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Abstract. In this paper, we describe the powers of maximal ideals in the
measure algebra of some locally compact Abelian groups in terms of the deriva-
tives of the Fourier–Laplace transform of compactly supported measures. We
show that if the locally compact Abelian group has sufficiently many real char-
acters, then all derivatives of the Fourier–Laplace transform of a measure at
some point of its spectrum completely characterize the measure. We also show
that the derivatives of the Fourier–Laplace transform of a measure can be used
to describe the powers of the maximal ideals corresponding to the points of
the spectrum of the measure on discrete Abelian groups with finite torsion-free
rank.

1. Introduction

Spectral analysis and spectral synthesis deal with the description of different
varieties. One of the fundamental theorems about spectral synthesis in this field
is due to Laurent Schwartz. Recently, several new results on spectral analysis and
spectral synthesis have been found on discrete Abelian groups (see [6], [7], [5]) and
also in the nondiscrete case (see, e.g., [3], [8]–[10]). In [2], the author formulated
problems and proved results concerning spectral synthesis on locally compact
Abelian groups. Recently, we introduced a method of studying spectral synthesis
problems using annihilators of varieties on locally compact Abelian groups (see
[11]). Based on these investigations, it has turned out that the powers of maximal
ideals in the group algebra of a discrete Abelian group, or, more generally, in the
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measure algebra of a locally compact Abelian group, play a vital role in the basic
problems of spectral analysis and spectral synthesis. In this paper we present a
description of these powers of maximal ideals in terms of the derivatives of the
Fourier–Laplace transforms of the measures in the measure algebra. We shall use
the terminology and results in [11]. Concerning harmonic analysis on groups and
Fourier algebras, see [1].

In this paper C denotes the set of complex numbers. For a locally compact
Abelian group G we denote by C(G) the locally convex topological vector space
of all continuous complex-valued functions defined on G, equipped with the point-
wise operations and with the topology of uniform convergence on compact sets.
The elements of C(G) will be simply called functions. For each function f we
define f̌ by f̌(x) = f(−x), whenever x is in G. By a ring we always mean a
commutative ring with unit.

It is known that the dual of C(G) can be identified with the space Mc(G) of
all compactly supported complex Borel measures on G which is equipped with
the pointwise operations and with the weak*-topology. In what follows we call
the elements of Mc(G) simply measures. The pairing between C(G) and Mc(G)
is given by the formula

〈µ, f〉 =
∫

f dµ.

Convolution on Mc(G) is defined by

µ ∗ ν(f) =
∫

f(x+ y) dµ(x) dν(y)

for arbitrary measures µ, ν and function f . Convolution converts the linear space
Mc(G) into a commutative topological algebra with unit δ0, 0 being the zero
in G.

We also define convolution of measures with arbitrary functions by the similar
formula

f ∗ µ(x) =
∫

f(x− y) dµ(y)

for each measure µ, function f , and x in G. It is easy to see that, equipped with
the action f 7→ f ∗ µ, the space C(G) is a topological module over Mc(G). For
each subset H in C(G), the annihilator of H in Mc(G) is the set

AnnH = {µ : f ∗ µ = 0 for each f ∈ H}.
We also define the dual concept: for every subset K in Mc(G), the annihilator
of K in C(G) is the set

AnnK = {f : f ∗ µ = 0 for each µ ∈ K}.
Translation with the element y in G is the operator mapping the function f

onto its translate τyf defined by τyf(x) = f(x + y) for each x in G. Clearly, we
have τyf = f ∗ δ−y. A subset of C(G) is called translation invariant if it contains
all translates of its elements. A closed linear subspace of C(G) is called a variety
on G if it is translation invariant. Obviously, varieties are exactly the same as
closed submodules in C(G). For each function f the smallest variety containing f
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is called the variety generated by f or, simply, the variety of f , and it is denoted
by τ(f), which is obviously the intersection of all varieties including f .

Theorem 1.1. For each variety V in C(G) its annihilator AnnV is a closed ideal
in Mc(G). Similarly, for each ideal I in Mc(G) its annihilator Ann I is a variety
in C(G).

Proof. Clearly, AnnV is a closed subspace in Mc(G). For each µ in AnnV , ν in
Mc(G), and f in V we have

(ν ∗ µ) ∗ f(x) =
∫

f(x− y) d(ν ∗ µ)(y)

=

∫ ∫
f(x− u− v) dµ(v) dν(u) =

∫
(f ∗ µ)(x− u) dν(u) = 0,

as f ∗µ = 0. This means ν ∗µ is in AnnV , and AnnV is a closed ideal in Mc(G).
For the dual statement it is clear that Ann I is a closed subspace in C(G).

