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DIFFERENCE EQUATIONS ON UMD SPACES: THE CASE

1 < α ≤ 2
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Abstract. By using Blunck’s operator-valued Fourier multiplier theorem, we
completely characterize the existence and uniqueness of solutions in Lebesgue
sequence spaces for a discrete version of the Cauchy problem with fractional
order 1 < α ≤ 2. This characterization is given solely in spectral terms on the
data of the problem, whenever the underlying Banach space belongs to the
UMD-class.

1. Introduction

Our concern in this article is the `p-maximal regularity of solutions for the
abstract nonhomogeneous Cauchy problem of fractional order

∆αu(n) = Tu(n) + f(n), n ∈ Z+, n ≥ 2, 1 < α ≤ 2;

u(0) = 0,

u(1) = 0,

(1.1)

where 1 < p < ∞, T is a bounded linear operator defined on a Banach space X
and f : Z+ → X is given. Here, the discrete fractional operator ∆α corresponds
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to sampling, by means of the Poisson distribution, of the Riemann–Liouville frac-
tional derivative Dα

t of order α on R+

∆αu(n) =

∫ ∞

0

tn−2

(n− 2)!
e−tDα

t u(t) dt, n ∈ Z+, n ≥ 2.

(See [19, Theorem 3.5], where this remarkable connection between discrete and
continuous fractional operators was recently proved.) Note that (1.1) is an abstract
way to describe the modeling of classes of fractional integro-differential equations
in discrete time. There are many situations where this type of mixed equations
appear. In the unidimensional case, some of them are called lattice models in the
literature, for instance, the discrete Nagumo equation (see [14, p. 250]). A differ-
ent example is given by the nonconvolution equation

∆αu(n, x) =

∫
k(x, s)u(n, s) ds+ f(n, x), n ∈ N0, x ∈ Ω ⊂ RN ,

where the kernel k is a complex-valued measurable function and f is a suitable
forcing term. It admits the form (1.1), where

Tf(x) =

∫
k(x, s)f(s) ds

is a bounded operator. In the nonfractional case, such equations arise in a variety
of contexts. From a numerical point of view, our analysis refers to schemes that
are discretized only in time. For instance, Strikwerda and Lee [23] discussed the
accuracy of the fractional step projection method for the incompressible Navier–
Stokes equations restricting the analysis to schemes that are discretized only
in time. From another point of view, one-step time-discrete equations naturally
appear in some fields of physics (see [9]) and in fracture mechanics and biology
(see [20, Section 5]). Cardiac cells provide another suitable context (see [17]).
A recent rich source of examples is provided by the master equation for an ani-
mal in behavioral ecology (see formulas (24) and (25) in [22]). Note that in such
examples the operator T may also be unbounded.

On the other hand, the study of the existence and qualitative properties of
discrete solutions for fractional difference equations started over the last number
of years (see, e.g., [2], [6], [7]). However, most of these studies refer only to scalar
situations, that is, when X = R or C. The study of abstract models in general
Banach spaces that includes the analysis of mixed partial differential equations
and integral equations is a very recent and promising area of research (see [19],
[18], [24]). We note that because of the nature of this area of investigation, the
notion of fractional difference may vary.

Maximal regularity is an important tool in the investigation of the existence
and uniqueness of solutions to evolution equations. For a recent review of this
topic in the context of discrete models on Banach spaces, see the monograph [3]
and references therein. Although research in this area has been done, there are
many interesting questions related to the study of fractional difference equations
that remain unanswered. In [18], the maximal regularity property on Lebesgue
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sequence spaces was recently studied for problem (1.1) when 0 < α ≤ 1. However,
this study was left open for any other values of α.

The main objective of this article is to provide a complete answer to this
open problem. We have succeeded in solving it in the full range 1 < α ≤ 2 by
means of a characterization of maximal regularity for the solutions of the equation
(1.1) in Lebesgue vector-valued spaces defined on the set Z+. In order to solve
this problem, we will introduce a special sequence of bounded operators, called
α-resolvent families, which will play a central role in the representation of the
solution of the problem (1.1). Then, we use Blunck’s operator-valued multiplier
theorem (see [3, Section 2.4], [10, Theorem 1.3]) in order to obtain the desired
characterization. One remarkable fact is that such a characterization is obtained
solely in terms of the data of the problem. More precisely, for 1 < α ≤ 2, p > 1
and X a UMD space, suppose that {z2−α(z − 1)α}{|z|=1,z 6=1} ⊂ ρ(T ) holds, where
T ∈ B(X) and where ρ(T ) denotes the resolvent set of T . Then the following
assertions are equivalent.

