
p
− 1

2

)n− 1

n
. (4.5)

Then for any compact set E of M , there exists a constant CE depending on E
such that ∥∥χER(f)

∥∥
Hp

2(M)
≤ CE‖f‖HF

r′p
p′n

(Rn)
(4.6)

for all f ∈ HF
r′p
p′n
(Rn).

Before the proof, a couple of remarks may be in order.

Remark 4.4.

(1) In view of Proposition 3.4, the conclusion (4.4) is more general than (4.6).
In fact, by letting p = 2 in Theorem 4.3, one deduces from (4.5) that
rp = pn, which is (4.4).

(2) Arithmetic shows that

1

p′n
+
(1
p
− 1

2

)n− 1

n
< 1

holds for n ≥ 2.

Proof of Theorem 4.3. Since E is compact, we may assume that the frequency
support of f is compact. Let Q ⊂ Rn be a cube containing E and the frequency

support of f . For any f ∈ HF
r′p
p′n
, by Proposition 3.5, we can take {λj}∞j=1 ∈ `1

and (r′p, p
′
n)-Fourier blocks {bj}∞j=1 such that

f =
∞∑
j=1

λjbj, supp(Fbj) ⊂ Qj ∈ Q(Rn),

‖bj‖Lpn ≤ |Qj|
1
p′n

− 1
r′p , ‖λj‖`1 ≤ C‖f‖

HF
r′p
p′n

(Rn)
,

and such that

Qj ⊂ 2Q, ]{j ∈ N : λj 6= 0} <∞. (4.7)
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Then it is clear from (4.7) that Rf =
∑∞

j=1 λjRbj and supp(Rbj) ⊂ M ∩Qj. In
addition, from the Stein–Tomas theorem, it follows that

‖χERbj‖L2(M) ≤ C‖bj‖Lpn (Rn) ≤ C|Qj|
1
p′n

− 1
r′p ∼ `(Qj ∩M)

n( 1
p′n

− 1
r′p

)
. (4.8)

Here note that we may assume that `(Qj ∩ M) ≤ 1; hence `(Qj ∩ M)−n ≥ 1
since E is compact. In fact, if we have Qj such that `(Qj ∩ M) ≥ 1, then by

dividing Qj =
⋃K
k=1Qjk, where `(Qjk ∩M) ≤ 1, we get further decomposition

bj =
∑K

k=1 λjkbjk. Here the coefficient λjk may depend on the size of E. This
observation and our assumption (4.5) imply that

`(Qj ∩M)
n( 1

p′n
− 1

r′p
) ≤ `(Qj ∩M)−n(

1
p
− 1

2
)n−1

n ∼ σ(Qj ∩M)
1
2
− 1

p

as long as Qj intersects E. Altogether, we see that ‖Rbj‖L2(M) ≤ Cσ(Qj∩M)
1
2
− 1

p ;
hence Rbj is a (p, 2)-block on the hypersurface M modulo some unimportant
multiplicative constant. This shows that ‖R(f)‖Hp

2(M) ≤ C‖f‖
HF

r′p
p′n

(Rn)
for f ∈

HF
r′p
p′n
. �

One defines the Morrey space Mp
q(M) as the set of all σ-measurable functions

f defined on M for which the norm

‖f‖Mp
q(M) ≡ sup

Q∈Q(Rn),Q∩M 6=∅
σ(Q ∩M)

1
p
− 1

q

(∫
Q∩M

∣∣f(y)∣∣q dσ(y)) 1
q

is finite.

Corollary 4.5. Let the setting be as above. Then for all F ∈ Mp′

2 (M),∥∥R∗(χEF )
∥∥
MF

rp
pn (Rn)

≤ C‖F‖Mp′
2 (M)

.

Proof. We will use the duality relation which is proved in Theorem 1.5 to get that∥∥R∗(χEF )
∥∥
MF

rp
pn (Rn)

= sup
{∣∣∣∫

E

F (ξ)R(g)(ξ) dξ
∣∣∣ : ‖g‖

HF
r′p
p′n

(Rn)
= 1

}
≤ ‖F‖Mp′

2 (M)
· sup

{∥∥χER(g)
∥∥
Hp

2(M)
: ‖g‖

HF
r′p
p′n

(Rn)
= 1

}
≤ C‖F‖Mp′

2 (M)
. �

5. Proof of Theorem 1.9

Let us prove Proposition 1.8 and Theorem 1.9.

