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Abstract. In this article, we introduce and study a new sequence of positive
linear operators acting on function spaces defined on a convex compact subset.
Their construction depends on a given Markov operator, a positive real num-
ber, and a sequence of Borel probability measures. By considering special cases
of these parameters for particular convex compact subsets, we obtain the clas-
sical Kantorovich operators defined in the 1-dimensional and multidimensional
setting together with several of their wide-ranging generalizations scattered
in the literature. We investigate the approximation properties of these opera-
tors by also providing several estimates of the rate of convergence. Finally, we
discuss the preservation of Lipschitz-continuity and of convexity.

1. Introduction

The last twenty years have seen a growing interest in, and relevance of, the
study of positive approximation processes on convex compact subsets as more
and more evidence emerges. This has been mainly due to their useful connections
with approximation problems both for functions defined on these domains and for
the solutions of special classes of initial-boundary value differential problems. In
such a setting, a prominent role is played by Bernstein–Schnabl operators which
are generated by Markov operators. (In our monograph [4] (see also [2]), we

Copyright 2017 by the Tusi Mathematical Research Group.
Received Jul. 16, 2016; Accepted Sep. 19, 2016.
First published online May 6, 2017.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 47B65; Secondary 41A36.
Keywords. Markov operator, positive approximation process, Kantorovich operator, preser-

vation property.
591

http://dx.doi.org/10.1215/17358787-2017-0008
http://projecteuclid.org/bjma


592 F. ALTOMARE ET AL.

provide a rather complete overview of the main results in these fields of research,
together with their main applications.)

In this article, we introduce and study a new sequence of positive linear oper-
ators acting on function spaces defined on a convex compact subset K of some
locally convex Hausdorff space. Their construction depends on a given Markov
operator T : C(K) → C(K), a real number a ≥ 0, and a sequence (µn)n≥1 of
Borel probability measures onK. By considering special cases of these parameters
for particular convex compact subsets such as the unit interval or the multidimen-
sional hypercube and simplex, we obtain all the Kantorovich operators defined
on these settings, together with several other wide-ranging generalizations (see
[3], [6], [8], [10]–[12], [17], [18]).

Moreover, for a = 0, the new operators turn into Bernstein–Schnabl operators
and so, by means of the real continuous parameter a ≥ 0, our sequence of oper-
ators represents, indeed, a link between the Bernstein operators (a = 0) and the
Kantorovich operators (a = 1) on the classical 1-dimensional and multidimen-
sional domains where they are defined.

This article is mainly devoted to investigating the approximation properties of
the above-mentioned operators in spaces of continuous functions and, for special
settings, in Lp-spaces as well. Several estimates of the rate of convergence are
also provided. In the final section, we discuss some conditions under which these
operators preserve Lipschitz-continuity or convexity. In a future paper, we intend
to investigate whether (and for which class of initial-boundary value differen-
tial problems) our operators, like Bernstein–Schnabl operators, can be useful in
approximating the relevant solutions.

2. Notation and preliminaries

Throughout the article, we will fix a locally convex Hausdorff space X and a
convex compact subset K of X. The symbol X ′ will denote the dual space of X,
and the symbol L(K) will stand for the space

L(K) := {ϕ|K | ϕ ∈ X ′}. (2.1)

As usual, we will denote by C(K) the space of all real-valued continuous functions
on K; C(K) is a Banach lattice if endowed with the natural (pointwise) ordering
and the sup-norm ‖ · ‖∞. Furthermore, we will denote by A(K) the space of all
continuous affine functions on K.

Whenever X is the real Euclidean space Rd of dimension d (d ≥ 1), we will
denote by ‖ · ‖2 the Euclidean norm on Rd. Additionally, we will denote by λd

the Borel–Lebesgue measure on K ⊂ Rd, and we will denote by |K| the measure
of K with respect to λd. Finally, for every i = 1, . . . , d, pr i will stand for the ith
coordinate function on K; that is, pr i(x) := xi for every x = (x1, . . . , xd) ∈ K.

Coming back to an arbitrary convex compact subsetK, let BK be the σ-algebra
of all Borel subsets ofK, and letM+(K) (resp.,M+

1 (K)) be the cone of all regular
Borel measures on K (resp., the cone of all regular Borel probability measures on
K). For every x ∈ K, the symbol εx stands for the Dirac measure concentrated
at x. If µ ∈ M+(K) and 1 ≤ p < +∞, we will denote by Lp(K,µ) the space of
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all µ-integrable in the pth power functions on K; moreover, we will denote by
L∞(K,µ) the space of all µ-essentially bounded measurable functions on K. In
particular, if µ = λd, then we will use the symbols Lp(K) and L∞(K).

From now on, let T : C(K) → C(K) be a Markov operator, that is, a positive
linear operator on C(K) such that T (1) = 1, where the symbol 1 stands for the
function of constant value 1 on K. Furthermore, let (µ̃T

x )x∈K be the continuous
selection of Borel probability measures on K corresponding to T via the Riesz
representation theorem, that is,∫

K

f dµ̃T
x = T (f)(x)

(
f ∈ C(K), x ∈ K

)
. (2.2)

In [4, Chapter 3] (see also [2, Chapter 6]), the authors introduced and studied
the so-called Bernstein–Schnabl operators associated with the Markov operator
T and defined, for every f ∈ C(K) and x ∈ K, as follows:

Bn(f)(x) =

∫
K

· · ·
∫
K

f
(x1 + · · ·+ xn

n

)
dµ̃T

x (x1) · · · dµ̃T
x (xn). (2.3)

Note that, for every n ≥ 1, Bn is a linear positive operator from C(K) into C(K),
and that Bn(1) = 1 and hence ‖Bn‖ = 1. Moreover, B1 = T .

The operators Bn generalize the classical Bernstein operators on the unit inter-
val, on multidimensional simplices and hypercubes, and they share with them
several preservation properties also investigated in [4] and [2]. If, in addition, we
suppose that the Markov operator T satisfies the following condition

T (h) = h for every h ∈ A(K), (2.4)

or, equivalently (see (2.2)),∫
K

h dµ̃T
x = h(x) for every h ∈ A(K) and x ∈ K, (2.5)

then the sequence (Bn)n≥1 is an approximation process on C(K). Namely, for
every f ∈ C(K),

lim
n→∞

Bn(f) = f (2.6)

uniformly on K.
Finally, for every h, k ∈ A(K) and n ≥ 1, the following useful formulas hold:

Bn(h) = h (2.7)

and

Bn(hk) =
1

n
T (hk) +

n− 1

n
hk. (2.8)

In particular,

Bn(h
2) =

1

n
T (h2) +

n− 1

n
h2. (2.9)

(For a proof of (2.6)–(2.9), see [4, Theorem 3.2.1] or [5, Theorem 3.2].)
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3. Generalized Kantorovich operators

In this section, we introduce the main object of interest of the article and
we show some examples. Let T : C(K) → C(K) be a Markov operator satisfy-
ing condition (2.4) (or, equivalently, (2.5)). Moreover, fix a ≥ 0 and a sequence
(µn)n≥1 of Borel probability measures on K. Then, for every n ≥ 1, we consider
the positive linear operator Cn defined by setting

Cn(f)(x)

=

∫
K

· · ·
∫
K

f
(x1 + · · ·+ xn + axn+1

n+ a

)
dµ̃T

x (x1) · · · dµ̃T
x (xn) dµn(xn+1) (3.1)

for every x ∈ K and for every f ∈ C(K).
The germ of the idea of the construction of (3.1) goes back to [6], where the first

and third authors considered the particular case of the unit interval. Subsequently,
in [3] a natural generalization of Cn’s to the multidimensional setting—that is,
to hypercubes and simplices—was presented, which encompassed, as a particular
case, the multidimensional Kantorovich operators on these frameworks.