(i) Equation (1.1) has `p-maximal regularity.
(ii) The set

{
z2−α(z − 1)α

(
z2−α(z − 1)α − T

)−1
: |z| = 1, z 6= 1

}
is R-bounded.

Compared with [18], this result is different. Here, the set Ω2 := {(z2−α(z −
1)α)}|z|=1,z 6=1 must lie in the resolvent set of T instead of the set Ω1 := {(z1−α(z−
1)α)}|z|=1,z 6=1 corresponding to the case 0 < α ≤ 1. This last set has, in a certain
sense, dual geometry compared with Ω2. In other words, whereas the set Ω1 lies
mainly in the left-hand side of the complex plane for values of α near to 1, we
have that the set Ω2 lies mainly in the right-hand side of the complex plane for
values of α near to 2 (see [18, Figures 1 and 2] and Figures 1 and 2 below).
The transition between both geometries has a jump in the border case α = 1,
although they have a symmetry with respect to the imaginary axis. Concerning
the method of proof of our main result (Theorem 4.2), we want to point out
that we consider in the present article a different class of sequences of bounded
operators than those considered in [18, Definition 3.1] (see Definition 3.1 below).
This is due to the consideration of two initial values in equation (1.1) instead of
only one. In the case α = 2, Definition 3.1 can be compared with the notion of a
discrete-time cosine function. In [18], the case α = 1 corresponds to the concept
of a discrete-time semigroup (powers of a bounded operator). In this way, the
representation of the solution in the cases 0 < α ≤ 1 and 1 < α ≤ 2 varies (com-
pare [18, Theorem 3.7] with Theorem 3.8 below). This representation, in the case
1 < α ≤ 2, was difficult to obtain and hence the results of the present article were
not considered in our earlier one. Therefore, the present article can be considered
as a companion work to the published paper [18].

We point out that characterizations of maximal regularity for evolution equa-
tions using methods of operator-valued Fourier multiplier theorems has already
been studied (see, e.g., [3]). For instance, in [12] and [11], Bu used Fourier mul-
tipliers to characterize the Lebesgue maximal regularity of fractional evolution
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equations in compact intervals. The corresponding study in Hölder spaces was
done by Ponce in [21].

Our article is organized as follows. In Section 2, we introduce some basic con-
cepts related to the study of fractional differences that will be needed later. In
Section 3, we introduce a special sequence of bounded operators that we call an
α-resolvent sequence, denoted by Sα(n), which will play a very important role
in the study of `p-maximal regularity. Then, we provide an explicit representa-
tion of the solution for the fractional difference equation (1.1) with initial values
u(0) = x and u(1) = y, namely,

u(n) = Sα(n)u(0) + (Sα ∗ hα)(n− 1)
[
u(1)− u(0)

]
+ (Sα ∗ hα ∗ f)(n− 2), n ≥ 2

(see Theorem 3.8 below). Here hα is defined by the sequence hα(n) = (α− 1)n. It
is interesting to observe that in case of α = 2, the resolvent sequence S2(n) coin-
cides with the notion of a discrete-time cosine function introduced by Chojnacki
[13], who studied it also in the context of UMD-spaces. Finally, in Section 4, we
show our main result: Theorem 4.2. There, we prove the above-mentioned char-
acterization of `p-maximal regularity. A simple criterion in the special case of
Hilbert space is also provided. This is given only in terms of a spectral property
of a normal operator T . Namely, we show that if T ∈ B(H) is a normal operator
defined on a Hilbert space H and

σ(T ) ⊂ {z ∈ C : |z| > 2α},

then the equation (1.1) has `p-maximal regularity. We finish this article with a
concrete example on a nonconvolution integral equation arising in the study of
numerical methods on polygonal domains, highlighting the role of the fractional
parameter in the treatment of additive perturbations for the given equation.

2. Preliminaries

In this section, we recall some necessary concepts related to UMD spaces,
R-boundedness, fractional differences, and operator-valued Fourier multipliers.
(See also the recent monograph [3].)

From now on, given a a real number, we denote by Na := {a, a+1, a+2, . . .} and
s(Na;X) the vector space consisting of all vector-valued sequences f : Na → X.
We recall that the forward Euler operator ∆a : s(Na;X) → s(Na;X) is defined
by

∆af(t) := f(t+ 1)− f(t), t ∈ Na.

For each m ∈ N2, we define recursively the mth order forward difference operator
∆m

a : s(Na;X) → s(Na;X) by

∆m
a := ∆m−1

a ◦∆a.

In particular, we have (∆1
0f)(n) = f(n + 1) − f(n), n ∈ N0. The following def-

inition of fractional sum was formally introduced in [19], after previous work of
Abdeljawad and Atici [2] and Atici and Eloe [6], [7].
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Definition 2.1. Let α > 0 be given, and let f : N0 → X. We define the fractional
sum of order α as

∆−αf(n) =
n∑

k=0

kα(n− k)f(k), n ∈ N0, (2.1)

where

kα(j) =
Γ(α + j)

Γ(α)Γ(j + 1)
, j ∈ N0.

