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Abstract. Let A be a maximal subdiagonal algebra of semifinite von Neu-
mann algebra M. For 0 < p ≤ ∞, we define the noncommutative Hardy–
Lorentz spaces Hp,ω(A), and give some properties of these spaces. We obtain
that the Herglotz maps are bounded linear maps from Λp

ω(M) into Λp
ω(M),

and with this result we characterize the dual spaces of Hp,ω(A) for 1 < p < ∞.
We also present the Hartman–Wintner spectral inclusion theorem of Toeplitz
operators and Pisier’s interpolation theorem for this case.

1. Introduction

Let T be the unit circle of a complex plane equipped with a normalized Lebesgue
measure dm. We denote by Hp(T) the usual Hardy spaces on T, the space of func-
tions on the unit circle which are in Lp(T) with respect to the Lebesgue measure
and whose negative Fourier coefficients vanish. These spaces have played an im-
portant role in modern analysis and prediction theory.

In the setting of operator algebraists, a noncommutative version of Hp spaces
was given by Arveson. In 1967, Arveson [3] introduced the concept of maximal
subdiagonal algebras A of a von Neumann algebra M, unifying analytic function
spaces and nonself-adjoint operator algebras. In the case that M has a finite
trace, Hp(A) may be defined to be the closure of A in the noncommutative
Lp space Lp(M). Subsequently, Arveson’s pioneering work has been extended to
different cases by several authors. For example, Marsalli and West [18] obtained a
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series of results including a Riesz factorization theorem, a Herglotz transform, and
the dual relations between Hp(A) and Hq(A), and Bekjan and Xu [6] presented
the more general form of a Riesz and Szegö type factorization for these spaces.
Recently, the noncommutativeHp spaces have been developed by Blecher, Bekjan,
Labuschagne, Xu, and their coauthors in a series of papers. On the other hand,
it is proved by Ji [13] that a semifinite subdiagonal algebra A is automatically
maximal. This eventually led to the definition of noncommutative Hardy spaces
associated with semifinite subdiagonal algebras by Bekjan [4]. In this setting,
Bekjan [4] obtain that the conjugation and Herglotz maps are bounded linear
maps from Lp(M) into Lp(M) for 1 < p < ∞, the dual relations between Hp(A)
and Hq(A), and Pisier’s interpolation theorem and so on.

In this article we introduce the noncommutative Hardy–Lorentz spaces associ-
ated with semifinite subdiagonal algebras. If ω ≡ 1, the noncommutative Hardy–
Lorentz spaces Hp,ω(A) correspond to the noncommutative Hardy spaces Hp(A).
By adapting the techniques in [4], [19], and [18], we obtain some properties of
these spaces, which include some theorems about Herglotz maps, dual spaces,
and Toeplitz operators, and Pisier’s interpolation theorem for this case.

2. Preliminaries

Let (Ω,Σ, ν) be a complete σ-finite measure space, and let L0(Ω) be the space
of all classes of ν-measurable functions defined on Ω. Let f ∈ L0(Ω). Recall that
the distribution function of f is defined as

df (s) = ν
({

t ∈ Ω :
∣∣f(t)∣∣ > s

})
, s > 0,

and its nonincreasing rearrangement is defined as

f ∗(t) = inf
{
s > 0 : df (s) ≤ t

}
, t > 0.

It will be sometimes convenient to write Lp = Lp(0,∞), 0 < p ≤ ∞, and
L0 = L0(0,∞) for brevity. When ω is a nonnegative, locally integrable function
on (0,∞) and not identically zero, we say that ω is a weight. For a given weight

ω, let W (t) =
∫ t

0
ω(s) ds < ∞, t > 0. We write W ∈ ∆2 if W (2t) ≤ CW (t), t ≥ 0,

holds for some constant C > 0.
Let 0 < p ≤ ∞. If (Ω,Σ, ν) = (R,Σ, ω(t) dt), we write Lp(ω) instead of Lp(Ω).

If the measure dν(t) = ω(t) dt, we will write dωf and f ∗
ω instead of df and f ∗,

respectively.
Let ω be a weight function and let 0 < p < ∞. We write ω ∈ Bp if there exists

some constant C such that∫ ∞

r

ω(t)

tp
dt ≤ C

1

rp

∫ r

0

ω(t) dt, ∀r > 0,

and we write ω ∈ B∗
∞ if there exists some constant C such that∫ r

0

[1
t

∫ t

0

ω(s) ds
]
dt ≤ C

∫ r

0

ω(t) dt, ∀r > 0.

See [2], [1], and [7] for more information on these weight functions.
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For f ∈ L0 and 0 < p < ∞, let

‖f‖Λp
ω
=

(∫ ∞

0

f ∗(t)pω(t) dt
) 1

p
< ∞.

We define the Lorentz space Λp
ω as the set of all f ∈ L0 such that ‖f‖Λp

ω
< ∞;

that is, Λp
ω = {f ∈ L0 : f ∗ ∈ Lp(ω)}. Similarly, we define the Lorentz space Λ∞

ω

as the set of all f ∈ L0 such that f ∗ ∈ L∞(ω). If W ∈ ∆2, then Λ∞
ω = L∞.

Let 0 < p < ∞. The space Γp
ω is then defined as the set of all f ∈ L0 such that

‖f‖Γp
ω
=

(∫ ∞

0

f ∗∗(t)pω(t) dt
) 1

p
< ∞,

where f ∗∗(t) = 1
t

∫ t

0
f ∗(s) ds. For any 0 < p < ∞, it is well known that Λp

ω is
a quasi-Banach space if and only if W (t) ∈ ∆2. For 0 < p < ∞, we know that
Γp
ω = Λp

ω if and only if ω ∈ Bp. For further results about these spaces, the reader
is referred to [2], [7], [14], and [15].

In what follows, we will keep all previous notation throughout the paper, and ω
will always denote a weight function on (0,∞) with ω /∈ L1 and W ∈ ∆2.

For 0 < s < ∞, we define the dilation operator Ds on Λp
ω by

(Dsf)(t) = f
( t

s

)
, 0 < s < ∞, 0 ≤ t < ∞.

Define the lower Boyd indices αΛp
ω
and the upper Boyd indices βΛp

ω
of Λp

ω by

αΛp
ω
= lim

s→∞

log s

log ‖Ds‖
and βΛp

ω
= lim

s→0+

log s

log ‖Ds‖
.

It follows from [1] that

αΛp
ω
= lim

t→∞

log t

logW
1
p (t)

and βΛp
ω
= lim

t→0+

log t

logW
1
p (t)

,

where W (t) = sups>0
W (st)
W (s)

, t > 0. It is clear that 0 ≤ αΛp
ω
≤ βΛp

ω
≤ ∞ and

αΛrp
ω

= rαΛp
ω
, βΛrp

ω
= rβΛp

ω
, r > 0. If Λp

ω is a Banach function space, then 1 ≤
αΛp

ω
≤ βΛp

ω
≤ ∞. For further results about Boyd indices of quasi-Banach spaces,

the reader is referred to [1], [8], and [16].
Let M be a semifinite von Neumann algebra acting on a Hilbert space H with

a normal semifinite faithful trace τ . (We refer the reader to [21] and [26] for
noncommutative integration.) We denote by P(M) the complete lattice of all
projections in M. For every x ∈ M, there is a unique polar decomposition x =
u|x|, where |x| ∈ M+ and u is a partial isometry operator. Let r(x) = u∗u, and let
l(x) = uu∗. We call r(x) and l(x) the right and left supports of x, respectively. If
x is self-adjoint, then r(x) = l(x). This common projection is then said to be the
support of x and denoted by s(x). Let S(M)+ = {x ∈ M+ : τ(s(x)) < ∞}, and
let S(M) be the linear span of S(M)+. The closed densely defined linear operator
x inH with domainD(x) is said to be affiliated withM if and only if u∗xu = x for
all unitary operators u which belong to the commutant M′ of M. If x is affiliated
with M, then we define its distribution function by λt(x) = τ(e(t,∞)(|x|)), where
e(t,∞)(|x|) is the spectral projection of |x| associated with the interval (t,∞). The
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decreasing rearrangement of x is defined by µt(x) = inf{s > 0 : λs(x) ≤ t}. We
will denote simply by λ(x) and µ(x) the functions t → λt(x) and t → µt(x),
respectively. We call x τ -measurable if λs(x) < ∞ for some s > 0. The set of all
τ -measurable operators will be denoted by L00(M). The set L00(M) is a ∗-algebra
with the sum and product being the respective closure of the algebraic sum and
product.

The measure topology in L00(M) is the vector space topology defined via the
neighborhood base {V (ε, δ) : ε, δ > 0}, where

V (ε, δ) =
{
x ∈ L00(M) : τ

(
e(ε,∞)

(
|x|

))
≤ δ

}
and e(ε,∞)(|x|) is the spectral projection of |x| associated with the interval (ε,∞).
With respect to the measure topology, L00(M) is a complete topological ∗-algebra.
For 0 < p < ∞, let

Lp(M) =
{
x ∈ L00(M) : ‖x‖p := τ

(
|x|p

) 1
p < ∞

}
.

Then (Lp(M); ‖ · ‖p) is a Banach (or quasi-Banach for p < 1) space. As usual,
we put L∞(M) = M, and denote by ‖ · ‖∞ (= ‖ · ‖) the usual operator norm.

Let x ∈ L00(M), and let 0 < p ≤ ∞. We define

‖x‖p,ω := ‖x‖Λp
ω(M) =

∥∥µ(x)∥∥
Λp
ω
. (2.1)

The noncommutative Lorentz space Λp
ω(M) is defined as the space of all x ∈

L00(M) such that ‖x‖p,ω < ∞. If ω ≡ 1, then the noncommutative Lorentz space
Λp

ω(M) is the usual noncommutative Lp space Lp(M). It is well known that

‖x‖p,ω =
(∫ ∞

0

ptp−1W
(
λt(x)

)
dt
) 1

p
.