Here we develop this idea in full generality, obtaining a new class of positive
linear operators which encompasses not only several well-known approximation
processes in both univariate and multivariate settings, but also new ones in finite-
and infinite-dimensional frameworks as well. Clearly, in the special case a = 0,
the operators Cn correspond to the Bn ones (see (2.3)). Moreover, by introducing
the auxiliary continuous function

In(f)(x) :=

∫
K

f
( n

n+ a
x+

a

n+ a
t
)
dµn(t)

(
f ∈ C(K), x ∈ K

)
, (3.2)

for every n ≥ 1, we then have

Cn(f) = Bn

(
In(f)

)
. (3.3)

Therefore Cn(f) ∈ C(K), and the operator Cn : C(K) → C(K), being linear and
positive, is continuous with norm equal to 1, because Cn(1) = 1.

We point out that the operators Cn are well defined on the larger linear space
of all Borel measurable functions f : K → R for which the multiple integral
in (3.1) is absolutely convergent. This space contains, among other things, all
the bounded Borel measurable functions on K as well as a suitable subspace of⋂

n≥1 L
1(K,µn).

Here, we prefer not to provide more information in this regard and have decided
to postpone a more thorough analysis until a subsequent future article. However,
in Section 4 we will discuss the approximation properties of these operators also
in the setting of Lp(K)-spaces in the particular cases where K is a simplex or a
hypercube of Rd.

Note that assumption (2.4) is not essential in defining the operators Cn, but as
we will see in the next sections, it will be needed in order to prove that (Cn)n≥1

is an approximation process on C(K) and on Lp(K). By specifying the Markov
operator T (i.e., the family of representing measures (µ̃T

x )x∈K and the parameter
a ≥ 0, as well as the sequence of measures (µn)n≥1), we obtain several classes
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of approximating operators which can be tracked down in different articles. In
particular, when a = 1, for a special class of T and of the sequence (µn)n≥1, we get
the Kantorovich operators on the unit interval, on simplices, and on hypercubes
(see the next examples).

Another interesting case is covered when a is a positive integer. Indeed, given
µ ∈ M+

1 (K), we may consider the measure µa ∈ M+
1 (K) defined by∫

K

f dµa :=

∫
K

· · ·
∫
K

f
(y1 + · · ·+ ya

a

)
dµ(y1) · · · dµ(ya)

(f ∈ C(K)) and hence, for µn := µa for every n ≥ 1, the corresponding operators
in (3.1) reduce to

Cn(f)(x)

=

∫
K

· · ·
∫
K

f
(x1 + · · ·+ xn + y1 + · · ·+ ya

n+ a

)
dµ̃T

x (x1) · · · dµ̃T
x (xn) dµ(y1) · · · dµ(ya)

(3.4)

(n ≥ 1, f ∈ C(K), x ∈ K).
When K = [0, 1], for particular T ’s and µ’s we get the so-called Kantorovich

operators of order a (see [8, Examples (A)] and [12] for a = 2).
We also mention another particular case which, while seemingly simple, is not

devoid of interest. Assume that a > 0, and consider a sequence (bn)n≥1 in X such
that bn/a ∈ K for every n ≥ 1. Then, setting µn := εbn/a (n ≥ 1), from (3.1) we
get

Cn(f)(x) =

∫
K

· · ·
∫
K

f
(x1 + · · ·+ xn + bn

n+ a

)
dµ̃T

x (x1) · · · dµ̃T
x (xn) (3.5)

(n ≥ 1, f ∈ C(K), x ∈ K).
We proceed to show more specific examples.

Examples 3.1.
1. Assume that K = [0, 1], and consider the Markov operator T1 : C([0, 1]) →

C([0, 1]) defined, for every f ∈ C([0, 1]) and 0 ≤ x ≤ 1, by

T1(f)(x) := (1− x)f(0) + xf(1). (3.6)

Then, the Bernstein–Schnabl operators associated with T1 are the classical
Bernstein operators

Bn(f)(x) :=
n∑

k=0

(
n

k

)
xk(1− x)n−kf

(k
n

)
(n ≥ 1, f ∈ C([0, 1]), x ∈ [0, 1]), and, considering a ≥ 0 and (µn)n≥1 inM+

1 ([0, 1]),
from (3.1) and (3.3) we get

Cn(f)(x) =
n∑

k=0

(
n

k

)
xk(1− x)n−k

∫ 1

0

f
(k + as

n+ a

)
dµn(s) (3.7)

(n ≥ 1, f ∈ C([0, 1]), x ∈ [0, 1]). In particular, if all the µn’s are equal to
the Borel–Lebesgue measure λ1 on [0, 1] and a = 1, then formula (3.7) gives
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the classical Kantorovich operators (see [2, Section 5.3.7]). Moreover, as already
remarked, for a = 0 we obtain the Bernstein operators; thus, by means of (3.7), we
obtain a link between these fundamental sequences of approximating operators
in terms of a continuous parameter a ∈ [0, 1]. Special cases of operators (3.7)
have been also considered in [6] and [10] and we omit the details for the sake of
brevity.

When a is a positive integer, from (3.4) we obtain

Cn(f)(x) =
n∑

k=0

(
n

k

)
xk(1− x)n−k

×
∫ 1

0

· · ·
∫ 1

0

f
(k + y1 + · · ·+ ya

n+ a

)
dµ(y1) · · · dµ(ya) (3.8)

(n ≥ 1, f ∈ C([0, 1]), 0 ≤ x ≤ 1), µ ∈ M+
1 ([0, 1]) being fixed. When µ is

the Borel–Lebesgue measure on [0, 1], we obtain the previously mentioned Kan-
torovich operators of order a (see [8, Examples (A)] and [12] for a = 2). Finally,
from (3.5) and with bn ≤ a (n ≥ 1), we get the operators

Cn(f)(x) =
n∑

k=0

(
n

k

)
xk(1− x)n−kf

(k + bn
n+ a

)
(3.9)

(n ≥ 1, f ∈ C([0, 1]), x ∈ [0, 1]), which were first considered in [17] for a constant
sequence (bn)n≥1.

2. Let Qd := [0, 1]d, d ≥ 1, and consider the Markov operator Sd : C(Qd) →
C(Qd) defined by

Sd(f)(x) :=
1∑

h1,...,hd=0

f(δh11, . . . , δhd1)x
h1
1 (1− x1)

1−h1 · · ·xhd
d (1− xd)

1−hd (3.10)

(f ∈ C(Qd), x = (x1, . . . , xd) ∈ Qd), where δij stands for the Kronecker symbol.
In this case, the Bernstein–Schnabl operators associated with Sd are the clas-

sical Bernstein operators on Qd defined by

Bn(f)(x) =
n∑

h1,...,hd=0

d∏
i=1

(
n

hi

)
xhi
i (1− xi)

n−hif
(h1

n
, . . . ,

hd

n

)
(n ≥ 1, f ∈ C(Qd), x = (x1, . . . , xd) ∈ Qd). Then, taking (3.3) into account, the
operators Cn given by (3.1) become

Cn(f)(x) =
n∑

h1,...,hd=0

d∏
i=1

(
n

hi

)
xhi
i (1− xi)

n−hi

×
∫
Qd

f
(h1 + as1

n+ a
, . . . ,

hd + asd
n+ a

)
dµn(s1, . . . , sd) (3.11)

(n ≥ 1, f ∈ C(Qd), x = (x1, . . . , xd) ∈ Qd).
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When all the µn’s coincide with the Borel–Lebesgue measure λd on Qd and
a = 1, the operators Cn turn into a generalization of Kantorovich operators
introduced in [18]. (Another special case of (3.11) has been studied in [3].)