Moreover, if f is in Ann I, y is in G, and µ is in I, then δ−y ∗µ is in I. Hence, we
have

τyf ∗ µ = (f ∗ δ−y) ∗ µ = f ∗ (δ−y ∗ µ) = 0,

and we infer that τyf is in Ann I; and hence Ann I is a variety. �

Theorem 1.2. For each variety V ⊆ W in C(G) we have AnnV ⊇ AnnW
and for each ideal I ⊆ J in Mc(G) we have Ann I ⊇ Ann J . In addition, we
have Ann(AnnV ) = V and Ann(Ann I) ⊇ I. In particular, V 6= W implies
AnnV 6= AnnW .

Proof. Let V ⊆ W be varieties in C(G), and let I ⊆ J be ideals in Mc(G). For
every µ in AnnW and for each f in V we have that f is in W ; hence f ∗ µ = 0.
This proves that µ is in AnnV , and AnnV ⊇ AnnW . Similarly, if f is in Ann J
and µ is in I, then µ is in J ; hence, f ∗ µ = 0, which proves that f is in Ann I,
and Ann I ⊇ Ann J .

Assume that f is in V and µ is in AnnV ; then, by definition, f ∗ µ = 0, and
hence f is in Ann(AnnV ), which proves Ann(AnnV ) ⊇ V . Similarly, we have
Ann(Ann I) ⊇ I.

Suppose now that Ann(AnnV ) ( V . Consequently, there is a function f in
Ann(AnnV ) such that f is not in V . By the Hahn–Banach theorem, there is a λ
in Mc(G) such that λ̌(f) 6= 0, and λ̌ vanishes on V . This means

(ϕ ∗ λ)(0) =
∫

ϕ(−y) dλ(y) = λ(ϕ̌) = λ̌(ϕ) = 0,

whenever ϕ is in V . As V is a variety, this implies, by the previous theorem, that
λ is in AnnV ; in particular, f ∗λ = 0, a contradiction. This proves Ann(AnnV ) =
V , which also implies AnnV 6= AnnW , whenever V 6= W . �

We note that for ideals in Mc(G) the equality Ann(Ann I) = I does not hold
in general (see [7]). Nevertheless, the following theorem holds true (see [7]).

Theorem 1.3. Let G be a discrete Abelian group. Then Ann(Ann I) = I holds
for every ideal I in Mc(G).
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To understand the nondiscrete case, we need the following lemma.

Lemma 1.4. Let G be a locally compact group, and let I be an ideal in Mc(G).
Then Ann(Ann(Ann I)) = Ann I.

Proof. Let V = Ann I, and then V is a variety on G; hence, by Theorem 1.2, we
have Ann(AnnV ) = V . It follows Ann I = V = Ann(AnnV ) = Ann(Ann(Ann I)).

�

Now we can prove the following theorem characterizing those ideals in Mc(G)
which coincide with the second annihilator.

Theorem 1.5. Let G be a locally compact group, and let I be an ideal in Mc(G).
Then we have Ann(Ann I) = I if and only if I is closed.

Proof. By Theorem 1.1, the annihilator of each variety is closed; in particular,
J = Ann(Ann I), as the annihilator of the variety Ann I, is closed, which proves
the necessity of our condition.

Conversely, suppose that I is closed, and I is a proper subset of J . By Lemma 1.4,
we have Ann J = Ann I. Let µ be in J such that µ is not in I. As the spaceMc(G)
with the weak*-topology is locally convex, by the Hahn–Banach theorem there
is a linear functional ξ in Mc(G)∗, such that ξ̌ vanishes on I and ξ̌(µ) 6= 0. It is
known that every weak*-continuous linear functional on a dual space arises from
an element of the original space; that is, there is an f in C(G) with ξ(ν) = ν(f)
for each ν in Mc(G). We infer µ(f̌) = ξ̌(µ) 6= 0, and µ is in J , and hence f is
not in Ann J . On the other hand, ν̌(f) = ν(f̌) = ξ̌(ν) = 0 for each ν in I, as ξ̌
vanishes on I, which implies that f is in Ann I = Ann J , a contradiction. �

Corollary 1.6. Let G be a locally compact Abelian group. Then the mapping
V ↔ AnnV sets up one-to-one inclusion-reversing correspondences between the
varieties in Mc(G) and the closed ideals in Mc(G).