Let 0 < p < ∞. The space Γp
ω(M) is defined as the set of all x ∈ L00(M) such

that ‖x‖Γp
ω(M) = ‖µ(x)‖Γp

ω
< ∞. For 0 < p < ∞, we infer from Theorem 4 of [24]

that Λp
ω(M) and Γp

ω(M) are quasi-Banach spaces.
We should introduce the Köthe dual spaces generalizing the definition that can

be found in [7] in the context of classical Lorentz space Λp
ω, 0 < p ≤ ∞. We define

the Köthe dual space of Λp
ω(M) by

Λp
ω(M)× =

{
x ∈ L00(M) : ‖x‖Λp

ω(M)× = sup
‖y‖p,ω≤1

τ
(
|xy|

)
< ∞

}
.

If x ∈ Λp
ω(M)×, then it is clear that

‖x‖Λp
ω(M)× = sup

‖y‖p,ω≤1

‖xy‖1 = sup
{∣∣τ(xy)∣∣ : ‖y‖p,ω ≤ 1

}
.

Proposition 2.1.

(1) Let 0 < p < ∞. For x ∈ Λp
ω(M)×, we have

‖x‖Λp
ω(M)× =

∥∥µt(x)
∥∥
(Λp

ω)
× .

Moreover, (Λp
ω)

×(M) = Λp
ω(M)× is a noncommutative Banach function

space.
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(2) Let {ei}i∈Λ be an increasing family of projections in M and 0 < p < ∞.
If ei converges to 1 in the strong operator topology, then

‖xei − x‖p,ω → 0, ‖eix− x‖p,ω → 0, ∀x ∈ Λp
ω(M).

(3) If ω ∈ Bp ∩ B∗
∞ and 1 < p < ∞, then

Λp
ω(M)∗ = Λp

ω(M)× = (Λp
ω)

×(M) = Γq
ω̃(M),

where ω̃(t) = tqW (t)−qω(t), t > 0, 1
p
+ 1

q
= 1.

(4) Let {ei}i∈Λ be an increasing family of projections in M and 1 < p < ∞.
If ei converges to 1 in the strong operator topology and ω ∈ Bp ∩B∗

∞, then

‖xei − x‖Γq
ω̃
(M) → 0, ‖eix− x‖Γq

ω̃
(M) → 0, ∀x ∈ Γq

ω̃(M),

where ω̃(t) = tqW (t)−qω(t), t > 0, 1
p
+ 1

q
= 1.

Proof. Since ω ∈ Bp ∩ B∗
∞, it follows from Corollary 2.3 and Proposition 2.6 of

[1] that 1 < αΛp
ω
≤ βΛp

ω
< ∞. Then Proposition 2.3.3 and Theorem 2.3.4 of [7]

and Theorem 3.7 of [8] mean that Λp
ω(M) is an interpolation space for the couple

(L1(M),M). Therefore, by slightly modifying the proof of Proposition 2.4 and
Proposition 2.6 in [11], we can prove (1)–(3) and omit the details.

(4) Since ω ∈ Bp, applying Proposition 1.7 and Corollary 1.12 of [15] gives
βΓq

ω̃
< ∞. According to ω ∈ Bp∩B∗

∞, we obtain Γq
ω̃ = (Λp

ω)
×. Then we see that Γq

ω̃

is an Banach space and 1 ≤ αΓq
ω̃
. By Theorem 3.2 of [8], there exist r1, r2 with 0 <

r1 < αΓq
ω̃
≤ βΓq

ω̃
< r2 < ∞ such that Γq

ω̃ is an interpolation space for the couple

(Lr1 , Lr2). It follows that df (s) < ∞ holds for every s > 0 and f ∈ Γq
ω̃. Therefore,

any sequence (fi) in Γq
ω̃ with fi ↓ 0 satisfying f ∗∗

i (t) = 1
t

∫ t

0
f ∗
i (s) ds ↓ 0, and so

‖fi‖Γq
ω̃
↓ 0. The proof can be done similarly to (2). The details are omitted. �

Remark 2.2.

(1) Let 1 < p < ∞ and ω ∈ Bp∩B∗
∞. It follows from Theorem 2.4.9 and Corol-

lary 2.4.23 of [7] that (Λp
ω)

∗ separate points if and only if (Λp
ω)

× 6= {0}
if and only if

∫ 1

0
( t
W (t)

)
1

p−1 dt < ∞. If
∫ 1

0
( t
W (t)

)
1

p−1 dt < ∞, by Proposi-

tion 2.1(3), then we deduce that Λp
ω(M)∗ separates points. Since we deal

further with dual space (Λp
ω)

∗ which separates points, we will assume in

what follows that
∫ 1

0
( t
W (t)

)
1

p−1 dt < ∞.

(2) Let 0 < p < ∞. Then S(M) is dense in Λp
ω(M). Indeed, S(M) ⊆

Λp
ω(M) is clear. Now let x ∈ Λp

ω(M). Then limt→∞ λt(x) = 0 and
limt→∞ µt(x) = 0. We write xn = xe[0,n](|x|). It follows from Proposi-
tion 3.2 of [9] that µt(x) < ∞ for all t > 0. Therefore,

µt(x− xn) = µt

(
xe(n,∞)

(
|x|

))
≤ µt(x)χ[0,λn(x)](t) → 0, n → ∞

and µt(x− xn) ≤ µt(x). The dominated convergence theorem shows that

‖x− xn‖Λp
ω(M) → 0, n → ∞.
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Thus M ∩ Λp
ω(M) is dense in Λp

ω(M). Let y ∈ Λp
ω(M). We write en =

e( 1
n
,∞)(|y|) and yn = yen. According to Lemma 2.5 and Proposition 3.2 of

[9], we obtain yn ∈ S(M) ⊆ M∩ Λp
ω(M),

µt(y − yn) = µt

(
ye[0, 1

n
]

(
|y|

))
≤ 1

n
µt

(
e[0, 1

n
]

(
|y|

))
≤ 1

n
→ 0, n → ∞,

and µt(y−yn) = µt(ye
⊥
n ) ≤ µt(y). By the dominated convergence theorem,

we deduce that ‖y−yn‖Λp
ω
→ 0, n → ∞, and so S(M) is dense in Λp

ω(M).

Proposition 2.3. For t ∈ L00(M) and x ∈ Λp
ω(M), let Lt(x) = tx, and let

Rt(x) = xt.

(1) The operator Lt on Λp
ω(M) is bounded if and only if t ∈ M. Moreover,

‖Lt‖ = ‖t‖.
(2) The operator Rt on Λp

ω(M) is bounded if and only if t ∈ M. Moreover,
‖Rt‖ = ‖t‖.

(3) Let R = {Rt : t ∈ M}, and let L = {Lt : t ∈ M}. Then R and L are
subalgebras of B(Λp

ω(M)), the algebra of all bounded linear operators on
Λp

ω(M).
(4) For ε > 0 and 0 < p < ∞, we set eε = e(ε,∞)(|t|) and Λp

l (eε) = {eεx : x ∈
Λp

ω(M)}. Then Λp
l (eε) is a closed subspace of Λp

ω(M).

Proof. (1) If t ∈ M, then it is clear that ‖Lt‖ ≤ ‖t‖. Conversely, for t ∈ L00(M),
we write en = e(n,∞)(|t|), n = 1, 2, . . . . By Proposition 21 of [26], there exists
n0 ∈ N+ such that τ(en0) < ∞, and so τ(en) < ∞ for all n ≥ n0. Now, we
suppose that t is an unbounded operator. Then the projection en has positive
trace for infinitely many n ∈ N+. Without loss of generality we suppose that
0 < τ(en) < ∞ for all n ∈ N+. Since τ(en) 6= 0 and nen ≤ |t|en, we have

n‖en‖p,ω =
(∫ ∞

0

µs(nen)
pω(s) ds

) 1
p ≤

(∫ ∞

0

µs

(
|t|en

)p
ω(s) ds

) 1
p
= ‖Lten‖p,ω,

a contradiction. Thus t ∈ M. Moreover, if t ∈ M, then, arguing as before,

C
∥∥e(C,∞)

(
|t|
)∥∥

p,ω
≤

∥∥Lte(C,∞)

(
|t|
)∥∥

p,ω

holds for all 0 < C < ‖t‖. Thus, C < ‖Lt‖ holds for all C ∈ (0, ‖t‖). Hence ‖t‖ ≤
‖Lt‖. This completes the proof. Similarly, (2) holds. (3) and (4) are clear. �

Proposition 2.4. Let M be a finite von Neumann algebra. Put R = {Rt : t ∈
M}, and put L = {Lt : t ∈ M}. Then R and L are subalgebras of B(Λp

ω(M))
which are each other’s commutants.

Proof. First it is clear that R ⊆ L′. Conversely, for any y ∈ M, we deduce that

‖y‖p,ω =
(∫ τ(1)

0

µt(y)
pω(t) dt

) 1
p ≤ ‖y‖W

(
τ(1)

) 1
p .

Since M is a finite von Neumann algebra, then ‖y‖p,ω ≤ ‖y‖W (τ(1))
1
p < ∞. This

means that M ⊆ Λp
ω(M). Let T ∈ B(Λp

ω(M)) with TLt = LtT for all Lt ∈ L. If
y ∈ M, then we have

T (y) = T (Ly1) = LyT (1) = yT (1). (2.2)
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Next we show that T (1) ∈ M. If T (1) ∈ Λp
ω(M) and T (1) /∈ M, then the

projection en = e(n,(n+1)](|T (1)|) has positive trace for infinitely many n ∈ N+.
Without loss of generality we suppose that 0 < τ(en) < ∞ for all n ∈ N+. Let
yn = en

‖en‖p,ωU
∗, where T (1) = U |T (1)| is the polar decomposition of T (1). Then

en
∣∣T (1)∣∣ = e(n,(n+1)]

(∣∣T (1)∣∣)∣∣T (1)∣∣ ≥ nen.

