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Abstract. The uniform structure of a descriptive normed space (X, ‖ · ‖)
always admits a description with an (F )-norm ‖ · ‖1 such that weak and norm
topologies coincide on {

x ∈ X : ‖x‖1 = ρ
}

for every ρ > 0.

1. Introduction

Paracompactness is a generalization of the concept of compactness and it be-
longs to the class of concepts related with covering properties of topological spaces
(see [15]) . On the other hand, the concept of full normality can be regarded as
belonging to another genealogy of concepts, the separation axioms which include
regularity, normality and many other properties. Stone’s theorem says that those
two concepts, belonging to different categories, coincide for Hausdorff topological
spaces (see Chapter V in [22]). In particular, the fact that every metrizable space
is paracompact is going to be a fundamental tool when looking for convex renorm-
ing properties of a Banach space. Indeed, the use of Stone’s theorem has been
extensively considered in order to build new techniques to construct equivalent
locally uniformly rotund norms on a given normed space X (see [8], [19], [21]).
The σ-discreteness of the basis for the metric topologies gives the necessary rigid-
ity condition that appears in all the known cases of existence of such a renorming
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property. It is our aim here to study the impact of Stone’s theorem for Kadec
renormings.

Throughout the present article, (X, ‖ · ‖) will denote a normed space while X∗

will denote its dual. With BX and SX (resp., BX∗ and SX∗), we will denote the
unit ball and the unit sphere of X (resp., X∗). If Z is a subspace of X∗, we will
denote by ‖ · ‖Z the norm-continuous seminorm given by

‖x∗∗‖Z = sup
f∈BX∗∩Z

∣∣x∗∗(f)∣∣
for x∗∗ ∈ X∗∗. We say that Z is norming if ‖ · ‖Z is an equivalent norm on X.
If ‖ · ‖Z coincides with ‖ · ‖ on X, then we say that Z is 1-norming. We will
denote by σ(X,Z) the topology on X of pointwise convergence on Z, but in the
particular cases of the weak and the weak-star topologies we will use w and w∗,
respectively. If τ is a topology on a normed space X, we say that a norm ‖ · ‖ on
X is

• rotund, or strictly convex if, for every x, y ∈ X, the condiction ‖x‖ =
‖y‖ = ‖x+y

2
‖ implies that x = y (geometrically, this means that SX has

no nontrivial line segments, or equivalently, that every point of SX is an
extreme point of BX);

• τ -Kadec if the norm and the τ topologies coincide on the unit sphere (if
τ = w, then we say that ‖ · ‖ is Kadec);

• τ -locally uniformly rotund (τ -LUR, for short), if, given a point x and a
sequence (xn)n∈N inX, we have limn→∞ xn = x in the τ topology whenever

lim
n→∞

(
2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2

)
= 0

(if τ is the norm topology, then we say that ‖ · ‖ is locally uniformly rotund,
or LUR, for short).

It is a known result that a space X admits an equivalent LUR norm if and only
if it admits an equivalent Kadec norm and an equivalent rotund norm (see [32]
and [28]).

If we have a Kadec norm ‖ · ‖ on the normed space X, then the identity map
from (SX , w) to (X, ‖ · ‖) is continuous. If we have a subset C of the normed
space X, a normed space Y , and a map φ : (C,w) → (Y, ‖ · ‖), then φ is said
to be piecewise-continuous if there is a countable cover C =

⋃
n∈NCn such that

each one of the restrictions φ|Cn
is weak to norm-continuous. A norm-pointwise

limit of a sequence of piecewise-continuous maps is called a σ-continuous map
(see [21] for an account of results around this notion and references). In a normed
space (X, ‖ · ‖) with a Kadec norm, the identity map in X, from the w to the
norm topology, is σ-continuous, and Stone’s Theorem can be applied to the norm
topology to get that the norm topology has a network N that can be written as
a countable union of subamilies N =

⋃
n∈N Nn, where each one of the subfamilies

Nn is a discrete family in its union (isolated, for short)⋃
Nn :=

⋃
{N | N ∈ Nn}
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endowed with the w topology; that is, for every x ∈
⋃
Nn there exists a w

neighborhood V of x such that

card{N ∈ Nn | N ∩ V 6= ∅} = 1

(see Theorem 1.5 in [8]). No example is known of Banach space with this kind
of network, which is called descriptive Banach space, and without an equivalent
Kadec norm (see Chapter 3 in [21]).

In the classical theory of Banach spaces, not only normed spaces were consid-
ered but also those spaces on which a metric is defined which is compatible with
the vector space operations (see Chapter 3 in Banach’s book [1]). Indeed, the
uniform structure of a metrizable topological vector space is described with the
following notion:

Definition 1.1 ([16, p. 163]). An (F )-norm in a vector space X is function ‖ · ‖ :
X → [0,+∞) such that

(1) x = 0 if and only if ‖x‖ = 0;
(2) ‖λx‖ ≤ ‖x‖ if |λ| ≤ 1 and x ∈ X;
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ X;
(4) limn ‖λxn‖ = 0 if limn ‖xn‖ = 0 for every (xn)n∈N ⊆ X and λ ∈ R;
(5) limn ‖λnx‖ = 0 if limn λn = 0 for every (λn)n∈N and x ∈ X.

The space X is said to be (F )-normed. The sets {x ∈ X : ‖x‖ < ε} for ε > 0
form a basis of neighborhoods of the origin for the topology determined by the
(F )-norm. A basis of the uniformity associated is formed with the sets {(x, y) ∈
X ×X : ‖x− y‖ < ε} for ε > 0.

Banach called a complete (F )-normed space an (F )-space, after Fréchet (see
Chapter III in [1]).

In the present article, we will prove the following result.

Theorem 1.2 (Kadec F -renorming). Let (X, ‖ · ‖) be a normed space with a
norming subspace Z in X∗. Then the following conditions are equivalent.

(1) There is a norm-equivalent σ(X,Z)-lower semicontinuous and σ(X,Z)-
Kadec (F )-norm ‖ · ‖0 on X (i.e., an (F )-norm ‖ · ‖0 such that σ(X,Z)
and norm topologies coincide on the unit “sphere” {x ∈ X | ‖x‖0 = 1}),
and the topology determined by the (F )-norm ‖ · ‖0 on X coincides with
the topology of the norm ‖ · ‖.

(2) The normed space X is σ(X,Z)-descriptive (i.e., there are isolated fami-
lies Bn for the σ(X,Z)-topology, n = 1, 2, . . . such that, for every x ∈ X
and every ε > 0, there are n ∈ N and a set B ∈ Bn with the property that
x ∈ B and that ‖ · ‖-diam(B) < ε).

(3) The norm topology admits a basis B =
⋃

n∈N Bn such that each one of the
families Bn is σ(X,Z)-isolated and norm-discrete.

In Section 3 the equivalence (1) ⇔ (2) is established. Section 4 takes care of
(2) ⇔ (3).

Prior estimates were first obtained by the fourth author in Theorem 1 of [27],
where he constructed a positively homogeneous symmetric function F : X →
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[0,+∞), with ‖ · ‖ ≤ F (·) ≤ 3‖ · ‖, such that the weak and norm topologies
coincide on {x ∈ X : F (x) = 1}. The norm continuity of Raja’s function F
does not follow immediately from his construction, and different people asked if
it actually could be done. In an unpublished note, Raja gives a construction to
make F continuous when dealing with topologies of the form σ(X,Z), which we
introduce in the following.

