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Abstract. We generate a representation of the Toeplitz C∗-algebra TAf
on

a Hilbert space Hx that encodes the orbit of an escape point x ∈ I of a
Markov interval map f , with transition matrix Af . This leads to a family
of representations of TAf

labeled by points in all intervals I. The underlying
dynamics of the interval map are used in the study of this family.

1. Introduction

The Toeplitz algebra TA of a finite (0, 1)-matrix A is an extension of the
Cuntz–Krieger algebra OA in which the Cuntz–Krieger relations are replaced by
inequalities (see [8], [10], [11]). In [4] and [3], we produced and studied orbit rep-
resentations πx of the Cuntz–Krieger algebra OAf

associated with the transition
(0, 1)-matrix Af arising from a Markov interval map f . Using β-transformations
f(x) = βx (mod 1), we were able to recover Bratteli and Jorgensen permutation
representations of the Cuntz algebra (where Af = (aij) is the full matrix aij = 1
for all i’s and j’s) (see [2]). The representation πx acts on a Hilbert space Hx that
naturally arises from the generalized orbit of a point x, provided x remains in the
domain of f under the iteration of f .

In the following we consider the case where the point x is in the escape set of
f (i.e., fk(x) ∈ I does not belong to the domain of f for a certain k ∈ N). We
can likewise define a Hilbert space Hx from the backward orbit of x and partial
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isometries on Hx. If x is in the escape set, we prove that these operators do
define a representation νx of the Toeplitz algebra TAf

on Hx (which is no longer a
representation of the Cuntz–Krieger algebra OAf

). The backward orbit of x has
a natural structure of a rooted tree, where the root is the point in the escape set.
We show that these rooted trees together with the underlying dynamics can be
used to understand when two such representations of TAf

are unitarily equivalent.
We show that these representations νx can be recast in a Fock-like space Fx, as
in the original spirit of [7, Section 5.2].

Therefore, we now have a representation of TAf
for each point in I (either a

point is in the escape set or it remains in the domain of f for any iteration of f).
We show that the representations πx of TAf

arising from those of OAf
produced

in [4] and [3] are not unitarily equivalent to the representations νy of TAf
when y

is in the escape set.
This article is organized as follows. In Section 2, we review the definitions of

the operator algebras (Cuntz–Krieger and Toeplitz algebra) that we consider in
the main portion of the article, together with the main tools from the interval
map dynamical systems side. In particular, we review the class of Markov interval
maps M(I) as in Definition 2.1 and the transition matrix Af that codifies the
transitions among the subintervals I1, . . . , In.

In Section 3, we extend the symbolic dynamics to the case of interval maps with

escape sets and, in particular, we introduce in Definition 3.2 a matrix Âf which
extends Af and which is labeled by both the subintervals I1, . . . , In and the escape
subintervals E1, . . . , En−1, adding one more symbol for each escape subinterval.
Then we provide some examples of such interval maps (with nonempty escape
sets) and draw some conclusions in the rooted tree structures of the backward
orbit of escape set points.

In Section 4.1, we fix an interval map f ∈ M(I) with transition n× n matrix
Af and a point x ∈ Ef in the escape set of f . Then in (4.1) we define the partial
isometries T1, . . . , Tn acting on the Hilbert space Hx attached to the backward
orbit of x. We then show in Lemma 4.1 that indeed these operators generate
a representation νx of the Toeplitz algebra TAf

. Since the matrix Af is aperi-
odic, we prove in Proposition 4.4 that νx(TAf

) is an extension of the universal
Cuntz–Krieger algebra OAf

by the C∗-algebra K(Hx) of the compacts operators
on Hx.

In Section 4.2, if we are given two points x and y in Ef , then Theorem 4.5 shows
that the associated Toeplitz representations νx and νy are unitarily equivalent
whenever the rooted trees of x and y are isomorphic. We also remark that if
y is not in the escape set, then the associated representation πy of the Toeplitz
algebra TAf

that arises from the Cuntz–Krieger algebra OAf
on Hy is not unitarily

equivalent to any representation νx for x ∈ Ef .
In Section 4.3, we relate our representations νx of the Toeplitz algebra with

another one that is constructed in a Fock space Fx associated with the matrix
Af , remarking that they are unitarily equivalent.
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2. Background material

In this section, we provide some useful tools, starting with the operator algebras
we obtain from dynamical systems that underline the interval maps we consider
in this article.

2.1. Toeplitz C∗-algebra from a finite matrix. A representation π of a
∗-algebra A on a complex Hilbert space H is a ∗-homomorphism π: A → B(H)
into the ∗-algebra B(H) of bounded linear operators on H. Usually, representa-
tions are studied up to unitary equivalence. Two representations π : A → B(H)

and π̃ : A → B(H̃) are (unitarily) equivalent if there is a unitary operator

U : H → H̃ (i.e., if U is a surjective isometry) such that Uπ(a) = π̃(a)U for
every a ∈ A.

A representation π : A → B(H) of some ∗-algebra is said to be irreducible
if there is no nontrivial subspace of H invariant with respect to all operators
π(a) with a ∈ A. Then (see, e.g., [12, Proposition 3.13.2]) π is irreducible if and

only if each nonzero vector ξ ∈ H is cyclic for π(A); that is, if π(A)ξ = H. The
representation is called faithful if it is injective.