Concerning the development of discrete fractional calculus, we observe that
Holm in [16] is among the first authors who employed the technique of Laplace
transform for discrete fractional calculus in the arena of fractional difference equa-
tions. In [15] Goodrich studied the existence of positive solutions and geometrical
properties. Applications of discrete fractional calculus for several biological and
physical problems have been studied in [8].

Now, we recall from [19] the discrete analogous concept of the definition of a
fractional derivative in the sense of Riemann–Liouville (see also [6]). In that paper,
we show that concept’s strong connection, by means of the Poisson distribution,
with the Riemann–Liouville fractional derivative on R+. We refer the reader also
to the recent papers [1] and [18], where that concept’s usefulness is shown in
different contexts of research.

Definition 2.2. The fractional difference operator of order α > 0 (in the sense of
Riemann–Liouville) is defined by

∆αf(n) := ∆m
0 ◦∆−(m−α)f(n), n ∈ N0,

where m− 1 < α < m, m = dαe.

In other words, to a given vector-valued sequence, first fractional summation
and then integer difference are applied. We also recall the concept of finite con-
volution ∗ of two sequences f(n) and g(n):

(f ∗ g)(n) :=
n∑

j=0

f(n− j)g(j), n ∈ N0.

The discrete-time Fourier transform (DTFT) of a vector-valued sequence f ∈
s(Z;X) is given by

f̂(z) :=
∞∑

j=−∞

z−jf(j), where z = eit, t ∈ (−π, π),

whenever it exists. We now recall the definition of the UMD class of Banach
spaces. (For more details, see [4, Sections III.4.3–III.4.5].)

Definition 2.3. A Banach space X is said to have the unconditional martingale
difference (UMD) property if for each p ∈ (1,∞) there exists a constant Cp >
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0 such that, for any martingale (fn)n≥0 ⊂ Lp(Ω,Σ, µ;X), any choice of signs
(ξn)n≥0 ⊂ {−1, 1}, and any N ∈ Z+, the following estimate holds:∥∥∥f0 + N∑

n=1

ξn(fn − fn−1)
∥∥∥
Lp(Ω,Σ,µ;X)

≤ Cp‖fN‖Lp(Ω,Σ,µ;X).

To end this section, we recall the Fourier multiplier theorem for operator-valued
symbols that provides necessary and sufficient conditions for the R-boundedness
property due to Blunck in [10]. We will first need the notion of an R-bounded
set.

Definition 2.4. Let X and Y be Banach spaces. A subset T of B(X,Y ) is called
R-bounded if there is a constant c ≥ 0 such that∥∥(T1x1, . . . , Tnxn)

∥∥
R
≤ c

∥∥(x1, . . . , xn)
∥∥
R
, (2.2)

for all T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, n ∈ N, where∥∥(x1, . . . , xn)
∥∥
R
:=

1

2n

∑
εj∈{−1,1}n

∥∥∥ n∑
j=1

εjxj

∥∥∥, x1, . . . , xn ∈ X.

Let now T := (−π, π) \ {0}.

Theorem 2.5 ([10, Theorem 1.3]). Let p ∈ (1,∞), and let X be a UMD space.
Let M : T → B(X) be differentiable and such that the set{

M(t), (z − 1)(z + 1)M ′(t) : z = eit, t ∈ T
}

is R-bounded. Then there is an operator TM ∈ B(lp(Z;X)) such that

(̂TMf)(z) = M(t)f̂(z), for all z = eit, t ∈ T. (2.3)

The converse of Blunck’s theorem also holds without any restriction on the
Banach space X, as follows.

Theorem 2.6 ([10, Proposition 1.4]). Let p ∈ (1,∞), and let X be a Banach
space. Let M : T → B(X) be an operator-valued function. Suppose that there is
an operator TM ∈ B(lp(Z;X)) such that the identity (2.3) holds. Then the set{

M(t) : t ∈ T
}

is R-bounded.

