Banach J. Math. Anal. 12 (2018), no. 1, 1-30
https://doi.org/10.1215/17358787-2017-0014

BANGED ISSN: 1735-8787 (electronic)
JOURNAL of i . )
MATHEMATICAL  DttD://projecteuclid.org/bjma
ANALYSIS

NEW FUNCTION SPACES RELATED TO MORREY SPACES
AND THE FOURIER TRANSFORM

SHOHEI NAKAMURA" and YOSHIHIRO SAWANO
Communicated by M. Mastylo

ABSTRACT. We introduce new function spaces to handle the Fourier trans-
form on Morrey spaces and investigate fundamental properties of the spaces.
As an application, we generalize the Stein—Tomas Strichartz estimate to our
spaces. The geometric property of Morrey spaces and related function spaces
will improve some well-known estimates.

1. INTRODUCTION

Although the Fourier transform is fundamental in mathematics, only a little
is known about this transform. One of the traditional ways to understand its
mapping property is to use the Lebesgue space LP, but LP, p # 2, is not enough
to grasp the behavior of the Fourier transform. Among the properties of the
Fourier transform, the relation between the Strichartz estimate and the Fourier
transform is mysterious. In this article, we propose to use the Morrey space M?,
which properly includes LP whenever 1 < ¢ < p < oc.

For some time, we have been developing the theory of the Fourier transform
on LP. There are so many results in this direction involving the application to
PDEs. Meanwhile, our experience shows that the L? result can be generalized to
the Morrey space MP, 1 < ¢ < p < oo (see [1], [4], [9]). The Morrey space M?,
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1 < g < p < o0 is the set of all measurable functions f for which the norm

g =i (1)

is finite, where () ranges over all cubes having their sides parallel to coordinate
axes. By the use of the Holder inequality,

L = MbC M2, C M, (1.1)

holds whenever 1 < ¢; < g < p. Some mathematicians improved the LP results by
using Morrey or Morrey-type spaces. For example, in [2], the authors improved
the Stein-Tomas Strichartz estimate by using the Morrey-type space X, , (see
Theorem 5.1 below). In [7], the authors improved the sharp maximal inequality
by using Morrey spaces. We have many results together with applications to PDE
on the estimate of the form || fVg||r» (see [8]). However, as far as we know, there
are no results on the Fourier transform on Morrey spaces. The purpose of this
paper is to introduce a new function space Mzh, to capture the behavior of the
Fourier transform on Morrey spaces, and to investigate their properties.

We establish some basic notation. For a parameter p € [1,00], we denote its
conjugate by p'; that is, 1/p + 1/p’ = 1. All cubes @ in R™ are assumed to have
their sides parallel to the coordinate axes. We denote by Q the family of all cubes
and by £(Q) the sidelength of @ € Q. For ¢ > 0 and @ € Q, we denote by cQ
the cube with the same center as ¢ but with sidelength ¢f(Q). We denote a cube
centered at the origin with volume (2r)™ by Q(r):

Q(r) = {z = (z1,32,...,2,) € R": max(|z1], |z2|,...,|za]) <7}

The set Q(xg,r) with o € R™ and r > 0 is the set of all points z € R for which
x —x9 € Q(r). We denote the Lebesgue measure of the measurable set £ C R”
by |E|. We define the Fourier transform and its inverse by

Fie)= [ e ip@dn (¢ e®),
FUE©= [ T@ds (€er)

for f € §. Now we define a new space denoted by Mz?.
Definition 1.1. Let 1 < p,q < 0o, and let ¢p € C° satisty
XQ) < ¥ < Xq)- (1.2)

For f € &, the Fourier-Morrey space Mzh = MzP(R") is the set of all f € &
for which the norm
Q)

sy = sup Q17 (| |7 [u()] + stw)

is finite. Here we denote the center of the cube @ by ¢(Q).

1
7

q p
dm)




MORREY SPACES AND FOURIER TRANSFORM 3

Although the definition of Mz? makes sense for all 1 < p, ¢ < oo, the case

1 <p < q < oo will be excluded (see Lemma 2.1). Since the function w(;(cg)?)) is

supported near () and equals 1 on (), we denote it by 1¢ throughout this paper.
It is easy to see that the space Mx? does not depend on ¢ satisfying (1.2). By
using our space MzF, we can describe the boundedness of the Fourier transform
on Morrey spaces, which is our starting point for this research.

Theorem 1.2.

(1) If 1 < g <p<ooandq <2, then the Fourier transform is bounded from
M to M#b; for some constant C' > 1,

IF Fllmzy < ClFllae (1.3)

for all f € M?.
(2) Let p > 2. Then the Fourier transform is an isomorphism from M% to
M#L; for some constant C > 1,

CHUI M < IFFllaary < Cllf ez (1.4)
for all f € M5.

Assertions (1) and (2) of Theorem 1.2 are not hard to prove. We can prove
them directly by applying the Hausdorff—=Young inequality to the definition of
our norm. We also note that F~1¢) = Fi)(—-). Meanwhile, using the space Mz,
we can refine some well-known estimates, as follows.

Theorem 1.3. We have the following two estimates.

(1) The Fourier transform is bounded from Mz to L>°; for some constant
C>1,

[Ffllzee < Cllfllmres (1.5)

for all f € MzZ.

(2) For each t € R, let T (t) denote the Schridinger propagator; see (1.7) for
the precise definition. Then T (t) is bounded from Mz to L*™; for some
constant C' > 1,

[T f(@)]| e < CE 2| fllatrz (1.6)
forall f € MzZ.

By Proposition 2.5, which will be proved below, we have L' — Mx%. Hence
Theorem 1.3 improves the well-known estimates F : L' — L> and T(t) : L' —
L. These results motivate us to consider the space Mzf. We also introduce a
new function space Hz?.

Definition 1.4. Let 1 < p < ¢ < oo. An L¢ function b is said to be a (p, q)-Fourier

block if the support of Fb is contained in some cube @) and ||b||,+ < |Q]%_% holds.
The space Hz} is defined as the set of all L functions f for which f is expressed

as
F= Ab
=1
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in L¥', where the by’s are (p, q)-Fourier blocks, and {), }52, € £'. One defines

|l = imE{ AR s £ =D Aot}
j=1

where the infimum is taken over all possible decompositions of f above.

It is useful to see the fact that there exists a constant C' > 0 such that ||b]|,;,» <
C for all (p, q)-Fourier blocks. In fact, if we admit Corollary 2.4 for a moment,

then it follows that ||b]|,» < C|Q|$_i|]bHLq/ < C. This definition dates back to
1986 (see [16, p. 589)).

Our main results in this paper are the following theorems. The first one is
about a predual space of Mz?.

Theorem 1.5. Let 1 <p < q < oo, and let ¢ > 1. Then (Hzh)* = /\/lff;: in the
following sense.