By (2.2), we have that∥∥T (yn)∥∥p,ω
=

∥∥ynT (1)∥∥p,ω
=

1

‖en‖p,ω
∥∥en∣∣T (1)∣∣∥∥p,ω

≥ n

holds for all n ∈ N+. Therefore T is a unbounded operator, a contradiction. Now,
let u0 = T (1). By (2.2), we obtain T (y) = Ru0(y), y ∈ M. By Remark 2.2(2)
and the fact that T,Ru0 ∈ B(Λp

ω(M)), we deduce that T (y) = Ru0(y) holds for
all y ∈ Λp

ω(M). Thus T ∈ R; that is, R ⊇ L′. Therefore, R = L′. Similarly,
R′ = L. �

Theorem 2.5. Let 0 < p < ∞ and let t = t∗ ∈ M. Then Lt is compact if and
only if Λp

l (eε) := {eεx : x ∈ Λp
ω(M)} is finite-dimensional for all ε > 0, where

eε = e(ε,∞)(|t|).

Proof. First we assume that Lt : Λ
p
ω(M) → Λp

ω(M) is compact, and we consider
the bounded operator ieε : Λp

ω(M) → Λp
l (eε) given by ieεx = eεx. Clearly, ieε is

continuous, and hence the composition ieε ◦ Lt : Λ
p
ω(M) → Λp

l (eε) is a compact
operator. Therefore, ieε ◦ Lt|Λp

l (eε)
is a compact operator.

We claim that Ran(ieε ◦ Lt|Λp
l (eε)

) = Λp
l (eε). Indeed, if y ∈ Ran(ieε ◦ Lt|Λp

l (eε)
),

then there exists x ∈ Λp
ω(M) such that y = eεtx ∈ Λp

l (eε); that is, Ran(ieε ◦
Lt|Λp

l (eε)
) ⊆ Λp

l (eε). Conversely, if y ∈ Λp
l (eε), then there exists x ∈ Λp

ω(M) such

that y = eεx. Let t = u|t| be the polar decomposition of t, and let |t| =
∫∞
0

λ deλ
be the spectral decomposition of |t|. We put g(λ) = 1

λ
χ(ε,∞). It is clear that

g(|t|) ∈ M. Let z = eεg(|t|)u∗x. Then eεz = z,

‖z‖p,ω =
∥∥eεg(|t|)u∗x

∥∥
p,ω

≤
∥∥g(|t|)∥∥‖x‖p,ω < ∞.

Thus

z = eεg
(
|t|
)
u∗x ∈ Λp

l (eε) ⊆ Λp
ω(M).

Therefore,

ieε ◦ Lt(z) = eεteεg
(
|t|
)
u∗x = eεtg

(
|t|
)
u∗xeε

= eεueεu
∗x = eεx = y;

that is, Λp
l (eε) ⊆ Ran(ieε ◦ Lt|Λp

l (eε)
). Hence the operator ieε ◦ Lt|Λp

l (eε)
: Λp

l (eε) →
Λp

l (eε) is compact and surjective. Then the result follows directly from classical
theory (see III.1.12 in [10]).

Conversely, suppose that for any n ∈ N+ we have that Λp
l (e 1

n
) is finite-

dimensional. Set tn = e 1
n
t, where e 1

n
= e( 1

n
,∞)(|t|). Then Ran(Ltn) ⊆ Λp

l (e 1
n
).
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Since Λp
l (e 1

n
) is finite-dimensional, Ltn is a finite rank operator. Moreover,

‖Ltx− Ltnx‖p,ω =
∥∥(t− tn)x

∥∥
p,ω

=
∥∥(1− e 1

n
)tx

∥∥
p,ω

≤ 1

n
‖x‖p,ω.

Then Ltn converges to Lt uniformly, which implies that Lt is compact. �

Theorem 2.6. Let t ∈ M, and let M have no minimal projection. Then the
operator Lt : Λ

p
ω(M) → Λp

ω(M) has finite-dimensional range if and only if t = 0.

Proof. Suppose that t 6= 0 and the operator Lt : Λ
p
ω(M) → Λp

ω(M) has finite-
dimensional range. Then there exists ε0 > 0 such that τ(e(ε0,∞)(|t|)) > 0. Since
M has no minimal projection, then there exists {en}∞n=1 ⊆ P(M) with
τ(e(ε0,∞)(|t|)) > τ(en) > 0 such that enem = 0 for any m 6= n. Thus, for
each n ∈ N+, we can define the operator 0 6= tn = ten, which clearly belongs
to Ran(Lt). On the other hand, the sequence {tn} is linearly independent, and
hence dim(Ran(Lt)) = ∞, and so t = 0. The converse is trivial. �

Theorem 2.7. Let t = t∗ ∈ M, and let M have no minimal projection. Then
the operator Lt : Λ

p
ω(M) → Λp

ω(M) is compact if and only if t = 0.

Proof. Suppose that Lt is compact. According to Theorem 2.5, we obtain that
Λp

l (e 1
n
) is finite-dimensional for all n ∈ N+, where e 1

n
= e( 1

n
,∞)(|t|). Since Λ

p
l (e 1

n
) =

Ran(Le 1
n

), by Theorem 2.6, we have e 1
n
= 0, n ∈ N+. Therefore, t = 0. The

converse is trivial. �

3. Noncommutative hardy–lorentz spaces

In this paper, we will assume that D is a von Neumann subalgebra of M such
that the restriction of τ to D is still semifinite. Let Φ be the (unique) normal
faithful conditional expectation of M with respect to D which leaves τ invariant.
For a subset K of L00(M), J(K) will denote the set of all Hilbert-adjoints of
elements of K.

A w∗ closed subalgebra A of M is called a subdiagonal algebra of M with
respect to Φ (or D) if

(1) A+ J(A) is w∗ dense in M;
(2) Φ is multiplicative on A; that is, Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A;
(3) A ∩ J(A) = D.

D is then called the diagonal of A.
We say that A is a maximal subdiagonal algebra in M with respect to Φ in

the case that A is not properly contained in any other subalgebra of M which
is subdiagonal with respect to Φ. We refer to [18] and [6] for noncommutative
Hardy spaces associated with finite subdiagonal algebras. It is proved by Ji [13]
that a semifinite subdiagonal algebra A is automatically maximal.
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If K is a subset of Λp
ω(M) (resp., Lp(M)), [K]p,ω (resp., [K]p) will denote

the closed linear span of K in Λp
ω(M) (resp., Lp(M)) (with respect to the w∗

topology in the case of p = ∞).

Definition 3.1. Let M be a semifinite von Neumann algebra and let 0 < p ≤ ∞.
We define noncommutative Hardy–Lorentz spaces by Hp,ω(A) = [A∩Λp

ω(M)]p,ω
and Hp,ω

0 (A) = [A0 ∩ Λp
ω(M)]p,ω.

For 0 < p < ∞, we define

HΓp
ω(A) =

[
A ∩ Γp

ω(M)
]
Γp
ω(M)

and

HΓp
ω

0 (A) =
[
A0 ∩ Γp

ω(M)
]
Γp
ω(M)

.

Remark 3.2.

(1) Let M be a finite von Neumann algebra. Then

M = Λ∞
ω (M) ⊆ Λp

ω(M), 0 < p ≤ ∞,

and so Hp,ω(A) = [A]p,ω and Hp,ω
0 (A) = [A0]p,ω.

(2) Let M be a finite von Neumann algebra and let 1 ≤ p ≤ ∞. It follows
from [22, Section 3] that

Hp(A) = [A]p =
{
x ∈ Lp(M) : τ(xy) = 0 for all y ∈ A0

}
and

Hp
0 (A) = [A0]p =

{
x ∈ Lp(M) : τ(xy) = 0 for all y ∈ A

}
.

Subsequently, Bekjan and Xu [6, Proposition 3.3] have shown that
Hq(A) = Hp(A) ∩ Lq(M) and Hq

0(A) = Hp
0 (A) ∩ Lq(M), where 0 <

p < q ≤ ∞.
(3) Let 0 < p ≤ q ≤ ∞. Since M is a finite von Neumann algebra, then

Λq
ω(M) ⊆ Λp

ω(M).
(4) If ω ≡ 1, thenHp,ω(A) = Hp(A) = [A∩Lp(M)]p andHp,ω

0 (A) = Hp
0 (A) =

[A0 ∩ Lp(M)]p.

Proposition 3.3. Let 0 < p < ∞, and let ω ∈ Bq for some 1 ≤ q < ∞. Then
there exists some constant C > 0 such that ‖Φ(x)‖p,ω ≤ C‖x‖p,ω holds for all
x ∈ A ∩ Λp

ω(M). Consequently, Φ extends to a bounded projection from Hp
ω(A)

onto Λp
ω(D). The extension will still be denoted by Φ.