3. Denote by Kd the canonical simplex in Rd, d ≥ 1, that is,

Kd :=
{
(x1, . . . , xd) ∈ Rd

∣∣∣ xi ≥ 0 (i = 1, . . . , d) and
d∑

i=1

xi ≤ 1
}
,

and consider the canonical Markov operator Td : C(Kd) → C(Kd) defined by

Td(f)(x) :=
(
1−

d∑
i=1

xi

)
f(0) +

d∑
i=1

xif(ei) (3.12)

(f ∈ C(Kd), x = (x1, . . . , xd) ∈ Kd), where, for every i = 1, . . . , d, ei := (δij)1≤j≤d,
with δij being the Kronecker symbol (see, e.g., [2, Section 6.3.3]).

The Bernstein–Schnabl operators associated with Td are the classical Bernstein
operators on Kd defined by

Bn(f)(x) =
∑

h1,...,hd=0,...,n
h1+···+hd≤n

n!

h1! · · ·hd!(n− h1 − · · · − hd)!
xh1
1 · · ·xhd

d

×
(
1−

d∑
i=1

xi

)n−
∑d

i=1 hi

f
(h1

n
, . . . ,

hd

n

)
(n ≥ 1, f ∈ C(Kd), x = (x1, . . . , xd) ∈ Kd). By once again using (3.3), we obtain

Cn(f)(x)

=
∑

h1,...,hd=0,...,n
h1+···+hd≤n

n!

h1! · · ·hd!(n− h1 − · · · − hd)!
xh1
1 · · ·xhd

d

(
1−

d∑
i=1

xi

)n−
∑d

i=1 hi

×
∫
Kd

f
(h1 + as1

n+ a
,
h2 + as2
n+ a

, . . . ,
hd + asd
n+ a

)
dµn(s1, . . . , sd) (3.13)

(n ≥ 1, f ∈ C(Kd), x = (x1, . . . , xd) ∈ Kd).
When all the µn’s are equal to the Borel–Lebesgue measure λd onKd and a = 1,

these operators are referred to as the Kantorovich operators on C(Kd) and were
introduced in [18]. Another particular case of (3.13) has been investigated in [3,
Section 3].

For the sake of brevity, we omit details of the operators corresponding to (3.4)
and (3.5) in the setting of C(Qd) and C(Kd).

4. Approximation properties in C(K)

In this section, we present some approximation properties of the sequence
(Cn)n≥1 on C(K), showing several estimates of the rate of convergence. In order to
prove that the sequence (Cn)n≥1 is a (positive) approximation process on C(K),
we need the following preliminary result.
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Lemma 4.1. Let (Cn)n≥1 be the sequence of operators defined by (3.1) and asso-
ciated with a Markov operator satisfying (2.4) (or, equivalently, (2.5)). Then, for
every h, k ∈ A(K), we have

Cn(h) =
a

n+ a

∫
K

h dµn · 1+
n

n+ a
h (4.1)

and

Cn(hk) =
a2

(n+ a)2

∫
K

hk dµn · 1+
na

(n+ a)2

∫
K

h dµn · k

+
na

(n+ a)2

∫
K

k dµn · h+
n2

(n+ a)2
Bn(hk). (4.2)

In particular,

Cn(h
2) =

a2

(n+ a)2

∫
K

h2 dµn · 1+
2na

(n+ a)2

∫
K

h dµn · h+
n2

(n+ a)2
Bn(h

2). (4.3)

Proof. By (3.2), if h ∈ A(K), then In(h) =
n

n+a
h+ a

n+a

∫
K
h dµn · 1, and hence

(4.1) follows by taking (3.3) and (2.7) into account. Analogously, (4.2) is a con-
sequence of the identity

In(hk) =
n2

(n+ a)2
hk +

a2

(n+ a)2

∫
K

hk dµn · 1

+
na

(n+ a)2

(∫
K

h dµn

)
k +

na

(n+ a)2

(∫
K

k dµn

)
h

and (2.8). Formula (4.3) is a direct consequence of (4.2). �

The following approximation result holds.

Theorem 4.2. Under assumption (2.4), for every f ∈ C(K) we have

lim
n→∞

Cn(f) = f uniformly on K. (4.4)

Proof. First, observe that the space A(K) contains the constant functions and
separates the points of K by the Hahn–Banach theorem. Then, according to [2,
Theorem 4.4.6, Example 3] (see also [4, Theorem 1.2.8]), A(K) ∪ A(K)2 is a
Korovkin subset for C(K). Hence the claim will be proved if we show that, for
every h ∈ A(K),

lim
n→∞

Cn(h) = h and lim
n→∞

Cn(h
2) = h2

uniformly on K. All these assertions follow from Lemma 4.1, observing that the
sequences (

∫
K
h dµn)n≥1 and (

∫
K
h2 dµn)n≥1 are bounded for every h ∈ A(K). �

Now we present some quantitative estimates of the rate of convergence in (4.4)
by means of suitable moduli of continuity in both the finite-dimensional and
infinite-dimensional settings. To this end, we need to recall some useful definitions.
We begin with the finite-dimensional case, that is, K is a convex compact subset
of Rd, d ≥ 1. Then we can estimate the rate of uniform convergence of the



GENERALIZED KANTOROVICH OPERATORS 599

sequence (Cn(f))n≥1 to f by means of the first and second moduli of continuity,
respectively, defined as

ω(f, δ) := sup
{∣∣f(x)− f(y)

∣∣ ∣∣ x, y ∈ K, ‖x− y‖2 ≤ δ
}

(4.5)

and

ω2(f, δ) := sup
{∣∣∣f(x)− 2f

(x+ y

2

)
+ f(y)

∣∣∣ ∣∣∣ x, y ∈ K, ‖x− y‖2 ≤ 2δ
}
,

for any f ∈ C(K) and δ > 0.
In the general case of a locally convex Hausdorff space X (not necessarily of

finite dimension), we will use the total modulus of continuity which we are going
to define. First, if m ≥ 1, h1, . . . , hm ∈ L(K) (see (2.1)) and δ > 0, we set

H(h1, . . . , hm, δ) :=
{
(x, y) ∈ K ×K

∣∣∣ m∑
j=1

(
hj(x)− hj(y)

)2 ≤ δ2
}
.

Fix a bounded function f : K → R; the modulus of continuity of f with respect
to h1, . . . , hm is defined as

ω(f ;h1, . . . , hm, δ) := sup
{∣∣f(x)− f(y)

∣∣ ∣∣ (x, y) ∈ H(h1, . . . , hm, δ)
}
.

Furthermore, we define the total modulus of continuity of f as

Ω(f, δ) := inf
{
ω(f ;h1, . . . , hm, δ)

∣∣∣ m ≥ 1, h1, . . . , hm ∈ L(K),
∥∥∥ m∑
j=1

h2
j

∥∥∥
∞

= 1
}

= inf
{
ω(f ;h1, . . . , hm, 1)

∣∣∣ m ≥ 1, h1, . . . , hm ∈ L(K),
∥∥∥ m∑
j=1

h2
j

∥∥∥
∞

=
1

δ2

}
.

(4.6)

If X = Rd, then there is a simple relationship between Ω(f, δ) and the (first)
modulus of continuity ω(f, δ) defined by (4.5); indeed,

ω(f ; pr 1, . . . , prd, δ) = ω(f, δ), (4.7)

so that, setting r(K) := max{‖x‖2 | x ∈ K},

Ω(f, δ) ≤ ω
(
f, δr(K)

)
,

the last inequality being an equality if d = 1.
By using Proposition 1.6.5 in [4] (see also [2, Proposition 5.1.4]), we get the

following result.