(0) The space S is dense in Hzh.
(1) Let f € M;Zj be arbitrary. Then for any (p, q)-Fourier block b € S,

[(£,0)] < Cll fllaes;
hence, [ can be extended to a bounded linear functional Ly on Hzh with
the estimate || L[ (3 ,2)» < CHf”Mfo'
(2) For any L € (Hzh)* there uniquely exists f € /\/lff;; such that
Wiy < Il sy Llg) = Lylg) (g € Hry),
holds.

The next result generalizes the Stein-Tomas Strichartz estimate (see [11], [12],
[14]). To state our next result, we recall the Schrédinger propagator, and we
define the mixed-type norm space denoted by Mzh(R%, L"(R;)). The Schrédinger
propagator 7T is defined by

T(t)g(z) = F e 1 Fgl(2) = / Hr@t 2 Fo(e)de  (1.7)

n

for g € L*(R™) and each (x,¢) € R"™'. Since the transformation

n

FRnF(g,t):/ F(x,t)e ™" dy

is an isomorphism in S(R™™), T(t)g(x) can be regarded as an element in
S/ (Rn+1).

We introduce a suitable mixed-type space to discuss the Schrodinger propagator
on Morrey spaces.

Definition 1.6. Let 1 < g < p < ocand 1 < r < oo. Let 9 € C*(R) satisfy
X11] < 90 < x[29), and set

py = 9(270) — P27,
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Write
o ® 90?(x, t) = wQ(x)gpg(t) (z,t) € R™! = R" x R.
Define M##(R%, L"(R;)) as the set of all distributions F' € S'(R™') for which

the norm

1 F | mzs e, or me))
= ||F(z,1)

‘Mfg(R” LT (Ry))

' 1
r Py

= sup ]Q\;q/ /|]—" ¢Q®wO*F.’zt‘ dt)

)

QeD(R")
+ Qesg(lﬂ){n) |Q|%_§ (/n </R<jz_;|}"_l[wQ ® cp?] * F(m,t)|2>g dt) g dm)ll

is finite.

Although the above definition is quite complicated, we have the following for-
mula (see Lemma 1.7(1) below). It is the advantage of the above definition that
we can check the following embedding relation (see Lemma 1.7(2) below).

Lemma 1.7. Let 1 < g <p <o, and let 1 <r < oco.
(1) If F € S(R? x Ry), then

1
7/

Fllsosirio ~ s (@[ (17 ol v P ar) )’
QeD(R™ R

Here the com)olution f’le sgn F'(x,1) is taken in the sense of R™; that
is, F g #pn F(2,t) = [p. Fo(z — y)F(y,t) dy.
(2) The space M;Q(R" L"(Rt)) is continuously embedded into S'(R™*1).

We will prove this lemma in the beginning of Section 4. By using this mixed
norm, we generalize the Stein—Tomas Strichartz estimate. Using the Stein—Tomas
Strichartz estimate directly, we can show the following generalization easily.

Proposition 1.8. Let

2(n+ 2
=2 ) (19
n
and let
2(n+2)
"2 1.
selg, =52 (1.9)
Define v =v,4 by
1 1 1 1
S (1.10)
Vg q S 2

Then for all g € S,

[T O3, m5, 20000 < CIFg vty < Clgllaaryieny (L.11)
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Note that M;g: = L% hence M;Z;(]RZ,L‘?(]RQ) = LY(R;}"). See Proposi-
tion 2.5 and the fact that the condition (1.10) turns into vs, = 2 when s = ¢.
Thus this proposition is a natural generalization of the Stein—Tomas Strichartz
estimate since (1.11) turns into

IT0)9() | yunss) < CIFgl z2cam. (1.12)

which corresponds to the original Stein-Tomas Strichartz estimate (see [12], [14])
when s = ¢'.

It is difficult to improve the inequality (1.12) in the same framework. However,
by using another function space, the inequality can be improved (see [2]). Mean-
while, we can improve the inequality (1.11) in the same framework as follows,
which is our second main theorem.

Theorem 1.9. Let q, s, and v = v, satisfy (1.8), (1.9), and (1.10), respectively.
(1) If p satisfies

2(n+1)(n+2) 1 1
max[ 2 3n 1 d ,v—vq(—g—i—a)} <p<w, (1.13)
then for all g € S,
HT(??)Q(I)HMfz/(R;,Lq(Rt» < Ol Fgllmyen- (1.14)

(2) In the endpoint case, s = 2 if p satisfies

2(n+1)(n+2)
<q; 1.1
T anid <PSG (1.15)

then for all g € S', | T(#)9() | mr2, e Loy < ClF 9l ma@ny-
q

A couple of remarks may be in order.

Remark 1.10.

(1) Note that (1.13) and (1.15) are identical when s = 2. Meanwhile, when
s = ¢, the condition (1.13) turns into 2 < p < 2. In this case it will be
understood that p = 2; hence the inequality corresponds to (1.12).

(2) When the parameter s moves from ¢’ to 2, the parameter v = v, , moves
from 2 to gq.

(3) In the condition (1.13), arithmetic shows v — vg(—21 + %) < 2 whenever

s € (¢, 2]. Meanwhile, one knows that % < 2. Hence the param-

eter p can be strictly less than 2. This together with (1.1) implies that
Theorem 1.9 improves Proposition 1.8.

Throughout this article, we also use the following notation.
e For f € & and ¢ € S, define (D) f = F o Ff].
e We will denote by D or D(R™) the family of all dyadic cubes {Qj }jezmezn
in R", where Qjm, = [[1-,[277m;,277 (m; + 1)).
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This article is organized as follows. In Section 2, we investigate fundamental
properties of the space MzF. In Section 3, we investigate fundamental properties
of the space Hz! and prove Theorem 1.5. In Section 4, as an application of
Theorem 1.5, we generalize the Fourier restriction theorem to our space Hrh. In
Section 5, we will prove Theorem 1.9.

2. THE FUNDAMENTAL PROPERTIES OF Mz}

We prove Theorem 1.2. For example, we prove (1.3) as follows. Fix a cube Q.
Then we have

1

< i@l ([ ol @) de)’
< Ol fllag

by Young’s inequality. The proof of (1.4) is similar. We also prove Theorem 1.3
here. To obtain (1.5), we employ the estimate F : L' — L* as follows:

I F fllzee = sup g F fllee < Csup [|F " g * fllor = Cll fllamrz-
QeQ QeQ

1
7

Q1 ([ 17t e 7 p@)] o)

Meanwhile, to show (1.6), note that Mz} = L*, which we will prove in Propo-
sition 2.5 below. Further, we use the estimate | T (¢)g(x)|| = < Ct2|g||1 (see,
e.g., [5]). With these in mind, we see that

TS @) e ~ NTOF @)ty
= Zlelgllf‘ll/@ « [TOLO 1

= sup || T(0)[F v * f|| e
QeQ

< sup Ct’%H}"’le * flo
QeQ

= Ct 2 || fl| ppee.-

Having thus proved the fundamental theorem, we proceed to investigate the space
Mg

According to the next lemma, it does not make sense to consider the case of
p <gq.