Proof. First we assume that τ(1) < ∞. Without loss of generality, we assume
that M has no minimal projections. Let N be any commutative von Neumann
subalgebra of M containing the spectral projection of |Φ(x)|. Combining the fact
that ‖Φ(x)‖r ≤ ‖x‖r, 0 < r < ∞ (see Proposition 3.1 of [4]) with N ⊆ D, we
deduce ∫ t

0

µs

(
Φ(x)

)r
ds = sup

{
τ
((
e
∣∣Φ(x)∣∣e)r); e ∈ P(M), τ(e) ≤ t

}
≤ sup

{
τ
((∣∣Φ(x)e∣∣)r); e ∈ P(D), τ(e) ≤ t

}
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= sup
{
τ
((∣∣Φ(xe)∣∣)r); e ∈ P(D), τ(e) ≤ t

}
≤ sup

{
τ
(
|xe|r

)
; e ∈ P(D), τ(e) ≤ t

}
≤

∫ t

0

µs(x)
r ds;

that is, ∫ t

0

µs

(
Φ(x)

)r
ds ≤

∫ t

0

µs(x)
r ds. (3.1)

Let r > 0 with q :=
p

r
≥ 1. By Theorem 1.7 of [2], we have∫ ∞

0

(1
t

∫ t

0

µs(x)
r ds

) p

r
ω(t) dt ≤ C

∫ ∞

0

µt(x)
pω(t) dt, (3.2)

where C > 0 is a constant. Thus∥∥Φ(x)∥∥
p,ω

≤
(∫ ∞

0

(1
t

∫ t

0

µs(x)
r ds

) p

r
ω(t) dt

) 1
p ≤ C‖x‖p,ω.

If M has minimal projections, then we replace M by M⊗L∞[0, 1] and A
by A⊗L∞[0, 1]. Then A⊗L∞[0, 1] is a finite subdiagonal subalgebra of M⊗
L∞[0, 1] with respect to Φ⊗1 (see Lemma 3.1 of [5]). By the trivial fact µt(x⊗1) =
µt(x) and the argument of above, we have ‖Φ(x)‖p,ω ≤ C‖x‖p,ω, where C > 0 is
a constant.

In the general case when τ is semifinite, we can choose an increasing family
of {ei}i∈I of τ -finite projections in D such that ei → 1 strongly, where 1 is the
identity of M (see Theorem 2.5.6 in [23]). It follows that eixei → x strongly.
Therefore, by normality of Φ, we obtain that Φ(eixei) → Φ(x). On the other
hand, by the argument of above,∥∥Φ(eixei)− Φ(ejxej)

∥∥
p,ω

≤ C‖eixei − ejxej‖p,ω, i, j ∈ I,

where C > 0 is a constant. From Proposition 2.1 we obtain ‖eixei − x‖p,ω → 0,
and hence ‖Φ(eixei)− Φ(x)‖p,ω → 0. This implies that∥∥Φ(x)∥∥

p,ω
≤ lim

i

∥∥Φ(eixei)∥∥p,ω
≤ C lim

i
‖eixei‖p,ω = C lim

i
‖x‖p,ω,

where C > 0 is a constant. �

Let e be a projection in D. We write Me = eMe,Ae = eAe,De = eDe, and let
Φe(x) be the restriction of Φ toMe. From Lemma 3.1 of [4], we have (Ae)0 = eA0e
and Ae is a subdiagonal algebra of Me with respect to Φe and with diagonal De.

Since M is semifinite, we can choose an increasing family of {ei}i∈I of τ -finite
projections in D such that ei → 1 strongly, where 1 is the identity of M (see
Theorem 2.5.6 in [23]). Throughout the family {ei}i∈I will be used to indicate
this net.

Proposition 3.4. Let 0 < p < ∞, and let e be a projection in D with τ(e) < ∞.
Then

(1) Λp
ω(Me) = eΛp

ω(M)e,
(2) Hp,ω

0 (Ae) = eHp,ω
0 (A)e,Hp,ω(Ae) = eHp,ω(A)e.
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Proof. (1) Notice that the set Me is the reduction of M by e. The trace τe
on Me is defined by τe(·) = τ(e · e). We denote the decreasing rearrangement
of x ∈ L00(Me) as µe

t (x). Let x ∈ L00(Me) ⊆ L00(M), and let N be any
von Neumann subalgebra of Me containing the spectral projections of |x|. Since
x ∈ L00(Me), we have s(|x|) ≤ e and x(1− e) = 0. According to Remark 2.3.1 of
[9], we obtain

µe
t (x) = inf

{
‖xE‖ : E ∈ P(N ), τ(e− E) ≤ t

}
and

µt(x) = inf
{
‖xE‖ : E ∈ P(N ), τ(1− E) ≤ t

}
.

If E ∈ P(N ) with τ(e−E) ≤ t, then there exists E + (1− e) such that ‖xE‖ =
‖x(E + (1− e))‖ and τ(1− (E + (1− e))) = τ(e−E) ≤ t. On the other hand, if
E ∈ P(N ) with τ(1−E) ≤ t, then we have τ(e−E) ≤ τ(1−E) ≤ t. Therefore,
µt(x) = µe

t (x), 0 < t ≤ τ(e) and µt(x) = µe
t (x) = 0, t > τ(e).

Let x ∈ Λp
ω(Me). Then there exists {xn}∞n=1 ⊆ Me such that

‖xn − x‖Λp
ω(Me) → 0, n → ∞.

By the argument above, we have xn = exne, x = exe and

µe
t (xn − x) = µt(xn − x) = 0, t > τ(e)

and

µt(x− xn) = µe
t (x− xn), 0 < t ≤ τ(e).

Therefore,

‖xn − x‖Λp
ω(M) =

(∫ ∞

0

µt(xn − x)pω(t) dt
) 1

p

=
(∫ ∞

0

µe
t (xn − x)pω(t) dt

) 1
p

= ‖xn − x‖Λp
ω(Me) → 0, n → ∞.

Hence x = exe ∈ eΛp
ω(M)e. Conversely, if x ∈ Λp

ω(M), then there exists
{xn}∞n=1 ⊆ M such that ‖xn−x‖Λp

ω(M) → 0, n → ∞. Thus ‖exne−exe‖Λp
ω(Me) →

0, n → ∞. This implies that exe ∈ Λp
ω(Me).

(2) Since Ae ∩Λp
ω(Me) = eAe∩ eΛp

ω(M)e ⊆ eHp,ω(A)e, we have eHp,ω(A)e ⊇
Hp,ω(Ae). Conversely, if x ∈ Hp,ω(A), then there exists {xn}∞n=1 ⊆ A such that
xn → x in norm in Hp,ω(A). This tells us that exne → exe in norm in Hp,ω(Ae).
Thus exe ∈ Hp,ω(Ae). The proof of the other containment is similar. �

Proposition 3.5. Let 0 < p < ∞. Then Hp,ω(A) is the ‖·‖p,ω-closure of
⋃

i∈I Aei

in Λp
ω(M), and Hp,ω

0 (A) is the ‖ · ‖p,ω-closure of
⋃

i∈I(Aei)0 in Λp
ω(M).

Proof. Given ε > 0 and x ∈ Hp,ω(A), then there exists a ∈ A∩Λp
ω(M) such that

‖x−a‖p,ω < ε. By Proposition 2.1(2), we have ‖aei−a‖p,ω → 0, ‖eia−a‖p,ω → 0;
thus, ‖eiaei − a‖p,ω → 0 and eiaei ∈ Aei . Therefore, there exists i0 such that
‖ei0aei0 − a‖p,ω < ε. It follows that ‖ei0aei0 − x‖p,ω < 2ε. We may similarly prove
the result about Hp,ω

0 (A). �
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Theorem 3.6. Let ω ∈ Bp ∩ B∗
∞, 1 < p < ∞. Then

Hp,ω(A) =
{
x ∈ Λp

ω(M) : τ(xy) = 0,∀y ∈ A0 ∩ Γq
ω̃(M)

}
,

Hp,ω
0 (A) =

{
x ∈ Λp

ω(M) : τ(xy) = 0,∀y ∈ A ∩ Γq
ω̃(M)

}
,

where ω̃(t) = tqW (t)−qω(t), t > 0 and 1
p
+ 1

q
= 1.

Proof. We only prove the case Hp,ω(A), the other case being similar. Since ω ∈
Bp ∩ B∗

∞, then Corollary 2.3 and Proposition 2.6 of [1] imply that 1 < αΛp
ω
≤

βΛp
ω
< ∞. From Proposition 3.1 of [11], we obtain

Hp,ω(eiAei) =
{
x ∈ Λp

ω(eiMei) : τ(xy) = 0, ∀y ∈ eiA0ei
}
, i ∈ I.

Let x ∈ {x ∈ Λp
ω(M) : τ(xy) = 0,∀y ∈ A0 ∩ Γq

ω̃(M)}. For any y ∈ A0 ∩ Γq
ω̃(M),

we have eiyei ∈ (Aei)0 ⊆ A0 ∩ Γq
ω̃(M), and so τ(eiyeix) = τ(eiyeixei) = 0. Thus

eixei ∈ Hp,ω(Aei) = eiH
p,ω(A)ei for all i ∈ I. By Proposition 2.1(2) and (4),

we have ‖eixei − x‖p,ω → 0 and ‖eiyei − y‖Γq
ω̃
(M) → 0. Therefore, x ∈ Hp,ω(A).

Conversely, let x ∈ Hp,ω(A), and let y ∈ A0 ∩ Γq
ω̃(M). Then there exists {xn} ⊆

A ∩ Λp
ω(M) such that xn → x in Λp

ω(M). Hence

τ(yx) = lim
n→∞

τ(yxn) = lim
n→∞

τ
(
Φ(yxn)

)
= lim

n→∞
τ
(
Φ(y)Φ(xn)

)
= 0.

This implies the desired result. �

Let A0 and A1 be two quasi-Banach spaces. Then their sum is defined by
A0 + A1 = {x0 + x1 : xk ∈ Ak, k = 0, 1} with the quasinorm

‖x‖A0+A1 = inf
{
‖x0‖A0 + ‖x1‖A1 : x = x0 + x1, xi ∈ Ai, i = 0, 1

}
.