3. Resolvent sequences: 1 < α ≤ 2

Let T ∈ B(X) be given. In this section, we introduce an operator-theoretical
method to study the linear fractional difference equation

∆αu(n) = Tu(n) + f(n), n ∈ N, (3.1)

with initial conditions u(0) = x, u(1) = y ∈ X and 1 < α ≤ 2. We observe that
the case 0 < α ≤ 1 was previously studied in [18]. Therefore, our analyses in this
article complement the results given in [18] and provide new insights in the case
1 < α ≤ 2.
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Definition 3.1. Let T be a bounded operator defined on a Banach space X, and
let α > 1. We call T the generator of an α-resolvent sequence if there exists a
sequence of bounded and linear operators {Sα(n)}n∈N0 ⊂ B(X) such that the
following properties are satisfied:

(i) Sα(0) = I,
(ii) Sα(1) = I,
(iii) Sα(n+2)−Sα(n+1) = T (Sα∗kα−1)(n)+kα−1(n+2)I−(α−1)kα−1(n+1)I,

n ∈ N0.

In this case, Sα(n) is called the α-resolvent sequence generated by T .

Remark 3.2. Observe that (iii) can be rewritten as

(iii)′ ∆Sα(n+ 1) = T (Sα ∗ kα−1)(n) + ∆kα−1(n+ 1)

+ (2− α)kα−1(n+ 1), n ∈ N0,

and therefore this property is comparable with [18, Definition 3.1] except for the
extra term (2− α)kα−1(n+ 1).

The following lemma follows easily from the definition.

Lemma 3.3. If T generates an α-resolvent sequence, then it is unique.

Proof. Let Sα(n) and Qα(n) be two α-resolvent sequences generated by T . Let
us define Pα(n) = Sα(n) − Qα(n). Then Pα(0) = 0, Pα(1) = 0 and Pα(n +
2) − Pα(n + 1) = T

∑n
j=0 k

α−1(n − j)Pα(j), for all n ∈ N0, which implies that

Pα(n) = Pα(1) = 0 for all n ∈ N0. �

Example 3.4. In the case α = 2, we have

k1(j) =
Γ(1 + j)

Γ(1)Γ(j + 1)
= 1, j ∈ N0.

S2(n+ 2)− S2(n+ 1) = T (S2 ∗ k1)(n) + k1(n+ 2)I − k1(n+ 1)I

= T
n∑

j=0

S2(j), n ∈ N0.

Since S2(0) = I and S2(1) = I, we get

S2(n) =

[n/2]∑
k=0

(
n

2k

)
T k.

Remark 3.5. Let 1 < α ≤ 2 be given. Suppose that for all z ∈ C with |z| = 1, we
have z2−α(z − 1)α ∈ ρ(T ), the resolvent set of T . Then, the following holds:

Ŝα(z) = z
(
z − (α− 1)

)(
z2−α(z − 1)α − T

)−1
.

In particular, in the case α = 2 we have Ŝ2(z) = z(z − 1)((z − 1)2 − T )−1, and
therefore we obtain from [3, Proposition 1.4.2] that

S2(n) = C(n), n ∈ N0,
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where C is the discrete-time cosine operator sequence generated by T . From [3,
Corollary 1.4.6], it follows that C satisfies

C(n+m) + C(n−m) = 2C(n)C(m), n,m ∈ Z.

We observe that the notion of a cosine sequence of operators was first introduced
by Chojnacki [13].

Now, we present the following useful lemma.

Lemma 3.6. Let 1 < α ≤ 2, a : N0 → C, and S : N0 → X be given. Then

∆α(a ∗ S)(n) =
n∑

j=0

∆αS(n− j)a(j) + S(0)a(n+ 2)

− αS(0)a(n+ 1) + S(1)a(n+ 1). (3.2)

Proof. By definition, we have

∆α(a ∗ S)(n) = ∆2(∆−(2−α)a ∗ S)(n)
= ∆−(2−α)(a ∗ S)(n+ 2)− 2∆−(2−α)(a ∗ S)(n+ 1)

+ ∆−(2−α)(a ∗ S)(n)
= (k2−α ∗ a ∗ S)(n+ 2)− 2(k2−α ∗ a ∗ S)(n+ 1)

+ (k2−α ∗ a ∗ S)(n)

=
n+2∑
j=0

(k2−α ∗ S)(n+ 2− j)a(j)− 2
n+1∑
j=0

(k2−α ∗ S)(n+ 1− j)a(j)

+
n∑

j=0

(k2−α ∗ S)(n− j)a(j).

Therefore,

∆α(a ∗ S)(n) =
n∑

j=0

[
(k2−α ∗ S)(n+ 2− j)− 2(k2−α ∗ S)(n+ 1− j)

+ (k2−α ∗ S)(n− j)
]
a(j) + (k2−α ∗ S)(1)a(n+ 1)

+ (k2−α ∗ S)(0)a(n+ 2)− 2(k2−α ∗ S)(0)a(n+ 1)

=
n∑

j=0

∆2(k2−α ∗ S)(n− j)a(j) + (k2−α ∗ S)(1)a(n+ 1)

+ k2−α(0)S(0)a(n+ 2)− 2k2−α(0)S(0)a(n+ 1).