Lemma 2.1. If 1 <p < q<oo and if f € S’ satisfies || f|| 2 < 00, then f = 0.
Proof. For N € N, we define

o= ()]

Then each fy satisfies ||fn| o < (2N)7%+%HfHMF5. Hence fy — 0 in L7 as
N — oo. Meanwhile, fy tends to fin &"as N — oo since f € §'. Thus f =0. O

Before the next topic, we investigate the scaling property of MxzP.
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Proposition 2.2. Let 1 < g<p<oo, R>0, and let f € S§'. Write fr(x) =
f(Rx) for x € R". Then

1 £rll Az = R fllpapr- (2.1)

Proof. To calculate || frl| 2, we first observe that

F o xfa(@)= | Fo(x—y)f(Ry)dy

— /n R_”]:_le (R_I(Rx — w))f(w) dw
= F 'olr * f(Rx),

where [¢g|r(z) = Yg(Rx) = g, (x) and where Qr = {z € R": Rx € Q}. Then
we see that

L

| frllamzz = sup Q77 (/ | F g, * f(Ra:)‘q, dx) ¢
Qe R

1
n(i-ly_n i_1 — / d
= BT s Qult ([ |7 Yo 1) )’
S

R

=B fll vt U

To investigate the fundamental embedding properties of Mz, we recall the fol-
lowing result, which is a consequence of the Planchrel-Polya—Nikol’skii inequality.
Lemma 2.3 ([15, p. 18]). Let 0 < p < p; < 00, and let R > 0. Then it holds that

n(l_L
Ifllzon < CRS730||f|lo for all f € Sy = {f €S supp(Ff) € Q(R)}.

As a direct corollary, we obtain the following.

Corollary 2.4. Let 0 < p < p; < o0, let R > 0, and let zy € R™ be arbitrary.
1 1

Then it also holds that ||f||mn < CR" ™30 ||f|| e for all f € Sowor) = 1f €
S': supp(Ff) C Q(zo, R)}.

Employing the above Planchrel-Polya—Nikol’skii-type inequality, we obtain the
embedding relation similar to the case of Morrey spaces.

Proposition 2.5 (Fundamental embedding and special cases).

(1) Let 1 < ¢ < qy <p < o0o. Then LY < Mzh = Mgl in the sense of
continuous embedding.
(2) Let 1 <p < oo. Then

Mzh =17, (2.2)

(3) Denote by 6y the Dirac delta massed at the origin. Then 6y € Mz2.
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Since ¢ < ¢; < p implies that p’ < ¢} < ¢/, using Corollary 2.4 we obtain,
for all Q € Q,

1

@ ([ |7 v fa)|” o)
<l it /) / | F N + f(a ‘qldx)lll

:C|Q|p—q1</ | F g * f(a |q1d:z:> ,

which implies that || f[| sz < C| f[l a2 - In particular, by taking ¢ = p,

we see that
1

st < O laasg = Csup ([ 7 0q # 1) dz)” < €l

(2)

by the Young 1nequahty.
Thanks to (1), we know that L?" — M. To show the converse inclusion,

we fix any f € Mx#b. Let us denote 1(277-) = 1);. First, we consider the
case of 1 < p < oo. If fisin S, then it is easy to see that

aarg = sup( [ 177055 s do)”
JEZ NJR"

> lim / [F @) &2)” = | flus

J—00

by p > 1. However, since we have only f € Mz C &', we need to
take care. We need to show f € L. Notice that f € Mz? implies that
{F ;] * f};ez forms a bounded set in LP":

1
sup( ’]—" Wi * f(x) }p dx)p < fllap < o0
jEz
We notice from p < oo that L? = (LP)*. Therefore, by Banach-Alaoglu’s
theorem, we may choose a subsequence {j;}ien such that F~1[;] * f
converges weakly to some g € L” as [ — oo. In this case, we can show

that ¢ = f in the sense of &’ as follows: take any n € S, and calculate
that

{g,n) = Jm (F (5]« fom) = Hn (f, F (] «m) = (f,m).

Hence we see that f = g € L”'. Moreover, we have
1
1l =Nl < sup( [ 1770055 @) do)” < 1 lasp
JE

which implies that Mzh < L¥ . For the case of p = 1, we recall that
[Nz ~ (1Sl = ||Sl€1§ IF~ o) * fl|| -
j
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Hence we see that

£z ~ [|sup [F o * fI|| o < sup [|F g * fllze = 1 fla
JEZ QeQ

which implies that L>® = M£1.
(3) Note that F~ g xdg = F 11hg and that | Fgllpr = [|F 14| 1:. Hence
| F g * dollzr = || F 1| 2 follows. |
Ezxample 2.6. We give a couple of examples. Let 1 < ¢ < p < 0o, and let v satisfy
(1.2). Write

1
o

Cyq = (/ | F 1bg, (z) | dx) T >0.
R'n/
(1) Let Q¢ € D with £(Qo) = 1. Then we claim that
17 X ol vz ~ Cog > 0.

In particular, by using the scaling law (2.1), we see that [[F = xq sz ~

1
QY Cy g
(2) Let 1 < ¢ < min(p,2). Let Ey = [0,1]", and construct a set E,, C Ey
inductively. Supposing that we have defined Fy, E1, ..., E,_1, we define
E,, by

Ey,

U (6 + ’}/Em_l).
ec{0,1—v}n"
We can choose v € (0,1/2), which depends on p, ¢ so that

mn

IXEnllaig ~ X o~y 7 (2.3)

Then we have ||F~'xg,, sz ~ ~" . Hence we have an example of f
satisfying f € Mzh \ Mzh with 1 <go < q1 < 2.
One may observe that the norm of Mzl is similar to the norm of the Besov
n(l_1
space B q). To see this, we recall the Besov norm. Let us denote the
Littlewood—Paley decomposition by {y;}32,; that is, the sequence {¢;}52, C S

is defined as follows. Assume that ¢, ¢ € C:°(R") satisfy

XQ) < Po < XQ(s) Xouno@) < ¢ < Xo@EN\eO):

and let p; = ¢(277-) for j € N. Let s € R, and let 0 < p, ¢ < oo. The Besov norm
of f € 8§ is defined by

u, = (SN2, 0)12,)"

j€No

1f1

where p;(D)f = F 1p;  f.
Proposition 2.7. Let 1 < g < p < 0. The following embedding holds:

G-3) _ g,

o0 q' >

/ n
L — Mgy — B,
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Proof. The left embedding is (2.2) itself; let us concentrate on the right embed-
ding.

Let us abbreviate Q(27) to @, and let {¢;}32, denote a Littlewood-Paley
decomposition as above. If we notice that ¢; = ¢, - ¥, ,,, then it follows that

I g3y = sup 25 DIF 0y 5 F g %
B"/(E—g) - ]EI\IE) 80.7 Qj+10 La
11
< Csup 1Qil» ™ I F g, 00 * fllw < Cllflaiss- .
J&lNo
From Proposition 2.7, we particularly have
L' Mz2 < B
In addition, we already know that F : BY__ — L; that is,
17l < Clf g, (F € BLo) (24)

Hence our first observation (1.5) is weaker than the known estimate (2.4). How-
ever, it is possible to improve the estimate (2.4) further by defining the Besov-type
space of Mz?.

