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Abstract. Let (X , d, µ) be a metric measure space satisfying the so-called
upper doubling condition and the geometrically doubling condition. Let T be

a Calderón–Zygmund operator and let ~b := (b1, . . . , bm) be a finite family of

R̃BMO(µ) functions. In this article, the authors establish the boundedness of

the multilinear commutator T~b, generated by T and ~b from the atomic Hardy-

type space H̃1,q,m+1

fin,~b,m,ρ
(µ) into the Lebesgue space L1(µ). The authors also prove

that T~b is bounded from the atomic Hardy-type space H̃1,q,m+2

fin,~b,m,ρ
(µ) into the

atomic Hardy space H̃1(µ) via the molecular characterization of H̃1(µ).

1. Introduction and preliminaries

The classical theory of Calderón–Zygmund operators originated from the study
of the convolution operator with singular kernel on R. From then on, it has become
one of the core research areas in harmonic analysis. In 1976, Coifman, Rochberg,
and Weiss [2] proved that the commutator [b, T ] of a Calderón–Zygmund oper-
ator T with a function b ∈ BMO(Rd) defined by [b, T ](f)(x) := b(x)T (f)(x) −
T (bf)(x), x ∈ Rd, is bounded on Lp(Rd) for all p ∈ (1,∞). In 1995, Pérez [19]
obtained a Hardy-type space estimate for [b, T ]. Recently, Shu et al. [22] also
considered some estimates for the commutators of Hardy operators.
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On the other hand, many results from real analysis and harmonic analysis on
the classical Euclidean spaces have been extended to the space of the homogeneous
type introduced by Coifman and Weiss [3], [4]. Recall that a quasimetric space
(X , d) equipped with a nonnegative measure µ is called a space of homogeneous
type in the sense of Coifman and Weiss [3], [4] if (X , d, µ) satisfies the measure
doubling condition: there exists a positive constant C(µ) such that, for all balls
B(x, r) := {y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (0,∞),

µ
(
B(x, 2r)

)
≤ C(µ)µ

(
B(x, r)

)
. (1.1)

As was well known, the space of homogeneous type is a natural setting for
Calderón–Zygmund operators and function spaces. Euclidean spaces equipped
with Lebesgue measures, Euclidean spaces equipped with weighted Radon mea-
sures satisfying the doubling condition (1.1), and Heisenberg groups equipped
with left-variant Haar measures are all the typical examples of spaces of homo-
geneous type.

Nevertheless, in the last two decades, many classical results concerning the
Calderón–Zygmund operators and function spaces have been proved still valid for
metric spaces equipped with nondoubling measures (see, e.g., [17], [18], [24]–[26],
[28], [21], [16]). In particular, let µ be a nonnegative Radon measure on Rd which
only satisfies the polynomial growth condition that there exist some positive con-
stants C0 and n ∈ (0, d] such that, for all x ∈ Rd and r ∈ (0,∞),

µ
(
B(x, r)

)
≤ C0r

n, (1.2)

where B(x, r) := {y ∈ Rd : |x− y| < r}. Such a measure does not need to satisfy
the doubling condition (1.1). The analysis on such nondoubling context plays
a striking role in solving several long-standing problems related to the analytic
capacity, like Vitushkin’s conjecture or Painlevé’s problem (see [26], [28]). Tolsa
[24] introduced the atomic Hardy space H1,q

atb(µ) for q ∈ (1,∞] and its dual space,
RBMO(µ), the space of functions with regularized bounded mean oscillation with
respect to µ as in (1.2), and he established the boundedness on Lp(µ) with p ∈
(1,∞) of commutators generated by Calderón–Zygmund operators and RBMO(µ)
functions. Tolsa [27] established a characterization of H1,q

atb(µ) in terms of the
grand maximal operator. Meng and Yang [16] obtained the boundedness in some
Hardy-type spaces of multilinear commutators generated by Calderón–Zygmund
operators and RBMO(µ) functions.

However, as was pointed out by Hytönen in [9], the measure µ satisfying the
polynomial growth condition is different from, not more general than, the dou-
bling measure. Hytönen [9] introduced a new class of metric measure spaces satis-
fying both the so-called upper doubling condition and the geometrically doubling
condition (see, respectively, Definitions 1.1 and 1.3 below), which are also simply
called nonhomogeneous metric measure spaces. This new class of metric mea-
sure spaces include both metric measure spaces of homogeneous type and metric
measure spaces equipped with nondoubling measures as special cases.

From now on, we assume that (X , d, µ) is a metric measure space of nonomo-
geneous type in the sense of Hytönen [9]. In this new setting, Hytönen [9] intro-
duced the space RBMO(µ) and established the corresponding John–Nirenberg
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inequality, and Hytönen and Martikainen [10] further established a version of the
Tb theorem. Later, Hytönen et al. [12] and Bui and Duong [1] independently
introduced the atomic Hardy space H1,q

atb(µ) and proved that the dual space of

H1,q
atb(µ) is RBMO(µ). Recently, Fu et al. [7] established the boundedness of mul-

tilinear commutators generated by Calderón–Zygmund operators and RBMO(µ)
functions. In addition, Fu et al. [6] introduced a version of the atomic Hardy

space H̃1,q,γ
atb,ρ(µ) (⊂ H1,q

atb(µ) and simply denoted by H̃1(µ); see Definitions 1.10

and 1.11 below) and its corresponding dual space R̃BMO(µ) (⊃ RBMO(µ); see

Definition 1.8 below) via the discrete coefficients K̃
(ρ)
B,S, and they showed that the

Calderón–Zygmund operator is bounded on H̃1(µ) via establishing a molecular

characterization of H̃1(µ) in this context. (More research on function spaces and
the boundedness of various operators on metric measure spaces of nonhomoge-
neous type can be found in [11], [14], [15], and the references therein. We refer
the reader to the monograph [30] for more developments on harmonic analysis in
this setting.)

Our main purpose here is to generalize the corresponding results in [16] to the
present setting (X , d, µ). We establish some Hardy-type space estimates for mul-

tilinear commutators generated by Calderón–Zygmund operators and R̃BMO(µ)
functions. To state our main results, we recall some necessary notions and nota-
tion. We start with the following notion of upper doubling metric measure spaces
originally introduced by Hytönen [9, Definition 2.6].

Definition 1.1. A metric measure space (X , d, µ) is said to be upper doubling if µ
is a Borel measure on X and there exist a dominating function λ : X × (0,∞) →
(0,∞) and a positive constant C(λ) depending on λ such that, for each x ∈ X ,
r → λ(x, r) is nondecreasing and, for all x ∈ X and r ∈ (0,∞),

µ
(
B(x, r)

)
≤ λ(x, r) ≤ C(λ)λ(x, r/2). (1.3)

Remark 1.2. (i) Obviously, a space of homogeneous type is a special case of upper
doubling spaces, where we take the dominating function λ(x, r) := µ(B(x, r)) for
all x ∈ X and r ∈ (0,∞). On the other hand, the d-dimensional Euclidean space
Rd with any Radon measure µ as in (1.2) is also an upper doubling space by
taking λ(x, r) := C0r

n for all x ∈ Rd and r ∈ (0,∞).
(ii) Let (X , d, µ) be upper doubling with λ being the dominating function on

X × (0,∞) as in Definition 1.1. It was proved in [12] that there exists another

dominating function λ̃ such that λ̃ ≤ λ, C(λ̃) ≤ C(λ), and, for all x, y ∈ X with

d(x, y) ≤ r,

λ̃(x, r) ≤ C(λ̃)λ̃(y, r). (1.4)

(iii) It was shown in [23] that the upper doubling condition is equivalent to the
so-called weak growth condition (see [23, Definition 1.2 and Theorem 1.3]).

(iv) It was proved in [13] that the dominating function λ satisfying (1.4) has
the following property: for any fixed ball B ⊂ X , if x1, x2 ∈ B and y ∈ X\(kB)
with k ∈ [2,∞), then λ(x1, d(x1, y)) ∼ λ(x2, d(x2, y)); here and hereafter, the
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expression A ∼ B means that there exist positive constants C and C̃ such that

A ≤ CB and B ≤ C̃A (see [13, Lemma 2.3]).