Hence,

∆α(a ∗ S)(n) =
n∑

j=0

∆αS(n− j)a(j) + k2−α(1)S(0)a(n+ 1)

+ k2−α(0)S(1)a(n+ 1) + S(0)a(n+ 2)− 2S(0)a(n+ 1)
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=
n∑

j=0

∆αS(n− j)a(j) + (2− α)S(0)a(n+ 1) + S(1)a(n+ 1)

+ S(0)a(n+ 2)− 2S(0)a(n+ 1)

=
n∑

j=0

∆αS(n− j)a(j) + S(0)a(n+ 2)

− αS(0)a(n+ 1) + S(1)a(n+ 1),

proving the lemma. �

Remark 3.7. In the case S = Sα, Lemma 3.6 states that

∆α(a ∗ Sα)(n) =
n∑

j=0

∆αSα(n− j)a(j) + a(n+ 2)− (α− 1)a(n+ 1) (3.3)

because Sα(0) = I and Sα(1) = I by definition.

For each 1 < α ≤ 2, we define

hα(n) =

{
(α− 1)n n ∈ Z+,

0 otherwise.
(3.4)

The following theorem is the main result of this section.

Theorem 3.8. Let 1 < α ≤ 2 and f : N → X be given. The unique solution of
(3.1) with initial conditions u(0) = x, u(1) = y is given by:

u(n) = Sα(n)u(0) + (Sα ∗ hα)(n− 1)
[
u(1)− u(0)

]
+ (Sα ∗ hα ∗ f)(n− 2), n ≥ 2. (3.5)

Proof. Applying the operator ∆α to (3.5), we obtain

∆αu(n) = ∆αSα(n)u(0) + ∆α(Sα ∗ hα)(n− 1)
[
u(1)− u(0)

]
+∆α(Sα ∗ hα ∗ f)(n− 2). (3.6)

By Definition 3.1, we get

∆αSα(n) = ∆αSα(n− 1) + T∆α(Sα ∗ kα−1)(n− 2) + ∆αkα−1(n)I

− (α− 1)∆αkα−1(n− 1)I. (3.7)

Note that ∆αkα−1(n) = ∆2∆2−αkα−1(n) = ∆2k1(n) = 0 for all n ∈ N. Then

∆αSα(n) = ∆αSα(n− 1) + T∆α(Sα ∗ kα−1)(n− 2).

Using Lemma 3.6, we get

∆α(Sα ∗ kα−1)(n) = (∆αkα−1 ∗ Sα)(n) + Sα(n+ 2)− αSα(n+ 1)

+ (α− 1)Sα(n+ 1)

= Sα(n+ 2)− Sα(n+ 1)

= ∆Sα(n+ 1).
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Replacing the above identity in equation (3.7), we have

∆αSα(n) = ∆αSα(n− 1) + ∆TSα(n− 1), (3.8)

or equivalently

∆∆αSα(n− 1) = ∆TSα(n− 1).

We claim that ∆αSα(n− 1) = TSα(n− 1). Indeed, we observe that this happens
if and only if ∆αSα(0) = TSα(0) = T . Now, we will prove this last assertion.

By Definitions 2.1 and 2.2, we have

∆Sα(n) = ∆2(k2−α ∗ Sα)(n)

= (k2−α ∗ Sα)(n+ 2)− 2(k2−α ∗ Sα)(n+ 1) + (k2−α ∗ Sα)(n).

For n = 0:

∆Sα(0) = ∆2(k2−α ∗ Sα)(0)

= (k2−α ∗ Sα)(2)− 2(k2−α ∗ Sα)(1) + (k2−α ∗ Sα)(0). (3.9)

Note that

(k2−α ∗ Sα)(2) = k2−α(0)Sα(2) + k2−α(1)Sα(1) + k2−α(2)Sα(0)

= Sα(2) + (2− α)I +
(3− α)(2− α)

2
I

= I + T +
α(α− 1)

2
I − (α− 1)2I + (2− α)I +

(3− α)(2− α)

2
I

= T + (5− 2α)I, (3.10)

as well as

(k2−α ∗ Sα)(1) = (2− α)I + I = (3− α)I and (k2−α ∗ Sα)(0) = I. (3.11)

Replacing (3.10) and (3.11) in (3.9), we get

∆αSα(0) = T + (5− 2α)I − 2(3− α)I + I = T.