Proposition 4.3. For every n ≥ 1 and f ∈ C(K),

∥∥Cn(f)− f
∥∥
∞ ≤ 2Ω

(
f,

√
4a2 + 1

n+ a

)
.
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Proof. Since Cn(1) = 1 (n ≥ 1), we can apply estimate (1.6.14) in [4, Proposi-
tion 1.6.5] obtaining, for every n ≥ 1, f ∈ C(K), x ∈ K and δ > 0, and for every
h1, . . . , hm ∈ L(K), m ≥ 1,∣∣Cn(f)(x)− f(x)

∣∣ ≤ (
1 +

1

δ2

m∑
j=1

µ(x,Cn, hj)
)
ω(f ;h1, . . . , hm, δ), (1)

where µ(x,Cn, hj) = Cn((hj − hj(x)1)
2)(x), j = 1, . . . ,m. Therefore,∣∣Cn(f)(x)− f(x)

∣∣ ≤ (
1 + τn(δ, x)

)
Ω(f, δ), (2)

where Ω(f, δ) is the total modulus of continuity (see (4.6)) and

τn(δ, x) := sup
{ m∑

j=1

µ(x,Cn, hj)(x)
∣∣∣ m ≥ 1, h1, . . . , hm ∈ L(K)

and
∥∥∥ m∑
j=1

h2
j

∥∥∥
∞

=
1

δ2

}
.

Fix h ∈ L(K). Keeping (4.1), (4.3), and (2.9) in mind, we have

Cn

((
h− h(x)1

)2)
(x)

= Cn(h
2)(x)− 2h(x)Cn(h)(x) + h2(x)

=
a2

(n+ a)2

∫
K

h2 dµn +
2na

(n+ a)2
h(x)

∫
K

h dµn +
n2

(n+ a)2
Bn(h

2)(x)

− 2a

n+ a
h(x)

∫
K

h dµn −
2n

n+ a
h2(x) + h2(x)

=
a2

(n+ a)2

∫
K

h2 dµn −
2a2

(n+ a)2
h(x)

∫
K

h dµn +
n

(n+ a)2
T (h2)(x)

+
a2 − n

(n+ a)2
h2(x)

≤ a2

(n+ a)2

∫
K

h2 dµn +
2a2

(n+ a)2

∣∣∣h(x)∫
K

h dµn

∣∣∣+ n

(n+ a)2
T (h2)(x)

+
a2

(n+ a)2
h2(x).

Then, using the Cauchy–Schwarz and the Jensen inequalities, we get

m∑
j=1

Cn

((
hj − hj(x)1

)2)
(x)

≤ a2

(n+ a)2

∫
K

m∑
j=1

h2
j dµn +

2a2

(n+ a)2

m∑
j=1

∣∣∣hj(x)

∫
K

hj dµn

∣∣∣
+

n

(n+ a)2
T
( m∑

j=1

h2
j

)
(x) +

a2

(n+ a)2

m∑
j=1

h2
j(x)
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≤ a2

(n+ a)2

∥∥∥ m∑
j=1

h2
j

∥∥∥
∞
+

2a2

(n+ a)2

( m∑
j=1

h2
j(x)

)1/2( m∑
j=1

∣∣∣∫
K

hj dµn

∣∣∣2)1/2

+
n

(n+ a)2

∥∥∥ m∑
j=1

h2
j

∥∥∥
∞
+

a2

(n+ a)2

∥∥∥ m∑
j=1

h2
j

∥∥∥
∞
.

Then, for every δ > 0 and for every h1, . . . hm ∈ L(K), m ≥ 1, such that
‖
∑m

j=1 h
2
j‖∞ = 1/δ2, we have

m∑
j=1

Cn

((
hj − hj(x)1

)2)
(x)

≤ 2a2

(n+ a)2
1

δ2
+

2a2

(n+ a)2

(∥∥∥ m∑
j=1

h2
j

∥∥∥
∞

)1/2( m∑
j=1

∫
K

h2
j dµn

)1/2

+
n

(n+ a)2
1

δ2

≤ 2a2

(n+ a)2
1

δ2
+

2a2

(n+ a)2

∥∥∥ m∑
j=1

h2
j

∥∥∥
∞
+

n

(n+ a)2
1

δ2

=
4a2 + n

δ2(n+ a)2
≤ 4a2 + 1

(n+ a)δ2
.

From (2), we infer that∣∣Cn(f)(x)− f(x)
∣∣ ≤ (

1 +
4a2 + 1

(n+ a)δ2

)
Ω(f, δ)

for every δ > 0. Then setting δ =
√

(4a2 + 1)/(n+ a), we get the claim. �

We proceed to establish some estimates in the finite-dimensional case. First, we
state the following result involving ω(f, δ). In the rest of this article, e2 : K −→ R
will denote the function

e2(x) := ‖x‖22 =
d∑

i=1

pr 2i (x) (x ∈ K)

and, for a given x ∈ K, dx : K −→ R will stand for the function

dx(y) := ‖y − x‖2 (y ∈ K).

Proposition 4.4. For every f ∈ C(K), n ≥ 1, and x ∈ K,

∣∣Cn(f)(x)− f(x)
∣∣ ≤ 2ω

(
f,

1

n+ a

√
a2

∫
K

d2x dµn + n
(
T (e2)(x)− e2(x)

))
. (4.8)

Moreover, ∥∥Cn(f)− f
∥∥
∞ ≤ 2ω

(
f,

max(aδ(K)2, ‖T (e2)− e2‖∞)√
n+ a

)
, (4.9)

where δ(K) := sup{‖x− y‖2 | x, y ∈ K}.
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Proof. Considering the coordinate functions pr i, i = 1, . . . , d, clearly, for every
x ∈ K,

d2x =
d∑

i=1

(
pr i − pr i(x)

)2
.

Therefore, from formula (1) of the proof of Proposition 4.3 and from (4.7) (see
also [2, Proposition 5.1.4 and (5.1.13)]), it follows that, for any n ≥ 1 and δ > 0,∣∣Cn(f)(x)− f(x)

∣∣ ≤ (
1 +

1

δ2
Cn(d

2
x)(x)

)
ω(f, δ).

If Cn(d
2
x)(x) = 0, then, letting δ → 0+, we get Cn(f)(x) = f(x) and, in this case,

(4.8) is obviously satisfied. If Cn(d
2
x)(x) > 0, then for δ :=

√
Cn(d2x)(x), we obtain∣∣Cn(f)(x)− f(x)

∣∣ ≤ 2ω
(
f,
√

Cn(d2x)(x)
)
.

On the other hand, by applying Lemma 4.1 to each pr i, i = 1, . . . , d, we have

Cn(d
2
x)(x) =

a2

(n+ a)2

∫
K

d2x dµn +
n

(n+ a)2
(
T (e2)(x)− e2(x)

)
,

and hence (4.8) holds. Clearly, (4.9) follows from (4.8). �

In the next result, we show a further estimate of the rate of convergence in
(4.4) by means of ω2(f, δ). To that end, according to [7], we set

λn,∞ := max
0≤i≤d+1

∥∥Cn(ϕi)− ϕi

∥∥
∞, (4.10)

where the functions ϕi are defined by

ϕ0 := 1, ϕi := pr i (i = 1, . . . , d) and ϕd+1 :=
d∑

i=1

pr 2i . (4.11)

Then we have the following result.

Proposition 4.5. For every f ∈ C(K) and n ≥ 1,∥∥Cn(f)− f
∥∥
∞ ≤ C

( M

n+ a
‖f‖∞ + ω2

(
f,

√
M

n+ a

))
,

where the constants C and M do not depend on f .