Here we deal with a special family of ∗-algebras defined as follows. Let A = (aij)
be an n×n (0, 1)-matrix such that each row and column has at least one nonzero
entry. The Cuntz–Krieger algebra OA associated with the matrix A satisfying a
condition (I) was defined in [5] as the universal C∗-algebra generated by (nonzero)
partial isometries s1, . . . , sn satisfying

s∗i si =
∑
j

aijsjs
∗
j , i = 1, . . . , n,

∑
i

sis
∗
i = 1, (2.1)

where 1 denotes the identity. In [1], an Huef and Raeburn introduced the universal
C∗-algebra associated to any finite (0, 1)-matrix with no zero row or column
(following [6], which is a faithful realization of an Huef and Raeburn’s universal
Cuntz–Krieger algebra). Readers familiar with the work of Cuntz and Krieger will
note that s∗i sj = 0 for i 6= j and sisj = aijsisj. Moreover, the range projections
pi = sis

∗
i and support projections qi = s∗i si obey the following:

pipj = δijpi, qiqj = qjqi, qisj = aijsj. (2.2)

The C∗-algebra OA is uniquely determined by the relations (2.1) if A satisfies
Cuntz and Krieger’s condition (I) (see [5, Theorem 2.13]). A special case is the
Cuntz algebra On when A is full: aij = 1 for all i and j.

For the same (0, 1)-matrix A, a Toeplitz–Cuntz–Krieger A-family in a C∗-
algebra B is a pair (t, q) where t: i 7→ ti assigns to each i = 1, . . . , n a partial
isometry ti ∈ B, and q : i 7→ qi assigns to each i = 1, . . . , n a projection qi ∈ B
such that (see [13]):

(TCK1) t∗i ti⊥t∗j tj for all i, j = 1, . . . , n with i 6= j,

(TCK2) t∗i ti = qi for each i = 1, . . . , n,

(TCK3)
n∑

j=1

aijtjt
∗
j ≤ t∗i ti for each i.
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Then
∑

j tjt
∗
j ≤ 1 and (t∗i ti)(tjt

∗
j) = tjt

∗
j if aij = 1. Readers acquainted with the

work of Cuntz and Krieger [5] will notice that (TCK1), (TCK2), and (TCK3)
are satisfied by the partial isometries of the Cuntz–Krieger algebra OA (see
(2.2)). Moreover, there is a C∗-algebra TA generated by a Toeplitz–Cuntz–Krieger
A-family (t, q) which is universal (see [10]) in the sense that, given any Toeplitz–
Cuntz–Krieger A-family (s, p) in a C∗-algebra B, there exists a homomorphism
πt,q : TA → B such that πt,q(ti) = si and πt,q(qi) = pi for all i. This universal
C∗-algebra TA is called the Toeplitz algebra of the matrix A.

It is clear that the Cuntz–Krieger algebra OA is a quotient of the Toeplitz
algebra TA. In particular, a representation of OA gives rise to a representation of
TA.

The Toeplitz algebra TA can be nicely described in the context of graph alge-
bras, as was done in [11]: for that we note that, for any n × n matrix A = (aij)
with entries in {0, 1}, we can construct a directed graph GA = (G1

A, G
0
A, r, s) such

that the vertex set G0
A = {1, . . . , n} and G1

A = {eij : s(eij) = i and r(eij) =
j if aij = 1} (i.e., we draw an edge eij from i to j if and only if aij = 1), where s
and r are the source and range maps, respectively. For completeness, we briefly
provide the definition of the graph C∗-algebra C∗(E) associated to this graph GA

or to a more general row-finite (directed) graph E: it is the universal C∗-algebra
generated by partial isometries se with e ∈ E1 and mutually orthogonal projec-
tions qv with v ∈ E0 such that

s∗ese = qr(e), qv =
∑

e∈E1:s(e)=v

ses
∗
e if and only if s−1(v) 6= ∅.

Then, thanks to [11, Theorem 3.7], the above Toeplitz algebra TA is canonically

isomorphic to the graph algebra C∗(ĜA), where ĜA extends GA by adding a sink
v′ for every v ∈ G0

A as well as edges to this sink from each vertex (in G0
A) that

feeds into v.
Note that a representation π of the Cuntz–Krieger algebra OA on a Hilbert

space H is a representation of the Toeplitz algebra TA (by the universality of TA)
on the same Hilbert space H.

2.2. Symbolic dynamics for interval maps. Let Γ = {c0, c−1 , c+1 , . . . , c−n−1,
c+n−1, cn} be an ordered set of 2n real numbers such that

c0 < c−1 ≤ c+1 < c−2 ≤ · · · < c−n−1 ≤ c+n−1 < cn. (2.3)

Given Γ as above, we define the collection of closed intervals CΓ = {I1, . . . , In}
with

I1 = [c0, c
−
1 ], . . . , Ij = [c+j−1, c

−
j ], . . . , In = [c+n−1, cn]. (2.4)

We also consider the collection of open intervals {E1, . . . , En−1}, each one defined
by

E1 = ]c−1 , c
+
1 [, . . . , En−1 = ]c−n−1, c

+
n−1[ (2.5)

in such a way that I := [c0, cn] = (
⋃n

j=1 Ij) ∪ (
⋃n−1

j=1 Ej).
We now consider the interval maps for which we can construct partitions of

the interval I as in (2.3), (2.4), and (2.5).



540 C. CORREIA RAMOS, N. MARTINS, and P. R. PINTO

Definition 2.1 (see [4, Definition 1]). Let I ⊂ R be an interval. A map f is in the
class M(I) if it satisfies the properties (P1), (P2), (P3′), (P4) presented below,
and it is in the class PL(I) if it satisfies the properties (P1), (P2), (P3), (P4).