Proof of Proposition 1.8. Fix any Q ∈ D(Rn), and let us calculate that

|Q|
1
s
− 1

q′
(∫

Rn+1

∣∣F−1ψQ ∗ T (t)g(x)
∣∣q dx dt) 1

q
.

Note that F−1ψQ ∗ T (t)g(x) = T (t)[F−1ψQ ∗ g](x). In fact, by the definition, we
see that

F−1ψQ ∗ T (t)g(x) = F−1
[
e−4π2it|ξ|2F [F−1ψQ ∗ g]

]
(x).
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With this in mind, by using the Stein–Tomas Strichartz estimate directly, we
have

|Q|
1
s
− 1

q′
(∫

Rn+1

∣∣F−1ψQ ∗ T (t)g(x)
∣∣q dx dt) 1

q

= |Q|
1
s
− 1

q′
∥∥T (t)[F−1ψQ ∗ g](x)

∥∥
Lq(Rn+1)

≤ C|Q|
1
s
− 1

q′ ‖F−1ψQ ∗ g‖L2(Rn).

By recalling the condition for v = vs,q:
1
v
= 1

q
+ 1

s
− 1

2
, we conclude that

|Q|
1
s
− 1

q′
(∫

Rn+1

∣∣F−1ψQ ∗ T (t)g(x)
∣∣q dx dt) 1

q ≤ C|Q|
1
v
− 1

2‖F−1ψQ ∗ g‖L2(Rn)

≤ C‖g‖MF
v
2(Rn). �

Next we will show Theorem 1.9. Our proof is based on the refinement of the
Stein–Tomas Strichartz estimate proved in [2, Theorem 2]. We recall the space
Xp,q. Let 1 ≤ p <∞, and let 1 ≤ q <∞. The space Xp,q is the set of all L

p local
functions f for which the norm

‖f‖Xp,q ≡
(∑
j∈Z

2j
n
2

2−p
p
q
∑
m∈Zn

‖f · χQjm
‖qLp

) 1
q

is finite.

Theorem 5.1 ([2, Theorem 1.2]). Let q = 2(n+2)
n

and p < 2 be such that 1
p′
>

n+3
n+1

1
q
, or, equivalently,

2(n+ 1)(n+ 2)

n2 + 3n+ 4
< p < 2. (5.1)

For every function g such that Fg ∈ Xp,q, we have∥∥T (t)g(x)
∥∥
Lq(Rn+1)

≤ C‖Fg‖Xp,q(Rn),

where C = C(n, p).

Furthermore, we will employ the boundedness of the fractional maximal oper-
ator Mα defined by

Mαf(x) ≡ sup
Q∈D

1

|Q|1−α
n

∫
Q

∣∣f(y)∣∣ dy · χQ(x).
Let us recall the boundedness ofMα on Morrey spaces. To this end, we first recall
the boundedness of Iα known as the Adams inequality.

Theorem 5.2 ([1, Theorem 3.1]). Let 0 ≤ α < n, 1 < σ ≤ λ < ∞, and
1 < γ ≤ β <∞ satisfy

1

λ
=

1

β
− α

n
,

λ

σ
=
β

γ
.

Then

‖Iαf‖Mλ
σ
≤ C‖f‖Mβ

γ

for some C > 0 and all f ∈ Mβ
γ .
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Since we know that Mαf ≤ Iα(|f |), we obtain the following boundedness of
Mα on Morrey spaces.

Theorem 5.3. Keep the same assumption as in Theorem 5.2. Then

‖Mαf‖Mλ
σ
≤ C‖f‖Mβ

γ

for some C > 0 and all f ∈ Mβ
γ .

Now let us show Theorem 1.9. Due to the original Stein–Tomas Strichartz
estimate, we can assume that s > q′ (see Remark 1.10).

Lemma 5.4. Let q, s, and vs,q satisfy (1.8), (1.9), and (1.10), respectively. Let
g ∈ S ′. We set

I ≡
(− log2(`(Q))∑

l=−∞

∑
m∈Zn:
Q⊂Qlm

2l×nr
2−p
p ‖ψQχQlm

Fg‖qLp(Rn)

) 1
q
.