The following definition of the geometrically doubling condition is well known in
analysis on metric spaces, which can be found in Coifman and Weiss [3, pp. 66-67],
and is also known as the metrically doubling condition (see, e.g., [8, p. 81]).
Moreover, spaces of homogeneous type are geometrically doubling, which was
proved by Coifman and Weiss in [3, pp. 66-68]. In what follows, let N := {1, 2, . . .}
and Z+ := {0} ∪ N.

Definition 1.3. A metric space (X , d) is said to be geometrically doubling if there
exists some N0 ∈ N such that, for any ball B(x, r) ⊂ X with x ∈ X and r ∈
(0,∞), there exists a finite ball covering {B(xi, r/2)}i of B(x, r) such that the
cardinality of this covering is at most N0.

Remark 1.4. For a metric space (X , d), Hytönen in [9] showed that geometrically
doubling is equivalent to the following condition: for any ε ∈ (0, 1) and any
ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞), there exists a finite ball covering
{B(xi, εr)}i of B(x, r) such that the cardinality of this covering is at most N0ε

−n0 ;
here and hereafter, N0 is as in Definition 1.3 and n0 := log2N0.

A metric measure space (X , d, µ) is called a nonhomogeneous metric measure
space if (X , d) is geometrically doubling and (X , d, µ) is upper doubling. Based
on Remark 1.2(ii), from now on, we always assume that (X , d, µ) is a nonhomo-
geneous metric measure space with the dominating function λ satisfying (1.4).

Although the measure doubling condition is not assumed uniformly for all balls
in the nonhomogeneous metric measure space (X , d, µ), it was shown in [9] that
there still exist many balls which have the following (α, β)-doubling property. In
what follows, for any ball B ⊂ X , we denote its center and radius, respectively,
by cB and rB and, moreover, for any ρ ∈ (0,∞), we denote the ball B(cB, ρrB)
by ρB.

Definition 1.5. Let α, β ∈ (1,∞). A ball B ⊂ X is said to be (α, β)-doubling if
µ(αB) ≤ βµ(B).

To be precise, it was proved in [9, Lemma 3.2] that, if a metric measure space
(X , d, µ) is upper doubling and α, β ∈ (1,∞) with β > [C(λ)]

log2 α =: αν , then,
for any ball B ⊂ X , there exists some j ∈ Z+ such that αjB is (α, β)-doubling.
Moreover, let (X , d) be geometrically doubling, let β > αn0 with n0 := log2N0,
and let µ be a Borel measure on X which is finite on bounded sets. Hytönen [9,
Lemma 3.3] also showed that, for µ-almost every x ∈ X , there exist arbitrary
small (α, β)-doubling balls centered at x. Furthermore, the radii of these balls
may be chosen to be of the form α−jr for j ∈ N and any preassigned number
r ∈ (0,∞). Throughout this article, for any α ∈ (1,∞) and ball B, the smallest

(α, βα)-doubling ball of the form αjB with j ∈ Z+ is denoted by B̃α, where

βα := α3(max{n0,ν}) +
[
max{5α, 30}

]n0 +
[
max{3α, 30}

]ν
(1.5)
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(see [12] for the details). Also, for any ball B of X , we denote by B̃ the smallest
(2, β2)-doubling cube of the form 2jB with j ∈ Z+, especially throughout this
paper.

The following discrete coefficient K̃
(ρ)
B,S was first introduced by Bui and Duong

[1] as analogous of the quantity introduced by Tolsa [24] (see also [25]) in the
setting of nondoubling measures (see also [5], [6]). Before we recall the definition

of K̃
(ρ)
B,S, we first give an assumption: when we speak of a ball B in (X , d, µ),

it is understood that it comes with a fixed center and radius, although these in
general are not uniquely determined by B as a set (see [8, pp. 1–2]). In other
words, for any two balls B, S ⊂ X , if B = S, then cB = cS and rB = rS. From
this, we deduce that if B ⊂ S, then rB ≤ 2rS, which plays an essential role in the

definition of K̃
(ρ)
B,S (see also Remark 1.7(i) and [5, pp. 314–315] for some details).

Definition 1.6. For any ρ ∈ (1,∞) and any two balls B ⊂ S ⊂ X , let

K̃
(ρ)
B,S := 1 +

N
(ρ)
B,S∑

k=−blogρ 2c

µ(ρkB)

λ(cB, ρkrB)
,

where N
(ρ)
B,S is the smallest integer satisfying ρN

(ρ)
B,SrB ≥ rS and, for arbitrary

a ∈ R, bac denotes the largest integer smaller than or equal to a.

Remark 1.7. (i) With the fact that rB ≤ 2rS, we deduce that N
(ρ)
B,S ≥ −blogρ 2c,

which makes sense for the definition of K̃
(ρ)
B,S.

(ii) By a change of variables and (1.3), we easily conclude that

K̃
(ρ)
B,S ∼ 1 +

N
(ρ)
B,S+blogρ 2c+1∑

k=1

µ(ρkB)

λ(cB, ρkrB)
,

where the implicit equivalent positive constants are independent of balls B ⊂
S ⊂ X , but depend on ρ.

(iii) For any two balls B ⊂ S ⊂ X , let KB,S := 1 +
∫
(2S)\B

1
λ(cB ,d(x,cB))

dµ(x).

It was proved in [12, Lemma 2.2] that KB,S has all properties similar to those
for K̃

(ρ)
B,S as in Lemma 2.1 below. Unfortunately, KB,S and K̃

(ρ)
B,S are usually not

equivalent, but, for (Rd, | · |, µ) with µ as in (1.2), KB,S ∼ K̃
(ρ)
B,S with implicit

equivalent positive constants independent of B and S (see [6] for more details on
this).

Now we recall the R̃BMOρ,γ(µ) space associated with K̃
(ρ)
B,S, which was first

introduced by Fu et al. in [6].

Definition 1.8. Let ρ ∈ (1,∞), and let γ ∈ [1,∞). A function f ∈ L1
loc(µ) is said

to be in the space R̃BMOρ,γ(µ) if there exist a positive constant C̃ and, for any
ball B ⊂ X , a number fB such that

1

µ(ρB)

∫
B

∣∣f(x)− fB
∣∣ dµ(x) ≤ C̃ (1.6)
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and, for any two balls B and B1 such that B ⊂ B1,

|fB − fB1| ≤ C̃[K̃
(ρ)
B,B1

]γ. (1.7)

The infimum of the positive constant C̃ satisfying both (1.6) and (1.7) is defined

to be the R̃BMOρ,γ(µ) norm of f and is denoted by ‖f‖
R̃BMOρ,γ(µ)

.

Remark 1.9. (i) It was pointed out by Fu et al. [6] that the space R̃BMOρ,γ(µ) is

independent of ρ ∈ (1,∞) and γ ∈ [1,∞). In what follows, we denote R̃BMOρ,γ(µ)

simply by R̃BMO(µ).

(ii) If we replace K̃
(ρ)
B,S by KB,S in Definition 1.8, then R̃BMO(µ) becomes the

space RBMO(µ) in [9]. Obviously, for ρ ∈ (1,∞) and γ ∈ [1,∞), RBMO(µ) ⊂
R̃BMO(µ). However, it is still unclear whether we always have RBMO(µ) =

R̃BMO(µ) or not.

In the sequel, for τ ∈ N and i ∈ {1, . . . , τ}, we denote by Cτ
i the family of

all finite subsets σ := {σ(1), . . . , σ(i)} of {1, . . . , τ} with i different elements. For
any σ ∈ Cτ

i , the complementary sequence σ′ is given by σ′ := {1, . . . , τ} \ σ.

Let ~b := (b1, . . . , bτ ) be a finite family of locally integrable functions. For all
i ∈ {1, . . . , τ} and σ = {σ(1), . . . , σ(i)} ∈ Cτ

i , let bσ := bσ(1) · · · bσ(i).