Definition 2.8. Let us denote the Littlewood-Paley decomposition by {¢;};en,-
For f € ', we define

£ llavg

MFS,0

= (D
fé%i“wj( ) ||t

and the space N« ., by all the functions f € &’ for which the norm || f|| A,
oo F

o]
0100

is finite.

This space is closely related to the Besov—Morrey spaces (see [6, Definition 1.3]).
Using the space Ny, £0 00 WE may improve the estimate (2.4), as follows.

Proposition 2.9.
(1) We have the following embedding relation.:

Bl = N oo
(2) The Fourier transform F is bounded from N3y o ., to L*:
[Fflleee < Cllfllao, o
F oo

Proof. The embedding (1) follows directly from the embedding L! < Mz%.
Indeed,

£ llavg

MFEZ,00

= ]S:RI?OH('OJ(D)]CHMFOO < C]SSI\IIDOHQOJ(D)JCHIA = “fHB?OO

To show (2), we employ (1.5) to obtain
1F fllze = sup [lo;F fllr= < Csup [|F ;¢ fllazz = Cllflla

J€No J€Ng MFES,00 Il

We next show the completeness of the space MzP. We employ the argument
in [10, Lemma 2.15] to show the completeness of M £?.
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Theorem 2.10. Let 1 < g <p < 0.
(1) (Fatou property) Let {f;}52, C 8" converge to f in S'. Then

11ty < Y inf | fl]ves- (2.5)

(2) (Completeness) The space Mxh is complete; that is, for any sequence
{121 C M#2 satisfying

lim £~ fill g =0 (26)

J,k—00
there exists [ € Mzl such that f; — [ in M#h.

Proof. We may apply the argument as in the case of Besov spaces. Note that
f; — f in & implies that F g * f;(x) = F g * f(z) for each x € R™ and
each () € Q. With this in mind, we calculate that

1_1

1£llatz = sup [Q17~ (/R lim [F g ¢ fi@)|” dw)

1
Py

o 11 . ¢ -
< liminf sup |Q|» q( | F g = f(2) dm) :
J7ee QeQ R”
This proves (2.5).
Next we will show the completeness. Let { f;}32, satisfy (2.6). Since we have the

n(l_1
embedding Mzl — Bq,(o’; @ by Proposition 2.7, at least the sequence {f;}32,

n(i-1)
converges some f € B,7 *
property of Mzl to obtain

1f = fillmzez < liminf 1 fx = fillmzz — 0

in the sense of &’. Hence we employ the Fatou

as j — 00. O

We have defined the norm | - [| 54,» without restricting the position of cubes.
In the case of the central-type Fourier—Morrey norm, which we will define below,
the converse inclusion holds in a certain sense.

Definition 2.11. Let 1 < ¢ < p < 00, and let f € §'. The central-type Fourier—
Morrey norm || - || o4,z is defined by

oty = sup 276D ([ P o] ¢ fa)|” o).

JEZ R™

The space M zL, collects all f € &' for which the norm || f|| vz, is finite.
Observe that Mzl is continuously embedded into M#%, .

Proposition 2.12. Let 1 < q¢ < p < o00. Then

1-1 n(-1)

Bq’lp 7y M}Jc)q s Bq,oo (27)
When q =2 < p < 00, the left embedding in (2.7) can be improved:
(L1 (1 1
Bay? s My s By Y (2.8)
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Proof. Let v = ¢ be a function such that xo1) < ¥ < xg(2). For each j, define
;= (279 — (279+1). The embedding My, — Bt *

similar to Proposition 2.7.
1 1

follows directly,

Let us show that B /15_5 — MxzL,. If we observe that 1q, = f;g or - Vg,
then
(L_1y e
1 Fllatre, = sup 27670 | F b, fl|

J€No

Jj+1

< sup 27678 Y NF o Sl - 1F
j€No k=0

In addition, since % — % < 0, we have (5 =3) < 951G for all k < j. Asa
result, it follows that
kn ==
Al iz, < NF 0l Y2 DNF Y fllpw = Coll ] s

keNg q

which proves (2.7).
Let us prove (2.8). In the case of ¢ = 2, since we may use Plancherel’s theorem,
it is possible to improve the above embedding. Note that

<Z Sﬁk) Vo, F

1 Fllaare, = sup 202 |lyoq, Ffl 2 ~ sup 2762

J€Np j€Ng

A direct calculation gives us

J+1 , % |
IS )

(L Ji@z(s)% QIFr©f &)’

(Z v, P12

Jj+1

(Z 7 g, + F i f)
Thus, by recalling % — % < 0, we obtain

P laasty < W - (3 2 DIF g ) = ol b

keNg

3. THE FUNDAMENTAL PROPERTIES OF Hzh

Now we investigate the predual space Hzf with 1 < ¢ < p < oo defined in
Definition 1.4. The first one is a fundamental embedding.

Proposition 3.1. Let 1 <p < ¢ < ¢q < <.
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(1) The following embedding relation
Hyh — Hyh — LV (3.1)

holds.
(2) If the by’s are (p, q)-Fourier blocks and {\;}32, € (", then

> b
j=1

. /
converges in LV .

Proof. We first show the left embedding in (3.1). If b is a (p, ¢)-Fourier block, by
¢ < q1, then we have

|~

. 1,1 1

1
Fbll,e < ClQIY H T = o|Q|E .

1ol L < ClQI

Ln —
This implies that b is a (p, ¢1)-Fourier block; hence Hz? < Hzh holds.
Meanwhile, since for any f € Hz? we can take {\;}32, € £' and (p, ¢)-Fourier
blocks {b;}52, such that f = > A\;b; and [[{\;}52[ln < 2|/ f |5,z hold, it follows
that

1 <D Il < C D I bi 1w 15177 < Ol fllages-
j=1 j=1
This implies that Hzh — LP', thereby implying assertion (2), as well. O

Let us consider further an example of (p, ¢)-Fourier blocks. We will employ the
following lemma in the proof of Theorem 1.5.

Lemma 3.2. Let 1 <p < g <oo, and let Q € Q. Let ¢ and g satisfy (1.2) and

lgll .« < 1, respectively. Then |Q|%7%(||.7-"*1@/J||L1)*1¢Q(D)g is a (p,q)-Fourier
block. In particular,

[6a(D)gl,p < CUF e |Q1F 7 gl e (32)

where the constant C' depends only on the dimension.