So, the claim is proved and we have

∆αSα(n) = TSα(n), (3.12)

for all n ∈ N0. By Lemma 3.6,

∆α(Sα ∗ hα)(n) = (∆αSα ∗ hα)(n) + hα(n+ 2)− (α− 1)hα(n+ 1)

= (∆αSα ∗ hα)(n)

= T (Sα ∗ hα)(n). (3.13)

Moreover, again using Lemma 3.6,

∆α(Sα ∗ hα ∗ f)(n) =
(
∆α(Sα ∗ hα) ∗ f

)
(n) + (Sα ∗ hα)(0)f(n+ 2)

− α(Sα ∗ hα)(0)f(n+ 1) + (Sα ∗ hα)(1)f(n+ 1)

= (∆αSα ∗ hα ∗ f)(n) + f(n+ 2)− αf(n+ 1) + αf(n+ 1)

= (∆αSα ∗ hα ∗ f)(n) + f(n+ 2)

= T (Sα ∗ hα ∗ f)(n) + f(n+ 2). (3.14)



198 C. LIZAMA AND M. MURILLO-ARCILA

Replacing equations (3.12), (3.13), and (3.14) in (3.6), we finally obtain

∆αu(n) = T
[
Sα(n)u(0) + (∆αSα ∗ hα)(n− 1)

[
u(1)− u(0)

]
+ (Sα ∗ hα ∗ f)(n− 2)

]
+ f(n)

= Tu(n) + f(n),

for all n ∈ N0, proving the theorem. �

In the border case α = 2, we have h2(j) = 1 for all j ∈ N0, and hence we
recover the following result proved in [3, Proposition 1.3.1] by a different method.

Corollary 3.9. Let T ∈ B(X) be given. Then the unique solution of the equation
∆2u(n) = Tu(n) + f(n), n ∈ Z+,

u(0) = x,

u(1) = y,

(3.15)

is given by

u(n) = S2(n)x+ (S2 ∗ h2)(n− 1)(y − x) + (S2 ∗ h2 ∗ f)(n− 2), n ≥ 2,

where S2(n) coincides with the discrete-time cosine operator function and

(S2 ∗ h2)(n) =
n∑

j=0

S2(j)

coincides with the discrete-time sine operator function. (See [3].)

4. A characterization of maximal `p-regularity

Let T ∈ B(X) be given, and let f : Z+ → X be a vector-valued sequence. In
this section, we consider the discrete-time evolution equation of fractional order

∆αu(n) = Tu(n) + f(n), n ∈ N,
u(0) = 0,

u(1) = 0,

(4.1)

where 1 < α ≤ 2. By Theorem 3.8, the solution of equation (4.1) can be repre-
sented by

u(n) = (Sα ∗ hα ∗ f)(n− 2), n ∈ N, n ≥ 2.

Note that

∆αu(n) = T (Sα ∗ hα ∗ f)(n− 2) + f(n). (4.2)

The following definition is motivated by the case α = 2, which, in turn, comes
from [10] following the continuous case.

Definition 4.1. We say that equation (4.1) has maximal `p-regularity if

(Kαf)(n) = T

n∑
j=0

(Sα ∗ hα)(n− j)f(j)

defines a bounded operator Kα ∈ B(`p(Z+;X)) for some p ∈ (1,∞).
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In other words, and in view of the relation (4.2), the question is if f ∈ `p(N0, X)
implies u,∆αu ∈ `p(N0, X).

We will consider the following hypothesis that will be denoted by (H)α:

(H)α The operator (z2−α(z − 1)α − T ) is invertible for all |z| = 1, z 6= 1.

Denote D := {z ∈ C : |z| ≤ 1}, and define the set

Ωα :=
{
z ∈ C : z = (w − 1)αw2−α, w ∈ ∂D, w 6= 1

}
.

Some cases are illustrated in Figures 1 and 2.

(a)

(b)

Figure 1. (a): α = 2; (b): α = 1.75.
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(a)

(b)

Figure 2. (a): α = 1.5; (b): α = 1.25.

We now present our main theorem.

Theorem 4.2. Let 1 < α ≤ 2, p > 1, and let X be a UMD space. Let T ∈ B(X)
be given, and let us suppose that (H)α holds. Then the following assertions are
equivalent.

(i) Equation (4.1) has maximal `p-regularity.
(ii) The following set{

z2−α(z − 1)α
(
z2−α(z − 1)α − T

)−1
: |z| = 1, z 6= 1

}
,

is R-bounded.
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Proof. By hypothesis (H)α, we can defineM(t) := z2−α(z−1)α(z2−α(z−1)α−T )−1

for all z = eit, t ∈ (−π, π). Also, we define fα(t) := e2it(1− e−it)α. Then M(t) =
fα(t)(fα(t)− T )−1.

Suppose (ii). Observe that M ′(t) = f ′
α(t)

fα(t)
M(t)− f ′

α(t)
fα(t)

M(t)2. Moreover, we have

f ′
α(t) = 2ifα(t) + αi(1− eit)α−1e2ite−it

= 2ifα(t) +
αifα(t)

eit − 1
= 2ifα(t) +

iα

z − 1
fα(t).