Proof. Since every convex bounded set has the cone property (see [1, p. 66]), from
[7, Theorem 2′] we infer that, for every f ∈ C(K) and n ≥ 1,∥∥Cn(f)− f

∥∥
∞ ≤ C

(
λn,∞‖f‖∞ + ω2(f, λ

1/2
n,∞)

)
,

where λn,∞ is defined by (4.10) and the constant C does not depend on f . In order
to estimate λn,∞, note that, for every n ≥ 1, Cn(1) = 1 and, for i = 1, . . . , d and
x = (x1, . . . , xd) ∈ K, taking (4.1) into account,∣∣Cn(pr i)(x)− pr i(x)

∣∣ = a

n+ a

∣∣∣∫
K

pr i dµn − xi

∣∣∣ ≤ 2a‖x‖2
n+ a

;
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hence ∥∥Cn(ϕi)− ϕi

∥∥
∞ ≤ 2ar(K)

n+ a
,

where r(K) := max{‖x‖2 | x ∈ K}.
On the other hand, by virtue of (4.3) and (2.9), for every n ≥ 1, i = 1, . . . , d

and x = (x1, . . . , xd) ∈ K we get

Cn(pr
2
i )(x)− pr 2i (x) =

1

(n+ a)2

(
a2

∫
K

pr 2i dµn + 2na
(∫

K

pr i dµn

)
xi

+ n
(
T (pr 2i )(x)− x2

i

)
− a(2n+ a)x2

i

)
.

Therefore,∣∣Cn(ϕd+1)(x)− ϕd+1(x)
∣∣

≤
d∑

i=1

∣∣Cn(pr
2
i )(x)− pr 2i (x)

∣∣
≤ 1

(n+ a)2

{
a2r(K)2 + 2adnr(K)2 + n

d∑
i=1

∣∣T (pr 2i )(x)− x2
i

∣∣
+ a(2n+ a)r(K)2

}
≤ 1

(n+ a)2

{(
2a(n+ a) + 2adn+ n

)
r(K)2 + n

d∑
i=1

T (pr 2i )(x)
}

=
1

(n+ a)2

{(
2a(n+ a) + 2adn+ n

)
r(K)2 + nT

( d∑
i=1

pr 2i

)
(x)

}
≤ r(K)2

(n+ a)2
{
2a(n+ a) + 2adn+ 2n

}
.

Consequently, ∥∥Cn(ϕd+1)− ϕd+1

∥∥
∞ ≤ 2a+ 2ad+ 2

n+ a
r(K)2

and, if we set M := max{2ar(K), (2a+ 2ad+ 2)r(K)2}, we get

λn,∞ ≤ M

n+ a
;

this completes the proof. �

5. Approximation properties in Lp-spaces

In this section, we investigate particular subclasses of the operators Cn, n ≥ 1,
which are well defined in Lp(K)-spaces, 1 ≤ p < +∞. This analysis will be
carried out in the special cases where K is the d-dimensional unit hypercube (in
particular, the unit interval) and the d-dimensional simplex.

In order to estimate the rate of convergence, we recall here the definition of
some moduli of smoothness. Let K be a convex compact subset of Rd, d ≥ 1,
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having nonempty interior. If f : K → R is a Borel measurable bounded function
and if δ > 0, then we define the (multivariate) averaged modulus of smoothness
of the first order for f and step δ in Lp-norm, 1 ≤ p < +∞, as

τ(f, δ)p :=
∥∥ω(f, ·; δ)∥∥

p
, (5.1)

where, for every x ∈ K,

ω(f, x; δ) := sup
{∣∣f(t+ h)− f(t)

∣∣ ∣∣ t, t+ h ∈ K, ‖t− x‖2 ≤ δ/2,

‖t+ h− x‖2 ≤ δ/2
}
.

Furthermore, if f ∈ Lp(K), 1 ≤ p < +∞, and δ > 0, then the (multivariate)
modulus of smoothness for f of order k and step δ in Lp-norm is defined by

ωk,p(f, δ) := sup
0<|h|≤δ

(∫
K

∣∣∆k
hf(x)

∣∣p dx)1/p

,

where, for x ∈ K,

∆k
hf(x) :=

{∑k
l=0(−1)k−l

(
k
l

)
f(x+ lh) if x+ hk ∈ K,

0 otherwise

(see [16, Section 1.3], [13], [14]).
We now restrict ourselves to considering the d-dimensional unit hypercube

Qd := [0, 1]d, d ≥ 1. For every n ≥ 1, h = (h1, . . . , hd) ∈ {0, . . . , n}d, and
x = (x1, . . . , xd) ∈ Qd, we set

Pn,h(x) :=
d∏

i=1

(
n

hi

)
xhi
i (1− xi)

n−hi ;

then

Pn,h ≥ 0 and
∑

h∈{0,...,n}d
Pn,h = 1 on Qd. (5.2)

Further, ∫
Qd

Pn,h(x) dx =
d∏

i=1

(
n

hi

)∫ 1

0

xhi
i (1− xi)

n−hi dxi =
1

(n+ 1)d
. (5.3)

Moreover, for any given a ≥ 0, we set

Qn,h(a) :=
d∏

i=1

[ hi

n+ a
,
hi + a

n+ a

]
⊂ Qd;

in particular, ⋃
h∈{0,...,n}d

Qn,h(a) = Qd.

Consider the operators Cn, n ≥ 1, defined by (3.11) with all the measures µn

equal to the Borel–Lebesgue measure on Qd. In this case, the operators Cn are
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well defined on L1(Qd) as well and the operator Sd satisfies (2.4). Furthermore,
if f ∈ L1(Qd) and x ∈ Qd, then

Cn(f)(x) =
∑

h∈{0,...,n}d
Pn,h(x)

∫
Qd

f
(h+ au

n+ a

)
du; (5.4)

in particular, if a > 0, then

Cn(f)(x) =
∑

h∈{0,...,n}d
Pn,h(x)

(n+ a

a

)d
∫
Qn,h(a)

f(v) dv. (5.5)

If d = 1, formulas (5.4) and (5.5) turn into

Cn(f)(x) =
n∑

h=0

(
n

h

)
xh(1− x)n−h

∫ 1

0

f
(h+ as

n+ a

)
ds

and, if a > 0, then

Cn(f)(x) =
n∑

h=0

(
n

h

)
xh(1− x)n−h

(n+ a

a

)∫ h+a
n+a

h
n+a

f(t) dt.

Theorem 5.1. Assume that a > 0. If f ∈ Lp(Qd), 1 ≤ p < +∞, then
limn→∞Cn(f) = f in Lp(Qd).

Proof. Since C(Qd) is dense in Lp(Qd) with respect to the Lp-norm ‖·‖p, and since,
on account of Theorem 4.2, limn→∞Cn(f) = f in Lp(Qd) for every f ∈ C(Qd),
it is enough to show that the sequence (Cn)n≥1 is equibounded from Lp(Qd) into
Lp(Qd).

Fix, indeed, f ∈ Lp(Qd), n ≥ 1, and x ∈ Qd. By recalling that the function |t|p
(t ∈ R) is convex and that∣∣∣∫

Qd

g(u) du
∣∣∣p ≤ ∫

Qd

∣∣g(u)∣∣p du
for every g ∈ Lp(Qd), setting M := supn≥1(

n+a
a(n+1)

)d, on account of (5.2) we get∣∣Cn(f)(x)
∣∣p ≤ ∑

h∈{0,...,n}d
Pn,h(x)

∫
Qd

∣∣∣f(h+ au

n+ a

)∣∣∣p du
=

∑
h∈{0,...,n}d

Pn,h(x)
(n+ a

a

)d
∫
Qn,h(a)

∣∣f(v)∣∣p dv.
Therefore, by using (5.3), we obtain∫

Qd

∣∣Cn(f)(x)
∣∣p dx ≤

∑
h∈{0,...,n}d

( n+ a

a(n+ 1)

)d
∫
Qn,h(a)

∣∣f(v)∣∣p dv
≤ M

∫
Qd

∣∣f(v)∣∣p dv;
that is, ‖Cn(f)‖p ≤ M1/p‖f‖p, and so the result follows. �
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We now present some estimates of the rate of convergence in Theorem 5.1.