Then

I ≤ C
( ∑

l∈Z:
2−l≤`(Q)

∑
m∈Zn:
Qlm⊂Q

2l×nr
2−p
p ‖χQlm

Fg‖qLp(Rn)

) 1
q
; (5.2)

hence∥∥T (t)[F−1ψQ ∗ g](x)
∥∥
Lq(Rn+1)

q ≤ C
∑
l∈Z:

2−l≤`(Q)

∑
m∈Zn:
Qlm⊂Q

2l×nr
2−p
p ‖χQlm

Fg‖qLp(Rn). (5.3)

Proof. Since for each l ≤ − log2(`(Q)) there exists a unique m(l) ∈ Zn such that
Q ⊂ Qlm(l), we obtain

I =
(− log2(`(Q))∑

l=−∞

2l×nr
2−p
p ‖ψQχQlm(l)

Fg‖qLp(Rn)

) 1
q ∼

(
|Q|−r

2−p
p ‖ψQFg‖qLp(Rn)

) 1
q

since we have the power r 2−p
p
> 0 by our assumption p < 2. By observing that

(
|Q|−r

2−p
p ‖ψQFg‖qLp(Rn)

) 1
q ≤ C

( ∑
l∈Z:

2−l≤`(Q)

∑
m∈Zn:
Qlm⊂Q

2l×nr
2−p
p ‖χQlm

Fg‖qLp(Rn)

) 1
q
,

we obtain (5.3). �

Proof of Theorem 1.9. We may assume that ρ < v. As in the proof of Proposi-
tion 1.8, fix any Q ∈ D(Rn), and calculate

|Q|
1
s
− 1

q′
(∫

Rn+1

∣∣F−1ψQ ∗ T (t)g(x)
∣∣q dx dt) 1

q
.
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Again we note that F−1ψQ ∗ T (t)g(x) = T (t)[F−1ψQ ∗ g](x). Hence we focus
on the quantity ‖T (t)[F−1ψQ ∗ g](x)‖Lq(Rn+1). In view of assumptions (1.13) and
(5.1), we choose the parameters p and r so that

2(n+ 1)(n+ 2)

n2 + 3n+ 4
< p < ρ, r ≡ q

2
. (5.4)

Let glm ≡ F−1[χQlm
Fg]. Recall that I is defined in Lemma 5.4. By applying

Theorem 5.1, we obtain∥∥T (t)[F−1ψQ ∗ g](x)
∥∥
Lq(Rn+1)

≤ C
(∑
l∈Z

∑
m∈Zn

2l×nr
2−p
p

∥∥F [F−1ψQ ∗ glm]
∥∥2r

Lp(Rn)

) 1
2r

≤ C
( ∑

l∈Z:
2−l≤`(Q)

∑
m∈Zn:
Qlm⊂Q

2l×nr
2−p
p ‖χQlm

Fg‖qLp(Rn)

) 1
q
. (5.5)

Here for given parameters s and ρ, we take ε > 0 so that

ε ≡ 1

q

(
1− ρ

v

)
. (5.6)

By inserting the volume of Qlm with certain power to (5.5), the right-hand side
of (5.5) equals( ∑

l∈Z:
2−l≤`(Q)

∑
m∈Zn:
Qlm⊂Q

|Qlm|(−
1
s
+ 1

q′−ε)q+1 · |Qlm|(
1
s
− 1

q′+ε)q−1 · |Qlm|−r
2−p
p ‖χQlm

Fg‖qLp

) 1
q
.

Now we notice that the fractional maximal operator will appear. More precisely,
we observe that

|Qlm|(
1
s
− 1

q′+ε)q−1 · |Qlm|−r
2−p
p ‖χQlm

Fg‖qLp(Rn)

=
( |Qlm|p(

1
s
+ε− 1

2
)

|Qlm|

∫
Qlm

∣∣Fg(ξ)∣∣p dξ) q
p

≤ inf
η∈Qlm

M (p)
α [Fg](η)q,

where

α ≡ np
(1
s
− 1

2
+ ε

)
≥ 0 (5.7)

(since we assumed that s ≤ 2), and the powered fractional maximal operator

M
(p)
α is defined by

M (p)
α f(x) ≡ sup

Q∈D

( |Q|αn
|Q|

∫
Q

∣∣f(y)∣∣p dy) 1
p · χQ(x).
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Therefore, it follows that∥∥T (t)[F−1ψQ ∗ g](x)
∥∥q
Lq(Rn+1)

≤ C
∑
l∈Z:

2−l≤`(Q)

∑
m∈Zn:
Qlm⊂Q

|Qlm|(−
1
s
+ 1

q′−ε)q
∫
Qlm

M (p)
α [Fg](η)q dη

= C
∑
l∈Z:

2−l≤`(Q)

2
−l×n(− 1

s
+ 1

q′−ε)q
∫
Q

M (p)
α [Fg](η)q dη.