Proof. By the Young inequality,

11, -1 _ _ —1 11
QI (IF ) Y@yl v < IF "ol (IF ) QL
~jQlis.
As for the frequency support, we have supp(Fig(D)g) C supp(vg) C 4Q. Thus
|Q|%7%(||}“71¢||L1)’1¢Q(D)g with some constant is a (p, ¢)-Fourier block. O

Before the next topic, we investigate the scaling property of Hz?.

Proposition 3.3. Let 1 <p<qg<oo. Let f € S, and write fr(x) = f(Rx) for
R>0. Then || frllazg = B2 fllpep-
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Proof. 1f we let bg(x) = b(Rx) for any (p, q)-Fourier block b with the associated
cube @, then we notice that the support of Fbg is contained in QU = {z €
R™: R~'x € Q} and that

1ballpe = R7 bl < RT71QJ7 7 = R™7|RQ|+ 7,

which implies that R# by is a (p, ¢)-Fourier block. Hence we see that 1br|l3,2 =
R and that || frlly,e = B2 || fll - O

We also observe the diagonal case: p = q.

Proposition 3.4.
(1) If 1 <p < oo, then Hzh = LY.
(2) The Sobolev space Wh> = {f € L>: Vf € L™} is dense in Hr}.

Proof.
The inclusion Hzh C L* is clear from the definition of (p, p)-Fourier blocks.

Let us check the reverse inclusion. Let f € L?"\ {0} to this end. Choose ¥ € S
so that it satisfies (1.2). Then lim; ,, 1(277D)f = f in L”. This means that,
for f; = @(27D)f, there exists a strictly increasing sequence {ji} of positive
integers such that

1 = Fiillper <2751 Fll
for all kK =1,2,... and such that
12l < 201 o

In this case, 25| fll ) (fs, — o) & € N, and (2] fll )~ f, are (p, p)-Fourier
blocks. As a result, we see that Hzh = L¥ holds. It is not so hard to see that
Wb is contained in Hzi. In fact, for any f € W, we have

f=v(D)f + lim 3 (¥(27'D) = (27 D)) f

in L™ together with the estimate

[(¥(27'D) =27 D)) f|| . = O27)

as [ — oo.
Let f € Hri. Then there exist {A;}52, € ¢' and {b;};2, € L* such that
supp(Fb;) is compact, ||b;|lL~ < 1, and

F=> \b;.
j=1
Since each b; is in W, that is, b;, Vb; € L*, we see that f is in the closure of
Whee, O

The following proposition is crucial when we discuss the Fourier restriction
problem on our spaces.
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Proposition 3.5. Let 1 < p < g < co. Ifb € HFl has compact frequency support,
then there exists a finite decomposition

N
b= Abj,
j=1

where each b; is a (p, q)-Fourier block, and

N
> X1 < Bl
j=1

Furthermore, if the frequency support of b is contained in Q(27), then we can
arrange that the frequency support be contained in Q(27+4).

Proof. Without loss of generality, we may assume that [|b][;,.» = 1. Since b € Hz?,
there exists an infinite decomposition

ixg

in L* | where each l_)j is a (p, ¢)-Fourier block with respect to a cube @;, and

D < 20bllag =2 (33)
j=1
Let 1) satisfy (1.2). Then
b =1houn(D)b =Y Nthoen(D)b; (3.4)
j=1

in LP'. Note that if ; satisfies |Q;| > |Q(2”)], then

— — 11 1_1
[ Yo (D)bs]| v S 11bllLe < 1Qs15 77 < |Q27)[* .

Thus, by regarding ¢Q(2(1)(D)Bj as a (p, q)-Fourier block with respect to Q(27),
we may assume that |Q;] < 2"/

Next we let 7 € § be a function such that the support of F7 is contained in
Q(3) and such that 7(0) = 1. Then we have

%Hb —7(t)b]| o = 0. (3.5)

With this in mind, we decompose
b=0b—T1(t b—l—Z)\T Vbory(D)b;.

In view of (3.5), we may choose t = t(J) < 27 such that ||b — 7(¢)b]| ;¢ <
|Q(2‘])|%_%7 which implies that b — 7(¢-)b is a (p, ¢)-Fourier block with respect to
Q(27) since t is sufficiently small.
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T(t71)) C Q(10t) that
supp (F[7(t-) s (D)h]) € Q(27H). (3.6)
Furthermore, we have ||b;||,,» < 1; hence

17t )en (D)b| 11 < (|7 ()| ol Yae) (D)
< CEP|by | < CEP (3.7)

We also notice from t < 27 and supp(F

Additionally, we have a crude estimate:
[7(t ) (D)b| L < ClIbj 1w < C. (3.8)

Since ¢’ is between 1 and p’, by interpolating these two estimates, (3.7) and (3.8),
it follows that ||7(t-)Yg2s)(D)b;| 1« < C;. With this estimate in mind, we obtain
from {A;}52, € ¢* that

Bulle = || 30 Tt Waen@B,, <C0 S Ri-o 39

j=N+1 j=N+1

as N — oo. Thus we take large N = N; € N so that ||By||;« < \Q(2J+4)|%_%.
This together with (3.6) means that By is also a (p, ¢)-Fourier block.
Altogether, by letting

b—b—T 'QDQ(QJ )b+BN

uMz

and multiplying the suitable constant, we obtain the desired finite decomposition.
O

As a dual of Proposition 2.7, the following holds.

Proposition 3.6. Let 1 < p < q < oo. Then the following inclusion holds:

n(:-1 /
S — Bq,(l" Vo Hry — LP.

Proof. The first inclusion is well known (see [15, p. 48]). The last inclusion is
1

(L1
(3.1) itself, and so we concentrate on proving B, " ) — Hrh. Let v = €S

be chosen so that xp1) < ¢ < xp). Define p; = (277-) — (27711 for j > 1.

Take f € B /1” a and decompose
f=2 F et
Jj€No

11 11 Floixf
= QP N F gy fllpw - 1Ql0 ’
’ S T F ek flle

J€No

11,
=) QP N F gy fllpw - by

J€No
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where Q; = Q(0,27%2). Since b; is a (p, q)-Fourier block associated to @Q;, we see
that

1_1 _
1l < D 1Qs1F 2 NF Y% fllwr = Izt
!

J€No al

O
Proposition 3.7. Let 1 <p<q<o0,q>1. Then S is dense in Hz?.

Proof. First we note that if supp(F f) is compact, then f is a C*° function; hence a
Fourier block is also C*°. Take any f € Hzl, and take {\;}52, € " and a sequence
{b;}32, of Fourier blocks such that [|A;[lsx < 2[|fls,2 and f = >77, A;b; hold
in L¥ .