Proposition 5.2. For every Borel measurable bounded function f on Qd, 1 ≤
p < +∞ and n ≥ 1,

∥∥Cn(f)− f
∥∥
p
≤ Cτ

(
f ; 2d

√
3n+ a2

12(n+ a)2

)
(see (5.1)), where the positive constant C does not depend on f .

Proof. Let f be a Borel measurable bounded function on Qd, and let p ≥ 1. For
a fixed x ∈ Qd, set Ψx(y) := y − x for every y ∈ Qd. By virtue of [14, Remark,
p. 285], defining M := sup{Cn((pr i ◦ Ψx)

2)(x) | i = 1, . . . , d, x ∈ Qd}, we have
that there exists a constant C such that∥∥Cn(f)− f

∥∥
p
≤ Cτ

(
f ;

2d
√
M

)
p
,

provided M ≤ 1.
Therefore, in order to obtain the desired result it is enough to estimateM . Since

for every n ≥ 1, i = 1, . . . , d and x ∈ Qd, we have (pr i ◦Ψx)
2 = pr 2i −2xipr i+xi1,

then

Cn

(
(pr i ◦Ψx)

2
)
(x) = Cn(pr

2
i )(x)− 2xiCn(pr i)(x) + x2

iCn(1)(x).

One has Cn(1)(x) = 1 and, from Lemma 4.1,

Cn(pr i)(x) =
a

2(n+ a)
+

n

n+ a
xi.

Moreover, since Bn(pr
2
i ) =

1
n
xi +

n−1
n
x2
i (see (2.9) and (3.10)), we have

Cn(pr
2
i )(x) =

a2

3(n+ a)2
+

n(a+ 1)

(n+ a)2
xi +

n(n− 1)

(n+ a)2
x2
i .

Then

Cn

(
(pr i ◦Ψx)

2
)
(x) =

a2 − n

(n+ a)2
x2
i +

n− a2

(n+ a)2
xi +

a2

3(n+ a)2

=
n− a2

(n+ a)2
xi(1− xi) +

a2

3(n+ a)2

≤ n− a2

4(n+ a)2
+

a2

3(n+ a)2
=

3n+ a2

12(n+ a)2
.

Therefore, M ≤ 3n+a2

12(n+a)2
≤ 1 and the result follows. �

Now we present some estimates of the approximation error ‖Cn(f) − f‖p by
applying the results contained in [7]. To this end, for every n ≥ 1 and p ∈ [1,+∞[,
we have to estimate the quantity λn,p defined by

λn,p := max
0≤i≤d+1

∥∥Cn(ϕi)− ϕi

∥∥
p
, (5.6)
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where the functions ϕi are defined by (4.11). Note that ‖Cn(1) − 1‖p = 0. For
every i = 1, . . . , d, by virtue of Lemma 4.1 we get

Cn(pr i)(x)− pr i(x) =
a

n+ a

(1
2
− xi

)
;

therefore, ∥∥Cn(pr i)− pr i
∥∥
p
=

a

n+ a

(∫
Qd

∣∣∣1
2
− xi

∣∣∣p dx)1/p

=
a

n+ a

(∫ 1

0

∣∣∣1
2
− xi

∣∣∣p dxi

)1/p

=
a

2(n+ a)(p+ 1)1/p
≤ a

4(n+ a)
.

Moreover,∥∥Cn(ϕd+1)− ϕd+1

∥∥
p

=
1

(n+ a)2

(∫
Qd

∣∣∣a2d
3

+ n(a+ 1)
d∑

i=1

xi − (n+ 2na+ a2)
d∑

i=1

x2
i

∣∣∣p dx)1/p

≤ 1

(n+ a)2

(∫
Qd

(a2d
3

+ n(a+ 1)d+ (n+ 2na+ a2)d
)p

dx
)1/p

≤ d

(n+ a)2

(a2
3

+ n(a+ 1) + (n+ 2na+ a2)
)

≤ d

n+ a

(a2
3

+ (a+ 1) + (a+ 1)2
)
≤ 3d(a+ 1)2

n+ a
.

Hence,

λn,p ≤
3d(a+ 1)2

n+ a
. (5.7)

Consider the Sobolev space W 2
∞(K) of all functions f ∈ L∞(K) such that, for

every |k| ≤ 2, Dkf exists (in the Sobolev sense) and Dkf ∈ L∞(K), endowed
with the norm ‖f‖2,∞ := max|k|≤2 ‖Dkf‖L∞(K).

Proposition 5.3. If f ∈ W 2
∞(Qd), then, for every 1 ≤ p < +∞ and n ≥ 1,∥∥Cn(f)− f(x)
∥∥
p
≤ C‖f‖2,∞λn,p ≤ C̃‖f‖2,∞

1

n+ a
, (5.8)

where the constants C and C̃ do not depend on f . Furthermore, if f ∈ L1(Qd),
then, for every n ≥ 1,∥∥Cn(f)− f(x)

∥∥
1

≤ C
(
λn,1‖f‖1 + ωd+2,1(f, λ

1/(d+2)
n,1 )

)
≤ C

(3d(a+ 1)2

n+ a
‖f‖1 + ωd+2,1

(
f,
(3d(a+ 1)2

n+ a

)1/(d+2)))
, (5.9)

with C not depending on f .
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Proof. Keeping (5.6) and (5.7) in mind, estimate (5.8) follows from Theorem 1 in
[7]; moreover, formula (5.9) is a consequence of [7, Theorem 2] and (5.7). �

To obtain a result similar to Theorem 5.1 for the d-dimensional simplexKd, d ≥
1, we will adapt the proof for Qd by making the necessary modifications. As usual,
for every n ≥ 1 and h = (h1, . . . , hd) ∈ {0, . . . , n}d, we set |h| = h1+ · · ·+hd. For
every n ≥ 1, h = (h1, . . . , hd) ∈ {0, . . . , n}d, |h| ≤ n and x = (x1, . . . , xd) ∈ Kd,
we set

P ∗
n,h(x) :=

n!

h1! · · ·hd!(n− h1 − · · · − hd)!
xh1
1 · · ·xhd

d

(
1−

d∑
i=1

xi

)n−
∑d

i=1 hi

.

Then

P ∗
n,h ≥ 0 and

∑
h∈{0,...,n}d,|h|≤n

P ∗
n,h = 1 on Kd,

and, on account of [9, Section 976],∫
Kd

P ∗
n,h(x) dx =

n!

(n+ d)!
=

1

(n+ 1)(n+ 2) · · · (n+ d)
≤ 1

(n+ 1)d
.

Moreover, for any a ≥ 0, we set

Kn,h(a) :=
{
(x1, . . . , xd) ∈ Rd

∣∣∣ hi

n+ a
≤ xi for each i = 1, . . . , d and

d∑
i=1

xi ≤
1

n+ a

(
a+

d∑
i=1

hi

)}
;

in particular,

Kn,h(a) ⊂ Kd and Kd =
⋃

h∈{0,...,n}d
|h|≤n

Kn,h(a).