Lemma 1.3. Let X be a normed space with an 1-norming subspace Z ⊂ X∗.
Assume that X is σ(X,Z)-descriptive. Then there exists a symmetric homoge-
neous σ(X,Z)-lower semicontinuous and norm-continuous function Φ on X with
‖ · ‖ ≤ Φ(·) ≤ 3‖ · ‖ such that the topologies of the norm and σ(X,Z) coincide on
the set S = {x ∈ X | Φ(x) = 1}.

Proof. We may identify X isometrically as a subspace of Z∗. In this way the
σ(X,Z) topology is induced on X by the w∗-topology of Z∗. In this proof the

closed balls will always be referred to Z∗, that is, B[x, ε] := B(x, ε)
w∗

.
We will build a norm-continuous function with the same properties of F , the

function constructed in [27, Theorem 1]. Our task will be to add the norm con-
tinuity to the other properties of F , so we will use it in the proof. Let K be the
w∗-closure of the star-shaped set {x ∈ X | F (x) ≤ 1}. It is easy to verify that
K is also star-shaped. Let qn be the Minkowski functional of K + B[0, 1/n] for
n ≥ 2. As this set is w∗-closed, qn is w∗-lower semicontinuous. It is easy to realize
that qn is also symmetric and verifies the inequality(

1− 1

n

)
‖ · ‖ ≤ qn(·) ≤ 3‖ · ‖.

We claim that every qn is norm-continuous. Indeed, it is clear that qn is norm
lower semicontinuous. By homogeneity it is enough to show that the set

Un :=
{
z∗ ∈ Z∗ ∣∣ qn(z∗) < 1

}
is norm-open. Take z∗ ∈ Un; we know that qn(z

∗) < 1, then take λ ∈ (0, 1)
such that qn(z

∗) < λ2. This implies that z∗ ∈ λ2K + B[0, λ2/n]. In particular,
z∗ ∈ K + B(0, λ/n) which is norm-open and contained in K + B[0, 1/n].

Let us consider the function

Φ(z∗) = ‖z∗‖+
∑
n≥2

2−nqn(z
∗),

which is homogeneous, symmetric, w∗-lower semicontinuous, norm-continuous,
and which satisfies ‖ · ‖ ≤ Φ(·) ≤ 3‖ · ‖. We claim that Φ has the Kadec property
at the points of X, that is, if (z∗ω) is a net w∗-converging to x ∈ X such that
Φ(z∗ω) converges to Φ(x), then (z∗ω) is norm-convergent to x. Clearly, we may
assume that x 6= 0, and by homogeneity of F we also may assume that F (x) = 1.
If (z∗ω) is a net as above, using the lower semicontinuity in a standard way we
obtain that qn(z

∗
ω) converges to qn(x) for each n. As qn(x) < F (x) = 1, for ω

large qn(z
∗
ω) < 1 and thus z∗ω ∈ K + B[0, 1/n]. Given any ε > 0, it is possible

to take a σ(X,Z)-open neighborhood U of x such that U ∩ {x ∈ X | F (x) ≤ 1}
has diameter less than ε. We may assume that U is w∗-open in Z∗ and passing to
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closure we obtain that diam(U ∩K) ≤ ε. By [27, Lemma 1], given ε > 0, there is
r > 0 and another w∗-neighborhood V of x such that diam(V ∩(K+B(0, r))) < ε.
If we take n ≥ 2 such that 1/n < r, then

diam
(
V ∩

{
z∗ ∈ Z∗ ∣∣ qn(z∗) ≤ 1

})
< ε.

For ω large enough, z∗ω ∈ V by the w∗-convergence and qn(z
∗
ω) < 1, so

z∗ω ∈ V ∩
{
z∗ ∈ Z∗ ∣∣ qn(z∗) ≤ 1

}
,

and this implies that ‖z∗ω − x‖ < ε. Now is clear that the restriction of Φ to X
will satisfy all the properties required and this ends the proof of the lemma. �

Our new construction in this paper provides the triangle inequality for the
F -norm which turns out to be a Lipschitz function with respect to the metric
associated with it, thus uniformly continuous for the original norm. From the
above proof and keeping in mind Theorem 4 in [11], it is not clear that Φ should
have to be uniformly continuous.

Our results here answer Question 6.2 in [21]. The main ideas are provided by
a Decomposition Lemma 3.3, together with extended versions of the Connection
Lemma 3.2 in [25] given by Theorem 3.5.

Nevertheless the following question remains open.

Problem 1.4. Is it possible to convexify the construction in Theorem 1.2 in order
to get an equivalent σ(X,Z)-lower semicontinuous norm 9 ·9 on X such that the
σ(X,Z) and norm topologies coincide on the unit sphere {x ∈ X | 9x9 = 1}?

Note that a norm on X such that the σ(X,Z) and norm topologies coincide on
its unit sphere is necessarily σ(X,Z)-lower semicontinuous. As a matter of fact, all
the statements of isometric nature involving the σ(X,Z)-topology in the rest of
this article will include the hypothesis of σ(X,Z)-lower semicontinuity. Moreover,
when handling topological nonisometric statements we will always assume that
the norm is σ(X,Z)-lower semicontinuous. Indeed, changing the norm of X by
an equivalent one does not alter the validity of the statement. Let us note that
a consequence is that the norming subspace Z ⊂ X∗ can be supposed 1-norming
without loss of generality, together with any nonisometric topological statement
involving the σ(X,Z)-topology.

2. p-convex constructions

In this section we will prove some results regarding generalized convexity that
will be used in the rest of this article. First of all, let us recall the following
definition.

Definition 2.1 ([16, p. 160]). Let A be a subset of a vector space X and let
p ∈ (0, 1]. Here A is said to be p-convex if, for every x, y ∈ A and τ, µ ∈ [0, 1]
such that τ p + µp = 1, we have τx + µy ∈ A. We denote by cop(A) the p-convex
hull of a set A (i.e., the smallest p-convex set of X containing A).
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Notice that the p-convex hull of a set A can be represented explicitly as

cop(A) =
{ n∑

i=1

τixi : (xi)
n
i=1 ⊂ A, τi ≥ 0,

n∑
i=1

τ pi = 1
}
.

It is easy to check that τx ∈ cop(A) whenever τ ∈ (0, 1] and x ∈ A if p ∈ (0, 1).
If we have a p-convex and absorbent subset A in a vector space X, we define its
p-Minkowski functional as

pA(x) := inf {λp | λ > 0, x ∈ λA}.

The p-convexity of A implies that pA(x + y) ≤ pA(x) + pA(y) and pA(λx) =
λppA(x) for λ > 0. Moreover, if A is balanced as well, then pA is a p-seminorm
in the terminology of [16, p. 160]. The usual Minkowski functional is defined as
usual,

qA(x) := inf {λ | λ > 0, x ∈ λA},
and we obviously have qA(x) = pA(x)

1/p for every x ∈ X. The functional qA is a
quasinorm, and we have qA(x+ y) ≤ 2(1/p)−1(qA(x) + qA(y)).

We will now study some fundamental properties of the functions whose epi-
graph is a p-convex set.

Definition 2.2. A real function φ from a vector space X is said to be p-convex
(resp., to satisfy the p-property), for p ∈ (0, 1], if

φ(τx+ µy) ≤ τφ(x) + µφ(y)
(
resp., φ(τx+ µy) ≤ τ pφ(x) + µpφ(y)

)
whenever τ ≥ 0, µ ≥ 0 and τ p + µp = 1.

The following observations are easily checked:

• the epigraph of φ is p-convex if and only if φ is p-convex;
• the sum of nonnegative p-convex functions is p-convex as well;
• if φ is convex and φ(0) = 0, then φ is p-convex for every p ∈ (0, 1];
• if φ is p-convex and nonnegative, then φ(0) = 0 and φ satisfies the
p-property;

• If φ is p-convex for 0 < p < 1 and nonnegative, then φ is q-convex for any
0 < q ≤ p.