Definition 1.10. Let ρ ∈ (1,∞), let q ∈ (1,∞], and let γ, τ ∈ N. Suppose that bi ∈
R̃BMO(µ) for i ∈ {1, . . . , τ}. A function h ∈ L1(µ) is called a (~b, τ, q, γ, ρ)λ-atomic
block if

(i) there exists a ball B such that supph ⊂ B;
(ii)

∫
X h(y) dµ(y) = 0;

(iii)
∫
X h(y)bσ(y) dµ(y) = 0 for all 1 ≤ i ≤ τ and σ ∈ Cτ

i ;
(iv) for any j ∈ {1, 2}, there exist a function aj supported on a ball Bj ⊂ B

and a number λj ∈ C such that h = λ1a1 + λ2a2 and

‖aj‖Lq(µ) ≤
[
µ(ρBj)

]1/q−1
[K̃

(ρ)
Bj ,B

]−γ.

Moreover, let |h|H̃1,q,γ
~b,τ,ρ

(µ) := |λ1|+ |λ2|.

Definition 1.11. Let ρ ∈ (1,∞), let q ∈ (1,∞], and let γ, τ ∈ N. Suppose

bi ∈ R̃BMO(µ) for i = 1, 2, . . . , τ .

(i) A function f ∈ L1(µ) is said to belong to the atomic Hardy-type space

H̃1,q,γ
~b,τ,ρ

(µ) if there exist (~b, τ, q, γ, ρ)λ-atomic blocks {hk}k∈N such that f =∑∞
k=1 hk in L1(µ) and

∑∞
k=1 |hk|H̃1,q,γ

~b,τ,ρ
(µ) < ∞. The H̃1,q,γ

~b,τ,ρ
(µ) norm of f is

defined by

‖f‖H̃1,q,γ
~b,τ,ρ

(µ) := inf
{ ∞∑

k=1

|hk|H̃1,q,γ
~b,τ,ρ

(µ)

}
,

where the infimum is taken over all the possible decompositions of f as
above.



HARDY-TYPE SPACE ESTIMATES FOR MULTILINEAR COMMUTATORS 483

(ii) The space H̃1,q,γ

fin,~b,τ,ρ
(µ) is defined to be the set of all finite linear combina-

tions of (~b, τ, q, γ, ρ)λ-atomic blocks {hk}k∈N. The norm of f in H̃1,q,γ

fin,~b,τ,ρ
(µ)

is defined by

‖f‖H̃1,q,γ

fin,~b,τ,ρ
(µ) := inf

{ N∑
k=1

|hk|H̃1,q,γ
~b,τ,ρ

(µ) : f =
N∑
k=1

hk, N ∈ N
}
.

Remark 1.12. (i) If τ = 0, then the space H̃1,q,γ
~b,τ,ρ

(µ) is just the atomic Hardy

space H̃1,q,γ
atb,ρ(µ) introduced by Fu et al. in [6]. It was pointed out by Fu et al. [6]

that, for each q ∈ (1,∞], the atomic Hardy space H̃1,q,γ
atb,ρ(µ) is independent of the

choices of ρ and γ and that, for all q ∈ (1,∞), the spaces H̃1,q,γ
atb,ρ(µ) and H̃1,∞,γ

atb,ρ (µ)

coincide with equivalent norms. Thus, in what follows, we denote H̃1,q,γ
atb,ρ(µ) simply

by H̃1(µ).
(ii) Let ρ ∈ (1,∞), let p ∈ (1,∞], and let γ ∈ [1,∞). It was pointed out by Fu

et al. [6] that [H̃1,p,γ
atb,ρ(µ)]

∗ = R̃BMO(µ).
(iii) It is easy to see that, for any q ∈ (1,∞], τ, γ ∈ N, and ρ1, ρ2 ∈ (1,∞) with

1 < ρ1 < ρ2,

H̃1,q,γ
~b,τ,ρ2

(µ) ⊂ H̃1,q,γ
~b,τ,ρ1

(µ) ⊂ H̃1(µ),

and, for any ρ ∈ (1,∞), q ∈ (1,∞], τ ∈ N, and γ1, γ2 ∈ N with 1 ≤ γ1 < γ2,

H̃1,q,γ2
~b,τ,ρ

(µ) ⊂ H̃1,q,γ1
~b,τ,ρ

(µ) ⊂ H̃1(µ),

and, for any ρ ∈ (1,∞), τ, γ ∈ N, and q1, q2 ∈ (1,∞] with 1 < q1 < q2 ≤ ∞,

H̃1,∞,γ
~b,τ,ρ

(µ) ⊂ H̃1,q2,γ
~b,τ,ρ

(µ) ⊂ H̃1,q1,γ
~b,τ,ρ

(µ) ⊂ H̃1(µ).

However, it is still open if the spaces H̃1,q,γ
~b,τ,ρ

(µ) are equivalent for any fixed τ ∈ N
and different ρ ∈ (1,∞), γ ∈ N, and q ∈ (1,∞].

Definition 1.13. A function K ∈ L1
loc({X × X}\{(x, x) : x ∈ X}) is called a

Calderón–Zygmund kernel if there exists a positive constant C(K) such that

(i) for all x, y ∈ X with x 6= y,∣∣K(x, y)
∣∣ ≤ C(K)

1

λ(x, d(x, y))
; (1.8)

(ii) there exist positive constants δ ∈ (0, 1] and c(K) depending on K such
that, for all x, x̃, y ∈ X with d(x, y) ≥ c(K)d(x, x̃),∣∣K(x, y)−K(x̃, y)

∣∣+ ∣∣K(y, x)−K(y, x̃)
∣∣ ≤ C(K)

[d(x, x̃)]δ

[d(x, y)]δλ(x, d(x, y))
. (1.9)

Let L∞
b (µ) be the set of all L∞(µ) functions with bounded support. A linear

operator T is called a Calderón–Zygmund operator with kernel K satisfying (1.8)
and (1.9) if, for all f ∈ L∞

b (µ),

Tf(x) :=

∫
X
K(x, y)f(y) dµ(y), x /∈ supp(f). (1.10)
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We remark that a new example of the operator with the kernel satisfying (1.8)
and (1.9) is the so-called Bergman-type operator appearing in [29, p. 950] (see
also [10, Section 12] for an explanation).

Let m ∈ N and bi ∈ R̃BMO(µ), i = 1, 2, . . . ,m. The multilinear commutator T~b
generated by the Calderón–Zygmund operator T and ~b = (b1, . . . , bm) is defined
by setting, for all suitable functions f and x ∈ X ,

T~b(f)(x) :=
[
bm,

[
bm−1, . . . , [b1, T ] · · ·

]]
(f)(x), (1.11)

where [b1, T ]f(x) := b1(x)Tf(x) − T (b1f)(x). The multilinear commutator T~b in
the setting of Rd with the d-dimensional Lebesgue measure was first introduced
by Pérez and Trujillo-González in [20]; it was introduced in the setting of Rd with
the measure as in (1.2) by Meng and Yang in [16]; and it was introduced in the
present setting (X , d, µ) by Fu et al. in [6].

Now we state the main results of this article as follows.

Theorem 1.14. Let ρ ∈ (1,∞), let q ∈ (1,∞], let m ∈ N, and let bi ∈ R̃BMO(µ)
for all i ∈ {1, . . . ,m}. Let T and T~b be as in (1.10) and (1.11), respectively. Sup-
pose that T is bounded on L2(µ). Then the multilinear commutator T~b is bounded

from H̃1,q,m+1

fin,~b,m,ρ
(µ) into L1(µ).

Remark 1.15. It is still unclear whether the boundedness of linear operators on

the atomic Hardy-type space H̃1,q,γ
~b,τ,ρ

(µ) can be deduced only from their behaviors

on atoms. Thus, under the assumption of Theorem 1.14, it is unclear whether the

multilinear commutator T~b is bounded from H̃1,q,m+1
~b,m,ρ

(µ) into L1(µ) or not.