2. Exponentials

A basic function class is formed by the common eigenfunctions of all translation
operators, that is, by those nonzero continuous functions ϕ : G → C satisfying

τyϕ = m(y) · ϕ (2.1)

with some m : G → C; that is,

ϕ(x+ y) = m(y)ϕ(x) (2.2)

for all x, y in G. It follows that ϕ(y) = ϕ(0) ·m(y), which implies that ϕ(0) 6= 0
and, by (2.2),

m(x+ y) = m(x)m(y) (2.3)

for each x, y in G. Nonzero continuous functions m : G → C satisfying (2.3) for
each x, y in G are called exponentials. Clearly, every exponential generates a one-
dimensional variety and, conversely, every one-dimensional variety is generated
by an exponential. Sometimes exponentials are called generalized characters.
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Using translation, one introduces modified differences in the following manner:
for each continuous function f in C(G) and y in G we let

∆f ;y = δ−y − f(y)δ0.

Hence, ∆f ;y is an element of Mc(G). For a given f in C(G), the closed ideal
generated by all modified differences of the form ∆f ;y with y in G is denoted
by Mf . We have the following theorem.

Theorem 2.1. Let G be a locally compact Abelian group, and let f : G → C be a
continuous function. The ideal Mf is proper if and only if f is an exponential. In
this case Mf = Ann τ(f) is maximal, and Mc(G)/Mf is topologically isomorphic
to the complex field.

Proof. As Mf is closed, by Theorem 1.5 we have Ann(AnnMf ) = Mf .
Suppose that f is an exponential. Then f 6= 0, and

∆f ;y ∗ f(x) = f(x+ y)− f(y)f(x) = 0

for each x, y in G; hence f is in AnnMf . As τ(f) consists of all constant multiples
of f , we infer that τ(f) ⊆ AnnMf . Moreover, if ϕ is in AnnMf , then we have

0 = ∆f ;y ∗ ϕ(x) = ϕ(x+ y)− f(y)ϕ(x)

for each x, y in G. It follows that ϕ = ϕ(0)·f , and hence ϕ is in τ(f). We conclude
that τ(f) = AnnMf and Mf = Ann τ(f).

We define the mapping Φf : Mc(G) → C by

Φf (µ) = µ(f̌) =

∫
f(−y) dµ(y)

for each µ in Mc(G). Then Φf is a linear mapping, Φf (δ0) = 1, and for each µ, ν
in Mc(G) we have

Φf (µ ∗ ν) =
∫

f(−x− y) dµ(x) dν(y)

=

∫
f(−x) dµ(x)

∫
f(−y) dν(y) = Φf (µ) · Φf (ν);

hence Φf is an algebra homomorphism. Obviously, Φf maps Mc(G) onto C, and
hence it is a multiplicative linear functional. We infer that KerΦf is a maximal
ideal and that Mc(G)/KerΦf is isomorphic to the complex field C. For each µ

in KerΦf we have µ(f̌) = 0; hence, for each complex number c we have

cf ∗ µ(x) = c

∫
f(x− y) dµ(y) = cf(x)µ(f̌) = 0,

and, consequently, µ is in Ann τ(f) = Mf . It follows that KerΦf ⊆ Mf , which
implies that Mf is a maximal ideal. We also have that KerΦf is closed, and hence
Φf is continuous. As Φf is also open, we have that Mc(G)/Mf is topologically
isomorphic to the complex field.
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Finally, if Mf is proper, then AnnMf is nonzero. Let ϕ 6= 0 be a function in
AnnMf ; then we have

0 = ∆f ;y ∗ ϕ(x) = ϕ(x+ y)− f(y)ϕ(x),

and in the same way as above we conclude that f is an exponential. The theorem
is proved. �

Given a ring R, we call a maximal ideal M in R an exponential maximal ideal
if the residue ring R/M is isomorphic to the complex field. If R is a topological
ring, then we require the isomorphism to be topological. From the above proof
it is clear that if G is a locally compact Abelian group, then each exponential
maximal ideal in Mc(G) is of the form Mm = Ann τ(m) with some exponential
m. The maximal ideal in Mc(G) corresponding to the exponential identically 1,
that is, the annihilator of all constant functions on G, is called the augmentation
ideal.

Given a locally compact Abelian group G, the set of all exponentials is denoted

by G̃ and is called the generalized character group of G. It is easy to check that,

equipped with the compact-open topology, G̃ is a topological Abelian group.

Obviously, Ĝ, the dual of G, is a closed subgroup of G̃ (see, e.g., [2]).
Let G be a locally compact Abelian group. A continuous homomorphism of G

into the additive group of real numbers is called a real character. By addition of
real characters and multiplication by real numbers being defined pointwise and
using the compact-open topology, the set of all real characters of G is a locally
convex real topological vector space and it is denoted by Hom(G,R).