First observe that f; — f in Hzl, where f; = ijl Ajb;. In fact, since the
relation f — f; = Z;’i 741 Aib; gives a Fourier block decomposition of f — f;, we
have

1f = Fillasr < D N[ =0 (J = o).
j=J+1

Next we will approximate f; by a Schwartz function. Fix any J € N, and set
Ty =min{{(Q1),...,4(Qs)}. Suppose that 1) € S satisfies that supp(F1)) C Q(1)
and ¢(0) = 1. For t € (0,T}), we define

J
=" A(t)by.
j=1

Note that supp(F(¢(t-)b;)) is included in Q(T) + Q;. Thus supp(F(¢(t-)b;)) C
2Q);. Since we assume that ¢ > 1, this implies that

J
15 = £ < D7 N1 12Q4] 8 ][ (1 = () by | o — O
j=1

as t — 0 by the Lebesgue convergence theorem. Here we need the assumption
q > 1 to justify [[(1 — ¢(¢))b,||.« — 0. We also notice that ¢(¢-)b; € S; hence

ft(J) € S for each fixed t € (0,7}) since b; is polynomially increasing. Thus f()
can be approximated by a Schwartz function. 0

We now prove Theorem 1.5 by using Proposition 3.7.

Proof of Theorem 1.5. Since (0) is included in Proposition 3.7, we prove (1) and
(2).

(1) Take any f € M;Z: and any (p, ¢)-Fourier block b € § such that supp(Fb)

is contained in some cube @) and such that ||b||,+ < |Q]é_% If we notice that
b= F '4q * b, then it follows that

L ®)] = (£, F g 0] < || [F ol =)] * £] - Bl
<1QI7 I [F (=] * Fll s < 11l
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Since we may approximate any f by ft(‘]) = Z}]:1 AjbG, where [[Ajllon < 2| fllp e
and b; € &, as in Proposition 3.7, the above L; extends to the bounded operator
on H b with the estimate || Ly|(5,2)- < C||f||M;§f'

(2) We start with a setup. First, let L € (HzL)* be arbitrary. Choose 1 satis-
fying (1.2). We fix Q € Q. We write

Vo =1 g + Z(%a‘@ — toim1)? (3.10)
=1
and
_ g _ haig — aimig
= Q= 2214 3.11
@07Q \IIQJ (p],Q \IIQ ( )

for j =1,2,.... A direct consequence of (3.10) and (3.11) is that

Po,Q Vo + Z i (Vaig — ai-1g) = 1. (3.12)
=1
Finally we define
Li(g9) = L(¢2(D)g) (3.13)

for g € LY.
First, let us check that L, is a bounded linear operator. Choose g € LY with
norm 1 arbitrarily. Then

1 1_1

L1y 11
%J‘Q(D)QHHFZ < C2"GTD|Q| || Ll (¢2)

q
2iQ

1L (9)] < LIl ez

from (3.2). Thus L; is a bounded linear functional on L, , with the estimate

1_1

(L 1y~ 1_1
||Lj||(Lg;Q)* < 0Y"G q)|Q|P || L] (34 5y (3.14)
Since we assumed that 1 < ¢ < oo or, equivalently, that 1 < ¢ < oo, we
may employ the L¢-L9 duality. Thus there exists a unique f; € L9 such that
I fillee = ||Lj|](Lq/. - and such that
2Q

Li(g) = L(g) = - i()g(x)dr (g€ LY,). (3.15)
Define
fa=woq(D)fo+ Z ©i(D)(fj — fi-1)- (3.16)

p(io1
From (3.14) we see that fg € quo(” ") 4 §'. Note that the definition of fo is
independent of the choice of @); that is, for any @), Q" € Q we have fg = fo/ in

the sense of S’. Hence we denote it by f.
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If b is a (p, q)-Fourier block which belongs to S, then 9gs)(D)b = b for any
large J > 1. We decompose

L(b) = L{o.q01)(D)qu)(D)b]

J+10

Z (V@) (D) — Y- (D))¢;am) (D))
in view of (3.12). Accordmg to (3.13), we have

L{go.qm)(D)voay(D)b] = Lo[¢oqa)(D)b] :/ vo.Q)(D)b(z) fo(z) dx

n

and

L[ (g (D) = Yoei- 1)( ))%QU(D
:/Rn viem(D)b(z /Rn Pie)(D)b() fj-1(z) dx

Thus from (3.16), we have
L®) = [ ba) o (o) o = (78]

It thus remains to show that f € M ff]';. Once we prove f € M ]—'5;, then it
follows from the assertions (0) and (1) that L; can be extended to the bounded

linear operator on Hx? and can satisfy L;(g) = L(g) for any g € Hz?. To this
end, fix any @) € Q. Define

g(z) = sgn(F—1q * fol(w)) | F g * folx)|"

Then we calculate that
Q¥ (/ ’f’le*f(x)‘qda:y. (3.17)
Rn
By recalling that F~'vg * f = F g * fg, we learn that
[ 17 g s s o
Rn
= (F g * fq,9) = (fo, [F "va(—)] *g)-

Therefore, we obtain
\f Yo x f(2)| de = L(F "o(—) = g)
<Ll gy - 1 0= gl (318)

In addition, by recalling || follze = ||L]|

(L8 we see that

|70 # gl = Cllr = CIF v ol
= CIF g * follfs < Cllfollfs = CILIZ,,
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By inserting this inequality into (3.18), we obtain

1
-1 q q (I+q/q")1/q _ ,
([ 17 w0 f@)]"do) " < CILIGE Y = UL .

As a result, by using (3.14), we may estimate (3.17) as follows:

33 1 ¢, \e TR
QP ([ 17 g x ()" de) " < CIQI 7Ll
< Ol Ll )+ < 00,
which implies ”fHM;f;f < C|| L[ 352)+- O
To investigate the role of Hz!, we now recall the predual space of M¥, which
is called the block space HY.

Definition 3.8 (see [3]). Let 1 < p < ¢ < co. A measurable function b is said to

be a (p, g)-block if there is a cube Q supporting b and |[b]|z« < |Q|7~#. The block
space HY is defined by the set of all LP functions f with the norm

1l = eIl = £ =7 by
j=1

where each b; is a (p, ¢)-block and the infimum is taken over all possible decom-
positions of f.

It is well known that the block space H? is a predual space of the Morrey space
Mg: for 1 < p<q< 0.
Theorem 3.9 ([3, Theorem 1]). Let 1 < p < q < co. Then (HP)* = Mf;;.
Moreover, it holds that

1l = sup{| | #@lo(e) o] : gl =1} (7 €79,
If we combine Theorems 1.2, 1.5, and 3.9, then we can describe the boundedness

of the Fourier transform on Hzl.

Corollary 3.10. Let ¢ > 2, and let 1 < p < 0.
(1) If ¢ > 2 and q > p, then the Fourier transform is bounded from HFlh to

HP:

q
[ Ff g < Clifllaery (F € Heg) (3.19)
(2) If p < 2 =g, then the Fourier transform is isomorphic from Hxh to H5:
C M fllazg S IFFllag < Clifllagg  (f € Hrb). (3.20)

As in (1.5), we may improve the well-known inequality F : L' — L by using
Hri as follows.