(P1) [Existence of a finite partition in the domain of f ] There is a partition
C = {I1, . . . , In} of closed intervals with #(Ii∩Ij) ≤ 1 for i 6= j, dom(f) =⋃n

j=1 Ij ⊂ I, and im(f) = I.

(P2) [Markov property] For every i = 1, . . . , n the set f(Ii) ∩ (
⋃n

j=1 Ij) is a
nonempty union of intervals from C.

(P3) [Piecewise linear and expansive map] We have f|Ij ∈ C1(Ij), |f ′
|Ij(x)| =

dj > 1, for every x ∈ Ij, j = 1, . . . , n.
(P3′) [Expansive map] We have f|Ij ∈ C1(Ij), monotone and |f ′

|Ij(x)| > b > 1

for every x ∈ Ij, j = 1, . . . , n, and some b.
(P4) [Aperiodicity] For every interval Ij with j = 1, . . . , n there is a natural

number q such that dom(f) ⊂ f q(Ij).

Clearly, PL(I) ⊂ M(I). The minimal partition C satisfying Definition 2.1 is
denoted by Cf . We remark that the Markov property (P2) allows us to encode
the transitions between the intervals in the so-called (Markov) transition n × n
matrix Af = (aij), defined as follows:

aij =

{
1 if f(Ii) ⊃ Ij,

0 otherwise.
(2.6)

A map f ∈ M(I) uniquely determines (together with the minimal partition
Cf = {I1, . . . , In}):

(i) the f -invariant set Ωf := {x ∈ I : fk(x) ∈ dom(f) for all k = 0, 1, . . .};
(ii) the collection of open intervals {E1, . . . , En−1} such that I \

⋃n
j=1 Ij =⋃n−1

j=1 Ej;

(iii) the transition matrix Af = (aij)i,j=1,...,n.

For the proof of (i) see [9]; (ii) is straightforward; (iii) is a consequence of the
Markov property (P2) as in Definition 2.1.

Matrices A for which there exists a positive integer m such that all the entries
of Am are nonzero are called aperiodic (or primitive). We note that the matrix
Af is aperiodic (thus irreducible) because f ∈ M(I) (see Definition 2.1).

Definition 2.2. The address map ad :
⋃n

j=1 int(Ij) → {1, 2, . . . , n} is defined as

follows: ad(x) = i if x ∈ Ii, where int(Ij) denotes the interior of Ij. The itinerary

map itf :
⋃n

j=1 int(Ij) → {1, 2, . . . , n}N0 is defined as itf (x) = ad(x) ad(f(x))×
ad(f 2(x)) · · · .

Note that Ωf is the set of points that remain in dom(f) under iteration of f ,
and is usually called a cookie-cutter set (see [9]). The open set

Ef := I \ Ωf =
∞⋃
k=0

f−k
(n−1⋃
j=1

Ej

)
(2.7)
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is usually called the escape set. Every point in Ef will eventually fall, under
iteration of f , into the interior of some interval Ej (where f is not defined) and
the iteration process will end. We may say that x is the escape set Ef of f if
and only there is k ∈ N such that fk(x) /∈ dom(f). If c−j = c+j , for some j, then
Ej = ∅ and cj is a singular point, either a critical point or a discontinuity point
of f .

Note that Ef = ∅ if and only if
⋃n−1

j=1 Ej = ∅. Moreover, we assume that Γ is

invariant under f , which means that each boundary point c±i is sent to a boundary
point c±j .

As in [4], we will consider the equivalence relation Rf defined by

Rf =
{
(x, y) : fn(x) = fm(y) for some n,m ∈ N0

}
. (2.8)

In that previous work, we considered Rf restricted to Ωf . Here, however, we
extend Rf to the whole interval I. The relation Rf is a countable equivalence
relation in the sense that the equivalence class Rf (x) of x ∈ I is a countable set.
We denote x ∼ y whenever (x, y) ∈ Rf .

3. Dynamics of escape orbit points

Let f ∈ M(I) such that Ef 6= ∅. This means that there is at least a nonempty
open interval Ej = ]c−j , c

+
j [, with c−j 6= c+j , with j ∈ {1, . . . , n− 1}. The nonempty

open subinterval Ej is called an escape interval. Now, to define orbit representa-
tions associated with escape orbits, that is, associated to points y ∈ Ef , we need
to introduce some preliminary notions, from a dynamical point of view. For every
y ∈ Ef there is a least natural number τ(y) such that f τ(y)(y) /∈ dom(f), which
means that f τ(y)(y) ∈ Ej for some j such that Ej 6= ∅.

Notation 3.1. The final escape point, for the orbit of y, is denoted by e(y) :=
f τ(y)(y) and the final escape interval index is denoted by ι(y); that is, if f τ(y)(y) ∈
Ej, then ι(y) = j.

In other words, for a point y ∈ Ef the orbit terminates at e(y) = f τ(y)(y) ∈
Eι(y), since f is not defined on Eι(y). This means that the generalized orbit Rf (y)
is essentially the backward orbit of e(y). Although e(y) does not belong to the
domain of f , we impose the condition that it belongs to Rf (y) as a special point.
The last point in the orbit belonging to the domain of f is f τ(y)−1(y).