In what follows, the multilinear commutator T~b is said to satisfy T ∗
~b
(1) = 0 if,

for all h ∈ L∞
b (µ) satisfying (ii) and (iii) of Definition 1.1,

∫
X T~b(h)(x) dµ(x) = 0.

Observe that, by Theorem 1.14, we have T~b(h) ∈ L1(µ).

Theorem 1.16. Let ρ ∈ (2,∞), let q ∈ (1,∞], let m ∈ N, and let bi ∈ R̃BMO(µ)
for all i ∈ {1, . . . ,m}. Let T and T~b be as in (1.10) and (1.11), respectively.
Suppose T is bounded on L2(µ) and T ∗

~b
(1) = 0. Then the multilinear commutator

T~b is bounded from H̃1,q,m+2

fin,~b,m,ρ
(µ) into H̃1(µ).

We remark that, under the assumption of Theorem 1.16, it is unclear whether

the multilinear commutator T~b is bounded from H̃1,q,m+2
~b,m,ρ

(µ) into H̃1(µ) or not.

This paper is organized as follows. In Section 2, we proved Theorem 1.14 by
borrowing some ideas from [16, Theorem 1.1]. Section 3 is devoted to proving
Theorem 1.16. We point out that although Theorem 1.16 is similar to [16, Theo-
rem 1.3], its proof is different. In the proof of [16, Theorem 1.3] the authors used
the characterization of the atomic Hardy space in terms of the grand maximal
operator, which is still unknown in the present setting. Hence we prove Theo-

rem 1.16 via the molecular characterization of H̃1(µ).
Finally, we make some conventions on notation. Throughout this paper, we

always denote by C, C̃, c, or c̃ a positive constant which is independent of the
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main parameters, but they may vary from line to line. We use C(α) to denote a
positive constant depending on the parameter α. The expression Y . Z means
that there exists a positive constant C such that Y ≤ CZ. Given any q ∈ (0,∞),
let q′ := q/(q − 1) denote its conjugate index. Also, for any subset E ⊂ X , χE

denotes its characteristic function. For any f ∈ L1
loc(µ) and any measurable set

E of X , mE(f) denotes its mean over E, namely, mE(f) :=
1

µ(E)

∫
E
f(x) dµ(x).

2. Proof of Theorem 1.14

We begin with some necessary lemmas. The following useful properties of K̃
(ρ)
B,S

were proved in [5, Lemmas 2.8, 2.9].

Lemma 2.1. Let (X , d, µ) be a nonhomogeneous metric measure space.

(i) For any ρ ∈ (1,∞), there exists a positive constant C(ρ) depending on ρ

such that, for all balls B ⊂ R ⊂ S, K̃
(ρ)
B,R ≤ C(ρ)K̃

(ρ)
B,S.

(ii) For any α ∈ [1,∞) and ρ ∈ (1,∞), there exists a positive constant C(α,ρ)

depending on α and ρ such that, for all balls B ⊂ S with rS ≤ αrB,

K̃
(ρ)
B,S ≤ C(α,ρ).

(iii) For any ρ ∈ (1,∞), there exists a positive constant C(ρ,ν) depending
on ρ and ν such that, for all balls B, K̃

(ρ)

B,B̃ρ
≤ C(ρ,ν). Moreover, let-

ting α, β ∈ (1,∞), B ⊂ S be any two concentric balls such that there
exists no (α, β)-doubling ball in the form of αkB with k ∈ N satisfying
B ⊂ αkB ⊂ S, then there exists a positive constant C(α,β,ν) depending on
α, β, and ν such that K̃

(ρ)
B,S ≤ C(α,β,ν).

(iv) For any ρ ∈ (1,∞), there exists a positive constant c(ρ,ν) depending on ρ

and ν such that, for all balls B ⊂ R ⊂ S, K̃
(ρ)
B,S ≤ K̃

(ρ)
B,R + c(ρ,ν)K̃

(ρ)
R,S.

(v) For any ρ ∈ (1,∞), there exists a positive constant c̃(ρ,ν) depending on ρ

and ν such that, for all balls B ⊂ R ⊂ S, K̃
(ρ)
R,S ≤ c̃(ρ,ν)K̃

(ρ)
B,S.

Lemma 2.2. Let (X , d, µ) be a nonhomogeneous metric measure space and ρ1,
ρ2 ∈ (1,∞). Then there exist positive constants c(ρ1,ρ2,ν) and C(ρ1,ρ2,ν) depending
on ρ1, ρ2, and ν such that, for all balls B ⊂ S,

c(ρ1,ρ2,ν)K̃
(ρ1)
B,S ≤ K̃

(ρ2)
B,S ≤ C(ρ1,ρ2,ν)K̃

(ρ1)
B,S .

To prove Theorem 1.14, we also need the following equivalent characterization

of the space R̃BMO(µ) established in [13, Lemma 2.15] and the John–Nirenberg

inequality for R̃BMO(µ) established in [13, Proposition 2.16].

Lemma 2.3. Let η, ρ ∈ (1,∞), and let βρ be as in (1.5). For f ∈ L1
loc(µ), the

following statements are equivalent:

(i) f ∈ R̃BMO(µ);
(ii) there exists a positive constant C such that, for all balls B,

1

µ(ηB)

∫
B

∣∣f(x)−mB̃ρ(f)
∣∣ dµ(x) ≤ C
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and, for all (ρ, βρ)-doubling balls B ⊂ S,∣∣mB(f)−mS(f)
∣∣ ≤ CK̃

(ρ)
B,S. (2.1)

Moreover, the infimum of the above constant C is equivalent to ‖f‖
R̃BMO(µ)

.

Proposition 2.4. Let (X , d, µ) be a nonhomogeneous metric measure space.
Then, for every ρ ∈ (0,∞), there exists a positive constant c such that, for all

f ∈ R̃BMO(µ), balls B0, and t ∈ (0,∞),

µ
({

x ∈ B0 :
∣∣f(x)− fB0

∣∣ > t
})

≤ 2µ(ρB0)e
−ct/‖f‖

R̃BMO(µ) ,

where fB0 is as in Definition 1.8 with B replaced by B0.

Lemma 2.5. Let m ∈ N, bi ∈ R̃BMO(µ) for i ∈ {1, . . . ,m}, ρ, η ∈ (1,∞), and
q ∈ [1,∞). Then there exists a positive constant C such that, for any ball B,{ 1

µ(ρB)

∫
B

m∏
i=1

∣∣bi(x)−mB̃η(bi)
∣∣q dµ(x)}1/q

≤ C
m∏
i=1

‖bi‖R̃BMO(µ)
.

Whenm = 1, Lemma 2.5 is a simple corollary of the John–Nirenberg inequality

for R̃BMO(µ). From this and the Hölder inequality, it is easy to prove Lemma 2.5
for any m ∈ N. We omit the details here.

Lemma 2.6. Let f ∈ R̃BMO(µ), and let ρ ∈ (1,∞). Then, for all two balls
B ⊂ S ⊂ X , we have∣∣mB̃ρ(f)−mS̃ρ(f)

∣∣ . ‖f‖
R̃BMO(µ)

K̃
(ρ)
B,S.

Proof. For any fixed two balls B ⊂ S, we consider the following three cases of the

relation of B̃ρ and S̃ρ:
Case (I): B̃ρ ⊂ S̃ρ. In this case, B ⊂ B̃ρ ⊂ S̃ρ and B ⊂ S ⊂ S̃ρ. By

Lemma 2.1(v), (iv), and (iii), we have K̃
(ρ)

B̃ρ,S̃ρ
. K̃

(ρ)

B,S̃ρ
. K̃

(ρ)
B,S + K̃

(ρ)

S,S̃ρ
. K̃

(ρ)
B,S,

which, together with (2.1), implies that |mB̃ρ(f)−mS̃ρ(f)| ≤ ‖f‖
R̃BMO(µ)

K̃
(ρ)

B̃ρ,S̃ρ
.