Therefore,

(z − 1)(z + 1)M ′(t) =
[
2i(z − 1)(z + 1) + iα(z + 1)

]
M(t)

−
[
2i(z − 1)(z + 1) + iα(z + 1)

]
M(t)2,

where aα(t) := 2i(z − 1)(z + 1) + iα(z + 1) is bounded for z = eit, t ∈ (−π, π).
We conclude from [3, Proposition 2.2.5] that the set {(z − 1)(z + 1)M ′(t) : z =
eit, t ∈ (−π, π)} is R-bounded. Then, by Theorem 2.5, there exists an operator
Tα ∈ B(`p(Z, X)) such that

(̂Tαf)(z) = M(t)f̂(z), for all z = eit, t ∈ (−π, π) and f ∈ `p(Z, X). (4.3)

From the identity

T
(
z2−α(z − 1)α − T

)−1
= z2−α(z − 1)α

(
z2−α(z − 1)α − T

)−1 − I (4.4)

and from (4.3), we have that the left-hand side of the following identity

T
(
z2−α(z − 1)α − T

)−1
f̂(z) = z2−α(z − 1)α

(
z2−α(z − 1)α − T

)−1
f̂(z)− f̂(z)

= M(t)f̂(eit)− f̂(eit) (4.5)

defines a bounded operator on `p(Z, X) given by Rαf(n) := Tαf(n)−f(n), n ∈ Z.
For f ∈ `p(Z, X), we define the operator:

Kαf(n) =

{
T (Sα ∗ hα ∗ f)(n), n ∈ N,
0 otherwise.

By (H)α, Remark 3.5, and definition of hα we have that the Z-transform of
Sα ∗ hα(z) is z(z2−α(z − 1)α − T )−1. Then, the identity (4.5) shows that the
discrete-time Fourier transform of Kαf(n − 1) coincides with the discrete-time
Fourier transform of Rαf(n) for all n ∈ N. Therefore, Kαf(n− 1) = Rαf(n) for
all n ∈ N by uniqueness. It proves (i).

Now, we suppose that (i) holds. We define the operator

Kαf(n) =

{
Kαf(n), n ∈ N,
0 otherwise,
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where by hypothesis Kαf(n) = T (Sα∗hα∗f)(n), n ∈ Z+ is given in Definition 4.1.
Define Tαf(n) := Kαf(n− 1) + f(n), n ∈ Z. Given z = eit, t ∈ (−π, π), we have

T̂αf(z) =
∑
j∈Z

z−jTαf(j) =
∞∑
j=1

z−jKαf(j − 1) +
∑
j∈Z

z−jf(j)

= z−1

∞∑
j=0

z−jKαf(j) + f̂(z).

By hypothesis (H)α, the Z-transform of (Sα ∗hα)(z) which is equal to z(z2−α(z−
1)α − T )−1 exists for |z| = 1, and therefore

T̂αf(z) = z−1T ̂(Sα ∗ hα)(z)f̂(z) + f̂(z)

= T
(
z2−α(z − 1)α − T

)−1
f̂(z) + f̂(z)

= z2−α(z − 1)α
(
z2−α(z − 1)α − T

)−1
f̂(z)− f̂(z) + f̂(z)

=M(t)f̂(z), (4.6)

where we have used the identity (4.4) and where the definition of M(t) is given at
the beginning of the proof. An application of Theorem 2.6 shows that (ii) holds,
and the proof is complete. �

Remark 4.3. Under the hypothesis that equation (4.1) has lp-maximal regularity,
we deduce that the operator (z2−α(z − 1)α − T ) in (H)α is always surjective.
Indeed, given x ∈ X, we define

f(n) =

{
x n = 0,

0 otherwise.

Hence, by hypothesis, we obtain that there exists ux ∈ lp(Z, X) such that (z2−α(z−
1)α − T )ûx(z) = f̂(z) = x, where z = eit, t ∈ (−π, π).

Remark 4.4. In the case that X is a Hilbert space, condition (ii) can be replaced
by

(ii)′ sup
|z|=1,z 6=1

∥∥(z − 1)α
(
z2−α(z − 1)α − T

)−1∥∥ < ∞.

In the case of Hilbert spaces, the hypothesis of R-boundedness can be replaced
by boundedness. In this case, we obtain an interesting alternative condition on
the operator T in order to have lp-maximal regularity.

Theorem 4.5. Let T ∈ B(H) be a normal operator defined on a Hilbert space
H, and assume that

σ(T ) ⊂
{
z ∈ C : |z| > 2α

}
.