Therefore, for every x ∈ I we have a generalized orbit Rf (x) with a natural
graph structure simple to describe: the vertices are the points of Rf (x), and there
is a directed edge, y → z, between two points y, z, if and only if z = f(y). The
graph structure of Rf (x) depends on the following. If x ∈ Ωf , then Rf (x) has a
graph structure without a preferred vertex. If x ∈ Ef , then Rf (x) has a natural
structure of a rooted tree. The root of Rf (x) is precisely e(x), a point with no
outgoing edge. Thus, the generalized escape orbits can be parameterized by the
points of the escape intervals. More precisely, every point x in

⋃n−1
j=1 Ej gives origin

to a unique generalized orbit. Now, consider the preimage set of x, f−1(x). Since
f ∈ M(I), the set f−1(x) is finite. We call the points in f−1(x) the (domain)
endpoints of Rf (x), and e(x) is the final escape point of Rf (x). Now, let us denote
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f−1
j : f(Ij) → dom(f), the inverse branch of f whose domain is f(Ij). Naturally,

we have f ◦ f−1
j = id|Ij the identity function on Ij. In this case, the preimages of

x are enumerated by

f−1
1 (x), . . . , f−1

n (x)

whenever f−1
j (x) exists, that is, f−1

j (x) 6= ∅, j = 1, . . . , n.
In order to describe symbolically the escape orbits, we extend the symbol space

adding a symbol for each escape interval Ej, which will represent an end for the

symbolic sequence. For each escape interval Ej we associate a symbol ĵ to distin-
guish the symbol associated with the interval partition Ij. That is, we consider
the symbols ordered by

1 < 1̂ < 2 < 2̂ < · · · < n− 1 < n̂− 1 < n. (3.1)

If Ej is not an interval, that is Ej = ∅, then there is no symbol ĵ. Moreover, we
define

ΣEf
=

{
ĵ : Ej 6= ∅, j ∈ {1, . . . , n− 1}

}
. (3.2)

The address map ad (see Definition 2.2) is extended to the escape set Ef with

ad(x) := ĵ ∈ ΣEf
if x ∈ Ej. Therefore, the address map is defined for all points

of the interval I except the points of the boundary of the subintervals I1, . . . , In
(see (2.3) and (2.4)); thus

ad : I \ {c0, c±i , cn : i = 1, . . . , n− 1} −→ {1, . . . , n} ∪ ΣEf
.

The itinerary map (see Definition 2.2) is also extended such that

itf (x) = ad(x) ad
(
f(x)

)
· · · ad

(
f τ(x)−1(x)

)
ad

(
e(x)

)
. (3.3)

The itinerary of a point x ∈ Ef is always a finite word terminating in a symbol

ĵ ∈ ΣEf
.

An admissible escape word is a word occurring as the itinerary of an escape
point x ∈ Ef . These words are formed by

ξ = ξ1ξ2 · · · ξkĵ

such that aξiξi+1
= 1 for i = 1, 2, . . . , k − 1, and terminating in an escape symbol

ĵ.
Thus we have an index {1, . . . , n} ∪ ΣEf

which is ordered in (3.1) and (3.2).
To deal with the possible transitions from Markov transition intervals to escape

intervals, we define a matrix Âf as follows.

Definition 3.2. Given the transition matrix Af as in (2.6), we define a matrix

Âf = (âij) indexed by {1, . . . , n} ∪ ΣEf
such that

âij =


aij if i, j ∈ {1, . . . , n},
1 if i ∈ {1, . . . , n}, j ∈ ΣEf

and Ii ∩ f−1(Ej) 6= ∅,
0 otherwise.

(3.4)
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Figure 1. Graphs of the functions of Examples 3.5 and 3.6.

Two graphs are isomorphic if there is a one-to-one correspondence between the
vertices, preserving the edges. In particular, for a pair of isomorphic rooted trees
their roots are in correspondence.

Lemma 3.3. Let y, z ∈ Ef . If ad(f−1(e(y))) = ad(f−1(e(z))), then Rf (y) is
isomorphic to Rf (z) as graphs.

Proof. Consider y, z ∈ Ef and ad(f−1(e(y))) = ad(f−1(e(z))). Let us build
explicitly the isomorphism between Rf (y) and Rf (z). Consider the map h :
Rf (y) → Rf (z) defined such that h(e(y)) = e(z). Next, choose an element
j ∈ ad(f−1(e(y))) and set h(f−1

j (e(y))) = f−1
j (e(z)) which exists since j ∈

ad(f−1(e(z))). Since ad(f−1(e(y))) = ad(f−1(e(z))), we have

ad
(
f−1 ◦ f−1

(
e(y)

))
= ad

(
f−1 ◦ f−1

(
e(z)

))
.

Next, choose i ∈ ad(f−2(e(y))) such that aij = 1. Then set h(f−1
i ◦ f−1

j (e(y))) =

f−1
i ◦ f−1

j (e(z)). With this process we associate every point in Rf (y) to the point
in Rf (z) which has the same itinerary. Therefore, h is an isomorphism of Rf (y)
to Rf (z). �

This allows us to identify the points in Rf (y) with admissible words that finish
in the symbol ad(e(y)). The condition ad(f−1(e(y))) = ad(f−1(e(z))) is not a nec-
essary condition. There are special cases for which a certain symbolic symmetry
implies an isomorphism between the trees, despite the difference in the symbols,
as we can see in the following example.
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Example 3.4. Let f be such that

Af =

 1 1 0
1 1 1
0 1 1

 and Âf =


1 1 1 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 1 1 1

 .

The escape symbols set is ΣEf
= {1̂, 2̂}. The possible endings for escape orbits

are 11̂, 21̂, 22̂, and 32̂, and therefore

ad
(
f−1

(
e(y)

))
∈ {1, 2} and ad

(
f−1

(
e(z)

))
∈ {2, 3}

for points y ∈ E1 and z ∈ E2. However, the trees Rf (y) and Rf (z) are isomorphic
through h: Rf (y) → Rf (z), which changes 1 → 3 within admissible words.