Theorem 2.2. Let G be a locally compact Abelian group. Then G̃ is topologically
isomorphic to Ĝ× Hom(G,R).

Proof. Let m be in G̃; then χ : G → C defined by χ(g) = m(g) · |m(g)|−1 for g
in G is obviously a character of G. On the other hand, a : g 7→ ln |m(g)| is a real
character; hence the mapping

m 7→ (χ, a)

maps G̃ into Ĝ × Hom(G,R). It is easy to see that this mapping is open and
continuous. As m = χ · exp a, it is injective, and as the function g 7→ χ · exp a is
an exponential for each character χ and real character a, it is also surjective. �

Theorem 2.3. Let G be a locally compact Abelian group. If G is compact, then Ĝ

is topologically isomorphic to G̃. If G is compactly generated and Ĝ is topologically

isomorphic to G̃, then G is compact.

Proof. If G is compact, then there is a nonzero real character on G. Indeed, if
a : G → R is a real character, then a(G) is a compact subgroup of the additive

group of R; hence it is {0}. It follows that Hom(G,R) = {0} and G̃ = Ĝ by the
previous theorem. If G is a compactly generated locally compact Abelian group,
then, by the structure theorem, G = Rn×Zk×K, where K is a compact Abelian

group and n, k are natural numbers. Hence, G̃ can be topologically isomorphic to
Ĝ only if n = k = 0 and G is compact. �
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3. Powers of maximal ideals in the ring of Laurent polynomials

The motivation of this paper is the characterization of powers of maximal ideals
in the group algebra of Zn. By the recent results in [11], powers of maximal ideals
play a fundamental role in characterizing varieties which possess spectral synthesis
on discrete Abelian groups. A well-known particular case for a characterization
of this type is the polynomial ring C[x], where every maximal ideal M has the
form

Mλ =
{
p : p(λ) = 0

}
with some complex number λ. In this case it is known that for every natural
number k we have

Mk+1
λ =

{
p : p(j)(λ) = 0 for j = 0, 1, . . . , k

}
.

An immediate generalization is given in the theorem below. First we introduce
some notation. Given a positive integer n, addition, subtraction, and inequalities
in Zn are defined componentwise; further, we write |α| = α1 + α2 + · · · + αn

whenever α = (α1, α2, . . . , αn) is in Zn. Let Cn
0 denote the set of all vectors in Cn

whose every component is different from zero. For λ in Cn
0 and α in Zn we write

λα = λα1
1 λα2

2 · · ·λαn
n .

We adopt this notation for differential operators. Let C[z, z−1] denote the ring
of Laurent polynomials in n variables, where z = (z1, z2, . . . , zn). Then ∂j :
C[z, z−1] → C[z, z−1] is the partial differential operator with the usual mean-
ing, and for every α with α ≥ 0 we write

∂α = ∂α1
1 ∂α2

2 · · · ∂αn
n .

More generally, if P : Cn → C is a complex polynomial in n variables, then P (∂)
has the obvious meaning: formally, the variable zj in P is replaced by ∂j, and the
constant P (0) in P is replaced by P (0)-times the identity operator. Using this
notation, the Taylor formula for polynomials in n variables has the form

P (z) =
∑
α∈Nn

1

α!
∂αP (z0)(z − z0)

α. (3.1)

Here z, z0 are arbitrary in Cn and we use the notation α! = α1!α2! · · ·αn!.
We need the following simple lemma.

Lemma 3.1. Let k be a positive integer, let α an element in Nn, and let r1, r2,
. . . , rk be arbitrary in C[z, z−1]. Then we have

∂α(r1 · r2 · · · · · rk) =
∑

β1+β2+···+βk=α

α!

β1!β2! · · · βk!
∂β1r1∂

β2r2 · · · ∂βkrk. (3.2)
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Proof. We prove by induction on k and the statement obviously holds for k = 1.
To prove it for k + 1, we proceed as

∂α(r1 · r2 · · · · · rk · rk+1)

= ∂α(q · rk+1) =
∑
β≤α

α!

β!(α− β)!
∂βq · ∂α−βrk+1

=
∑

β1+β2+···+βk=β

∑
β≤α

α!

β!(α− β)!

β!

β1!β2! · · · βk!
∂β1r1∂

β2r2 · · · ∂βkrk∂
α−βrk+1

=
∑

β1+β2+···+βk+1=α

α!

β1!β2! · · · βk+1!
∂β1r1∂

β2r2 · · · ∂βkrk∂
βk+1rk+1,

which was to be proved. �

Now we have the following result.