Proposition 3.11. The Fourier transform is bounded from L' to Hri.
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Proof. Let f € L. Let v satisfy (1.2). Write @; = ¢(277.) — ¢(277t1) for j =
1,2,.... Then

Ff=Flo-f1+ 3 Flei- 1

Observe that m]:[cpj - f] and m]—"[w - f] are (1.1)-Fourier blocks for all

7 € N. Thus,
1F Flapr < M- Fllos + Y Ml - Fllr = 1 flless
j=1

as was to be shown. O

4. SOME APPLICATIONS

We next generalize the Stein—Tomas Fourier restriction theorem to our spaces.
As a preparatory step, we prove Lemma 1.7.

Proof of Lemma 1.7.

(1) This is a consequence of the Littlewood—Paley theory.
(2) Note that

1
7

( /R ( /R | oy @ 7]+ Fla, 0" dt) " de) " <Pl oy (41)

and that for any j,k € N,

1
7

L

< O Fllpmpz ey, or®e))- (4.2)
Thus F € B (R*™) — S'(R™) holds for any F' € Mzh(RZ, L"(Ry))
and for some s € R. O

We now move on to the application to PDEs. We first set up. Denote a C'*
hypersurface by M and a surface-carried measure on M by do. In this paper, we
always assume that M has nonzero Gauss curvature at each point of M.

For a cube @ in R™, we denote £(QN M) =c(QN M)ﬁ, and always assume
that

Q ~ a(QN M)w= (4.3)
whenever () is contained in a fixed compact set E and the center of () lies in M.

Further, let R and R* denote the restriction operator and its dual operator,
respectively; that is,

RFE) = FIE) | = / e f () dely (€ € M),

n

R*F(z) = /M MR (E) do(€) (v € R™)
for f € C*(R™) and F € CY(M).
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We invoke the following result called the Stein—Tomas restriction theorem.

Theorem 4.1 ([13, Theorem 5.2]). Suppose that M has nonzero Gauss curvature
. — 2(n+1)

a};ﬁ each point of M. Let E be a compact set of M. Then for p, = = =5+, it holds

that

Ix2RS N 2an < Cllf|lzom @ (4.4)

By modifying the definition of (p, g)-blocks, we may define the space H? on M.
In fact, we can redefine the (p, ¢)-blocks on the manifold M as follows.

Definition 4.2. A function b is said to be a (p,q)-block if there exists a cube
1 1
Q € Q(R™) such that supp(b) C M N Q and ||b|| aary < o(Q N M)a >,

The following theorem generalizes and strengthens Theorem 4.1.

Theorem 4.3. Let p, = 2(:;1), p <2, and take r, > p, (& 1, < p;,) so that

p 2

Then for any compact set E of M, there exists a constant Cg depending on E
such that

1 _1 1+<1 1)71;1. (4.5)

IR lgan < Cell 5 (4.6)

for all f € H;;%L(R”).
Before the proof, a couple of remarks may be in order.

Remark 4.4.
(1) In view of Proposition 3.4, the conclusion (4.4) is more general than (4.6).
In fact, by letting p = 2 in Theorem 4.3, one deduces from (4.5) that
rp = Pn, Which is (4.4).
(2) Arithmetic shows that
1 1 1I\n-1
p—/ + (- — —) <1

holds for n > 2.
Proof of Theorem /.5. Since E is compact, we may assume that the frequency
support of f is compact. Let () C R™ be a cube containing F and the frequency
support of f. For any f € H;:f,“, by Proposition 3.5, we can take {\;}32, € ¢!

and (r,,, p},)-Fourier blocks {b;}52, such that

f= Z/\jbj, supp(Fb;) C Q; € Q(R"),
j=1

A1

Iollam < IQU% %, Wil < Ot oy
and such that
Q; C2Q, #{jeN:)\ #0} < oo (4.7)
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Then it is clear from (4.7) that Rf = 3 7%, AjRb; and supp(Rb;) C M N Q;. In
addition, from the Stein—Tomas theorem, it follows that

; )

P n(—-—-r
IXERD; |20y < Cllbjl|1on(wny < C|Qy|7 2 ~ L(Q; M) "7 27 (4.8)
Here note that we may assume that ¢(Q); N M) < 1; hence ¢(Q; " M)™™ > 1
since E is compact. In fact, if we have @); such that ¢(Q; N M) > 1, then by
dividing Q; = Uszl Qjk, where ((Qjx N M) < 1, we get further decomposition

= Zle Ajibjr. Here the coefficient Aj; may depend on the size of E. This
observation and our assumption (4.5) imply that

1
P

=

(L —1) Cp(l_1yn=1 -
0Q; N M) T < 0(Q; N M) < o(Q N M)

as long as Qj intersects E. Altogether, we see that || Rb;||r2(ar) < C’U(Q]ﬁM)2 b
hence Rb; is a (p,2)-block on the hypersurface M modulo some unlmportant

multiplicative constant. This shows that [[R(f)|lxzna) < C’||f|| ;) - for fe
Hr, . O

One defines the Morrey space MP(M) as the set of all o-measurable functions
f defined on M for which the norm

1

o=, sw 0@ ([ |1 doty))’

QeQ(R™),QNM#D

is finite.
Corollary 4.5. Let the setting be as above. Then for all F' € MIQ’/(M),
IR P )| i, 70 oy < CIF g

Proof. We will use the duality relation which is proved in Theorem 1.5 to get that

IR ey = 0| | FORGEI el 3, = 1}
<1 vz any 'SUP{HXER(Q)”HQ(M) gl ®") 1}
Pn
< ONF N g ary O

5. PROOF OF THEOREM 1.9
Let us prove Proposition 1.8 and Theorem 1.9.

Proof of Proposition 1.8. Fix any ) € D(R"), and let us calculate that

|Qi;/</R | F g * T(t)g(x)|" da dt)

Note that F g * T (t)g(z) = T (t)[F '¢q * g](x). In fact, by the definition, we
see that

1

F g * T(t)g(x) = F e '™ M FIF g * g]] (x).
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With this in mind, by using the Stein—Tomas Strichartz estimate directly, we
have

Qv ([ 17 o s Tlgto)|* )

= QI 7 | TOF w0 * 9@ onsry < CIQIT 7 IF g * gllagan)
By recalling the condition for v = v, % = é + % — %, we conclude that
QI ([ 17 0 s T o) < CIQIHIF b gl
< Cllgllmry@m- =

Next we will show Theorem 1.9. Our proof is based on the refinement of the
Stein—Tomas Strichartz estimate proved in [2, Theorem 2|. We recall the space
Xpq Let 1 <p < oo, and let 1 < g < oo. The space X, , is the set of all L? local
functions f for which the norm

1lx,, = (32255 Y I xauullls)’

JEZ mezZm™
is finite.
Theorem 5.1 ([2, Theorem 1.2]). Let ¢ = @ and p < 2 be such that z% >
nt31 ;
n—ila, or, equivalently,

2(n+1)(n+2)
<p<2. 5.1

n?+3n+4 b (5.1)

For every function g such that Fg € X, 4, we have
HT(t HLq Rn+1) < C”ngqu Rn)’

where C' = C(n,p).