Example 3.5. Let f(x) = 3x(mod 1) (see the left-hand side of Figure 1). Consider
the domain of f given by dom(f) = I1 ∪ I2, with I1 = [0, 1/3] and I2 = [2/3, 1].
In this case, we have E1 = ]1/3, 2/3[. The transition matrix associated with f is

Af =

(
1 1
1 1

)
.

The escape symbols set is ΣEf
= {1̂} and the address map is ad : [0, 1] \

{0, 1/3, 2/3, 1} → {1, 1̂, 2}. The matrix Âf is given by

Âf =

 1 1 1
0 0 0
1 1 1

 .

For points x, y in the escape set Ef , we have ι(x) = ι(y) = 1. Moreover,
ad(f−1(e(x))) = ad(f−1(e(y))) ∈ {1, 2}. Therefore, Rf (x) is isomorphic to Rf (y)
(see Notation 3.1). In particular, they are both isomorphic to the tree in the
left-hand side of Figure 2.

Figure 2. Rooted trees, part I.
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Example 3.6. Let f be the map (see the right-hand side of Figure 1)

f(x) =


5x+ 4/5 if x ≤ 1/25,

5x− 2 if 2/5 ≤ x ≤ 3/5,

5x− 4 if 4/5 ≤ x ≤ 1.

The domain of f is given by dom(f) = I1 ∪ I2 ∪ I3, with I1 = [0, 1/25], I2 =
[2/5, 3/5], I3 = [4/5, 1]. The escape intervals are E1 = ]1/25, 2/5[ and E2 =

]3/5, 4/5[. The escape symbols set is ΣE = {1̂, 2̂} and the transition matrix asso-
ciated with f is

Af =

 0 0 1
1 1 1
1 1 1

 .

The address map is ad : [0, 1] \ {0, 1/25, 2/5, 3/5, 4/5, 1} → {1, 1̂, 2, 2̂, 3}. The
matrix Âf is given by

Âf =


0 0 0 0 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1

 .

For points x, y in the escape set Ef , we have either ι(x) = ι(y) = 1, ι(x) = 1 and
ι(y) = 2, ι(x) = 2 and ι(y) = 1, or ι(x) = ι(y) = 2. Nevertheless, ad(f−1(e(x))) =
ad(f−1(e(y))) ∈ {2, 3}. Therefore, we have one rooted tree, up to isomorphism.

We present two (isomorphic) trees, one with root 1̂ and the other with root 2̂ (see
the left-hand side of Figure 4 and the right-hand side of Figure 2, respectively).
Note that they are essentially the same tree.

Example 3.7. Let f be the map (see Figure 3)

f(x) =


5x+ 2/5 if x ≤ 3/25,

5x− 2 if 2/5 ≤ x ≤ 3/5,

5x− 4 if 4/5 ≤ x ≤ 1.

The domain of f is given by dom(f) = I1 ∪ I2 ∪ I3, with I1 = [0, 3/25], I2 =
[2/5, 3/5], I3 = [4/5, 1]. The escape intervals are E1 = ]3/25, 2/5[ and E2 =

]3/5, 4/5[. The escape symbols set is ΣE = {1̂, 2̂} and the matrix associated with
f is

Af =

 0 1 1
1 1 1
1 1 1

 .
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Figure 3. Graph of the function in Example 3.7.

31

131 231 331

Figure 4. Rooted trees, part II.

The address map is ad : [0, 1] \ {0, 3/25, 2/5, 3/5, 4/5, 1} → {1, 1̂, 2, 2̂, 3}. The
matrix Âf is given by

Âf =


0 0 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1

 .

For points x, y in the escape set Ef , we have either ι(x) = ι(y) = 1, ι(x) = 1
and ι(y) = 2, ι(x) = 2 and ι(y) = 1, or ι(x) = ι(y) = 2. If y ∈ E1, then
ad(f−1(y)) ∈ {2, 3}. If z ∈ E2, then ad(f−1(z)) ∈ {1, 2, 3}. Therefore, we have
two nonisomorphic rooted trees: Rf (y) if e(y) ∈ E1 (see the left-hand side of
Figure 4) and Rf (x) if e(x) ∈ E2 (see the right-hand side of Figure 4).
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4. Toeplitz representations on orbit spaces

In this section, we provide representations of the Toeplitz algebra TAf
asso-

ciated to points in the escape set of the underlying Markov interval map, and
compare these representations with the previous ones considered by the authors.

4.1. Toeplitz–Cuntz–Krieger Af -families. Let Hx, with x ∈ Ef , be the Hil-
bert space with canonical base{

|z〉 : fk(z) = e(x), k ∈ N0

}
associated with Rf (x). Note that there is a special vector basis which is |e(x)〉.
The rank one projection on the 1-dimensional space C|z〉 is denoted by Pz, or as
usual in Dirac notation, Pz = |z〉〈z|. Note also that Hx = Hy = He(x) if for some

k ∈ N, fk(y) = f τ(x)(x) = e(x) (see Notation 3.1).
Let x ∈ Ef , and let Ti, i = 1, . . . , n be defined by

Ti|y〉 = χf(Ii)(y)
∣∣f−1

i (y)
〉

for y ∈ Rf (x), (4.1)

where χB denotes the characteristic function on a set B. Its adjoint T ∗
i is given

by

T ∗
i |y〉 = χIi(y)

∣∣f(y)〉.
In particular, T ∗

i |x〉 = 0 for all i = 1, . . . , n, and Ti|x〉 = 0 if there are no
transitions from the interval Ii to the escape interval Ej. If there is any transition,
then Ti|x〉 = |z〉 such that z ∈ Ii and f(z) = x.