The following lemma will provide an idea of how the p-convex hull of some set
looks like specially when p is close to 0.

Lemma 2.3. Let (X, ‖ · ‖) be a normed space, let A ⊂ BX , and let p ∈ (0, 1).
Then

{λx | 0 < λ ≤ 1, x ∈ A} ⊆ cop(A)

and

cop(A) ⊆ {λx | 0 < λ ≤ 1, x ∈ A}+ B
[
0, p(1− p)1/p−1

]
.

As a consequence, if A ⊂ X is closed and bounded, then⋂
p∈(0,1)

cop(A) = {λx | 0 < λ ≤ 1, x ∈ A}.
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Proof. First note that if 0 < λ1 < λ2 and λ1x, λ2x ∈ cop(A), then λx ∈ cop(A) for
every λ ∈ [λ1, λ2]. Now if x ∈ A, then n1−1/px ∈ cop(A) for every n ∈ N because
n−1/px + · · · + n−1/px with n addends is a p-convex combination of elements
from A. The fact that limn→∞ n1−1/p = 0 finishes the proof of the first set
inclusion. Any point of cop(A) is of the form τ1x1 + · · · + τnxn where x1, . . . ,
xn ∈ A, τ1, . . . , τn ∈ [0, 1] and τ p1 + · · · + τ pn = 1. Suppose that τi = max{τ1, . . . ,
τn}. We want to estimate the distance d = ‖τ1x1 + · · · + τnxn − τixi‖. With-
out loss of generality, we may suppose that τ1 ≥ τ2 ≥ · · · ≥ τn, and there-
fore

d = ‖τ2x2 + · · ·+ τnxn‖ ≤ τ2 + · · ·+ τn.

It is easy to see that the maximum value of the term on the right-hand side is
attained when τ1 = τ2 = · · · = τk > τk+1 ≥ τk+2 = 0 for some k ∈ {1, . . . , n}.
Observe that k = τ−p

1 (1− τ pk+1), and so

τ1 + τ2 + · · ·+ τn = kτ1 + τk+1 = τ 1−p
1 − τ 1−p

1 τ pk+1 + τk+1 ≤ τ 1−p
1 .

Therefore, we have τ2 + · · · + τn ≤ τ 1−p
1 − τ1. This last expression, as a func-

tion of τ1 ∈ [0, 1], attains its maximum at τ1 = (1 − p)1/p. An easy com-
putation gives us d ≤ τ2 + · · · + τn ≤ p(1 − p)1/p−1, as desired. The conse-
quence follows easily from these facts: {λx | 0 < λ ≤ 1, x ∈ A}∪{0} is closed and
limp→0+ p(1− p)1/p−1 = 0. �

Finally, we will show two inequalities and facts about functions which satisfy
the p-property that will be needed.

Proposition 2.4. Suppose that φ satisfies the p-property for some p ∈ (0, 1];
then for every x, y ∈ X,

τ pµp
(
φ(x)− φ(y)

)2 ≤ τ pφ(x)2 + µpφ(y)2 − φ(τx+ µy)2

whenever τ p + µp = 1 and τ ≥ 0, µ ≥ 0.

Proof. We have

τ pφ(x)2 + µpφ(x)2 − φ(τx+ µy)2

≥ τ pφ(x)2 + µpφ(x)2 −
(
τ pφ(x) + µpφ(y)

)2
= (τ p − τ 2p)φ(x)2 + (µp − µ2p)φ(y)2 − 2τ pµpφ(x)φ(y)

= τ p(1− τ p)φ(x)2 + µp(1− µp)φ(y)2 − 2τ pµpφ(x)φ(y)

= τ pµp
(
φ(x)− φ(y)

)2
. �

Corollary 2.5. For a p-seminorm ‖ · ‖p on the vector space X, we have(
‖x‖p − ‖y‖p

)2 ≤ 2‖x‖2p + 2‖y‖2p − ‖x+ y‖2p.

Proof. A p-seminorm is a nonnegative function that satisfies the p-property to
which we apply the former lemma for τ = µ = (1/2)1/p. �

We follow with a p-version of Fact II.2.3 of [3].
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Proposition 2.6.

(1) If ‖ · ‖p is a p-seminorm on X and if xj, x ∈ X, then the following are
equivalent:
(a) limj ‖xj‖p = ‖x‖p and limj ‖x+xj

21/p
‖
p
= ‖x‖p,

(b) limj(2‖x‖2p + 2‖xj‖2p − ‖x+ xj‖2p) = 0

(2) If αn > 0, ‖ · ‖pn is a pn-seminorm on X for some sequence (pn) ⊆ (0, 1)
and

lim
j

(
2F 2(x) + 2F 2(xj)− F 2(x+ xj)

)
= 0,

where F 2(x) =
∑

n∈N αn‖x‖2pn, then for every n ∈ N

lim
j

(
2‖x‖2pn + 2‖xj‖2pn − ‖x+ xj‖2pn

)
= 0.

Proof. Both can be derived from Corollary 2.5. �

We are now going to state a version of Proposition 2.1 in [25] for the p-convex
case. These distance functions will be an essential tool in our reasoning.

Proposition 2.7. Let X be a normed space and let Z be a norming subspace in
the dual space X∗. If C is a w∗-compact and p-convex subset of X∗∗, 0 < p ≤ 1,
and we define, for x ∈ X,

ϕ(x) := inf
c∗∗∈C

‖x− c∗∗‖Z ,

then ϕ is a p-convex, σ(X,Z)-lower semicontinuous,, and 1-Lipschitz from X to
[0,+∞). We call such a function the Z-distance to the set C.

Proof. The fact that C is p-convex implies that ϕ is a p-convex function. Indeed,
let us take x, y ∈ X and fix 0 ≤ τ, µ ≤ 1 with τ p + µp = 1, and ε > 0. If we
choose c∗∗x and c∗∗y such that

‖x− c∗∗x ‖Z ≤ ϕ(x) + ε and ‖y − c∗∗y ‖
Z
≤ ϕ(y) + ε,

then ∥∥τx+ µy − (τc∗∗x + µc∗∗y )
∥∥
Z

≤ ‖τx− τc∗∗x ‖Z + ‖µy − µc∗∗y ‖
Z

≤ τ
(
ϕ(x) + ε

)
+ µ

(
ϕ(y) + ε

)
≤ τϕ(x) + µϕ(y) + (τ + µ)ε

≤ τϕ(x) + µϕ(y) + ε

because τ + µ ≤ τ p + µp = 1. Since τc∗∗x + µc∗∗y ∈ C, we have

ϕ(τx+ µy) ≤ τϕ(x) + µϕ(y) + ε

for every ε > 0 and 0 ≤ τ, µ ≤ 1 with τ p + µp = 1.
Let us prove the lower semicontinuity of ϕ. Fix r ≥ 0 and take a net

{xα | α ∈ A} in X with ϕ(xα) ≤ r for every α ∈ A, and let x ∈ X be the
σ(X,Z)-limit of the net {xα | α ∈ A}. We will see that ϕ(x) ≤ r, too. First, note
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that the net {xα | α ∈ A} is necessarily bounded. Indeed, the triangular inequal-
ity implies that ‖xα‖Z ≤ r+supc∗∗∈C ‖c∗∗‖Z and of course supc∗∗∈C ‖c∗∗‖Z < +∞.
Let us fix an ε > 0 and choose c∗∗α ∈ C such that ‖xα − c∗∗α ‖ ≤ r + ε for every
α ∈ A. Since C is w∗-compact, we can find a cluster point (x∗∗, c∗∗) of the net
{(xα, c∗∗α ) | α ∈ A} in X∗∗ × X∗∗ for the topology σ(X∗∗, X∗) on every factor,
since {xα | α ∈ A} was bounded. Then we have that x∗∗ does coincide with x
when both linear functionals are restricted to Z, and thus for every f ∈ BX∗ ∩Z,

f(x∗∗ − c∗∗) = f(x− c∗∗) ≤ r + ε,

and so ϕ(x) ≤ r+ε. Since the reasoning is valid for every ε > 0, we get ϕ(x) ≤ r,
as required.