Then for each f ∈ lp(Z+, X), p > 1, there is a unique u ∈ lp(Z+, X) such that
∆αu(n) = Tu(n) + f(n), n ∈ N,
u(0) = 0,

u(1) = 0,

(4.7)

for any 1 < α ≤ 2.
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Proof. We define fα(z) = z2−α(z − 1)α for z = eit, t ∈ (−π, π). Observe that

fα(z) = z2−α(z − 1)α =
(
1− 1

z

)α

z2 = (1− cos t+ i sin t)αe2it+2kiπ

= (2− 2 cos t)
α
2 ei[α arctan ( sin t

1−cos t
)+2t+2kπ], k ∈ Z.

We now consider the functionm(α, t) = (2−2 cos t)
α
2 that represents the modulus

of fα(e
it) as t varies on (−π, π). Then

sup
t∈(−π,π)

∣∣m(α, t)
∣∣ = sup

t∈(−π,π)

∣∣(2− 2 cos t)
α
2

∣∣ = 4α/2.

Since σ(T ) ⊂ {z ∈ C : |z| > 2α}, we have fα(z) ∈ Ωα for all z ∈ ∂D, z 6= 1,
and therefore condition (Hα) is satisfied. Moreover, there exists ε > 0 such that
d(fα(z), σ(T )) > ε > 0 for all z ∈ C such that |z| = 1. Since T is normal, it
follows that ∥∥(z − 1)α

(
fα(z)− T

)−1∥∥ ≤ 2

d(fα(z), σ(T ))
<

2

ε

for all |z| = 1, z 6= 1. It follows from Remark 4.4 that condition (ii) in Theorem 4.2
is satisfied, and therefore the assertion of the theorem is proved. �

Remark 4.6. From the proof of the above theorem, we observe that the maximum
value of the function m(α, t) = (2− 2 cos t)

α
2 is attained at the points t = ±π.

We encourage the reader to compare Theorem 4.5 with the characterization
given for 0 < α ≤ 1 in [18, Corollary 4.5].

We finish this work with the following simple example that highlights the role
of the fractional difference in a given equation when we are dealing with additive
perturbations.

Example 4.7. Let 1 < α ≤ 2 and ε > 0 be given. We consider the equation
∆αu(n, x) =

∫ 1

0
k(x/t)

t
u(n, t) dt+ (2α + ε)u(n, x) + F (n, x),

u(0, x) = 0,

u(1, x) = 0,

(4.8)

where n ∈ N0, x ∈ [0, 1], and

k(u) =
1

π

( sin(π − σ)

u+ u−1 − 2 cos(π − σ)

)
, u > 0,

and 0 < σ < π. The kernel k appeared in [5] associated to boundary integral
equations on polygonal domains. For each f ∈ C([0, 1]), we define

Tαf(x) =

∫ 1

0

k(x/t)

t
f(t) dt+ (2α + ε)f(x), x ∈ [0, 1].

The operator Tα ∈ B(C([0, 1])) corresponds to an additive perturbation of the
integral operator

Kf(x) :=

∫ 1

0

k(x/t)

t
f(t) dt.
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It can be shown (see [5, Section 7, (7.4)]) that the spectrum of K is [0, 1− σ/π].
Therefore,

σ(Tα) =
[
2α + ε, 2α + ε+ 1− σ

π

]
⊂

{
z ∈ C : |z| > 2α

}
.

From Theorem 4.5, we can conclude that if

∞∑
j=0

(
sup

x∈[0,1]

∣∣F (j, x)
∣∣)2 < ∞,

then there exists a unique solution u(n, x) of (4.8) satisfying

∞∑
j=0

(
sup

x∈[0,1]

∣∣u(j, x)∣∣)2 < ∞.

In particular, such a solution satisfies |u(n, x)| → 0 as n → ∞, uniformly for
x ∈ [0, 1].

Let us consider the limit case ε = 0. Observe that Tα → K + 4I as α → 2
and that Tα → K + 2I as α → 1. Therefore, beginning with α = 2 and as
α approaches 1, the additive perturbation of (4.8) is better in the sense that
‖Tα −K‖ = 2α < 4 for 1 < α < 2.

Remark 4.8. Compared with the case 0 < α ≤ 1, the obtained characterization
in Theorem 4.2 is not continuous at α = 1. This is due to the discrete character
of the equation (4.1), and also to the structure used in the right-hand side of
(4.1). In other words, the spectral structure obtained in Figures 1 and 2 changes
according to the consideration of ∆αu(n) = Tu(n) or ∆αu(n) = Tu(n + 1), for
instance. It should be noted that in the last case, the use of closed linear operators
instead of only bounded operators is important (see [19]) and therefore deserves
further investigation. This will be done in a forthcoming work.
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