Lemma 4.1. Let x ∈ Ef . Then the partial isometries Tj, j = 1, . . . , n, defined
in (4.1) satisfy the following relations:

(a)
∑n

j=1 TjT
∗
j + Pe(x) = 1, and

(b)
∑n

j=1 akjTjT
∗
j + âkι(x)Pe(x) = T ∗

kTk for all k = 1, . . . , n,

where Af = (aij) is the transition matrix of f and ι is as in Notation 3.1.

Proof. Consider TjT
∗
j acting on a vector |y〉 with y ∈ Rf (x) \ {e(x)} in the

canonical basis, and let r ∈ {1, . . . , n} such that y ∈ Ir. Then

TiT
∗
i |y〉 = χIi(y)Ti

∣∣f(y)〉 = χIi(y)χf(Ii)

(
f(y)

)∣∣f−1
i ◦ f(y)

〉
= χIi(y)|y〉.

Thus
n∑

i=1

TiT
∗
i |y〉 =

n∑
i=1

χIi(y)|y〉 = χIr(y)|y〉 = |y〉. (4.2)

Now, let T ∗
kTk act on the same vector |y〉:

T ∗
kTk|y〉 = χf(Ik)(y)T

∗
k

∣∣f−1
k (y)

〉
= χf(Ik)(y)χIk

(
f−1
k (y)

)
|y〉 = χf(Ik)(y)|y〉,

since χIk(f
−1
k (y)) = 1. The condition χf(Ik)(y) = 1 is equivalent to the existence

of a preimage of y in Ik; therefore, y ∈ Ir means that akr = 1. On the other hand,

n∑
j=1

akjTjT
∗
j |y〉 =

n∑
j=1

akjχIj(y)|y〉 = akr|y〉 = |y〉. (4.3)
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Since Pe(x)|y〉 = 0, (4.2) and (4.3) show statements (a) and (b) of the lemma for
all vectors |y〉 ∈ Hx with y ∈ Rf (x) \ {e(x)}.

It remains to check (a) and (b) for the vector |e(x)〉.
For that we first note that T ∗

j |e(x)〉 = 0 for all j and(∑
j

TjT
∗
j + Pe(x)

)∣∣e(x)〉 =
∑
j

TjT
∗
j

∣∣e(x)〉+ ∣∣e(x)〉 = ∣∣e(x)〉.
This implies that (a) holds.

Statement (b) is also readily checked for the vector |e(x)〉 since T ∗
k |e(x)〉 = 0

for all k, and T ∗
kTk|e(x)〉 = |e(x)〉 if and only if f−1(e(x)) ∈ Ik (and this holds if

and only if âkι(x) = 1 as in Definition 3.2). �

4.2. The unitary equivalence of Toeplitz algebra representations. Let
f ∈ M(I) with Ef 6= ∅. Thanks to Lemma 4.1 and the definition of TAf

, the
following is immediate.

Proposition 4.2. The partial isometries defined on Hx as in (4.1) yield a rep-
resentation of the Toeplitz algebra TAf

.

Definition 4.3. We denote by νx the representation of the Toeplitz algebra TAf

yielded in Proposition 4.2.

Note that the matrix Af is aperiodic (all the entries of Am
f are nonzero for some

m) because f ∈ M(I) (see Definition 2.1); thus Af is an irreducible matrix.

Proposition 4.4. The concrete C∗-algebra νx(TAf
) is an extension of the (uni-

versal) Cuntz–Krieger algebra OAf
by the C∗-algebra K(Hx) of compact operators

on Hx, that is, the short sequence

0 −→ K(Hx) −→ νx(TAf
) −→ OAf

−→ 0

is exact.

Proof. If µ = µ1 · · ·µmι(x) is an admissible escape word, then we can find a
vector |y〉 in the canonical basis of Hx by putting y = f−1

µ1
◦ · · · ◦ f−1

µm
(e(x)).

In this way |y〉 = Tµ|e(x)〉, where Tµ = Tµ1 · · ·Tµm . Thus T ∗
µTµ|e(x)〉 = |e(x)〉.

Since
∑n

j=1 TjT
∗
j + Pe(x) = 1, by Lemma 4.1, the finite rank projection Pe(x)

belongs to νx(TAf
). Moreover, if η = η1 · · · ηrι(x) is an admissible escape word

and z = f−1
η1

◦ · · · ◦ f−1
ηr (e(x)), then

TµPe(x)T
∗
η |z〉 = TµPe(x)T

∗
η Tη

∣∣e(x)〉 = TµPe(x)

∣∣e(x)〉 = Tµ

∣∣e(x)〉 = |y〉,

such that TµPe(x)T
∗
η is a rank one partial isometry from the vector |z〉 to |y〉. Thus

the C∗-algebra generated by the operators TµPe(x)T
∗
η is nothing but the C∗-algebra

of all compact operators K(Hx) on Hx. In particular, K(Hx) ⊂ νx(TAf
).

On the other hand, we may consider the (surjective) quotient map q : νx(TAf
) →

νx(TAf
)/K(Hx) and also denote q(Tj) by Sj. In that case, Lemma 4.1 implies that∑n

j=1 SjS
∗
j = 1 and

∑n
j=1 akjSjS

∗
j = S∗

kSk for all k = 1, . . . , n, which are the rela-

tions of the Cuntz–Krieger algebra associated to the matrix Af . Since Af is an
irreducible matrix (note that f ∈ M(I) as in Definition 2.1), the Cuntz–Krieger
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algebra OAf
is simple (see [5]) so the image of every (nonzero) representation of

OAf
is isomorphic to the universal C∗-algebra OAf

. Thus OAf
' νx(TAf

)/K(Hx).
This finishes the proof. �

Given two points x and y in Ef , we now investigate when the Toeplitz algebra
representations νx and νy (see Definition 4.3) are unitarily equivalent.