The Lipschitz condition follows from the triangle inequality of the seminorm

‖ · ‖Z on X∗∗. Indeed, for every x, y ∈ X and c∗∗ ∈ C
σ(X∗∗,X∗)

we have
‖x− c∗∗‖Z ≤ ‖x− y‖Z + ‖y − c∗∗‖Z , and thus ϕ(x) ≤ ‖x− y‖Z + ϕ(y). If we
interchange x and y, we see that∣∣ϕ(x)− ϕ(y)

∣∣ ≤ ‖x− y‖Z ,
which also implies 1-Lipschitz with respect to the norm of X as ‖ · ‖Z ≤ ‖ · ‖. �

Remark 2.8. Note that if B ⊂ X is σ(X,Z)-closed, then the Z-distance to the
weak∗-closure of B in X∗∗ is positive on X \B. Indeed, B is in particular weakly
closed, so if C ⊂ X∗∗ is the weak∗-closure of B, then B = C ∩X.

Looking for the “scalpel parameter” measuring a rigidity condition involved in
our renormings, we introduce the following.

Definition 2.9. Let (X, ‖ · ‖) be a normed space, let Z be a norming subspace
in X∗, and let 0 < p ≤ 1. A family B := {Bi | i ∈ I} of subsets in the normed
space X is said to be p-isolated for the σ(X,Z)-topology when, for every i ∈ I,

Bi ∩ cop
⋃

{Bj | j 6= i, j ∈ I}
σ(X,Z)

= ∅.

Let us observe that by the Hahn–Banach theorem, the definition of 1-isolated
family corresponds to the notion of σ(X,Z)-slicely isolated (see [25]). We now
state the following interplay result describing this new concept as a biorthogonal
system of sets and p-convex functions.

Theorem 2.10. Let (X, ‖ · ‖) be a normed space and let Z be a norming subspace
in X∗. Let B := {Bi | i ∈ I} be an uniformly bounded family of subsets of X. The
following are equivalent.

(1) The family B is p-isolated for the σ(X,Z)-topology.
(2) There exists a family

L :=
{
ϕi : X → [0,+∞)

∣∣ i ∈ I
}

of p-convex and σ(X,Z) lower semicontinuous functions such that for
every i ∈ I {

x ∈ X
∣∣ ϕi(x) > 0

}
∩
⋃
j∈I

Bj = Bi.
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(3) There exists a family

L :=
{
ψi : X → [0,+∞)

∣∣ i ∈ I
}

of p-convex and σ(X,Z)-lower semicontinuous functions and numbers 0 ≤
α ≤ β such that for every i, j ∈ I,

ψi(Bi) > β ≥ α ≥ ψi(Bj).

Proof. Let us assume that the family B is σ(X,Z) p-isolated. Applying Proposi-
tion 2.7, we may consider ϕi to be the Z-distance to

cop
⋃

{Bj : j 6= i, j ∈ I}
σ(X∗∗,X∗)

for every i ∈ I. Consider on X∗∗ the topology σ(X∗∗, Z). This topology is not
Hausdorff in general, but it is coarser than the topology generated by the semi-
norm ‖ · ‖Z . In particular, the ‖ · ‖Z-distance to a σ(X∗∗, Z)-closed subset of X∗∗

from outer points is strictly positive. Our hypothesis on the p-isolated character
of the family B tells us that when a point x belongs to the set Bi of the family B,
then there is a σ(X,Z)-open subset W 3 x such that

W ∩ cop
⋃

{Bj | j 6= i, j ∈ I} = ∅.

There is a σ(X∗∗, Z)-open set W̃ such that W = X ∩ W̃ . We have

cop
⋃

{Bj | j 6= i, j ∈ I} ⊂ X∗∗ \ W̃

and so

cop
⋃

{Bj | j 6= i, j ∈ I}
σ(X∗∗,X∗)

⊂ cop
⋃

{Bj | j 6= i, j ∈ I}
σ(X∗∗,Z)

⊂ X∗∗ \ W̃ .

After the previous considerations, that implies ϕi(x) > 0. Clearly we also have
ϕj(x) = 0 for every j ∈ I with j 6= i.

Condition (2) clearly implies (3), with α = β = 0.
Finally, if we assume (3), given a family L := {ψi : X → [0,+∞) | i ∈ I} of

p-convex and σ(X,Z)-lower semicontinuous functions such that the conditions in
(3) are satisfied, we will have, by the p-convexity of the function ψi, that ψi(y) ≤ α
for every y ∈ cop

⋃
{Bj | j 6= i, j ∈ I} and also, by the lower semicontinuity of ψi,

for every y ∈ cop
⋃

{Bj | j 6= i, j ∈ I}
σ(X,Z)

. Therefore, for every i ∈ I and x ∈ Bi

we have x /∈ cop
⋃

{Bj | j 6= i, j ∈ I}
σ(X,Z)

, and this finishes the proof of the
σ(X,Z)-p-isolated property of the family B. �

3. Construction of a Kadec F -norm

The following concept is a crucial one in the study of locally bounded topolog-
ical vector spaces (see [16, p. 159]).

Definition 3.1 (Quasinorm). A quasinorm in a vector space X is a function q :
X → [0,+∞) such that

(1) x = 0 if, and only if, q(x) = 0;
(2) q(αx) = |α|q(x) for every α ∈ R and x ∈ X;
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(3) there exists k ≥ 1 such that q(x+ y) ≤ k(q(x) + q(y)) for every x, y ∈ X.

We begin to deal first with the construction of a Kadec quasinorm from where
the F -norm will follow. Our approach is based on the network property that
characterizes descriptive Banach spaces (see theorems 1.2 and 1.5 in [8]).

Let us summarize the facts in the following theorem.

Theorem 3.2 (Kadec quasirenorming). Let (X, ‖ · ‖) be a normed space with an
1-norming subspace Z in X∗. Then the following conditions are equivalent.

(1) There is a sequence (An) of subsets of X such that for every ε > 0 and
x ∈ X there is some integer p together with a σ(X,Z)-open set W such
that x ∈ Ap ∩W and ‖ · ‖-diam(Ap ∩W ) < ε

(2) For every ε > 0 there is an equivalent σ(X,Z)-lower semicontinuous
quasinorm qε(·) on X such that
(a) (1− ε)‖x‖ ≤ qε(x) ≤ (1 + ε)‖x‖ for every x ∈ X,
(b) qε(x+ y) ≤ 1+ε

1−ε
(qε(x) + qε(y)) for every x, y ∈ X,

(c) σ(X,Z) coincides with the norm topology on the “unit sphere”{
x ∈ X : qε(x) = 1

}
.

(3) The normed space X is σ(X,Z)−descriptive; that is, there are isolated
families for the σ(X,Z)-topology

{Bn | n = 1, 2, . . .}
in X such that, for every x ∈ X and every ε > 0, there is n ∈ N and a
set B ∈ Bn with the property that x ∈ B and that ‖ · ‖- diam(B) < ε.