Now we recall the assumption of ρ in (1.13): ρ > v−vq(−1
s
+ 1
q′
). With this and the

definition of ε, and keeping (5.6) in mind, arithmetic shows that −1
s
+ 1

q′
− ε > 0;

hence, ∑
l∈Z:

2−l≤`(Q)

2
−l×n(− 1

s
+ 1

q′−ε)q ∼ |Q|(−
1
s
+ 1

q′−ε)q.

As a result, we obtain∥∥T (t)[F−1ψQ ∗ g](x)
∥∥
Lq(Rn+1)

≤ C|Q|−
1
s
+ 1

q′−ε
(∫

Q

M (p)
α [Fg](η)qdη

) 1
q
.

Hence, by choosing λ > q so that

1

λ
≡ 1

q
− ε, (5.8)

we obtain

|Q|
1
s
− 1

q′
∥∥T (t)[F−1ψQ ∗ g](x)

∥∥
Lq(Rn+1)

≤ C|Q|−ε
(∫

Q

M (p)
α [Fg](η)qdη

) 1
q

≤
∥∥M (p)

α [Fg]
∥∥
Mλ

q (Rn)

=
∥∥Mα

[
|Fg|p

]∥∥ 1
p

Mλ/p
q/p

(Rn)
.

Here let us invoke the Adams inequality, Theorem 5.3; that is, for the parameters
1 < γ ≤ β <∞ satisfying that

p

λ
=

1

β
− α

n
,

λ

q
=
β

γ
, (5.9)

it follows that∥∥Mα

[
|Fg|p

]∥∥ 1
p

Mλ/p
q/p

(Rn)
≤ C

∥∥|Fg|p∥∥ 1
p

Mβ
γ (Rn)

= ‖Fg‖Mβp
γp(Rn).

By inserting the definition of several parameters, (5.6), (5.7), (5.8), and (5.9), we
may calculate β and γ as follows:

p

λ
=

1

β
− α

n
⇔ βp = v,

λ

q
=
β

γ
⇔ γp = ρ.
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Note that γ = ρ
p
> 1 by the choice of p (5.4), which ensures the application of

the Adams inequality in the above. In summary, we obtain∥∥T (t)g(x)
∥∥
MF

s
q′ (R

n
x ,L

q(Rt))
≤ C‖Fg‖Mv

ρ(Rn). �

Remark 5.5. The restriction of v is natural. For given s, q, the inequality (1.14)
holds if and only if the parameter v satisfies the condition 1

v
= 1

q
+ 1

s
− 1

2
. To see

this, we have only to check the scaling exponent.

Finally we note another estimate for the operator T .

Proposition 5.6. Let q ≥ 2, and take s ∈ [2,∞] so that

1

q
+

1

s
≤ 1

2
. (5.10)

Let p ∈ [s,∞]. Then

sup
t≥0

∥∥T (t)f(x)
∥∥
MF

p

q′ (R
n
x)

≤ C‖f‖MF
p
s

(f ∈ MF
p
s).

Proof. We first take r such that 1
q
= 1

r′
+ 1

s′
− 1. By our assumption (5.10), we

notice that 1
r′

= 1
q
+ 1

s
≤ 1

2
, namely, r′ ≥ 2. With this in mind, we employ the

Young inequality and the boundedness of the Fourier transform on Lr to get∥∥T (t)f(x)
∥∥
MF

p

q′ (R
n
x)

= sup
Q∈Q

|Q|
1
p
− 1

q′
∥∥F−1[e−i4π

2|ξ|2tψQ] ∗ F−1ψQ ∗ f
∥∥
Lq

≤ sup
Q∈Q

|Q|
1
p
− 1

q′
∥∥F−1[e−i4π

2|ξ|2tψQ]
∥∥
Lr′ · ‖F−1ψQ ∗ f‖Ls′

≤ C sup
Q∈Q

|Q|
1
p
− 1

q′ ‖ψQ‖Lr · ‖F−1ψQ ∗ f‖Ls′ .

Note that ‖ψQ‖Lr ∼ |Q| 1r . Arithmetic gives us 1
p
− 1

q′
+ 1

r
= 1

p
− 1

s
; hence we obtain∥∥T (t)f

∥∥
MF

p

q′
≤ C sup

Q∈Q
|Q|

1
p
− 1

s‖F−1ψQ ∗ f‖Ls′ = C‖f‖MF
p
s(Rn). �
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