Theorem 4.5. The representations νx, νy, with x, y ∈ Ef , are unitarily equiva-
lent if and only if Rf (x) and Rf (y) are isomorphic as rooted trees.

Proof. If Rf (x) and Rf (y) are isomorphic, then there is a homeomorphism h,
preserving edges, h : Rf (x) → Rf (y), such that h(e(y)) = e(x). This homeomor-
phism induces the unitary operator U : Hx → Hy such that U |z〉 = |w〉 if and only
if h(z) = w, with z ∈ Rf (x) and w ∈ Rf (y). Moreover, since the map h preserves
edges the unitary U satisfies Uνx(ti) = νy(ti)U . In fact, let z ∈ Rf (x) with z ∈ Ij.
The outgoing edge connects z to f(z). The ingoing edges come from the points
f−1
i (z) ∈ Ii with i = 1, . . . , n such that aij = 1. This means that νx(t

∗
j)|z〉 = |f(z)〉

and νx(t
∗
r)|z〉 = 0 with r 6= j, and that νx(ti)|z〉 = |f−1

i (z)〉 for i such that aij = 1
and νx(ti)|z〉 = 0 with aij = 0. Therefore, the preservation of edges means that
h(z) ∈ Ij and has an outgoing edge to f(h(z)) and that the ingoing edges of h(z)
are f−1

i (h(z)) ∈ Ii with i = 1, . . . , n such that aij = 1. So νy(t
∗
j)|h(z)〉 = |f(h(z))〉

and νy(t
∗
r)|h(z)〉 = 0 with r 6= j, and νy(ti)|h(z)〉 = |f−1

i (h(z))〉 for i such that
aij = 1 and νy(ti)|h(z)〉 = 0 with aij = 0. Thus we obtain

νy(t
∗
j)
∣∣h(z)〉 = ∣∣f(h(z))〉 ⇐⇒ νy(t

∗
j)U |z〉 = Uνx(t

∗
j)|z〉

and

νy(ti)
∣∣h(z)〉 = ∣∣f−1

i

(
h(z)

)〉
⇐⇒ νy(ti)U |z〉 = Uνx(ti)|z〉.

Now, suppose that the representations νx, νy, with x, y ∈ Ef , are unitarily equiv-
alent. This means that there is U ∈ B(Hx, Hy) such that

Uνx(a) = νy(a)U for every a ∈ TAf
.

First note that U sends the vacuum vector |e(x)〉 to the vacuum vector |e(y)〉, that
is, U |e(x)〉 = |e(y)〉. In fact, since Uνx(t

∗
i )|e(x)〉 = 0 for all i = 1, . . . , n, |e(y)〉 is

the only vector, up to scalar multiplication, in Hy satisfying νy(t
∗
i )|e(y)〉 = 0 for

all i = 1, . . . , n. With the same reasoning we conclude that for every z ∈ Rf (x),
with itf (z) = ξ1ξ2 · · · ξk ι̂, there is a unique w ∈ Rf (y) such that U |z〉 = |w〉. In
fact, consider itf (z) = ξ1ξ2 · · · ξk ι̂, with

|z〉 = νx(tξ1ξ2···ξk ι̂)
∣∣e(x)〉.

Then

U |z〉 = Uνx(tξ1ξ2···ξk ι̂)
∣∣e(x)〉 = νx(tξ1ξ2···ξk ι̂)U

∣∣e(x)〉
= νx(tξ1ξ2···ξk ι̂)

∣∣e(y)〉 = |w〉.
Let h be the map sending z 7→ w. The map h is one-to-one since U is unitary
(and invertible). The map h preserves edges. In fact, if z1 = f−1

i (z2) in Rf (x),
then νx(ti)|z1〉 = |z2〉. Therefore, Uνx(ti)|z1〉 = |z2〉 since Uνx(a) = νy(a)U for
every a ∈ TAf

. Therefore, Rf (x) and Rf (y) are isomorphic as rooted trees. �
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If x ∈ Ef , then the partial isometries T1, . . . , Tn defined in (4.1) provide our
new family of Toeplitz–Cuntz–Krieger operators. If y ∈ Ωf , then the family of
partial isometries S1, . . . , Sn defined as

Si|z〉 = χf(Ii)(z)
∣∣f−1

i (z)
〉
, for all z ∈ Rf (y), (4.4)

gives rise to a representation πy of the Cuntz–Krieger algebra OAf
on Hy as in

[4, Theorem 6]. Therefore S1, . . . , Sn gives a representation of the Toeplitz algebra
TAf

on the same Hilbert space Hy.

Proposition 4.6. Let x ∈ Ef and y ∈ Ωf . Then the representations νx and πy

of the Toeplitz algebra TAf
are not unitarily equivalent.

Proof. If f−1(x) = ∅, then the result is clear as Hx = C|e(x)〉.
So we assume that f−1(x) 6= ∅ and the existence of a unitary operator U :

Hy → Hx (i.e., a surjective isometry) such that USiU
∗ = Ti for all i = 1, . . . , n.

On the other hand, Ti|e(x)〉 = 0 for all i = 1, . . . , n, hence USiU
∗ = Ti implies

that SiU
∗|e(x)〉 = 0 for all i.