It is easy to check that A0 + A1 is again a quasi-Banach space (and a Banach
space if A0 and A1 are). For all x ∈ A0 + A1 and for all t > 0, we let

Kt(x;A0, A1) = inf
{
‖x0‖A0 + t‖x1‖A1 : x = x0 + x1, xi ∈ Ai, i = 0, 1

}
.

Proposition 3.7. There is a constant C > 0 such that, for all x ∈ H1(A) + A
and all t > 0,

Kt

(
x;H1(A),A

)
≤ CKt

(
x;L1(M),M

)
.

Proof. By Proposition 6.1 of [4], there exists a constant C > 0 such that

Kt

(
x;H1(A),A

)
≤ Kt

(
x;H1(Aei),Aei

)
≤ CKt

(
x;L1(Mei),Mei

)
,

where C is independent of ei. On the other hand, for all ε > 0, there exist
x1 ∈ L1(M), x2 ∈ M such that x = x1 + x2 and

‖x1‖L1(M) + t‖x2‖ ≤ Kt

(
x, L1(M),M

)
+ ε.

Since eixei ∈ L1(Mei) +Mei and eix1ei ∈ L1(Mei), eix2ei ∈ Mei , then

Kt

(
x;H1(A),A

)
≤ Kt

(
x;L1(Mei),Mei

)
≤ ‖eix1ei‖L1(M) + t‖eix2ei‖.

This implies that Kt(x;H
1(A),A) ≤ Kt(x;L

1(M),M). �
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Proposition 3.8. Let ω ∈ Bp ∩ B∗
∞1 < p < ∞, and let 1 ≤ r < αΛp

ω
. Then(

Hr(A) +A
)
∩ Λp

ω(M) = Hp,ω(A),(
Hr

0(A) +A0

)
∩ Λp

ω(M) = Hp,ω
0 (A).

Proof. We only verify the first equation, the other case being similar. Let x ∈
Hp,ω(A) ⊆ Λp

ω(M). By Proposition 3.1 of [11], we have

eixei ∈ Hp,ω(Aei) = Hr(Aei) ∩ Λp
ω(Mei), i ∈ I.

Thus eixei ∈ Hr(Aei) + Aei and eixei ∈ Λp
ω(Mei). By Proposition 2.1, we have

‖x− eixei‖p,ω → 0. Since ω ∈ Bp ∩ B∗
∞, it follows from Corollary 2.3 and Propo-

sition 2.6 of [1] that 1 < αΛp
ω
≤ βΛp

ω
< ∞. Therefore, Theorem 3.7 of [8] means

that Λp
ω(M) is an interpolation space for the couple (Lr(M),M), 1 ≤ r < αΛp

ω
.

By Lemma 6.5(iii) of [4] and Proposition 3.7, there exist two constants C0, C1 > 0
such that

‖x− eixei‖Hr(A)+A ≤ C0‖x− eixei‖Lr(M)+M ≤ C0C1‖x− eixei‖p,ω → 0.

Thus x ∈ (Hr(A) +A)∩Λp
ω(M). Conversely, if x ∈ (Hr(A) +A)∩Λp

ω(M), then
Proposition 3.1 of [11] means that

eixei ∈
(
Hr(Aei) +Aei

)
∩ Λp

ω(Mei) = Hr(Aei) ∩ Λp
ω(Mei) = Hp,ω(Aei).

Therefore, eixei ∈ Hp,ω(A). It follows that x ∈ Hp,ω(A). �

Remark 3.9.

(1) Let M be a finite von Neumann algebra, and let ω ∈ Bp∩B∗
∞, 1 < p < ∞.

Then

Hp,ω(A) =
{
x ∈ Λp

ω(M) : τ(xy) = 0, ∀y ∈ A0

}
,

Hp,ω
0 (A) =

{
x ∈ Λp

ω(M) : τ(xy) = 0, ∀y ∈ A
}
.

Moreover, if ω ∈ Bp ∩ B∗
∞ and 1 ≤ r < αΛp

ω
, then

Hr(A) ∩ Λp
ω(M) = Hp,ω(A),

Hr
0(A) ∩ Λp

ω(M) = Hp,ω
0 (A).

(2) Let ω ≡ 1, 1 < p < ∞. Then

Hp(A) =
{
x ∈ Lp(M) : τ(xy) = 0,∀y ∈ A0 ∩ Lq(M)

}
,

Hp
0 (A) =

{
x ∈ Lp(M) : τ(xy) = 0,∀y ∈ A ∩ Lq(M)

}
.

Moreover, if 1 ≤ r < p, then(
Hr(A) +A

)
∩ Lp(M) = Hp(A),(

Hr
0(A) +A

)
∩ Lp(M) = Hp

0 (A).

Lemma 3.10. Let 0 < p, p0, p1 < ∞ with 1
p
= 1

p0
+ 1

p1
and ω ∈ Bmin{1,p}. Then

Λp
ω(M) = Λp0

ω (M)�Λp1
ω (M) and Λp0

ω (M)�Λp1
ω (M) is a quasi-Banach space with

the quasinorm

‖x‖0 = inf
{
‖x0‖p0,ω‖x1‖p1,ω : x = x0x1, xi ∈ Λpi

ω (M), i = 0, 1
}
,
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where Λp0
ω (M) � Λp1

ω (M = {x : x = x0x1, xi ∈ Λpi
ω (M), i = 0, 1}). Moreover,

‖ · ‖p,ω is equivalent to ‖ · ‖0.

Proof. Since pi ≥ p, it follows from Corollary 2.3 of [1] that ω ∈ Bpi , i = 0, 1.
Therefore, by Theorem 2 of [15], we have Λp

ω(M) is
p

2
-convex and Λpi

ω (M) is
pi
2
-convex, i = 0, 1. Therefore, by slightly modifying the proof of Lemma 2.1 and

Theorem 2.5 in [5], we can prove that (Λp0
ω (M)�Λp1

ω (M), ‖·‖0) is a quasi-Banach

space. For x ∈ Λp
ω(M), we write x = u|x| = u|x|

p

p0 |x|
p

p1 . Thus u|x|
p

p0 ∈ Λp0
ω (M),

|x|
p

p1 ∈ Λp1
ω (M), and ‖u|x|

p

p0 ‖p0,ω‖|x|
p

p1 ‖p1,ω ≤ ‖x‖p,ω. This implies that ‖x‖0 ≤
‖x‖p,ω and Λp

ω(M) ⊆ Λp0
ω (M) � Λp1

ω (M). Since ω ∈ Bp, then Λp
ω(M) = Γp

ω(M).
For y ∈ Λp0

ω (M) and z ∈ Λp1
ω (M), there exist two constants C0, C1 > 0 such that

‖yz‖p,ω ≤ C0

(∫ ∞

0

(1
t

∫ t

0

µs(yz) ds
)p

ω(t) dt
) 1

p

≤ C0

(∫ ∞

0

(1
t

∫ t

0

µs(y)µs(z) ds
)p

ω(t) dt
) 1

p

≤ C0C1

(∫ ∞

0

(
µt(y)µt(z)

)p
ω(t) dt

) 1
p

= C0C1

(∫ ∞

0

µt(y)
pω(t)

p

p0 µt(z)
pω(t)

p

p1 dt
) 1

p

≤ C0C1‖y‖p0,ω‖z‖p1,ω.

This completes the proof. �

Proposition 3.11. Let M be a finite von Neumann algebra, 0 < p, p0, p1 < ∞
with 1

p
= 1

p0
+ 1

p1
and ω ∈ Bmin{1,p}. Then for x ∈ Hp,ω(A) and ε > 0 there exist

x0 ∈ Hp0,ω(A) and x1 ∈ Hp1,ω(A) such that x = x0x1 and ‖x0‖p0,ω‖x1‖p1,ω ≤
‖x‖0 + ε ≤ ‖x‖p,ω + ε. Consequently,

‖x‖0 = inf
{
‖x0‖p0,ω‖x1‖p1,ω : x = x0x1, xi ∈ Hω,pi(A), i = 0, 1

}
,

and ‖ · ‖p,ω is equivalent to ‖ · ‖0.

Proof. The proof can be done similarly to Theorem 4.8 in [5] by using Lemma 3.10.
The details are omitted. �

4. The conjugation and herglotz map

Let u ∈ Re(A ∩ Λp
ω(M)). Then u = Re x for some x ∈ A ∩ Λp

ω(M). We write
a = x − 1

2
Φ(x − x∗), and so a ∈ A ∩ Λp

ω(M), u = Re a, Φ(Im a) = 0. Therefore,
there exists ũ = Im a ∈ Re(A ∩ Λp

ω(M)) such that a = u + iũ ∈ A ∩ Λp
ω(M)

and Φ(ũ) = Φ(Im a) = 0. By a similar discussion as [4], we have that such an
element of Re(A∩Λp

ω(M)) is unique. Thus we can define ũ = Im a, where a ∈ M
is the unique element of M with a = Re a and Φ(Im a) = 0. It is obvious that
∼ : x 7→ x̃ is a real linear. We shall call ũ the conjugate of u.

Lemma 4.1. Let e ∈ D, and let ω ∈ B∗
∞∩Bp, 1 < p < ∞. If u ∈ Re(A∩Λp

ω(M)),
then ẽue = eũe.
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Proof. Let u ∈ Re(A ∩ Λp
ω(M)). For u = Re(x), x ∈ A ∩ Λp

ω(M), we have
eue = Re(exe), exe ∈ Ae∩Λp

ω(Me). Then eue ∈ Re(Ae∩Λp
ω(Me)). On the other

hand, for a = x− 1
2
Φ(x− x∗),

eae = exe− e
1

2
Φ(x− x∗)e = exe− 1

2
Φ(exe− ex∗e), Φ

(
Im(eae)

)
= 0.