Now consider the operators Cn, n ≥ 1, defined by (3.13), where each µn is the
normalized Borel–Lebesgue measure d!λd on Kd. Also, in this case the operators
Cn are well defined on L1(Kd) and the operator (3.12) satisfies (2.4). Moreover,
for every f ∈ L1(Kd) and x ∈ Kd,

Cn(f)(x) =
∑

h∈{0,...,n}d
|h|≤n

d!P ∗
n,h(x)

∫
Kd

f
(h+ au

n+ a

)
du

and, if a > 0, then

Cn(f)(x) =
∑

h∈{0,...,n}d
|h|≤n

P ∗
n,h(x)d!

(n+ a

a

)d
∫
Kn,h(a)

f(v) dv.
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Therefore, if 1 ≤ p < +∞ and a > 0, then∫
Kd

∣∣Cn(f)(x)
∣∣p dx ≤

∑
h∈{0,...,n}d

|h|≤n

∫
Kd

P ∗
n,h(x) dx d!

(n+ a

a

)d
∫
Kn,h(a)

∣∣f(v)∣∣p dv
≤ d!

( n+ a

a(n+ 1)

)d
∫
Kd

∣∣f(v)∣∣p dv,
and hence, setting M := supn≥1 d!(

n+a
a(n+1)

)d, we get∥∥Cn(f)
∥∥
p
≤ M

1/p‖f‖p.

By the same reasoning as in the proof of Theorem 5.1, we infer the following.

Theorem 5.4. If a > 0, then, for every f ∈ Lp(Kd), 1 ≤ p < +∞, we have
limn→∞Cn(f) = f in Lp(Kd).

For Theorem 5.4, we will also furnish some estimates of the rate of convergence
by applying the results contained in [7]. In order to do this, we first evaluate λn,p

for each n ≥ 1 and 1 ≤ p < +∞ (see (5.6)). First of all (see [9, Section 976]), we
recall that, for every k ∈ N,∫

Kd

xk
i dx =

Γ(k + 1)

Γ(k + d)

1

k + d
=

1

(k + d)(k + d− 1) · · · (k + 1)
. (5.10)

As in the case of a hypercube, ‖Cn(1)−1‖p = 0. For every i = 1, . . . , d, by virtue
of Lemma 4.1 and (5.10) for k = 0, 1, we get that, for every x = (x1, . . . , xd) ∈ Kd,∣∣Cn(pr i)(x)− pr i(x)

∣∣ = a

n+ a

∣∣∣ 1

d+ 1
− xi

∣∣∣ ≤ a

n+ a
,

and therefore, ∥∥Cn(pr i)− pr i
∥∥
p
≤ a

(n+ a)(d!)1/p
.

Moreover, from (2.9) and (3.12) it follows that Bn(pr
2
i ) =

n−1
n
pr 2i +

1
n
pr i.

Thus, from Lemma 4.1 and (5.10), for k = 2, for every x = (x1, . . . , xd) ∈ Kd,
we get

Cn(pr
2
i )(x) =

a2d!

(n+ a)2
2

(d+ 2)!
+

2nad!

(n+ a)2
1

(d+ 1)!
xi

+
n2

(n+ a)2

[ 1
n
xi +

n− 1

n
x2
i

]
=

2a2

(n+ a)2(d+ 2)(d+ 1)

+
n(2a+ d+ 1)

(n+ a)2(d+ 1)
xi +

n(n− 1)

(n+ a)2
x2
i
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and hence (see (4.11))∣∣Cn(ϕd+1)(x)− ϕd+1(x)
∣∣

=
1

(n+ a)2
×

∣∣∣ 2a2d

(d+ 2)(d+ 1)
+

n(2a+ d+ 1)

(d+ 1)

d∑
i=1

xi − (n+ 2na+ a2)
d∑

i=1

x2
i

∣∣∣
≤ 1

(n+ a)2

( 2a2d

(d+ 2)(d+ 1)
+

n(2a+ d+ 1)

(d+ 1)
+ n+ 2na+ a2

)
.

Thus∥∥Cn(ϕd+1)− ϕd+1

∥∥
p

≤ 1

(n+ a)2(d!)1/p

( 2a2d

(d+ 2)(d+ 1)
+

n(2a+ d+ 1)

(d+ 1)
+ n+ 2na+ a2

)
≤ 2a2 + 2d(a+ 1) + (d+ 1)(a+ 1)2

(n+ a)(d!)1/p(d+ 1)
≤ 3d+ 3

(d!)1/p(d+ 1)

(a+ 1)2

n+ a
.

Accordingly,

λn,p ≤
3(a+ 1)2

(d!)1/p(n+ a)
.

As a consequence, we get the following result.

Proposition 5.5. If f ∈ W 2
∞(Kd), then, for every n ≥ 1,∥∥Cn(f)− f
∥∥
p
≤ C‖f‖2,∞λn,p ≤ C̃‖f‖2,∞

1

n+ a
,

where the constants C and C̃ do not depend on f . Moreover, if f ∈ L1(Kd), then,
for every 1 ≤ p < +∞ and n ≥ 1,∥∥Cn(f)− f(x)

∥∥
1
≤ C

(
λn,1‖f‖1 + ωd+2,1(f, λ

1/(d+2)
n,1 )

)
≤ C

(3(a+ 1)2

d!(n+ a)
‖f‖1 + ωd+2,1

(
f,
(3(a+ 1)2

d!(n+ a)

)1/(d+2)))
with C not depending on f .

6. Preservation properties

In this section, we will investigate some shape- and regularity-preserving prop-
erties of the Cn’s by proving that, under suitable assumptions, they preserve
convexity and Lipschitz-continuity. (Relation (3.3) yields that some of the preser-
vation properties of the Bn’s (see (2.3)) are naturally shared by the Cn’s.)

First of all, we investigate the behavior of the sequence (Cn)n≥1 on Lipschitz-
continuous functions and, to this end, we recall some basic definitions. Here we
assume that K is metrizable, and we denote by ρ the metric on K which induces
its topology. The ρ-modulus of continuity of a given f ∈ C(K) with respect to
δ > 0 is then defined by

ωρ(f, δ) := sup
{∣∣f(x)− f(y)

∣∣ ∣∣ x, y ∈ K, ρ(x, y) ≤ δ
}
.
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Furthermore, for any M ≥ 0 and 0 < α ≤ 1, we denote by

Lip(M,α) :=
{
f ∈ C(K)

∣∣ ∣∣f(x)− f(y)
∣∣ ≤ Mρ(x, y)α for every x, y ∈ K

}
the space of all Hölder continuous functions with exponent α and constant M .
In particular, Lip(M, 1) is the space of all Lipschitz continuous functions with
constant M . Assume that

ωρ(f, tδ) ≤ (1 + t)ωρ(f, δ)

for every f ∈ C(K), δ, t > 0. From now on, we suppose that there exists c ≥ 1
such that

T
(
Lip(1, 1)

)
⊂ Lip(c, 1), (6.1)

or, equivalently,

T
(
Lip(M, 1)

)
⊂ Lip(cM, 1),

for every M ≥ 0.
For instance, the Markov operators T1, Sd, and Td of parts 1, 2, and 3 of

Examples 3.1 satisfy condition (6.1) with c = 1, by considering on [0, 1] the usual
metric and on Qd and Kd the l1-metric, that is, the metric generated by the
l1-norm (see [4, p. 124]). Under condition (6.1) it has been shown that (see [4,
Theorem 3.3.1])

Bn(f) ∈ Lip(cM, 1) (6.2)

for every f ∈ Lip(M, 1) and n ≥ 1. Furthermore (see [4, Corollary 3.3.2]), for
every f ∈ C(K), δ > 0 and n ≥ 1,

ωρ

(
Bn(f), δ

)
≤ (1 + c)ωρ(f, δ) (6.3)

and

Bn

(
Lip(M,α)

)
⊂ Lip(cαM,α) (6.4)

for every M > 0 and α ∈ ]0, 1]. Then, taking (6.2) into account, after noting
that In(f) ∈ Lip(M,α) whenever f ∈ Lip(M,α) (see (3.2)), we easily deduce the
following proposition.