Now, write U∗|e(x)〉 as a linear combination in the canonical basis of Hy:
U∗|e(x)〉 =

∑
z cz|z〉 for scalars cz. Since U∗|e(x)〉 6= 0, there exists z0 such that

cz0 6= 0 and so we may find k such that z0 ∈ f(Ik) and cz0 6= 0. Then by the
continuity of Sk, we obtain

0 = SkU
∗∣∣e(x)〉 = ∑

z

czSk|z〉 6= 0

because Sk|z0〉 = |f−1
k (z0)〉 6= 0. �

Theorem 4.7. Let x ∈ Ef . Let νx be the corresponding Toeplitz algebra TAf

representation associated to x. Then νx is irreducible.

Proof. Note that every element in the basis of Hx is cyclic. Let ξ ∈ Hx be a
nonzero vector. Then we aim to prove that ξ is cyclic, and for that it is enough
to find a sequence Pn in νx(TAf

) such that Pnξ → |x0〉 for some x0 ∈ Rf (x),
since |x0〉 is a cyclic vector. Choose x0 ∈ Rf (x) such that the inner product
between ξ and e(x) is nonzero, that is, 〈ξ|x0〉 6= 0. Let itf (x0) = α1α2 · · ·αkι(x)
be the itinerary of the point x0, and let α(k) := (α1, . . . , αk) be its kth prefix
with k < τ(x) (see Notation 3.1). For every n ∈ N, let Pn := Tα(n)

T ∗
α(n)

, and

denote by Hx0(n) the range of the projection Pn. Then (Pn)n∈N is a decreasing
sequence of orthogonal projections and it strongly converges to P , the orthogonal
projection onto

⋂∞
n=1 Hx0(n). Since f is expansive, x0 is the unique point z such

that itf (z) = α1α2 · · ·αkι(x), hence
⋂∞

n=1Hx0(n) = C|x0〉. Since |x0〉 is a norm
one vector, we conclude that Pξ = 〈ξ|x0〉|x0〉. �

4.3. Fock space representations. Consider the Fock space defined as follows.
An admissible escape word is a word occurring as the itinerary of an escape point
x ∈ Ef . Let ι = ι(x), to simplify notation. These words are formed by

ξ = ξ1ξ2 · · · ξk ι̂
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such that aξiξi+1
= 1 for i = 1, 2, . . . , k− 1, and terminating on an escape symbol

ι̂ = ι̂(x) such that â
ξk ι̂(x)

= 1. Let Λk = {ξ1ξ2 · · · ξk : aξjξj+1
= 1}, and let

Λ̂k = {ξι̂ : ξ ∈ Λk, âξk ι̂ = 1}.
Let F0 be the Hilbert space generated by {|∅〉ι̂}, the vacuum vector, let F1 be the

Hilbert space generated by {|i〉ι̂ : âiι̂ = 1}, let F2 be the Hilbert space generated
by {|ξ1ξ2〉ι̂ : aξ1ξ2 = 1, âξ2 ι̂ = 1}, . . . , let Fk be the Hilbert space generated by
{|ξ〉ι̂ : ξ ∈ Λk, âξk ι̂ = 1}. Finally, the Fock space, for x ∈ Ef , is

Fx :=
∞⊕
k=0

Fk.

Since the dependence of Fx on x appears only on the final symbol ι̂ associated
with the escape interval Eι, naturally Fx = Fy if and only if ι(x) = ι(y).

Note that, from a purely symbolic point of view, Af and Λk are not sufficient
to determine the escape words since it is necessary to specify how the regular

states transit to the escape states, which is accomplished by the matrix Âf , as
we can see in the next example.

Example 4.8. Consider again the interval map f as in Example 3.6. We have that
the possible endings for the admissible escape words are 21̂, 31̂, 22̂, and 32̂. We
can have a map g with Ag = Af such that

Âg =


0 0 0 1
0 0 0 0
1 1 1 1
1 1 1 1

 .

In this case, the possible endings are only 21̂ and 31̂.

We now define the creation operator T̃i as

T̃i|ξ〉ι̂ :=

{
|iξ〉ι̂ if iξ ∈ Λk+1,

0 otherwise,
(4.5)

whose adjoint is the following annihilation operator

T̃ ∗
i |ξ1 · · · ξk〉ι̂ = δiξ1|ξ2 · · · ξk〉ι̂.

There is a relation between the spaces Fx, Hx and between the operators

Ti and T̃i. In fact, let z ∈ Rf (x), and consider V |z〉 = |ξ1ξ2 · · · ξk〉ι̂, with
itf (z) = ξ1ξ2 · · · ξk ι̂. In this case, V is a unitary operator and V ∗|ξ1ξ2 · · · ξk〉ι̂ =
Tξ1ξ2···ξk |e(x)〉. In fact, |z〉 = Tξ1ξ2···ξk |e(x)〉 is the only vector satisfying itf (z) =
ξ1ξ2 · · · ξk ι̂. Therefore,

V TiV
∗ = T̃i. (4.6)

The Fock space is explicitly based on the symbolic structure of the generalized
orbit.

If the generalized orbit is seen as a graph, then the basis vectors of Fx can be
seen as the vertices of the graph. That is, each admissible finite word ξ2 · · · ξk ι̂
labels one vertex and one basis vector |ξ2 · · · ξk〉ι̂. There is an edge between two
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vertices if and only if their labels differ in the first symbol. If the generalized
orbits Rf (x), Rf (y) for two different points x, y in the escape set (in different
escape intervals necessarily) are isomorphic as graphs, we may expect that there
is a unitary operator U relabeling the basis vectors, and therefore maintaining
the structure of the Fock spaces Fx and Fy.
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