Thus ẽue = Im(eae) = e Im(a)e = eũe. �

Proposition 4.2. Let 1 < p, q < ∞ with 1
q
+ 1

p
= 1 and ω ∈ Bp ∩ B∗

∞. Then[
Re

(
A ∩ Λp

ω(M)
)]

p,ω
=

[
Msa ∩ Λp

ω(M)
]
p,ω

= Λp
ω(M)sa.

Moreover,[
Re

(
A ∩ Γq

ω̃(M)
)]

Γq
ω̃
(M)

=
[
Msa ∩ Γq

ω̃(M)
]
Γq
ω̃
(M)

= Γq
ω̃(M)sa,

where ω̃(t) = tqW (t)−qω(t), t > 0.

Proof. First we assume that τ is finite. The second equality is apparent, and hence
we concern ourselves only with the first. Since Re(A∩Λp

ω(M)) ⊆ Msa ∩Λp
ω(M),

we have [
Re

(
A ∩ Λp

ω(M)
)]

p,ω
⊆

[
Msa ∩ Λp

ω(M)
]
p,ω

.

Similarly, [
Re

(
A ∩ Γq

ω̃(M)
)]

Γq
ω̃
(M)

⊆
[
Msa ∩ Γq

ω̃(M)
]
Γq
ω̃
(M)

.

Conversely, suppose that x ∈ Msa. (a) From Proposition 5.3 of [18], we obtain
x ∈ [Re(A)]p, 1 ≤ p < ∞. Since 1 < p < ∞ and ω ∈ B∗

∞ ∩ Bp, then Corollary 2.3
and Proposition 2.6 of [1] imply that 1 < αΛp

ω
≤ βΛp

ω
< ∞, and so there exist

r1, r2 > 0 with 1 < r1 < αΛp
ω
≤ βΛp

ω
< r2 < ∞. It follows from Theorem 3.7 of

[8] that Λp
ω(M) is an interpolation space for the couple (Lr1(M), Lr2(M)). Thus

Lr1(M) ⊇ Λp
ω(M) ⊇ Lr2(M). This implies that x ∈ [Re(A)]r2 ⊆ [Re(A)]p,ω.

(b) By (a) and Proposition 2.1, we have Λp
ω(M) ⊆ L1(M) and Λp

ω(M)∗ =
Λp

ω(M)× = Γq
ω̃(M). A similar discussion to the proof of Proposition 5.3 in [18]

shows that x ∈ [Re(A)]Γq
ω̃
(M).

Now let τ be semifinite. Since τ(ei) < ∞, we have

[ReAei ]p,ω = [Msa
ei
]p,ω = Λp

ω(Mei)
sa = eiΛ

p
ω(M)saei

and

[ReAei ]Γq
ω̃
(M) = [Msa

ei
]Γq

ω̃
(M) = Γq

ω̃(Mei)
sa = eiΓ

q
ω̃(M)saei.

This implies the desired result. �

We say a Lorentz space Λr
ω has an order continuous norm if for every net

(fi) in Λr
ω such that fi ↓ 0 we have ‖fi‖r,ω ↓ 0. Let 0 < r < ∞. It follows

from Proposition 2.3.3 and Theorem 2.3.4 of [7] that the norm on Λr
ω is order

continuous. Thus Theorem 3.2 of [8] implies that Λr
ω is an interpolation space for

the couple (Lp, Lq), whence 0 < p < αΛr
ω
≤ βΛr

ω
< q ≤ ∞, and so

Lp(M) ∩ Lq(M) ↪→ Λr
ω(M) ↪→ Lq(M) + Lp(M),
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where “↪→” denotes a continuous embedding. If in addition p ≥ 1, then, by
Theorem 3.2 and Theorem 3.7 of [8], we have that Λr

ω(M) is an interpolation
space for the couple (Lp(M), Lq(M)).

Let 1 < p < ∞, and let ω ∈ Bp ∩ B∗
∞. From Corollary 2.3 and Proposition 2.6

of [1], we obtain 1 < αΛp
ω
≤ βΛp

ω
< ∞, and so there exist r1, r2 > 0 such that

1 < r1 < αΛp
ω
≤ βΛp

ω
< r2 < ∞.

According to Theorem 3.2 and Theorem 3.7 of [8], we obtain that Λp
ω(M) is an

interpolation space for the couple (Lr1(M), Lr2(M)), and so Λp
ω(M) ⊆ Lr1(M)+

Lr2(M). Then, by Lemma 4.3 of [4], ∼ : Λp
ω(M)sa → Λp

ω(M)sa is well defined.
Now consider the standard complexification ∼ of ∼. Since ∼ is bounded on
Lri(M), i = 1, 2 (cf. [4]), we can conclude that ∼ : Λp

ω(M) → Λp
ω(M) is well

defined, and it is a bounded linear operator.
By restriction we get that ∼ : Λp

ω(M)sa → Λp
ω(M)sa is bounded. We define the

Herglotz map H : Re(A) ∩ Λp
ω(M) → A ∩ Λp

ω(M) by H(x) = x + ix̃. It is clear
that H is a bounded real linear operator. From the above discussion, we obtain
the following result.

Theorem 4.3. Let 1 < p < ∞, and let ω ∈ B∗
∞ ∩ Bp. The real linear maps

∼ : Re
(
A ∩ Λp

ω(M)
)
→ Re

(
A ∩ Λp

ω(M)
)
,

H : Re
(
A ∩ Λp

ω(M)
)
→ A∩ Λp

ω(M)

extend to real linear maps

∼ : Λp
ω(M)sa → Λp

ω(M)sa, H : Λp
ω(M)sa → Hp,ω(A).

If x ∈ Λp
ω(M)sa, then H(x) = x + ix̃ ∈ Hp,ω(A) and Φ(x̃) = 0. Both ∼ and H

are bounded.

Corollary 4.4. Let 1 < p < ∞, and let ω ∈ B∗
∞ ∩ Bp. Then

ReHp,ω(A) =
[
Re

(
A ∩ Λp

ω(M)
)]

p,ω
= Λp

ω(M)sa.

Proof. The second equality has already been established. Let x ∈ Hp,ω(A). Take
{xn} ⊆ A∩Λp

ω(M) such that ‖xn−x‖p,ω → 0, n → ∞. Then ‖Rexn−Rex‖p,ω →
0, n → ∞. Thus ReHp,ω(A) ⊆ [Re(A ∩ Λp

ω(M))]p,ω. Conversely, we only need to
show that ReHp,ω(A) is closed. Let {xn} ⊆ Hp,ω(A) with ‖Rexn − y‖p,ω → 0,
n → ∞. By continuity of adjunction, we have y ∈ Λp

ω(M)sa. From Theorem 4.3,
we see that ‖H(Rexn) −H(y)‖p,ω → 0, n → ∞ and H(Rexn), H(y) ∈ Hp,ω(A).
This implies that y = Re(y + iỹ) = ReH(y) ∈ ReHp,ω(A). �

Proposition 4.5. Let x ∈ Hp
ω(M), and let ω ∈ B∗

∞ ∩ Bp, 1 < p < ∞. Then

(1) R̃ex = (1− Φ)(Imx),

(2) Ĩmx = −(1− Φ)(Rex),

(3) x̃ = −i(1− Φ)(x),

(4) ˜̃x = −(1− Φ)(x),

(5) x̃∗ = x̃
∗
= i(1− Φ)(x∗).
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Proof. The proof is similar to the proof of Lemma 4.4 in [4]. �

Proposition 4.6. Let ω ∈ B∗
∞ ∩ Bp, and let 1 < q, p < ∞ with 1

p
+ 1

q
= 1. Then

τ(x̃y) = −τ(xỹ ), x ∈ Λp
ω(M), y ∈ Γq

ω̃(M),

where ω̃(t) = tqW (t)−qω(t), t > 0.

Proof. Let x, y ∈ Re(A). Since eixei, eiyei ∈ Re(Aei), it follows from Lemma 5.1
of [18] and Lemma 4.1 that

τ(eixeiỹ ) = τ(eixeiẽiyei) = −τ(ẽixeieiyei) = −τ(x̃eiyei) (4.1)

for all i ∈ I. Note that [ReAei ]p,ω = ReHp,ω(Aei) and [ReAei ]Γp
ω̃
= ReHΓp

ω̃(Aei).

It is clear that eixeiyei ∈ L1(Mei) for eixei ∈ Λp
ω(Mei), eiyei ∈ Γq

ω̃(Mei). From
the continuity of ∼ and the L1(Mei)-continuity of τ , we infer that the equation
(4.1) holds for x ∈ ReHp,ω(A), y ∈ ReHΓq

ω̃(A). Then the result now follows by
breaking x and y into their real and imaginary parts and applying the result
already established in the obvious manner on the four pairwise products; that is,
τ(eixeiỹ ) = −τ(x̃eiyei) holds for x ∈ Λp

ω(M), y ∈ Γq
ω̃(M). Take limits to obtain

the desired result. �

Using the same method of Theorem 6.2 in [18], we obtain the following result.

Theorem 4.7. Let 1 < p < ∞, ω ∈ B∗
∞ ∩ Bp. Then

Λp
ω(M) = Hp,ω

0 (A)⊕ Λp
ω(D)⊕ J

(
Hp,ω

0 (A)
)
.

The relevant projections are x 7→ 1
2
[x+ix̃−Φ(x)]; x 7→ Φ(x); x 7→ 1

2
[x−ix̃−Φ(x)].