Theorem 3.2. Let n be a positive integer. Then for every maximal ideal M in
C[z, z−1] there exists a complex vector λ in Cn

0 such that for each natural number
k we have

Mk+1 =
{
r : ∂αr(λ) = 0 for every α ∈ Nn with |α| ≤ k

}
. (3.3)

Proof. It is well known that for every maximal ideal M in C[z, z−1] there exists
a unique λ in Cn

0 such that

M = Mλ =
{
r : r(λ) = 0

}
.

Let k be a positive integer, and let

Ik+1 =
{
r : ∂αr(λ) = 0 for every α ∈ Nn with |α| ≤ k

}
.

We will show that Mk+1 = Ik+1. Let r1, r2, . . . , rk+1 be arbitrary in M . Then, by
the previous lemma, we have, for each α in Nn with |α| ≤ k,

∂α(r1r2 · · · rk+1) =
∑

β1+β2+···+βk+1=α

α!

β1!β2! · · · βk+1!
∂β1r1∂

β2r2 · · · ∂βk+1rk+1.

In each term of the sum we have |β1|+ |β2|+ · · ·+ |βk+1| = |α| ≤ k, which implies
that |βj| = 0 for some j with j = 1, 2, . . . , k + 1. It follows that each term in the
sum has a factor of the form ∂βjrj = ∂0rj = rj, which vanishes at λ. It follows that
∂α(r1r2 · · · rk+1)(λ) = 0 for each α with |α| ≤ k, and hence r1r2 · · · rk+1 belongs
to Ik+1. As every element in Mk+1 is a sum of functions of the form r1r2 · · · rk+1,
we have Mk+1 ⊆ Ik+1.

For the converse, we suppose that r is in Ik+1; that is, it has the property that

∂αr(λ) = 0

for every α in Nn with |α| ≤ k. There exists a monomial q such that p = r · q is
a polynomial. Obviously, by the above consideration, we have

∂αp(λ) = 0
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for every α in Nn with |α| ≤ k. By Taylor’s formula, we have that

p(z) =
∑

|α|≥k+1

1

α!
∂αp(λ)(z − λ)α.

On the right-hand side, every term has a factor which is a multiple of (z − λ)α,

where |α| = k + 1. This implies that (z−λ)α

q(z)
is in Mk+1; hence, r = p

q
is in Mk+1

and the proof is complete. �

4. Fourier–Laplace transformation

Given the locally compact Abelian group G for every µ in Mc(G), we define

the function µ̂ : G̃ → C by

µ̂(m) = µ(m̌) =

∫
m(−y) dµ(y)

whenever m is in Ǧ. Obviously, µ̂(m) = m ∗ µ(0). Also, we have µ̂(m) = Φm(µ),
where Φm is defined in Theorem 2.1 with m = f . The function µ̂ is called the
Fourier–Laplace transform of µ and the mapping µ 7→ µ̂ is called the Fourier–
Laplace transformation. The following result is well known.

Theorem 4.1. Let G be a locally compact Abelian group. Then for each mea-
sure µ in Mc(G) its Fourier–Laplace transform µ̂ is a continuous function on

G̃. The Fourier–Laplace transformation µ → µ̂ is a continuous injective algebra

homomorphism of Mc(G) into C(G̃), the latter equipped with the pointwise linear
operations and multiplication, and with the topology of pointwise convergence.

Proof. Let (mi)i∈I be a generalized sequence in G̃ converging to the exponential

m in G̃. Then µ̌i → µ̌ uniformly on the compact set suppµ; hence we have
µ̂i(m) → µ̂ proving that µ̂ is continuous.

We introduce the notation

F(µ) = µ̂

for each µ in Mc(G). Obviously, F : Mc(G) → C(G̃) is a linear mapping.
Suppose that (µα)α∈A is a generalized sequence in Mc(G) converging to µ in

the weak*-topology. Then for each m in G̃ we have µα(m̌) → µ(m̌); that is,
µ̂α(m) → µ̂(m), which gives the continuity of F . Finally, for µ, ν in Mc(G) and

m in G̃ we have

F(µ ∗ ν)(m) = (µ ∗ ν)(m̌) =

∫
m(−x− y) dµ(x) dν(y)

=

∫
m(−x) dµ(x)

∫
m(−y) dν(y) = µ(m̌) · ν(m̌)

= F(µ)(m) · F(ν)(m);

hence F is an algebra homomorphism.
The injectivity of the Fourier–Laplace transformation follows from the linearity

and injectivity of the Fourier transformation. �
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The range of the Fourier–Laplace transformation in C(G̃), that is, the set of
all Fourier–Laplace transforms, will be denoted by A(G). This is a subalgebra of

C(G̃), isomorphic to Mc(G), which is sometimes called the Fourier algebra of G.