‖f‖
R̃BMO(µ)

K̃
(ρ)
B,S.

Case (II): S̃ρ ⊂ B̃ρ. In this case, B ⊂ S ⊂ S̃ρ ⊂ B̃ρ. Similar to Case (I), it is
easy to see that Lemma 2.6 holds true in this case.

Case (III): B̃ρ 6⊂ S̃ρ and S̃ρ 6⊂ B̃ρ. In this case, B̃ρ ∩ (S̃ρ)C 6= ∅. Then we

have B̃ρ ⊂ 3S̃ρ. In fact, there exists y ∈ S̃ρ such that d(y, cB) > rB̃ρ . Thus
rB̃ρ ≤ d(y, cB) ≤ d(y, cS) + d(cS, cB) < rS̃ρ + rS ≤ 2rS̃ρ . Furthermore, for any

w ∈ B̃ρ, we have d(w, cS) ≤ d(w, cB)+d(cB, cS) ≤ rB̃ρ+rS̃ρ < 3rS̃ρ , which implies

that B̃ρ ⊂ 3S̃ρ. It then follows that B ⊂ B̃ρ ⊂ 3̃S̃ρ
ρ

and B ⊂ S ⊂ 3̃S̃ρ
ρ

. From
this, together with (2.1) and Lemma 2.1, we deduce that |mB̃ρ(f) − mS̃ρ(f)| ≤
|mB̃ρ(f)−m

3̃S̃ρ
ρ(f)|+ |m

3̃S̃ρ
ρ(f)−mS̃ρ(f)| ≤ ‖f‖

R̃BMO(µ)
(K̃

(ρ)

B̃ρ,3̃S̃ρ
ρ + K̃

(ρ)

S̃ρ,3̃S̃ρ
ρ) .

‖f‖
R̃BMO(µ)

K̃
(ρ)
B,S, which completes the proof of Lemma 2.6. �
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Let m ∈ N and ~b = (b1, . . . , bm) be a finite family of R̃BMO(µ) functions. For

all i ∈ {1, . . . ,m} and σ = {σ(1), . . . , σ(i)} ∈ Cm
i , we let ~bσ := (bσ(1), . . . , bσ(i)),

‖~bσ‖R̃BMO(µ)
:= ‖bσ(1)‖R̃BMO(µ)

· · · ‖bσ(i)‖R̃BMO(µ)
, and, for any x, y ∈ X and any

balls B and S in X ,[
b(x)−mB(b)

]
σ
:=

[
bσ(1)(x)−mB(bσ(1))

]
· · ·

[
bσ(i)(x)−mB(bσ(i))

]
,

and [
mS(b)−mB(b)

]
σ
:=

[
mS(bσ(1))−mB(bσ(1))

]
· · ·

[
mS(bσ(i))−mB(bσ(i))

]
.

For any ~b := (b1, . . . , bm), write ‖~b‖
R̃BMO(µ)

:= ‖b1‖R̃BMO(µ)
· · · ‖bm‖R̃BMO(µ)

. The

following lemma is a special case of [6, Theorem 1.9].

Lemma 2.7. Let q ∈ (1,∞), let m ∈ N, and let bi ∈ R̃BMO(µ) for i ∈
{1, . . . ,m}. Let T and T~b be as in (1.10) and (1.11), respectively. Suppose that T
is bounded on L2(µ). Then T~b is bounded on Lq(µ) with the norm no more than

C‖~b‖
R̃BMO(µ)

, where C is a positive constant.

Now we can show Theorem 1.14 as follows.

Proof of Theorem 1.14. The argument is similar to the one in the proof of [16,
pp. 38–39]. We will repeat it for the sake of completeness. By Definition 1.11(ii)

and Remark 1.12(iii), it suffices to verify that, for any (~b,m, q,m+ 1, ρ)λ-atomic
block h as in Definition 1.10 with ρ ∈ (1,∞) and q ∈ (1,∞), ‖T~bh‖L1(µ) ≤
C‖~b‖

R̃BMO(µ)
|h|H̃1,q,m+1

~b,m,ρ
(µ), where C is a positive constant independent of h. For

the sake of simplicity, we take ρ = 2. Let all the notation be the same as in
Definition 1.10. Then, for any j ∈ {1, 2}, we have

‖aj‖Lq(µ) ≤ µ(2Bj)
1/q−1[K̃

(2)
Bj ,B

]−(m+1). (2.2)

Write∫
X

∣∣T~b(h)(x)∣∣ dµ(x) = ∫
2B

∣∣T~b(h)(x)∣∣ dµ(x) + ∫
X\2B

∣∣T~b(h)(x)∣∣ dµ(x) =: M + N.

We first estimate the term M . To do this, we further decompose

M ≤
2∑

j=1

|λj|
∫
2Bj

∣∣T~b(aj)(x)∣∣ dµ(x)+ 2∑
j=1

|λj|
∫
2B\2Bj

∣∣T~b(aj)(x)∣∣ dµ(x) =: M1+M2.

By the Hölder inequality, Lemma 2.7, (2.2), and K̃
(2)
Bj ,B

≥ 1, we have

M1 . ‖~b‖
R̃BMO(µ)

2∑
j=1

|λj|.
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To estimate M2, let Nj = N
(2)
2Bj ,2B

+ 2. Notice that, for any x, y ∈ X ,

m∏
i=1

[
bi(x)− bi(y)

]
=

m∑
i=0

∑
σ∈Cm

i

[
b(x)−mB̃j

(b)
]
σ

[
mB̃j

(b)− b(y)
]
σ′ , (2.3)

where if i = 0, then σ′ = {1, . . . ,m} and σ = ∅. From this, (1.8), the Hölder
inequality, Lemmas 2.5 and 2.1, Remark 1.2(iv), and (2.2), we deduce that

M2 ≤
2∑

j=1

|λj|
Nj∑
k=1

∫
2k+1Bj\2kBj

∣∣∣∫
Bj

m∏
i=1

[
bi(x)− bi(y)

]
K(x, y)aj(y) dµ(y)

∣∣∣ dµ(x)
.

2∑
j=1

|λj|
m∑
i=0

∑
σ∈Cm

i

{∫
Bj

∣∣aj(y)∣∣q dµ(y)}1/q

×
{∫

Bj

∣∣[mB̃j
(b)− b(y)

]
σ′

∣∣q′ dµ(y)}1/q′{ Nj∑
k=1

i∑
l=0

∑
η(σ)∈Ci

l

1

λ(cBj
, 2krBj

)

×
∫
2k+1Bj

∣∣[b(x)−m ˜2k+1Bj
(b)

]
η(σ)

[
m ˜2k+1Bj

(b)−mB̃j
(b)

]
η′(σ)

∣∣ dµ(x)}
.

2∑
j=1

|λj|‖aj‖Lq(µ)

m∑
i=0

∑
σ∈Cm

i

[
µ(2Bj)

]1/q′‖~bσ′‖
R̃BMO(µ)

×
Nj∑
k=1

i∑
l=0

∑
η(σ)∈Ci

l

{ µ(2k+2Bj)

λ(cBj
, 2krBj

)
‖~bη(σ)‖R̃BMO(µ)

‖~bη′(σ)‖R̃BMO(µ)

× [K̃
(2)

B̃j , ˜2k+1Bj

]i−l
}

.
2∑

j=1

|λj|‖aj‖Lq(µ)

[
µ(2Bj)

]1/q′‖~b‖
R̃BMO(µ)

Nj∑
k=1

µ(2k+2Bj)

λ(cBj
, 2k+2rBj

)
[K̃

(2)

B̃j , ˜2k+1Bj

]m

.
2∑

j=1

|λj|
[
µ(2Bj)

]1/q−1
[K̃

(2)
Bj ,B

]−(m+1)
[
µ(2Bj)

]1/q′‖~b‖
R̃BMO(µ)

[K̃
(2)
Bj ,B

](m+1)

.
2∑

j=1

|λj|‖~b‖R̃BMO(µ)
,

where, in the penultimate inequality, we have used the fact that, for any 1 ≤ k ≤
Nj, K̃

(2)

B̃j , ˜2k+1Bj

. K̃
(2)
Bj ,B

.