Proposition 6.1. Assume that condition (6.1) is satisfied. Then, for every f ∈
Lip(M, 1) and n ≥ 1, Cn(f) ∈ Lip(cM, 1).

Moreover, we see how (6.3) and (6.4) yield the following result, since ωρ(In(f), δ) ≤
ωρ(f, δ).

Proposition 6.2. Assume that condition (6.1) is satisfied. Then, for every f ∈
C(K), δ > 0 and n ≥ 1,

ωρ

(
Cn(f), δ

)
≤ (1 + c)ωρ(f, δ)

and

Cn

(
Lip(M,α)

)
⊂ Lip(cαM,α)

for every M > 0 and 0 < α ≤ 1. In particular, if T (Lip(1, 1)) ⊂ Lip(1, 1), then

ωρ

(
Cn(f), δ

)
≤ 2ωρ(f, δ)

and
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Cn

(
Lip(M,α)

)
⊂ Lip(M,α)

for every M > 0 and 0 < α ≤ 1.

Below we state some further properties of the operators Cn for special functions
f ∈ C(K). To this end, we need some additional concepts. We first recall that,
if T is an arbitrary Markov operator on C(K), then a function f ∈ C(K) is said
to be T -convex if

fz,α ≤ T (fz,α) for every z ∈ K and α ∈ [0, 1],

where fz,α is defined by fz,α(x) := f(αx + (1 − α)z) (x ∈ K). If K = [0, 1] and
T1 denotes the operator (3.6), then a function f ∈ C([0, 1]) is T1-convex if and
only if it is convex. For K = Qd and T = Sd (see (3.10)), a function f ∈ C(Qd)
is Sd-convex if and only if f is convex with respect to each variable. Finally, for
K = Kd and T = Td (see (3.12)), a function f ∈ C(Kd) is Td-convex if and only
if it is axially convex, that is, it is convex on each segment parallel to a segment
joining two extreme points of Kd (see [4, Section 3.5] for more details).

In general, each convex function f ∈ C(K) is T -convex. Moreover, T -axially
convex functions are T -convex as well (see [4, Definition 3.5.1 and remarks on
p. 148]). In [4, Theorem 3.5.2] it has been shown that, if (Bn)n≥1 is the sequence
of Bernstein–Schnabl operators associated with T and if T satisfies hypothesis
(2.4) (or (2.5)), then

f ≤ Bn(f) ≤ T (f), n ≥ 1

whenever f ∈ C(K) is T -convex. As a consequence, we have the following result.

Proposition 6.3. Under hypothesis (2.4) (or (2.5)), if f ∈ C(K) is T -convex,
then, for any n ≥ 1,

Cn(f) ≤ Cn

(
T (f)

)
.

In particular, if f is T -convex and each In(f) is T -convex, then, for every n ≥ 1,

In(f) ≤ Cn(f) ≤ T
(
In(f)

)
.

Apart from the case of the interval [0, 1] and the classical Bernstein operators,
in general, Bernstein–Schnabl operators do not preserve convexity. A simple coun-
terexample is given by the function f := |pr 1− pr 2| defined on the 2-dimensional
simplex K2 (see [15, p. 468]). Hence, in general, the Cn’s do not preserve convex-
ity either. But it is possible to determine sufficient conditions in order that the
Bn’s (and, hence, the Cn’s) preserve convexity.

For a given f ∈ C(K), we set

f̃(s, t) := f
(s+ t

2

)
(s, t ∈ K)

and

∆(f̃ ;x, y) :=

∫∫
K2

f̃(s, t) dµ̃T
x (s) dµ̃

T
x (t)

+

∫∫
K2

f̃(s, t) dµ̃T
y (s) dµ̃

T
y (t)
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− 2

∫∫
K2

f̃(s, t) dµ̃T
x (s) dµ̃

T
y (t)

= B2(f)(x) +B2(f)(y)− 2

∫∫
K2

f
(s+ t

2

)
dµ̃T

x (s) dµ̃
T
y (t)

for every x, y ∈ K.

Theorem 6.4. Suppose that T satisfies the following assumptions:

(c1) T maps continuous convex functions into (continuous) convex functions,

(c2) ∆(f̃ ;x, y) ≥ 0 for every convex function f ∈ C(K) and for every x, y ∈ K.

Then each Cn maps continuous convex functions into (continuous) convex func-
tions.

Proof. According to [4, Theorem 3.4.3], under assumptions (c1) and (c2), each
Bernstein–Schnabl operator Bn maps continuous convex functions into (continu-
ous) convex functions. Therefore, the result follows from (3.3) taking into account
that each In(f) is convex, provided that f ∈ C(K) is convex. �

Remark 6.5. In [4, Remark 3.4.4 and Examples 3.4.5–3.4.11] there are several
examples of settings where conditions (c1) and (c2) are satisfied. This is the case,
in particular, when K = [0, 1] and T = T1 (see (3.6)). Therefore, all the operators
defined by (3.7), (3.8), and (3.9) preserve the convexity.

Finally, we point out that if K = Kd, d ≥ 1, then the Bernstein operators
on C(Kd), that is, the Bernstein–Schnabl operators associated with the Markov
operator (3.12), preserve the axial convexity (see [2, Theorem 6.3.2], [4, Theo-
rem 3.5.9]). On the other hand, if f ∈ C(Kd) is axially convex, then In(f) is
axially convex too for every n ≥ 1. Therefore, on account of (3.3), we conclude
with the following.

Corollary 6.6. Considering the canonical simplex Kd of Rd, d ≥ 1, then the
operators Cn defined by (3.13) map continuous axially convex functions on Kd

into (continuous) axially convex functions.
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Semigroups and Approximation Processes, de Gruyter Stud. Math. 61, de Gruyter, Berlin,
2014. Zbl 1352.47001. MR3328374. 591, 593, 598, 599, 600, 611, 612, 613

http://www.emis.de/cgi-bin/MATH-item?0314.46030
http://www.ams.org/mathscinet-getitem?mr=0450957
http://www.emis.de/cgi-bin/MATH-item?0924.41001
http://www.ams.org/mathscinet-getitem?mr=1292247
http://dx.doi.org/10.1515/9783110884586
http://dx.doi.org/10.1515/9783110884586
http://www.emis.de/cgi-bin/MATH-item?1202.41018
http://www.ams.org/mathscinet-getitem?mr=2719372
http://dx.doi.org/10.1515/APAM.2010.024
http://www.emis.de/cgi-bin/MATH-item?1352.47001
http://www.ams.org/mathscinet-getitem?mr=3328374


614 F. ALTOMARE ET AL.

5. F. Altomare, M. Cappelletti Montano, V. Leonessa, and I. Raşa, On differential oper-
ators associated with Markov operators, J. Funct. Anal. 266 (2014), no. 6, 3612–3631.
Zbl 1285.47048. MR3165236. DOI 10.1016/j.jfa.2014.01.001. 593

6. F. Altomare and V. Leonessa, On a sequence of positive linear operators associated with
a continuous selection of Borel measures, Mediterr. J. Math. 3 (2006), no. 3–4, 363–382.
Zbl 1121.41019. MR2274731. DOI 10.1007/s00009-006-0084-8. 592, 594, 596

7. H. Berens and R. DeVore, Quantitative Korovkin theorems for positive linear operators on
Lp-spaces, Trans. Amer. Math. Soc. 245 (1978), 349–361. Zbl 0397.41010. MR0511414.
DOI 10.2307/1998871. 602, 606, 608, 609

8. J. de la Cal and A. M. Valle, A generalization of Bernstein-Kantorovič operators, J. Math.
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