5. Derivations

Let G be a locally compact Abelian group. The continuous function a : G → C
is called an additive function if it is a homomorphism of G into the additive
topological group of complex numbers. The set of all additive functions on G
is denoted by Hom(G,C). Equipped with the pointwise addition and with the
compact-open topology, it is a topological Abelian group, which is topologically
isomorphic to Hom(G,R) × Hom(G,R). The function X : C → G is called a
one-parameter subgroup in G if it is a homomorphism of the topological group C
into G. The function X : R → G is called a real one-parameter subgroup in G if
it is a homomorphism of the topological group R into G. We have the following
theorem (see [2]).

Theorem 5.1. Let G be a locally compact Abelian group. For every additive

function a : G → C the function Xa : C → G̃ defined by

Xa(z)(g) = exp za(g) (5.1)

for g in G and z in C is a one-parameter subgroup in G̃. If a is a real character,

then the restriction of Xa to R is a real one-parameter subgroup in G̃.

Proof. The continuity of Xa is obvious. For g, h in G and z in R we have

Xa(z)(g + h) = exp ra(g + h) = exp za(g) · exp ra(h) = Xa(z)(g) ·Xa(z)(h);

that is, Xa(z) is an exponential on G for each z in C. Moreover, for z, w in C and
g in G we have

Xa(z + w)(g) = exp(z + w)a(g) = exp za(g) · expwa(g) = Xa(z)(g) ·Xa(w)(g);

that is,

Xa(z + w) = Xa(z)Xa(w),

and hence Xa is a one-parameter subgroup in G̃. Clearly, if a is real valued, then
the restriction of Xa to R is a real one-parameter subgroup. �

Theorem 5.2. Let G be a locally compact Abelian group. For every one-parameter

subgroup X : C → G̃ there exists a unique additive function a : G → C such that
X = Xa. If X is a real one-parameter subgroup, then a is a real character.

Proof. Let X : C → G̃ be a one-parameter subgroup, and let g be an element
of G. We define, for each w in C,

ϕg(w) = X(w)(g).

Then ϕg : C → C− {0} is continuous and satisfies

ϕg(z + w) = ϕg(z)ϕg(w)
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for every z, w in C. It follows that ϕg is an exponential function of the form

ϕg(w) = expλ(g)w,

where λ : G → C is a continuous function. On the other hand, for g, h in G we
have

expλ(g + h)w = ϕg+h(w) = X(w)(g + h) = X(w)(g) ·X(w)(h)

= ϕg(w) · ϕh(w) = exp
[
λ(g) + λ(h)

]
w,

which implies

exp
[
λ(g + h)− λ(g)− λ(h)

]
w = 1

for every g, h in G and w in C. We infer that [λ(g + h) − λ(g) − λ(h)]w is an
integer multiple of 2πi for any choice of g, h in G and w in C, which is possible
only if λ(g + h) − λ(g) − λ(h) = 0, that is, if λ : G → C is additive. Hence, we
have

X(w)(g) = ϕg(w) = expλ(g)w

for each g in G and w in C, which implies immediately that λ is real-valued, if
X is a real one-parameter subgroup. �

Let G be a locally compact Abelian group, let f : G̃ → C be a function, let

X : C → G̃ be a one-parameter subgroup in G̃, and let m be an exponential
on G. We define the derivative of f along X at m as the limit

lim
z→0

lim
w→0

1

w

(
f
(
m ·X(z + w)

)
− f

(
m ·X(z)

))
(5.2)

whenever it exists and is finite (see, e.g., [2]). We denote it by ∂Xf(m). If, in ad-
dition, the one-parameter subgroup X has the form X = Xa with some additive
function a, then ∂Xf(m) is called the derivative of f along the additive function

a, and it is denoted by ∂af(m). If ∂Xf(m) is defined for each m in G̃, then its
derivative along the one-parameter subgroup Y is denoted by ∂Y ∂Xf(m), and
so on. Repeating this process, we can define C∞-functions in the obvious way:
the function f is called C∞ if P (∂X1 , ∂X2 , . . . , ∂Xk

)f(m) exists for every positive

integer k, for every choice of the one-parameter subgroups Xi in G̃, for every
polynomial P , and for every exponential m on G. Here P (∂X1 , ∂X2 , . . . , ∂Xk

) de-
notes the usual polynomial differential operator: P is a complex polynomial in
k variables and the variables are formally replaced by the differential operators
∂X1 , ∂X2 , . . . , ∂Xk

. In particular, for every nonnegative integer α1, α2, . . . , αk the
meaning of the notation ∂α1

X1
∂α2
X2

· · · ∂αk
Xk

is obvious, too. If the one-parameter sub-
group X has the form Xa, then we use the notation ∂a instead of ∂Xa . In light
of Theorem 5.2, we can keep this notation in any case, as every one-parameter

subgroup X in G̃ has the form X = Xa.