(4) There is a metric d on X generating a topology finer than the weak topology
on X and such that the identity map from (X, σ(X,Z)) into (X, d) is
σ-continuous.

(5) There exists a network N for the σ(X,X∗) topology that can be written
as a countable union of subfamilies, N =

⋃
n∈N Nn, where each one of the

subfamilies Nn is σ(X,F )-isolated.

The former theorem is a strong reformulation of the conditions used by Raja
to construct a Kadec function F in every normed space X with countable cover
by sets of small local diameter. Our different approach here will permit the con-
struction of a Kadec F -norm as well as to show a precise connection between
metrization theory and Kadec renormability in next section. Our proof is based
on two fundamental lemmas. The first is a decomposition lemma and shows how
to decompose an isolated family of sets into countable many pn-isolated families;
the second is a connection lemma between the existence of a p-isolated family
and the Kadec property.

Lemma 3.3 (Decomposition lemma). Let (X, ‖ · ‖) be a normed space and let Z
be a norming subspace in X∗. Let B be a uniformly bounded and isolated family
of sets for the σ(X,Z) topology. Then for every B ∈ B we can write

B =
∞⋃
n=1

Bn
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in such a way that, for every n ∈ N fixed, the family {Bn | B ∈ B} is σ(X,Z)-qn-
isolated for some qn ∈ (0, 1]. The sequence (qn) can be taken to be nonincreasing
and with limit 0.

Proof. Without loss of generality, we may assume that Z is 1-norming, so the
closed balls B[0, r] are σ(X,Z)-closed for any radius r > 0. Given a neighborhood
W of the origin in the σ(X,Z)-topology, let us define the width of W as

wd(W ) := sup
{
δ > 0

∣∣ B(0, δ) ⊆ W
}
.

Without lose of generality, we may assume that B is contained in the unit ball
of X. Set An,k := B[0, k

4n
] \ B[0, k−1

4n
] and denote by U the family of all convex

and σ(X,Z)-open neighborhoods of the origin in X. The isolated family B for
the σ(X,Z)-topology can be decomposed as

B =
⋃
n∈N

⋃
k≤4n

Bn,k,

where

Bn,k :=
{
x ∈ B ∩ An,k

∣∣ ∃W ∈ U ,wd(W ) > n−1,

(x+W ) ∩B′ = ∅ ∀B′ ∈ B \ {B}
}
.

We will see that the family {Bn,k | B ∈ B} is q-isolated whenever q satisfies the
inequality

q(1− q)1/q−1 <
1

4n
,

which clearly implies the statement of the lemma after reindexing the sets. The
statement about the sequence (qn) can be derived from the fact that the term on
the left-hand side has limit 0 as q goes to 0. In order to show the q-isolatedness of
{Bn,k | B ∈ B}, fix a point x ∈ Bn,k. By the definition of the set there is a open
neighborhood of the origin W in the σ(X,Z)-topology, with B(0, 1/n) ⊆ W , and
(x+W ) ∩B′ = ∅ for every B′ ∈ B \ {B}. In particular we see that(

x+
1

4
W

)
∩
(
B′ + B

(
0,

3

4n

))
= ∅

for every B′ ∈ B \ {B}. Now we claim that((
x+

1

4
W

) ∖
B
[
0,
k − 1

4n

])
∩ coq

⋃{
B′ ∩ An,k

∣∣ B′ ∈ B \ {B}
}
= ∅

which implies the desired σ(X,Z)-q-isolatedness as the first set is a σ(X,Z)-open
neighborhood of x. Indeed, suppose that y ∈ coq

⋃
{B′ ∩ An,k | B′ ∈ B \ {B}}.

Then, for some B′ ∈ B \ {B} there are x′ ∈ B′ ∩ An,k and λ ∈ [0, 1] such that
y ∈ λx′ + B[0, 1

4n
] by Lemma 2.3. Since y /∈ B(0, k−1

4n
), we have λx′ /∈ B[0, k−2

4n
].

Since x′ ∈ An,k, we get ‖x′ − λx′‖ ≤ 2
4n
. Therefore y ∈ x′ + B(0, 3

4n
) ⊂ B′ +

B(0, 3
4n
) which is incompatible with y ∈ x+ 1

4
W . �
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The following variant of Deville’s master lemma was proved, for sequences,
by Haydon (see Proposition 1.2 of [9]) to construct Kadec norms is spaces C(Υ),
where Υ is a tree. The following net version has been used in [2]; we will use it here
to describe the connection between Haydon’s approach and Stone’s discreteness.

Lemma 3.4 ([2, Lemma 5.3]). Let X be a topological space, let S be a set, and
let ϕs, ψs : X → [0,+∞) be lower semicontinuous functions such that

sup
s∈S

(
ϕs(x) + ψs(x)

)
< +∞

for every x ∈ X. Define

ϕ(x) = sup
s∈S

ϕs(x), θm(x) = sup
s∈S

(
ϕs(x) + 2−mψs(x)

)
,

θ(x) =
∑
m∈N

2−mθm(x).

Assume further that {xσ}σ∈Σ is a net converging to x ∈ X and θ(xσ) → θ(x).
Then there exist a finer net {xγ}γ∈Γ and a net {iγ}γ∈Γ ⊆ S such that

lim
γ∈Γ

ϕiγ (xγ) = lim
γ∈Γ

ϕiγ (x) = lim
γ∈Γ

ϕ(xγ) = sup
s∈S

ϕs(x)

and

lim
γ∈Γ

(
ψiγ (xγ)− ψiγ (x)

)
= 0.

We can now state the connection lemma between Haydon’s approach and
Stone’s discreteness in the following.

Theorem 3.5 (p-connection). Let (X, ‖ · ‖) be a normed space and let Z be a
norming subspace in X∗. Let B := {Bi | i ∈ I} be an uniformly bounded and
p-isolated family of subsets of X for the σ(X,Z)-topology and some p ∈ (0, 1].
Then there is an equivalent σ(X,Z)-lower semicontinuous quasinorm, with
p-power a p-norm, ‖ · ‖B on X such that, for every net {xα | α ∈ A} and x in X
with x ∈ Bi0 for i0 ∈ I, the conditions σ(X,Z)- limα xα = x and limα ‖xα‖B =
‖x‖B imply that

(1) there exists α0 ∈ A such that xα is not in cop
⋃

{Bi | i 6= i0, i ∈ I}
σ(X,Z)

for α ≥ α0;
(2) for every positive δ there exists αδ ∈ A such that

x, xα ∈
(
co

(
Bi0 ∪ {0}

)
+ B(0, δ)

)σ(X,Z)

whenever α ≥ αδ.