Furthermore, we will employ the boundedness of the fractional maximal oper-
ator M, defined by

1
M, f(z) Eglelgm—lz/CJf(y)‘dy'XQ(x)

Let us recall the boundedness of M, on Morrey spaces. To this end, we first recall
the boundedness of I, known as the Adams inequality.

Theorem 5.2 ([I, Theorem 3.1]). Let 0 < o < n, 1 < 0 < XA < o0, and
1 <y < B < oo satisfy

|
3|e

™|~

1
A
Then

Maflaes < CllFlLye

for some C' >0 and all f € Mg
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Since we know that M, f < I,(|f]), we obtain the following boundedness of
M, on Morrey spaces.

Theorem 5.3. Keep the same assumption as in Theorem 5.2. Then

IMallaey < ClLE s

for some C' >0 and all f € ./\/lﬁ

Now let us show Theorem 1.9. Due to the original Stein—Tomas Strichartz
estimate, we can assume that s > ¢’ (see Remark 1.10).

Lemma 5.4. Let g, s, and vs, satisfy (1.8), (1.9), and (1.10), respectively. Let
geS'. We set

— logy (4(Q)) i
— Ixnr2=P
- Z Z 27" ||¢QXQ1m*Fg||Lp R”> .
l=—o0 mezZm:
QCle
Then
1
Ixnr2=p q
I< C( Z Z 2 HXle‘FgH%P(Rn))q; (52)
IEZ: mezZ™:
2_ZSE(Q) leCQ
hence
- Ixnr2=P
ITOF e * @) oy <€ D 3 27 Inaun Follaey (53)

I€Z:  me™:
2-1<0(Q) QumCQ

Proof. Since for each | < —log,(¢(Q)) there exists a unique m(l) € Z" such that
Q) C Qim(), we obtain

— log,(4(Q)) 1
lm"— —
I=( Y 2 Iaxaun Folben) " ~ (107 e F gl )

l=—00

Q=

since we have the power 7’2%” > 0 by our assumption p < 2. By observing that

1

(101 I Folnm)  <C( 3 D 2 Inun Follban)

I€Z:  mEL™:
2-1<0(Q) QimCQ

we obtain (5.3). O

Proof of Theorem 1.9. We may assume that p < v. As in the proof of Proposi-
tion 1.8, fix any @ € D(R™), and calculate

@ ([ 17 o s Tthgto)]! de )
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Again we note that F~ g * T (t)g(x) = T(t)[F g * g](x). Hence we focus
on the quantity || 7 (¢)[F '¢g * g](x)| pe@n+1). In view of assumptions (1.13) and
(5.1), we choose the parameters p and r so that

2(n+1)(n+2)
n?+3n+4

<p<p, rzg. (5.4)

Let ¢\, = F'[xq,,Fg]- Recall that I is defined in Lemma 5.4. By applying
Theorem 5.1, we obtain

[T (O)[F g * gl(2)

HL‘I(R"“'l)

<o(X X 2 FF e s o)

lEZ meZ™
1
Ixnr2=2 q
SC( Z Z 2 i HXszFgH%p(Rn)) . (55)
leZ: mezZ™:

271<(Q) Qim CQ

Here for given parameters s and p, we take € > 0 so that

— 3(1 -4, (5.6)

v

By inserting the volume of Q;,,, with certain power to (5.5), the right-hand side
of (5.5) equals

(3 X IQul O jQu

l€Z: meZ™:
2_ZS€(Q) QumCQ

1

T 1Qul T v Follls)

Now we notice that the fractional maximal operator will appear. More precisely,
we observe that

-1
/

xn\b—\

— _p2=p
’le‘ t |Qun| ™" 7 HXsz-FgH%P(R")
|le|p(%+57%) / AT
=|— Fg(&)|" d§
( |Qum| Q | | >

lm

< inf MP[Fgl(n),

WEle
where
1
= - — = >0 5.7
emm(i-ive)> o

(since we assumed that s < 2), and the powered fractional maximal operator
MP is defined by

M(ip)f(x)zglég %,/If \p
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Therefore, it follows that
| TOF g # @)% oy

<Y Y @l [ M Ed

I€Z:  mEL™: Qim
271<0(Q) QimCQ

SCID VI RV O
I€Z:
271<0(Q)

Now we recall the assumption of p in (1.13): p > v—vq(—%jti). With this and the
definition of €, and keeping (5.6) in mind, arithmetic shows that —% + i —e>0;

hence,
Cxn(—lyd
PN R el /i

lEZ:
271<0(Q)

As a result, we obtain

rn\»—t

HT(t> ['F.ile * g] (l’) ||L‘1(]R"+1)

< ClQ

M Fg) ).
Q

Hence, by choosing A > ¢ so that

1 1
X = a — &, (58)
we obtain
@ TF 0 010 s, < C1QI( | MPFolman)’

HMP [Fg] HMA(Rn)

= M IEG M ey

Here let us invoke the Adams inequality, Theorem 5.3; that is, for the parameters
1 < v < B < oo satisfying that

1 A
it follows that
HMa[|~7:g|p] H M (Rny = C|||~7:9|p||Mﬁ (R") H}—gHMgg(Rn)-

By inserting the definition of several parameters, (5.6), (5.7), (5.8), and (5.9), we
may calculate § and ~ as follows:
p 1

a@ﬁ A =
—_ = = — — = v _ = — = .

NRCY
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Note that v = g > 1 by the choice of p (5.4), which ensures the application of
the Adams inequality in the above. In summary, we obtain

HT(t)g(x)HM;Z,(RQ,LQ(RQ) S C“‘FQHMZ(R")- N

Remark 5.5. The restriction of v is natural. For given s, ¢, the inequality (1.14)
holds if and only if the parameter v satisfies the condition % = % +1- % To see

S
this, we have only to check the scaling exponent.
Finally we note another estimate for the operator 7.

Proposition 5.6. Let ¢ > 2, and take s € [2,00] so that

1 1 1
pRrs ] (5.10)

Let p € [s,00]. Then
Sup”T(t)f(x)”pr/(RQ) < CHfHMF? (f € M}'g)'

t>0

Proof. We first take r such that % = % + 5 — 1. By our assumption (5.10), we
notice that % = % + % < %, namely, 7/ > 2. With this in mind, we employ the
Young inequality and the boundedness of the Fourier transform on L" to get
Foe ™6 hyg] « F g + £,

1

1_ 1
”T(t)f(x)”MfZAR;) " 0o Qs

Fl [e—i47r2|£\2t,¢Q] ‘

o IF g f]

< sup |Q|»
QeQ

1_1 _
< Csup Q"7 [[vqllrr - IF g * fll e
QeQ

Note that [|¢hg]|r- ~ |Q|. Arithmetic gives us % - % +1= Il) — 1; hence we obtain
1 1
< »s || F L= .
HT(t)fHMfg, < ngg\@!? F g * [l = Cllf | mpzeny 0
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