It remains to estimate the term N. Recall that, for a ball B, cB denotes its
center. By Definition 1.10, (2.3), (1.9), the Hölder inequality, Lemmas 2.5, 2.6,
and 2.1, and (2.2), we conclude that

N =

∫
X\2B

∣∣∣∫
B

m∏
i=1

[
bi(x)− bi(y)

][
K(x, y)−K(x, cB)

]
h(y) dµ(y)

∣∣∣ dµ(x)
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.
m∑
i=0

∑
σ∈Cm

i

∫
B

∣∣[b(y)−mB̃(b)
]
σ′

∣∣∣∣h(y)∣∣ dµ(y)
×

∞∑
k=1

∫
2k+1B\2kB

∣∣[b(x)−mB̃(b)
]
σ

∣∣ [d(y, cB)]
δ

[d(x, cB)]δλ(cB, d(x, cB))
dµ(x)

.
2∑

j=1

|λj|
m∑
i=0

∑
σ∈Cm

i

{m−i∑
l=0

∑
η(σ′)∈Cm−i

l

∫
Bj

∣∣aj(y)∣∣∣∣[b(y)−mB̃j
(b)

]
η(σ′)

×
[
mB̃j

(b)−mB̃(b)
]
η′(σ′)

∣∣ dµ(y)}{ ∞∑
k=1

i∑
s=0

∑
θ(σ)∈Ci

s

(rB)
δ

(2krB)δλ(cB, 2krB)

×
∫
2k+1B

∣∣[b(x)−m
2̃k+1B

(b)
]
θ(σ)

[
m

2̃k+1B
(b)−mB̃(b)

]
θ′(σ)

∣∣ dµ(x)}
.

2∑
j=1

|λj|
m∑
i=0

∑
σ∈Cm

i

{m−i∑
l=0

∑
η(σ′)∈Cm−i

l

‖aj‖Lq(µ)

×
{∫

Bj

∣∣[b(y)−mB̃j
(b)

]
η(σ′)

[
mB̃j

(b)−mB̃(b)
]
η′(σ′)

∣∣q′ dµ(y)}1/q′}
×

∞∑
k=1

µ(2k+2B)

2kδλ(cB, 2krB)
[K̃

(2)

B,2k+1B
]i‖~bσ‖R̃BMO(µ)

.
2∑

j=1

|λj|‖aj‖Lq(µ)

m∑
i=0

∑
σ∈Cm

i

‖~bσ′‖
R̃BMO(µ)

[
µ(2Bj)

]1/q′
[K̃

(2)
Bj ,B

]m−i

.
2∑

j=1

|λj|‖aj‖Lq(µ)‖~b‖R̃BMO(µ)

[
µ(2Bj)

]1/q′
[K̃

(2)
Bj ,B

]m

.
2∑

j=1

|λj|‖~b‖R̃BMO(µ)
[K̃

(2)
Bj ,B

]−1 .
2∑

j=1

|λj|‖~b‖R̃BMO(µ)
,

which, together with the estimate for M, completes the proof of Theorem 1.14. �

3. Proof of Theorem 1.16

To prove Theorem 1.16, we need the molecular characterization of the atomic

Hardy space H̃1(µ) established in [6, Definition 1.10, Theorem 1.11].

Definition 3.1. Let ρ ∈ (1,∞), let q ∈ (1,∞], let γ ∈ [1,∞), and let ε ∈ (0,∞).
A function b ∈ L1(µ) is called a (q, γ, ε, ρ)λ-molecular block if

(i)
∫
X b(x) dµ(x) = 0;

(ii) there exist some balls B := B(cB, rB) with cB ∈ X and rB ∈ (0,∞),

and exist some constants M̃,M ∈ N such that, for all k ∈ Z+ and j ∈ {1, . . . ,
Mk} with Mk := M̃ if k = 0 and Mk := M if k ∈ N, there exist functions
mk,j supported on some balls Bk,j ⊂ Uk(B) for all k ∈ Z+, where U0(B) :=
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ρ2B and Uk(B) := ρk+2B \ ρk−2B with k ∈ N, and λk,j ∈ C such that b =∑∞
k=0

∑Mk

j=1 λk,jmk,j in L1(µ),

‖mk,j‖Lq(µ) ≤ ρ−kε
[
µ(ρBk,j)

]1/q−1
[K̃

(ρ)

Bk,j ,ρk+2B
]−γ

and |b|H̃1,q,γ,ε
mb,ρ (µ) :=

∑∞
k=0

∑Mk

j=1 |λk,j| < ∞.

A function f ∈ L1(µ) is said to belong to the molecular Hardy space H̃1,q,γ,ε
mb,ρ (µ)

if there exist a sequence of (q, γ, ε, ρ)λ-molecular blocks, {bi}∞i=1, such that f =∑∞
i=1 bi in L1(µ) and

∑∞
i=1 |bi|H̃1,q,γ,ε

mb,ρ (µ) < ∞. Moreover, define

‖f‖H̃1,q,γ,ε
mb,ρ (µ) := inf

{ ∞∑
i=1

|bi|H̃1,q,γ,ε
mb,ρ (µ)

}
,

where the infimum is taken over all the possible decompositions of f as above.

The following equivalence between H̃1,q,γ
atb,ρ(µ) and H̃1,q,γ,ε

mb,ρ (µ) was established in
[6, Theorem 1.11].

Lemma 3.2. Let ρ ∈ (1,∞), let q ∈ (1,∞], let γ ∈ [1,∞), and let ε ∈ (0,∞).

Then H̃1,q,γ
atb,ρ(µ) = H̃1,q,γ,ε

mb,ρ (µ) with equivalent norms.

Remark 3.3. As a consequence of Lemma 2.2, we see that the space H̃1,q,γ,ε
mb,ρ (µ) is

independent of the choices of the parameters q, ρ, γ, and ε.

Bearing in mind the molecular characterization of the atomic Hardy space, we
are ready to prove Theorem 1.16.

Proof of Theorem 1.16. Without loss of generality, we may assume that ρ = 2α̃
in Definition 1.10 with α̃ ∈ (1, 2), and ρ = 2, γ = 1, and ε = δ/2 in Defini-
tion 3.1, where δ is as in (1.9). By Definition 1.11(ii) and Remark 1.12(iii), and
Lemma 2.2 and Remark 3.3, we see that, to show Theorem 1.16, it suffices to prove

that the multilinear commutator T~b map a (~b,m, q,m + 2, 2α̃)λ-atomic block h

into a (q, 1, δ
2
, 2)λ-molecular block with |T~bh|

H̃
1,q,1, δ2
mb,2 (µ)

≤ C‖~b‖
R̃BMO(µ)

|h|H̃1,q,m+2
~b,m,2α̃

(µ),

where C is a positive constant independent of h.

Indeed, let h be a (~b,m, q,m + 2, 2α̃)λ-atomic block. Then h :=
∑2

j=1 λjaj,

where, for any j ∈ {1, 2}, supp(aj) ⊂ Bj ⊂ B for some balls Bj and B as in
Definition 1.10. Let B0 := 4αB, where 1 < α < α̃. Write

T~bh = (T~bh)XB0 +
∞∑
k=1

(T~bh)X2kB0\2k−1B0
=: A1 +A2.

We first deal with the term A1. Since Bj ⊂ B, we have αBj ⊂ 4αB = B0. Let

Nj := N
(α)

αBj ,
B0
2

. Obviously,Nj ≥ 0. Without loss of generality, we may assume that

Nj ≥ 3. For the case of Nj ∈ [0, 3), we easily observe that αBj ⊂ B0 ⊂ 3α3Bj,
which can be reduced to the case Nj ≥ 3. Notice that αNj−1Bj ⊂ B0. We further
decompose
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A1 =
2∑

j=1

λj(T~baj)XαBj
+

2∑
j=1

Nj−2∑
i=1

λj(T~baj)Xαi+1Bj\αiBj
+

2∑
j=1

λj(T~baj)XB0\αNj−1Bj

=: A1,1 +A1,2 +A1,3.