Proof. Without loss of generality we may assume that Z is 1-norming. Let us fix
the index i ∈ I and define the function ϕi as the Z-distance to the set

cop
⋃

{Bj | j 6= i, j ∈ I}
σ(X∗∗,X∗)

.
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Recall that ϕi is 1-Lipschitz, p-convex, and σ(X,Z)-lower semicontinuous thanks
to Proposition 2.7. Let us set Di := co (Bi ∪ {0}), Dδ

i := Di + B(0, δ), where

B(0, δ) :=
{
x ∈ X

∣∣ ‖x‖Z < δ
}
,

for every δ > 0 and i ∈ I. We will denote by pδi the Minkowski functional of the

convex body Dδ
i

σ(X,Z)
which is obviously sublinear, Lipschitz, and σ(X,Z)-lower

semicontinuous. Then, for x ∈ X, we define the σ(X,Z)-lower semicontinuous
norms ψi with the formula

ψi(x) =
∑
n∈N

1

n2n
p
1/n
i (x)

for every x ∈ X. It is well defined and σ(X,Z)-lower semicontinuous. Indeed,

since B(0, δ) ⊂ Dδ
i

σ(X,Z)
, we have, for every x ∈ X and δ > 0, pδi (δx/‖x‖Z) ≤ 1,

and thus δpδi (x) ≤ ‖x‖Z , and hence the above series converge. Note that this also
gives that ψi is 1-Lipschitz. We are now in position to apply Lemma 3.4 to get
an equivalent quasinorm ‖ · ‖B on X such that the condition limα ‖xα‖B = ‖x‖B
together with σ(X,Z)- limα xα = x for a net {xα | α ∈ A} and x in X imply the
existence of a finer net {xβ}β∈B and a net (iβ)β∈B in I satisfying the conditions

(1) limβ ϕ(xβ) = limβ ϕiβ(x) = limβ ϕiβ(xβ) = supi∈I ϕi(x),
(2) limβ(ψiβ(xβ)− ψiβ(x)) = 0.

Indeed, using the definitions in Haydon’s Lemma 3.4, we introduce the functions

θm(x) := sup
{
ϕi(x) + 2−mψi(x)

∣∣ i ∈ I
}
,

θ(x) := ‖x‖Z +
∑
m∈N

2−m
(
θm(x) + θm(−x)

)
.

Note that θm is p-convex, σ(X,Z)-lower semicontinuous, and 2-Lipschitz. That
gives us that θ is a symmetric, p-convex, σ(X,Z)-lower semicontinuous, and
5-Lipschitz function such that limα θ(xα) = θ(x) together with σ(X,Z)- limα xα =
x imply the conditions (1) and (2) above by Haydon’s lemma. Since B is a
uniformly bounded family, the ‖ · ‖Z-1-Lipschitz functions {ϕi, ψi : i ∈ I} are
uniformly bounded on bounded sets, thus there is ρ > 0 such that BX ⊂
{x ∈ X | θ(x) ≤ ρ}

The Minkowski functional of the p-convex set

D :=
{
x ∈ X

∣∣ θ(x) ≤ ρ
}

provide us with the quasinorm ‖ · ‖B we are looking for. Also, [11, Theorem 6.4.4,
p. 107] tells us that its p-power ‖ · ‖pB is uniformly continuous and so an equivalent
p-norm on X with

‖ · ‖B ≤ ‖ · ‖ ≤ ρ‖ · ‖B.
Let us take a net {xα | α ∈ (A,�)} and x in X with ‖x‖B = 1 verifying that
limα ‖xα‖B = ‖x‖B and such that x is the σ(X,Z)-limit of the net (xα). We claim
that

lim
α
θ(xα) = ρ.
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Indeed, for every α ∈ A we can write xα = (1 + ηα)yα, where 1 + ηα > 0
and θ(yα) = ρ. Notice that limα∈A ηα = 0 since limα ‖xα‖B = ‖x‖B = 1. Thus
limα ‖xα − yα‖ = limα ηα‖yα‖ = 0 by the boundedness of D, and limα θ(xα) =
limα θ(yα) = ρ since θ is Lipschitz.

Our hypothesis on the p-isolated character of the family B gives us that

x /∈ cop
⋃

{Bi | i 6= i0, i ∈ I}
σ(X,Z)

whenever x ∈ Bi0 , and so ϕi0(x) > 0 but ϕi(x) = 0 for all i ∈ I with i 6= i0 (see
Theorem 2.10).

From the condition (1) above there exists β0 such that iβ = i0 and ϕi0(xβ) > 0
for all β ≥ β0, from where the conclusion (1) of the theorem will follow. More-
over, the condition (2) above implies that limβ(ψiβ(xβ) − ψiβ(x)) = 0, and thus
limβ ψi0(xβ) = ψi0(x). Then we have

ψi0(x) =
∑
n∈N

1

n2n
p
1/n
i0

(x) ≤
∑
n∈N

1

n2n
lim inf

β
p
1/n
i0

(xβ) ≤ lim inf
β

∑
n∈N

1

n2n
p
1/n
i0

(xβ)

= lim
β

∑
n∈N

1

n2n
p
1/n
i0

(xβ) = lim
β
ψi0(xβ) = ψi0(x) =

∑
n∈N

1

n2n
p
1/n
i0

(x),

where the first inequality comes from the lower semicontinuity and the second one
is just Fatou’s lemma for positive series. It now follows for every positive integer
n that

lim inf
β

p
1/n
i0

(xβ) = p
1/n
i0

(x).

If we fix a positive number δ and we set the integer q such that 1/q < δ, since

x ∈ D
1/q
i0

, we have that p
1/q
i0

(x) < 1 because D
1/q
i0

is norm-open and therefore, for

every β ∈ B, there is γβ ≥ β such that p
1/q
i0

(xγβ) < 1, and thus xγβ ∈ Dδ
i0

σ(X,Z)
,

and indeed xγβ ∈ (co(Bi0 ∪ {0}) + B(0, δ))
σ(X,Z)

. The proof is over, since our
reasoning is valid for any subnet of the original one {xα | α ∈ A}. �

Remark 3.6. The following observations will be useful.

(1) For every α > 1 it is possible to construct the former quasinorm ‖ · ‖B
such that

‖x‖Z ≤ ‖x‖B ≤ 4 + α

α
‖x‖Z

for every x ∈ X.
(2) If ε ∈ (0, 1) is fixed, we can select α > 1 large enough, then we see that

‖ · ‖Z ≤ ‖ · ‖B ≤ (1 + ε)‖ · ‖Z .

Consequently the quasinorm constructed verifies

‖x+ y‖B ≤ (1 + ε)
(
‖x‖B + ‖y‖B

)
for all x, y ∈ X.
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Proof. Only (1) needs some explanation. Recall that θ is 5-Lipschitz with respect
to ‖ · ‖Z . That clearly implies that θ(x) ≤ 5 whenever ‖x‖Z ≤ 1. Consider the
function

θα(x) := θ(x) + (α− 1)‖x‖Z ,
which can be understood as a modification on the very definition of θ using α‖ · ‖
instead of ‖ · ‖. We have θα(x) ≤ 4 + α if ‖x‖Z ≤ 1, and θα(x) ≤ 4 + α implies
that ‖x‖Z ≤ 4+α

α
. Consider the set

Dα =
{
x ∈ X

∣∣ θα(x) ≤ 4 + α
}
.

The previous inequalities imply that

BX ⊂ Dα ⊂ 4 + α

α
BX .

Let ‖ · ‖B,α be the Minkowski functional of α
4+α

Dα. Then ‖ · ‖B,α has all the prop-

erties of ‖ · ‖B and, moreover,

‖ · ‖Z ≤ ‖ · ‖B,α ≤ 4 + α

α
‖ · ‖Z ,

as we wanted. �

We are able now to prove Theorem 3.2.

Proof of Theorem 3.2. We will prove the equivalence of all the statements.
(3) ⇒ (2) The decomposition Lemma 3.3 says that we have a decomposition

of the sets in the family Bn obtaining families Bm
n , m = 1, 2, . . . , with Bm

n being
qn,m-isolated for all m,n = 1, 2, . . . . Therefore it is not a restriction to renumber
the sequence and to assume that the given family Bn is already pn-isolated for
n = 1, 2, . . . . We can now consider the equivalent quasinorms ‖ · ‖Bn

constructed
using the p-connection Theorem 3.5 for every one of the families Bn. We will
define now an equivalent quasinorm on X with the expression:

9x9 :=
∑
n∈N

cn‖x‖Bn

for every x ∈ X, where the sequence (cn)n∈N is chosen accordingly for the con-
vergence of the series. That is possible since we may, and do assume, that the
following inequality holds

(1− δ)‖x‖Z ≤ ‖x‖Bn
≤ (1 + δ)‖x‖Z

for fixed δ > 0, for all n ∈ N, after Remark 3.6.
Let us start by proving the Kadec property. Take a net {xα | α ∈ (A,�)} and

x with

lim
α∈A

9xα9 = 9x9 and σ(X,Z)− lim
α∈A

xα = x.