Proposition 4.8. Let 1 < p < ∞, let 1
p
+ 1

q
= 1, and let ω ∈ B∗

∞ ∩ Bp. If

ω̃(t) = tqW (t)−qω(t), t > 0, then

(1) the real linear maps

∼ : Re
(
A ∩ Γq

ω̃(M)
)
→ Re

(
A ∩ Γq

ω̃(M)
)
,

H : Re
(
A ∩ Γq

ω̃(M)
)
→ A∩ Γq

ω̃(M)

extend to real linear maps

∼ : Γq
ω̃(M)sa → Γq

ω̃(M)sa, H : Γq
ω̃(M)sa → HΓq

ω̃(A).

If x ∈ Γq
ω̃(M)sa, then H(x) = x + ix̃ ∈ HΓq

ω̃(A) and Φ(x̃) = 0. Both ∼
and H are bounded.

(2) Γq
ω̃(M) = H

Γq
ω̃

0 ⊕ Γq
ω̃(D) ⊕ J(H

Γq
ω̃

0 ). The relevant projections are x 7→
1
2
[x+ ix̃− Φ(x)]; x 7→ Φ(x); x 7→ 1

2
[x− ix̃− Φ(x)].

Proof. Let q > 1, and let 1
p
+ 1

q
= 1. The fact Λp

ω(M)∗ = Γq
ω̃(M) (Proposi-

tion 2.1) and Proposition 4.6 imply that the adjoint of ∼ : Λp
ω(M) → Λp

ω(M) is
−∼ : Γq

ω̃(M) → Γq
ω̃(M). Therefore, (1) follows immediately from Theorem 4.3.

A similar discussion to the proof of Theorem 4.7 shows that

Γq
ω̃(M) = H

Γq
ω̃

0 ⊕ Γq
ω̃(D)⊕ J(H

Γq
ω̃

0 ). �
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Corollary 4.9. Let 1 < p < ∞, let 1
p
+ 1

q
= 1, and let ω ∈ B∗

∞ ∩ Bp. Then

Hp,ω(A)∗ = HΓq
ω̃(M)

with equivalent quasinorms, where ω̃(t) = tqW (t)−qω(t), t > 0.

Proof. Proposition 4.8 shows that Γq
ω̃(M)/H

Γq
ω̃

0 (A) = J(HΓq
ω̃(A)) as vector spaces.

By Theorem 4.7, we deduce that H
Γq
ω̃

0 (A) is the annihilator of Hp,ω(A) in Γq
ω̃(M).

This implies that Hp,ω(A)∗ = HΓq
ω̃(M) with equivalent quasinorms. �

5. Interpolation

Let us recall the definitions of the Kt functionals which are fundamental in
the real interpolation method. Let A0, A1 be a compatible couple of Banach (or
quasi-Banach) spaces. This just means that A0, A1 are continuously included into
a larger topological vector space so that we can consider unambiguously the sets
A0 + A1 and A0 ∩ A1. For all x ∈ A0 + A1 and for all t > 0, we let

Kt(x;A0, A1) = inf
{
‖x0‖A0 + t‖x1‖A1 : x = x0 + x1, xi ∈ Ai, i = 0, 1

}
.

Recall that the real interpolation space (A0, A1)θ,p is defined as the space of all
x ∈ A0 + A1 such that ‖x‖θ,p < ∞, where

‖x‖θ,p =
(∫ ∞

0

(
t−θKt(x,A0, A1)

)pdt
t

) 1
p
.

Let Ψω,p(f) = (
∫∞
0

t−p|f(t)|pω(t) dt)
1
p , 0 < p < ∞. The real interpolation space

(A0, A1)Ψω,p is defined as the space of all x ∈ A0 + A1 such that Ψω,p(Kt(x,A0,
A1)) < ∞. Let A0 = L1(M), A1 = M. By Corollary 2.3 of [21] (or the discussion
following Theorem 4.4 of [9]), we have

Ψω,p

(
Kt

(
x;L1(M),M

))
=

(∫ ∞

0

t−pKt

(
x;L1(M),M

)p
ω(t) dt

) 1
p

=
(∫ ∞

0

(1
t

∫ t

0

µs(x) ds
)p

ω(t) dt
) 1

p
= ‖x‖Γp

ω(M).

Therefore, Γp
ω(M) = (L1(M),M)Ψω,p .

Proposition 5.1. Let 0 < p < ∞, let ω be a weighted function, and let x ∈
L0(M). Then there exists a constant C > 0 such that

Kt

(
µ(x); Λp

ω,Λ
∞
ω

)
≤ Kt

(
x; Λp

ω(M),M
)
≤ CKt

(
µ(x); Λp

ω,Λ
∞
ω

)
.

Proof. For x ∈ Λp
ω(M) +M, we write x = x0 + x1, where x0 ∈ Λp

ω(M), x1 ∈ M.
It follows that µt(x) ≤ µt−ε(x0)+µε(x1). Letting ε → 0, we have µt(x) ≤ µt(x0)+
‖µt(x1)‖Λ∞

ω
, t > 0. Thus

Kt

(
µ(x); Λp

ω,Λ
∞
ω

)
≤

∥∥µt(x0)
∥∥
Λp
ω
+ t

∥∥µt(x1)
∥∥
Λ∞
ω

= ‖x0‖Λp
ω(M) + t‖x1‖∞,

and so

Kt

(
x; Λp

ω(M),M
)
≥ Kt

(
µ(x); Λp

ω,Λ
∞
ω

)
.
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Conversely, if 0 < x ∈ L00(M) and t > 0, then we take a = (µ(x))∗ω(t
p). We write

x0 = (x− a)e(a,∞)(|x|) and x1 = x− x0 = xe[0,a](|x|) + ae(a,∞)(|x|). Therefore,

µ(x0)
∗
ω(s) =

(
µ(x)∗ω(s)− a

)
χ(0,tp)(s)

and µ(x1) ≤ a. Since t → µt(x) is decreasing, we obtain that∫ tp

0

ap ds ≤
∫ tp

0

(
µ(x)

)∗
ω
(s)p ds.

Hence there exist two constants C0, C1 > 0 such that

Kt

(
x; Λp

ω(M),M
)
≤ ‖x0‖Λp

ω(M) + t‖x1‖∞
≤

∥∥µ(x0)
∗
ω

∥∥
p
+ ta

=
(∫ tp

0

(
µ(x)∗ω(s)− a

)p
ds
) 1

p
+
(∫ tp

0

ap ds
) 1

p

≤ C0

(∫ tp

0

(
µ(x)∗ω(s)

)p
ds
) 1

p

≤ C0C1Kt

(
µ(x); Λp

ω,Λ
∞
ω

)
. �

Corollary 5.2. Let 0 < θ < 1, let 0 < q ≤ ∞, and let 1
r
= 1−θ

p
. Then(

Λp
ω(M),M

)
θ,q

= Λr,q
ω (M).

Proof. It follows immediately from Theorem 2.6.2 and Theorem 2.6.5 of [7] and
Proposition 5.1. �

Proposition 5.3. Let 0 < p0 < p < p1 < ∞, let ω ∈ Bp0, and let 1
p
= 1−θ

p0
+ θ

p1
.

Then((
L1(M),M

)
Ψω,p0

,
(
L1(M),M

)
Ψω,p1

)
θ,p

=
(
Λp0

ω (M),Λp1
ω (M)

)
θ,p

= Λp
ω(M) =

(
L1(M),M

)
Ψω,p

.

Proof. By Corollary 2.3 of [1] and ω ∈ Bp0 , we have ω ∈ Bp1 and ω ∈ Bp. Thus
Γpi
ω (M) = Λpi

ω (M), i = 0, 1, and Γp
ω(M) = Λp

ω(M). Therefore,(
L1(M),M

)
Ψω,pi

= Λpi
ω (M), i = 0, 1.

Then the result follows from Theorem 2.6.5 of [7] and Proposition 5.1. �

Proposition 5.4. Let 0 < p0 < p1 < ∞, and let ω ∈ Bp0. There is a constant
C > 0 such that, for all x ∈ Hp0,ω(A) +Hp1,ω(A) and all t > 0,

Kt

(
x;Hp0,ω(A), Hp1,ω(A)

)
≤ CKt

(
x; Λp0

ω (M),Λp1
ω (M)

)
.

Proof. By Proposition 3.7 and Proposition 3.8, we have(
H1(A),A

)
Ψω,pi

= Hpi,ω(A), i = 0, 1.

From the proof of Proposition 5.3, we obtain(
L1(M),M

)
Ψω,pi

= Λpi
ω (M), i = 0, 1.

Then the result follows from Theorem 2.2 of [12]. �
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Proposition 5.5. Let 0 < p0 < p < p1 < ∞, and let ω ∈ Bp0. Then, for
0 < θ < 1, 1

p
= θ

p0
+ 1−θ

p1
, we have(
Hp0,ω(A), Hp1,ω(A)

)
θ,p

= Hp,ω(A).

Proof. It follows immediately from Proposition 5.4 and Proposition 3.8. �

6. Toeplitz operators

Let ω ∈ B∗
∞ ∩ Bp, 1 < p < ∞. For t ∈ M, the (left) Toeplitz operator with

symbol t is defined as

Tt : H
p,ω(A) → Hp,ω(A) : h → P (th),

where P is the projection from Λp
ω(M) onto Hp,ω(A). Then Tt(h) = (P ◦ Lt)(h),

h ∈ Hp,ω(A). By Theorem 4.7, we obtain that P is bounded. This implies that
Tt is bounded. Similarly, the (left) Toeplitz operator with symbol t on HΓq

ω̃(A) is
defined as

Tt : H
Γq
ω̃(A) → HΓq

ω̃(A) : h → P1(th),

where P1 is the projection from Γq
ω̃(M) onto HΓq

ω̃(A) and

ω̃(t) = tqW (t)−qω(t), t > 0.