For A1,1, by Lemma 2.7, Definition 1.10, Lemmas 2.1 and 2.2, and the fact that

K̃
(2)
αBj ,4B0

≥ 1, for any j ∈ {1, 2}, we have∥∥(T~baj)XαBj

∥∥
Lq(µ)

≤ ‖T~baj‖Lq(µ) . ‖aj‖Lq(µ)‖~b‖R̃BMO(µ)

. ‖~b‖
R̃BMO(µ)

[
µ(2α̃Bj)

]1/q−1
[K̃

(2α̃)
Bj ,B

]−(m+2)

≤ c1‖~b‖R̃BMO(µ)

[
µ(2α̃Bj)

]1/q−1
[K̃

(2)
α̃Bj ,4B0

]−1,

where c1 is a positive constant independent of aj and j. Let τj,1 := c1λj‖~b‖R̃BMO(µ)
,

and let nj,1 := τ−1
j,1 λj(T~baj)XαBj

. Then A1,1 =
∑2

j=1 τj,1nj,1, supp(nj,1) ⊂ α̃Bj ⊂
B0, and ‖nj,1‖Lq(µ) ≤ [µ(2(α̃Bj))]

1/q−1[K̃
(2)
α̃Bj ,4B0

]−1.

To estimate A1,3, since αNj−1Bj ⊂ B0 ⊂ 3αNj+1Bj, it is easy to see that
rB0 ∼ rαNj−1Bj

. For any j ∈ {1, 2}, let xj and rj be the center and the radius

of Bj, respectively. From (1.8), (2.3), the Hölder’s inequality, Remark 1.2(iv),

Lemmas 2.5 and 2.6 with ρ = 2, Definition 1.10, the fact that K̃
(2)
Bj ,B0

≥ 1, and
Lemma 2.2, we deduce that∥∥(T~baj)XB0\αNj−1Bj

∥∥
Lq(µ)

≤
{∫

B0\αNj−1Bj

[∫
Bj

m∏
i=1

∣∣bi(x)− bi(y)
∣∣ |aj(y)|
λ(x, d(x, y))

dµ(y)
]q

dµ(x)
}1/q

.
1

λ(xj, αNj−1rj)

m∑
i=0

∑
σ∈Cm

i

∫
Bj

∣∣[mB̃j
(b)− b(y)

]
σ′

∣∣∣∣aj(y)∣∣ dµ(y)
×

{∫
B0\αNj−1Bj

∣∣[b(x)−mB̃j
(b)

]
σ

∣∣q dµ(x)}1/q

.
‖aj‖Lq(µ)

λ(xj, αNj−1rj)

m∑
i=0

∑
σ∈Cm

i

{∫
Bj

∣∣[mB̃j
(b)− b(y)

]
σ′

∣∣q′ dµ(y)}1/q′

×
i∑

l=0

∑
η(σ)∈Ci

l

{∫
B0

∣∣[b(x)−mB̃0
(b)

]
η(σ)

[
mB̃0

(b)−mB̃j
(b)

]
η′(σ)

∣∣q dµ(x)}1/q

.
‖aj‖Lq(µ)

λ(xj, αNj−1rj)

m∑
i=0

∑
σ∈Cm

i

[
µ(2Bj)

]1/q′‖~b‖
R̃BMO(µ)

[
µ(2B0)

]1/q
[K̃

(2)
Bj ,B0

]i

. ‖~b‖
R̃BMO(µ)

[µ(2Bj)]
1/q′

[µ(2α̃Bj)]1/q
′

[µ(4B0)]
1/q

λ(xj, αNj−1rj)
[K̃

(2α̃)
Bj ,B

]−(m+2)[K̃
(2)
Bj ,B0

]m

≤ c3‖~b‖R̃BMO(µ)

[
µ(4B0)

]1/q−1
[K̃

(2)
2B0,4B0

]−1,
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where c3 is a positive constant independent of aj and j. Let τj,3 := c3λj‖~b‖R̃BMO(µ)
,

and let nj,3 := τ−1
j,3 λj(T~baj)XB0\αNj−1Bj

. Then A1,3 =
∑2

j=1 τ1,3n1,3, supp(nj,3) ⊂
2B0, and ‖nj,3‖Lq(µ) ≤ [µ(2(2B0))]

1/q−1[K̃
(2)
2B0,4B0

]−1.

Now we turn to estimate A1,2. From (1.8), (2.3), the Hölder’s inequality, Remark
1.2(iv), Lemmas 2.5, 2.6, 2.1, and 2.2, and Definition 1.10, it follows that, for any
i ∈ {1, . . . , Nj − 2},∥∥(T~baj)Xαi+1Bj\αiBj

∥∥
Lq(µ)

≤
{∫

αi+1Bj\αiBj

[∫
Bj

m∏
s=1

∣∣bs(x)− bs(y)
∣∣ |aj(y)|
λ(x, d(x, y))

dµ(y)
]q

dµ(x)
}1/q

.
1

λ(xj, αirj)

m∑
s=0

∑
σ∈Cm

s

∫
Bj

∣∣[mB̃j
(b)− b(y)

]
σ′

∣∣∣∣aj(y)∣∣ dµ(y)
×

{∫
αi+1Bj\αiBj

∣∣[b(x)−mB̃j
(b)

]
σ

∣∣q dµ(x)}1/q

.
‖aj‖Lq(µ)

λ(xj, αirj)

m∑
s=0

∑
σ∈Cm

s

{∫
Bj

∣∣[mB̃j
(b)− b(y)

]
σ′

∣∣q′ dµ(y)}1/q′

×
s∑

l=0

∑
η(σ)∈Cs

l

{∫
αi+1Bj

∣∣[b(x)−m ˜αi+1Bj
(b)

]
η(σ)

×
[
m ˜αi+1Bj

(b)−mB̃j
(b)

]
η′(σ)

∣∣q dµ(x)}1/q

.
‖aj‖Lq(µ)

λ(xj, αirj)

m∑
s=0

∑
σ∈Cm

s

[
µ(2Bj)

]1/q′‖~b‖
R̃BMO(µ)

[
µ(2αi+1Bj)

]1/q
[K̃

(2)

Bj ,αi+1Bj
]s

. ‖~b‖
R̃BMO(µ)

‖aj‖Lq(µ)

λ(xj, αirj)

[
µ(2Bj)

]1/q′[
µ(2αi+2Bj)

]1/q
[K̃

(2)
Bj ,B

]m

≤ c2‖~b‖R̃BMO(µ)

µ(2αi+2Bj)

λ(xj, αirj)
[K̃

(2)
Bj ,B0

]−1
[
µ(2αi+2Bj)

](1/q)−1
[K̃

(2)

αi+2Bj ,4B0
]−1,

where c2 is a positive constant independent of aj, j, and i. Let

τ
(i)
j,2 := c2λj‖~b‖R̃BMO(µ)

µ(2αi+2Bj)

λ(xj, αirj)
[K̃

(2)
Bj ,B0

]−1

and

n
(i)
j,2 := (τ

(i)
j,2)

−1λj(T~baj)Xαi+1Bj\αiBj
.

Then A1,2 =
∑2

j=1

∑Nj−2
i=1 τ

(i)
j,2n

(i)
j,2, supp(n

(i)
j,2) ⊂ αi+2Bj ⊂ 4B0, and

‖n(i)
j,2‖Lq(µ) ≤

[
µ
(
2(αi+2Bj)

)]1/q−1
[K̃

(2)

αi+2Bj ,4B0
]−1.