Then we claim that

lim
α∈A

‖xα‖Bq
= ‖x‖Bq

for every positive integer q.
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Indeed, by the σ(X,Z)-lower semicontinuity of the quasinorms ‖ · ‖Bq
, the series

definition gives that∑
n∈N

cn‖x‖Bn
≤

∑
n∈N

lim inf
α∈A

cn‖xα‖Bn

≤ lim inf
α∈A

∑
n∈N

cn‖xα‖Bn
= lim

α∈A

∑
n∈N

cn‖xα‖Bn
=

∑
n∈N

cn‖x‖Bn

and then

lim inf
α∈A

‖xα‖Bq
= ‖x‖Bq

for every q ∈ N. Since this argument can be performed for every subnet, we easily
see that limα∈A ‖xα‖Bq

exists and thus our claim is proved.
Now, given ε > 0 let us consider the positive integer q such that for some

B ∈ Bq we have x ∈ B and ‖ · ‖-diam(B) < ε/2. Theorem 3.5 tells us that there
is some αε/2 such that

xα ∈ co
(
B ∪ {0}

)
+ B(0, ε/2)

σ(X,Z)

whenever α � αε/2. We have ‖ · ‖-dist(xα, Ix) ≤ ε for α � αε/2, where Ix is the
segment joining x with the origin, and so there are numbers r(α,ε) ∈ [0, 1] such
that

‖xα − r(α,ε)x‖ ≤ ε

for every α � αε/2. Now we consider the directed set A×(0, 1] with the product or-
der where in the interval (0, 1] we consider the order of ε decreasing to 0. Then we
can consider the subset D := {(α, ε) ∈ A× (0, 1] | α � αε/2} which is a directed
set with the induced order. Then for the net of numbers {r(α,ε) | (α, ε) ∈ D} there
is a subnet map σ : B → D for some directed set (B,�) such that r := limβ rσ(β)
exists by the compactness of the unit interval [0, 1]. Let us denote with σ the
composition of the map σ with the projection from A× (0, 1] onto A, which is a
subnet map too, and we have

‖ · ‖- lim
β∈B

xσ(β) = rx.

The hypothesis limα∈A 9xα9 = 9x9 together the norm continuity of the quasi-
norm tells us that 9rx9 = 9x9 6= 0 and so r = 1, which means that the proof is
over because the former reasoning is valid for every subnet of the given net. Then

‖ · ‖- lim
α∈A

xα = x.

Moreover since

‖x+ y‖Bn
≤ 1 + δ

1− δ

(
‖x‖Bn

+ ‖y‖Bn

)
,

we see that

9x+ y9 ≤ 1 + δ

1− δ
(9x9 + 9y9),

and we have constructed the required quasinorm qδ(·) := 9 · 9.
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(2) ⇒ (4) Proposition 2.46 in [21] can be applied to the identity map on X
and the radial set {x ∈ X | q1/2(x) = 1} to get the fact that id : (X, σ(X,Z)) →
(X, ‖ · ‖) is σ-continuous.

(4) ⇒ (3) The identity map from (X, d) to (X, ‖ · ‖) is σ-continuous. Indeed,
any d-convergent sequence is weakly convergent, so its limit must be in the closed
convex hull of the sequence and therefore the hypothesis of Corollary 2.20 of [21]
are satisfied, what gives us the σ-continuity. The identity map from (X, σ(X,Z))
to (X, ‖ · ‖) is σ-continuous as well by the transitive property [21, Corollary 2.41].
Now we apply Proposition 2.7 from [21] to get our conclusion.

(3) ⇔ (1) Propositions 2.7 and 2.38 in [21] show the equivalence.
(4) ⇒ (5) The use of Stone’s theorem will give the proof. Indeed, as described

in Proposition 2.7 of [21], our hypothesis implies we will have σ(X,Z)-isolated
families Nm for m = 1, 2, . . . such that, for every x ∈ X and every ε > 0 there is
some integer p and some set N ∈ Np such that x ∈ N ⊂ Bd(x, ε). Such sequence
of families provides a network for the d-topology and thus a network for any
coarser topology, and in particular for the weak topology.

(5) ⇒ (4) For every n ∈ N let us define, for (x, y) ∈ X×X, ρn(x, y) = 0 if both
x and y belongs to the same set of Nn, and ρn(x, y) = 1 otherwise. It follows that
ρn is a semi-metric on X. We now define

ρ(x, y) :=
∞∑
n=1

1

2n
ρn(x, y),

for all (x, y) ∈ X × X, which provides us a metric on X generating a topology
finer than the weak topology and such that the identity map from (X, σ(X,Z))
into (X, ρ) is σ-continuous. Indeed, the family of finite intersections of sets in
N is a basis for the ρ-topology which is σ-isolated in the topology σ(X,Z).
Proposition 2.7 in [21] concludes that the identity map from (X, σ(X,Z)) into
(X, ρ) is σ-continuous. �

Now we can prove first two equivalences in our main Theorem 1.2.

Corollary 3.7. Let (X, ‖ · ‖) be a normed space with a norming subspace Z
in X∗. Then the following conditions are equivalent.

(1) There is a norm-equivalent σ(X,Z)-lower semicontinuous and σ(X,Z)-
Kadec F -norm ‖·‖0 on X, that is, an F -norm ‖·‖0 such that the σ(X,Z)
and norm topologies coincide on the unit “sphere” {x ∈ X | ‖x‖0 = 1} and
such that the topology determined by the F -norm ‖·‖0 on X coincides with
the topology of the norm ‖ · ‖.

(2) There are isolated families Bn for the σ(X,Z)-topology, n = 1, 2, . . . such
that, for every x ∈ X and every ε > 0,there exist n ∈ N and a set B ∈ Bn

with the property that x ∈ B and that ‖ · ‖-diam(B) < ε.

Proof. Statement (2) here corresponds with (3) in Theorem 3.2. Observe that if
we had taken the pn-norm ‖ · ‖pnBn

instead of the quasinorm ‖ · ‖Bn
in the proof

(3) ⇒ (2) above, then the function

‖x‖0 :=
∑
n∈N

an‖x‖pnBn
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(where an are again chosen accordingly for the uniform convergence of the se-
ries on bounded sets) would be a norm-equivalent σ(X,Z)-lower semicontinouos
Kadec F -norm, and then the proof (2) ⇒ (1) follows. Indeed, properties of
F -norm are derived by the ones of the p-norms together with the uniform conver-
gence of the series on bounded sets. For the reverse implication, take Aq :=
{x ∈ X | ‖x‖0 ≤ q} for every positive rational number q. It follows that this
countable family of subsets of X satisfies statement (1) of Theorem 3.2 because
limα ‖xα‖0 = ‖x‖0 and σ(X,Z) − limα xα = x imply that ‖ · ‖ − limα xα = x
for any net {xα : α ∈ A}. Indeed, it now follows that, given x ∈ X and ε > 0,
there are rational numbers q1 < ‖x‖0 < q2 and some σ(X,Z)-neighborhood of
the origin W such that the set {y ∈ Aq2 ∩ (x +W ) : ‖y‖0 > q1} is a relatively
σ(X,Z)-open subset of Aq2 containing x with norm diameter at most ε. �

Remark 3.8. Note that we have an alternative argument to Lemma 1.3 of the
Introduction leading to uniform continuity. Indeed, both F -norms and quasinorms
are norm uniformly continuous functions, as any F -norm is a Lipschitz function
as well as the quasinorms constructed in Theorem 3.4.