From Proposition 4.8, we get that the projection P1 is bounded. Thus Tt is
bounded. Our basic references for Toeplitz operators on H2(A) in this context
are [19] and [17].

Proposition 6.1. Let ω ∈ B∗
∞ ∩ Bp, and let 1 < p < ∞, 1

p
+ 1

q
= 1. Then

(1) P 2 = P and P ≥ 0;
(2) if x ∈ Λp

ω(M), y ∈ Γq
ω̃(M), then (Px, y) = (x, P1y), where (x, y) := τ(xy∗)

is the duality between Λp
ω(M) and Γq

ω̃(M).

Proof. (1) Let x ∈ Λp
ω(M). It follows from Theorem 4.3 that there exist x1 ∈

Hp,ω(A), x2 ∈ J(Hp,ω
0 (A)) such that x = x1 + x2. Then (Px, x) = (x1, x1) +

(x1, x2) = τ(x1x
∗
1) ≥ 0; that is, P ≥ 0. P 2 = P is clear.

(2) Let x ∈ Λp
ω(M), y ∈ Γq

ω̃(M). By Theorem 4.3, there exist

x1 ∈ Hp,ω(A), x2 ∈ J
(
Hp,ω

0 (A)
)
, y1 ∈ HΓq

ω̃(A), y2 ∈ J
(
H

Γq
ω̃

0 (A)
)

such that x = x1 + x2, y = y1 + y2. For x2 ∈ J(Hp,ω
0 (A)) and y1 ∈ HΓq

ω̃(A), it is
clear that there exist z2 ∈ Hp,ω

0 (A) and {y1n} ⊆ A ∩ Γq
ω̃(M) such that x2 = z∗2

and y1n → y1 in HΓq
ω̃(A). Thus, by Theorem 3.6, we have

(x2, y1n) = (z∗2 , y1n) = (y1n, z∗2) = τ(y1nz2) = 0.

This implies that (x2, y1) = 0. Similarly, (x1, y2) = 0. Therefore, we obtain

(Px, y) = (x1, y1 + y2) = (x1, y1) + (x1, y2) = (x1, y1)

and

(x, P1y) = (x1 + x2, y1) = (x1, y1) + (x2, y1) = (x1, y1);

that is, (Px, y) = (x, P1y). �
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Remark 6.2. Let ω ∈ B∗
∞ ∩ Bp, and let 1 < p < ∞.

(1) Given t ∈ M, it is clear that

‖Ttx‖p,ω =
∥∥P (tx)

∥∥
p,ω

≤ ‖P‖‖t‖‖x‖p,ω, x ∈ Hp,ω(A).

(2) Given t ∈ M, then T ∗
t = Tt∗ . Indeed, let ω̃(t) = tqW (t)−qω(t), let t > 0,

and let 1
p
+ 1

q
= 1. For x ∈ Hp,ω(A), y ∈ HΓq

ω̃(A), by Proposition 6.1, we

have

(Ttx, y) =
(
P (tx), y

)
= (tx, P1y) = (tx, y).

According to Proposition 6.1 and the fact P (x) = x, we obtain

(tx, y) = τ(txy∗) = τ(xy∗t) = (x, t∗y)

=
(
P (x), t∗y

)
=

(
x, P1(t

∗y)
)
= (x, Tt∗y),

which implies that (Tt)
∗ = Tt∗ .

(3) If s, t ∈ M and t ∈ A or s∗ ∈ A, then we have TsTt = Tst. Indeed, let
x ∈ Hp,ω(A), y ∈ HΓq

ω̃(A). Then

(TsTtx, y) = (PLsPLtx, y) =
(
PLtx, (Ls)

∗P1y
)

=
(
P (tx), Ls∗y

)
=

(
P (tx), s∗y

)
.

If t ∈ A, then(
P (tx), s∗y

)
= (tx, s∗y) = (stx, y) = (Tstx, y).

On the other hand, if s∗ ∈ A, then(
P (tx), s∗y

)
=

(
tx, P1(s

∗y)
)
= (tx, s∗y) = (Tstx, y).

In either case we have (TsTtx, y) = (Tstx, y), as required.

Lemma 6.3. Let M be a finite von Neumann algebra. Then M−1 := {x ∈ M :
x−1 ∈ M} is dense in Λp

ω(M), 0 < p ≤ ∞.

Proof. It is clear that Λp
ω(M) = [M]p,ω. We only need to show that M−1 is

dense in M under the natural norm on Λp
ω(M). For every x ∈ M and ε > 0,

let x = u|x| be the polar decomposition of x. Here u is a partial isometry that
can be extended to a unitary in the finite von Neumann algebra M (see [25], V
Proposition 1.38). We will consistently write u for this extension. Put

f(t) =

{
t, if t > ε

‖1‖p,ω ,
ε

‖1‖p,ω , if t ≤ ε
‖1‖p,ω ,

g(t) =

{
1
t
, if t > ε

‖1‖p,ω ,
‖1‖p,ω

ε
, if t ≤ ε

‖1‖p,ω ,

and

h(t) =

{
0, if t > ε

‖1‖p,ω ,
ε

‖1‖p,ω − t, if t ≤ ε
‖1‖p,ω .
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Set y = uf(|x|). Then y−1 = g(|x|)u∗. This implies that y ∈ M−1. By the Borel
function calculus, we have 0 ≤ h(|x|) ≤ ε

‖1‖p,ω , and so ‖h(|x|)‖p,ω ≤ ε. Thus

‖x− y‖pp,ω =
∥∥u|x| − uf

(
|x|

)∥∥p

p,ω

=

∫ τ(1)

0

µt

(∣∣u|x| − uf
(
|x|

)∣∣)pω(t) dt
=

∫ τ(1)

0

µt

(∣∣|x| − f
(
|x|

)∣∣)pω(t) dt
=

∥∥h(|x|)∥∥p

p,ω
≤ ε. �

For x ∈ B(Λp
ω(M)), we will denote the spectral radius and spectrum of the

operator x by r(x) and σ(x), respectively.

Theorem 6.4 (Hartman–Wintner spectral inclusion). Let ω ∈ B∗
∞ ∩ Bp, 1 <

p < ∞. If M is a semifinite von Neumann algebra and t ∈ M, then σ(t) =
σ(Lt) ⊆ σ(Tt), and r(t) = r(Lt) ≤ r(Tt).

Proof. Note that σ(Lt) ⊆ σ(Tt) is equivalent to ρ(Tt) ⊆ ρ(Lt). Since Lt − λ1 =
Lt−λ1, we have Tt − λ1 = Tt−λ1. To prove the second inclusion, we only need to
show that if Tt is bounded below, then so is Lt. Suppose that there exists some
constant C > 0 such that ‖Ttx‖p,ω ≥ C‖x‖p,ω for all x ∈ Hp,ω(A). Let ε > 0, and
let 0 6= x ∈ Λp

ω(M). We write xi = eixei ∈ Λp
ω(Mei). Let P be the projection

from Λp
ω(M) onto Hp,ω(A) and δ = ε

C
‖P‖C1

+‖t‖
, where the constant C1 is taken

from the triangle inequality in Lorentz spaces Λp
ω. By Lemma 6.3, there exists

yi ∈ M−1
ei

such that ‖xi − yi‖p,ω ≤ δ
‖P‖C1

. Applying Proposition 1.2 of [20] to yi,

we can find a unitary ui ∈ Mei , hi ∈ Aei such that yi = hiui. Moreover,

µ(yi) = µ(y∗i yi)
1
2 = µ(yiy

∗
i )

1
2 = µ(hiuiu

∗
ih

∗
i )

1
2 = µ(hih

∗
i )

1
2 = µ(hi),

and so

C‖yi‖p,ω = C‖hi‖p,ω ≤ ‖Tthi‖p,ω
≤ ‖P‖‖thi‖p,ω = ‖P‖‖thiui‖p,ω = ‖P‖‖tyi‖p,ω.

Thus

C1‖Ltxi‖p,ω = C1‖txi‖p,ω ≥ ‖tyi‖p,ω − C1

∥∥t(xi − yi)
∥∥
p,ω

≥ C

‖P‖
‖yi‖p,ω − ‖t‖δ

≥ C

‖P‖C1

(
‖xi‖p,ω − C1‖xi − yi‖p,ω

)
− ‖t‖δ

≥ C

‖P‖C1

(
‖xi‖p,ω − δ

)
− ‖t‖δ

=
C

‖P‖C1

‖xi‖p,ω − ε,
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which implies that ‖Ltxi‖p,ω ≥ C

‖P‖C2
1

‖xi‖p,ω. Therefore,

C1‖Ltx‖p,ω ≥ ‖Ltxi‖p,ω − C1‖P‖‖t‖‖xi − x‖p,ω

≥ C

‖P‖C2
1

‖xi‖p,ω − C1‖P‖‖t‖‖xi − x‖p,ω

≥ C

‖P‖C3
1

(
‖x‖p,ω − C1‖xi − x‖p,ω

)
− C1‖P‖‖t‖‖xi − x‖p,ω

=
C

‖P‖C3
1

‖x‖p,ω −
( C

‖P‖C2
1

+ C1‖P‖‖t‖
)
‖xi − x‖p,ω.

By Proposition 2.1, we have ‖xi − x‖p,ω → 0. Therefore, ‖Ltx‖p,ω ≥ C

‖P‖C4
1

‖x‖p,ω.
Hence, if Tt is invertible, then Lt is invertible; that is, σ(Lt) ⊆ σ(Tt). Similarly,
it follows from the fact ‖t‖ = ‖Lt‖ that t ∈ M−1 if and only if Lt ∈ L−1. This
implies that λ ∈ ρ(t) if and only if Lt−λt is invertible, and hence ρ(t) = ρ(Lt).
Then the first equality holds. �
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