Theorem 5.3. Let G be a locally compact Abelian group, and let µ be a measure in
Mc(G). Then the Fourier–Laplace transform of µ is a C∞-function, and for every
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complex polynomial P : Ck → C and for arbitrary additive functions aj : G → C
(j = 1, 2, . . . , k) we have

P (∂a1 , ∂a2 , . . . , ∂ak)µ̂(m) =

∫
m̌P (ǎ1, ǎ2, . . . , ǎk) dµ. (5.3)

Proof. It is enough to prove the following particular case:

∂aµ̂(m) =

∫
m̌ǎ dµ (5.4)

for each additive function a : G → C; the general case follows then by iteration.
We proceed as follows:

∂aµ̂(m) = lim
z→0

lim
w→0

1

w

(
µ̂
(
m ·X(z + w)

)
− µ̂

(
m ·X(z)

))
= lim

z→0
lim
w→0

∫
m(−g) exp za(−g)

expwa(−g)− 1

w
dµ(g)

= lim
z→0

∫
m(−g) exp za(−g) lim

w→0

expwa(−g)− 1

a(−g)w
a(−g) dµ(g)

=

∫
m(−g)a(−g) dµ(g). �

The linearity of ∂a and the obvious property

∂a(f · g)(m) = ∂af(m) · g(m) + f · ∂ag(m)

show that the mapping ∂a : A(G) → A(G) is closely related to the derivations
of the Fourier algebra. We recall that, given a commutative algebra A, the linear
mapping D : A → A is called a derivation if for every x, y in A we have

D(xy) = D(x)y + xD(y). (5.5)

Then, obviously, ∂a is a derivation on the Fourier algebra for every additive func-
tion a.

The element g in the locally compact Abelian group G is called a compact
element, if the intersection of all closed subgroups in G including g is compact.
The set of all compact elements B in a locally compact Abelian groupG is a closed
subgroup (see [4, Theorem 9.10, p. 92]), and G/B has no compact elements except
zero (see [4, Theorem 24.34, p. 390]). We say that the locally compact Abelian
group has sufficiently many real characters if for each g in G, different from the
identity, there exists a real additive function a : G → R such that a(g) 6= 0. This
is the case if and only if B = {0} (see [4, Theorem 24.34, p. 390]). This can be
reformulated in two other ways: the dual of G is connected or G is topologically
isomorphic to Rn×F , where n is a natural number and F is a discrete torsion-free
Abelian group (see [4, Corollary 24.35, p. 390]). We have the following theorem.

Theorem 5.4. Let G be a locally compact Abelian group, and let H ⊆ G be a
closed subgroup with no compact elements except zero. If µ is a measure in Mc(G)
such that for some exponential m we have ∂α1

a1
∂α2
a2

· · · ∂αk
ak
µ̂(m) = 0 for every choice

of the natural numbers k, α1, α2, . . . , αk and the additive functions a1, a2, . . . , ak,
then suppµ ∩H = ∅.
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Proof. We remark that the statement of this theorem is that for every continuous
function f : G → C with supp f ⊆ H we have µ(f) = 0. First of all, we note that
the condition on µ implies that

P (∂a1 , ∂a2 , . . . , ∂ak)µ̂(m) = 0

for every natural number k, for every choice of the additive functions a1, a2, . . . , ak,
and for every polynomial P : Ck → C. Hence, by the previous theorem, we have∫

m̌P (ǎ1, ǎ2, . . . , ǎk) dµ = 0 (5.6)

for every natural number k, for every choice of the additive functions a1, a2, . . . , ak,
and for every polynomial P : Ck → C. By the assumption on H, for every element
g 6= h in H there exists an additive function a : H → C such that a(g) 6= a(h). It
follows that the algebra of functions of the form

g 7→ P
(
a1(−g), a2(−g), . . . , ak(−g)

)
satisfies the conditions of the Stone–Weierstrass theorem on the compact set H.
It follows that, by (5.6), we have ∫

H

m̌f dµ = 0

for every continuous function f : H → C. In particular, taking f = χ, where χ is
any character of H, we obtain ∫

H

χm̌ dµ = 0.