Finally, we deal with the term A2. For any k ∈ N, by the geometrically doubling
condition, there exists a ball covering {Bk,j}M0

j=1 with uniform radius 2k−3rB0 of



HARDY-TYPE SPACE ESTIMATES FOR MULTILINEAR COMMUTATORS 493

Ũk(B0) := 2kB0 \ 2k−1B0 such that the cardinality M0 ≤ N08
n. Without loss of

generality, we may assume that the centers of the balls in the covering belong to

Ũk(B0).

Let Ck,1 := Bk,1, let Ck,l := Bk,l \
⋃l−1

m=1Bk,m, let l ∈ {2, 3, . . . ,M0}, and let

Dk,l := Ck,l ∩ Ũk(B0) for all l ∈ {1, 2, . . . ,M0}. Then we know that {Dk,l}M0
l=1 is

pairwise disjoint, Ũk(B0) =
⋃M0

l=1Dk,l, and, for any l ∈ {1, 2, . . . ,M0},

Dk,l ⊂ 2Bk,l ⊂ Uk(B0) := 2k+2B0 \ 2k−2B0.

Write

A2 =
∞∑
k=1

(T~bh)

M0∑
l=1

Dk,l =
∞∑
k=1

M0∑
l=1

(T~bh)XDk,l
.

Definition 1.10, together with (1.9), the Hölder’s inequality, (2.3), Lemmas 2.5,

2.6, 2.1, and 2.2, and the fact that K̃
(2)
Bj ,B

> 1, implies that, for any k ∈ N and

l ∈ {1, . . . ,M0},∥∥(T~bh)XDk,l

∥∥
Lq(µ)

≤
{∫

Dk,l

[∫
B

m∏
i=1

∣∣bi(x)− bi(y)
∣∣∣∣h(y)∣∣∣∣K(x, y)−K(x, cB)

∣∣ dµ(y)]q dµ(x)}1/q

.
{∫

Dk,l

[∫
B

m∏
i=1

∣∣bi(x)− bi(y)
∣∣∣∣h(y)∣∣ [d(y, cB)]δ[d(x, cB)]−δ

λ(cB, d(x, cB))
dµ(y)

]q
dµ(x)

}1/q

.
(rB)

δ(2k−1rB0)
−δ

λ(cB, 2k−1rB0)

{∫
Dk,l

[∫
B

m∏
i=1

∣∣bi(x)− bi(y)
∣∣∣∣h(y)∣∣ dµ(y)]q dµ(x)}1/q

.
2∑

j=1

|λj|2−kδ ‖aj‖Lq(µ)

λ(cB, 2k−1rB0)

m∑
i=0

∑
σ∈Cm

i

{∫
Bj

∣∣[b(y)−mB̃j
(b)

]
σ′

∣∣q′ dµ(y)}1/q′

×
{∫

Dk,l

∣∣[b(x)−mB̃j
(b)

]
σ

∣∣q dµ(x)}1/q

.
2∑

j=1

|λj|2−kδ ‖aj‖Lq(µ)

λ(cB, 2k−1rB0)

m∑
i=0

∑
σ∈Cm

i

[
µ(2Bj)

]1/q′‖~bσ′‖
R̃BMO(µ)

×
i∑

ζ=0

∑
η(σ)∈Ci

ζ

{{∫
2Bk,l

∣∣[b(x)−m
2̃Bk,l

(b)
]
η′(σ)

∣∣q dµ(x)}1/q

×
∣∣[m

2̃Bk,l
(b)−mB̃j

(b)
]
η(σ)

∣∣}
.

2∑
j=1

|λj|2−kδ ‖aj‖Lq(µ)

λ(cB, 2k−1rB0)

m∑
i=0

∑
σ∈Cm

i

[
µ(2Bj)

]1/q′‖~bσ′‖
R̃BMO(µ)

×
{ i∑

ζ=0

∑
η(σ)∈Ci

ζ

[
µ(4Bk,l)

]1/q‖~bη′(σ)‖R̃BMO(µ)



494 J. CHEN and H. LIN

×
{ ζ∑

ξ=0

∑
θ(η)∈Cζ

ξ

∣∣[m
2̃Bk,l

(b)−m ˜2k+2B0
(b)

]
θ′(η)

[
mB̃j

(b)−m ˜2k+2B0
(b)

]
θ(η)

∣∣}}

.
2∑

j=1

|λj|2−kδ ‖aj‖Lq(µ)

λ(cB, 2k−1rB0)

m∑
i=0

∑
σ∈Cm

i

[
µ(2Bj)

]1/q′‖~bσ′‖
R̃BMO(µ)

×
[
µ(4Bk,l)

]1/q‖~bσ‖R̃BMO(µ)
[K̃

(2)

Bj ,2k+2B0
]i

.
2∑

j=1

|λj|2−kδ ‖aj‖Lq(µ)

λ(cB, 2k−1rB0)
‖~b‖

R̃BMO(µ)

[
µ(2Bj)

]1/q′[
µ(4Bk,l)

]1/q
[K̃

(2)

Bj ,2k+2B0
]m

≤ c4

2∑
j=1

|λj|2−kδ/2km‖~b‖
R̃BMO(µ)

2−kδ/2
[
µ(4Bk,l)

]1/q−1
[K̃

(2)

2Bk,l,2k+2B0
]−1,

where c4 is a positive constant independent of h and k. Let

λk,l := c42
−kδ/2km

2∑
j=1

|λj|‖~b‖R̃BMO(µ)

and mk,l := λ−1
k,l (T~bh)XDk,l

. Then A2 =
∑∞

k=1

∑M0

l=1 λk,lmk,l, supp(mk,l) ⊂ 2Bk,l ⊂
Uk(B0), and ‖mk,l‖Lq(µ) ≤ 2−kδ/2[µ(2(2Bk,l))]

1/q−1[K̃
(2)

2Bk,l,2k+2B0
]−1.

Combining the estimates of A1 and A2, we see that T~bh is a (q, 1, δ/2, 2)λ-
molecular block, which, together with Definition 1.6 and Lemmas 2.1 and 2.2,
implies that

|T~bh|
H̃

1,q,1, δ2
mb,2 (µ)

=
2∑

j=1

|τj,1|+
2∑

j=1

Nj−1∑
i=1

|τ (i)j,2 |+
2∑

j=1

|τj,3|+
∞∑
k=1

M0∑
l=1

|λk,l|

.
2∑

j=1

|λj|‖~b‖R̃BMO(µ)
+

2∑
j=1

Nj−1∑
i=1

|λj|‖~b‖R̃BMO(µ)

× µ(2αi+2Bj)

λ(xi, αi+2rj)
[K̃

(α)
Bj ,B

]−1 +
∞∑
k=1

M0∑
l=1

2−kδ/2km‖~b‖
R̃BMO(µ)

2∑
j=1

|λj|

.
2∑

j=1

|λj|‖~b‖R̃BMO(µ)
+M0

∞∑
k=1

2−kδ/2km

2∑
j=1

|λj|‖~b‖R̃BMO(µ)

.
2∑

j=1

|λj|‖~b‖R̃BMO(µ)
. ‖~b‖

R̃BMO(µ)
|h|H̃1,q,m+2

~b,m,2α̃

.

This finishes the proof of Theorem 1.16. �

Acknowledgments. The authors would like to thank the referees for their care-
ful reading and many valuable remarks which made this article more readable.



HARDY-TYPE SPACE ESTIMATES FOR MULTILINEAR COMMUTATORS 495

Lin’s work was partially supported by National Natural Science Foundation of
China (NSFC) grants 11301534 and 11471042 and by Da Bei Nong Education
Fund grant 1101-2413002.

References

1. T. A. Bui and X. T. Duong, Hardy spaces, regularized BMO spaces and the boundedness of
Calderón-Zygmund operators on non-homogeneous spaces, J. Geom. Anal. 23 (2013), no. 2,
895–932. Zbl 1267.42013. MR3023861. DOI 10.1007/s12220-011-9268-y. 479, 481

2. R. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in sev-
eral variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. Zbl 0326.32011. MR0412721.
DOI 10.2307/1970954. 477

3. R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces
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