This means that the Fourier–Stieltjes transform of the restriction of the measure
m̌µ to H is zero, which implies that this measure is zero; hence µ = 0 on H. By
Tietze’s extension theorem, every continuous function on H is the restriction of
some continuous function on G. In other words, if for the function f : G → C we
have supp f ⊆ H, then µ(f) = 0. This implies suppµ ∩H = ∅. �

Corollary 5.5. Let G be a locally compact Abelian group having sufficiently
many real characters. If µ is a measure in Mc(G) such that for some exponen-
tial m we have ∂α1

a1
∂α2
a2

· · · ∂αk
ak
µ̂(m) = 0 for every choice of the natural numbers

k, α1, α2, . . . , αk and the additive functions a1, a2, . . . , ak, then µ = 0.

Proof. This follows from the previous theorem, since in this case H can be taken
as G. �

Theorem 5.6. Let G be a discrete Abelian group with finite torsion-free rank,
and let m be an exponential on G. Then for each natural number k the ideal Mk+1

m

is the set Ik+1 of all measures µ in Mc(G) for which

∂α1
a1
∂α2
a2

· · · ∂αl
al
µ̂(m) = 0

for every positive integer l, for every α in Nl with |α| ≤ k, and for every choice of
the additive functions a1, a2, . . . , al. If the torsion-free rank of G is infinite, then
M3

1 6= I3.
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We recall that M1 is the augmentation ideal.

Proof. Suppose that µ is in Mk+1
m . Then µ annihilates AnnMk+1

m . On the other
hand, every function ϕ : G → C of the form

ϕ(g) = a1(g)
α1a2(g)

α2 · · · al(g)αlm(g)

belongs to AnnMk+1
m , assuming that α1 + α2 + · · ·+ αl ≤ k and a1, a2, . . . , al are

additive functions (see, e.g., [11]). Hence, by assumption, we have

0 = ϕ ∗ µ(g)

=

∫
m(g − h)

∑
β≤α

α!

β!(α− β)!
a1(g)

α1−β1a1(−h)β1 · · · al(g)αl−βlal(−h)βl dµ(h)

=
∑
β≤α

α!

β!(α− β)!
m(g)a1(g)

α1−β1 · · · al(g)αl−βl

×
∫

m(−h)a1(−h)β1 · · · al(−h)βl dµ(h).

As the functions

g 7→ α!

β!(α− β)!
m(g)a1(g)

α1−β1 · · · al(g)αl−βl

are linearly independent for different choices of αj − βj, we infer∫
m(−h)a1(−h)β1 · · · al(−h)βl dµ(h) = 0

for each β ≤ α. By Theorem 5.3, this implies

∂α1
a1
∂α2
a2

· · · ∂αl
al
µ̂(m) = 0

for every positive integer l, for every α in Nl with |α| ≤ k, and for every choice
of the additive functions a1, a2, . . . , al. This means Mk+1

m ⊆ Ik+1.
To prove the reverse inclusion, we use the following result: if the torsion-free

rank of G is finite, then the variety AnnMk+1
m is the set of all exponential mono-

mials of degree at most k corresponding to the exponential m; that is, the set of
all functions of the form

ϕ(g) = P
(
a1(g), a2(g), . . . , al(g)

)
m(g),

where l is a positive integer, P : Cl → C is a polynomial in l variables and of
degree at most k, and a1, a2, . . . , al are additive functions (see [11]). In particular,
by the condition∫

m(−h)a1(−h)β1 · · · al(−h)βl dµ(h) = ∂α1
a1
∂α2
a2

· · · ∂αl
al
µ̂(m) = 0

on µ, which is satisfied for every positive integer l, for every α in Nl with
|α| ≤ k, and for every choice of the additive functions a1, a2, . . . , al, we in-
fer that µ annihilates AnnMk+1

m . On the other hand, by Theorem 1.3 we have
AnnAnnMk+1

m = Mk+1
m ; consequently, µ is in Mk+1

m , and hence Ik+1 ⊆ Mk+1
m .
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To prove the converse statement, suppose that the torsion-free rank of G is
infinite. By the results in [11, Chapters 13, 15], there exists a generalized poly-
nomial p of degree 2 on G which is not a polynomial. It means p is in AnnM3

1 .
Also, p is not in the closure of all functions of the form g 7→ P (a1, a2, . . . , ak),
where k is a positive integer, P : Ck → C is a polynomial of degree at most 2,
and aj : G → C is an additive function. Hence, there exists a measure µ for which
P (a1, a2, . . . , ak) ∗ µ = 0 for each positive integer k, for every additive function
a1, a2, . . . , ak on G, and for every polynomial P : Ck → C of degree at most 2,
but it is not in M3

1 , where M1 is the augmentation ideal. It follows that µ is in
I3 but it is not in M3

1 . �
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