4. Kadec meets Bing–Nagata–Smirnov–Stone

Acording to Corollary 3.7, we have proved the equivalence between the exis-
tence of a Kadec F -norm and the existence of a network for the norm topology
which is σ-isolated for the weak topology. What we add in this Section is that
it is always possible to do it with a σ-discrete basis B =

⋃∞
n=1 Bn of the norm

topology such that every family Bn is isolated in the weak topology, thus prov-
ing the equivalence (1) ⇔ (2) ⇔ (3) of our main Theorem 1.2. This result links
Stone’s Theorem 4.4.1, Nagata–Smirnov metrization Theorem 4.4.7, and Bing’s
metrization Theorem 4.4.8 in [6, p. 349–353] with the norm topology of a normed
space with Kadec F -norm.

Let us begin with the following fattening lemma. Our Theorem 2.10 gives the
tool for the proof. It follows the same arguments as the convex case done in
Proposition 2.4 of [25]. We include the proof for completeness.

Lemma 4.1. Let X be a normed space with a norming subspace Z ⊆ X∗. Given
a uniformly bounded and σ(X,Z)-p-isolated family A := {Ai | i ∈ I} of subsets
in X there exist decompositions Ai =

⋃
n∈NA

n
i with

A1
i ⊆ A2

i ⊆ · · · ⊆ An
i ⊆ An+1

i ⊆ · · · ⊆ Ai

for every i ∈ I and such that the families{
An

i + B‖·‖Z (0, 1/4n)
∣∣ i ∈ I

}
are σ(X,Z)-p-isolated and norm-discrete for every n ∈ N.

Proof. Without loss of generality, we may assume that Z is 1-norming. Let us

denote by ϕi the Z-distance to the set cop
⋃

{Aj | j 6= i}
σ(X∗∗,X∗)

. Theorem 2.10
gives us the scalpel to split up the sets of the family using these p-convex functions.
Indeed, let us define An

i := {x ∈ Ai | ϕi(x) > 1/n}, and we have Ai =
⋃

n∈NA
n
i .

Recall that ϕi is 1-Lipschitz, therefore if x ∈ An
i + BZ(0, 1/4n), then we have
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ϕi(x) > 3/4n. On the other hand, if x ∈ An
j + BZ(0, 1/4n) with j 6= i, then

ϕi(x) ≤ 1/4n again by the Lipschitz property. This means that the family{
An

i + B‖·‖Z (0, 1/4n)
}
i∈I

verifies the condition (3) of Theorem 2.10 with the functions (ϕi)i∈I and constants
α = 1/4n, β = 3/4n. Thus it is σ(X,Z)-p isolated, as we wanted to prove.
Moreover, the former family is discrete for the norm topology. In order to see
that, fix δ ∈ (0, 1/4n). Then for any z ∈ X we have that

B‖·‖Z (z, δ) ∩
⋃
i∈I

{
An

i + B‖·‖Z (0, 1/4n)
}

has nonempty intersection with at most one member of the family, otherwise we
will easily arrive to a contradiction with the 1-Lipschitz property of the functions
(ϕi)i∈I . Indeed, if x ∈ An

i + BZ(0, 1/4n) and y ∈ An
j + BZ(0, 1/4n) with i 6= j,

then ϕi(x) ≤ 1/4n and ϕi(y) ≥ 3/4n. If x, y ∈ B‖·‖Z (z, δ), then we would have
ϕi(y)− ϕi(x) ≥ 1/2n > 2δ ≥ ‖y − x‖Z , which is a contradiction. �

Now we can prove the following

Proposition 4.2. Let X be a normed space and let Z be a norming subspace
in the dual space X∗. Let us assume that the space X admits an equivalent
σ(X,Z)-lower semicontinuous and σ(X,Z)-Kadec F -norm (or quasinorm). Then
the norm topology admits a network

N =
⋃
n∈N

Nn,

where each one of the families Nn is σ(X,Z)-pn-isolated, for some pn ∈ (0, 1], and
it consists of sets which are difference of a σ(X,Z)-closed set and a σ(X,Z)-closed
pn-convex subset of X. Moreover, there is δn ↘ 0 such that Nn + B‖·‖Z (0, δn) is
norm-discrete and σ(X,Z)-isolated for every n ∈ N.

Proof. By Theorem 3.2, we have network M =
⋃

n∈N Mn of the norm topology
such that every one of the families Mr := {Mr,i | i ∈ Ir} are σ(X,Z)-isolated.
The decomposition Lemma 3.3 provides us with a decomposition of the sets in
the family Mr producing families Mn

r , n = 1, 2, . . . with Mn
r being qr,n-isolated

for all r, n = 1, 2, . . . . We see that it is not a restriction to renumber sequences
and assume that the given family Mr is already pr-isolated for r = 1, 2, . . . and
0 < pr ≤ 1. Let us perform the following decomposition.

Denote by ϕr,i the Z-distance to

copr {Mr,j | j 6= i, j ∈ Ir}
σ(X∗∗,X∗)

,

and define

Nn
r,i :=

{
x ∈Mr,i

σ(X,Z)
∣∣∣ ϕr,i(x) >

3

4n

}
.

The fact that each one of the families N n
r := {Nn

r,i | i ∈ Ir} is σ(X,Z)-pr-isolated
follows from Theorem 2.10. Indeed, the pr-convexity of the functions ϕr,i tell
us that ϕr,j(y) = 0 for every y ∈ copr(Mr,i) and j 6= i, j ∈ Ir. The lower
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semicontinuity finally gives us ϕr,j(y) = 0 for every y ∈ Mr,i
σ(X,Z)

. Moreover,

each one of the sets Nn
r,i is the difference of the σ(X,Z)-closed set Mr,i

σ(X,Z)
and

the σ(X;Z)-closed and pr-convex set {x ∈ X | ϕr,i(x) ≤ 3/4n}.
We claim that

⋃
r,n∈N N n

r is the network we are looking for. Indeed, given x ∈ X,

there is r ∈ N and i ∈ Ir such that x ∈ Mr,i ⊆ x+ BZ(0, ε). Then for n ∈ N big
enough we have

x ∈ Nn
r,i ⊂Mr,i

σ(X,Z) ⊆ x+ BZ [0, ε] (4.1)

since x+BZ [0, ε] is σ(X,Z)-closed set.Moreover, as the functionϕr,i is 1-Lipschitz,
we have here that ϕr,i(z) > 3/4n − µ whenever z ∈ Nn

r,i + BZ(0, µ); and
ϕr,i(z) ≤ µ whenever z ∈ Nn

r,j + BZ(0, µ) with j 6= i, j ∈ Ir. Let us choose
δn such that 0 < 2δn < 3/4n − δn, and then we have that the sets in the family
{Nn

r,i + BZ(0, δn) | i ∈ Ir} are disjoint norm-open sets and they form a norm-
discrete and σ(X,Z)-pr-isolated family by Theorem 2.10 again. �

We are now able to complete proof of equivalences in our main Theorem 1.2.

Proof of (1) ⇔ (2) ⇔ (3) in Theorem 1.2. From the network constructed in the
preceding proposition, we continue with the same notations and observe that
when we add open balls of small radius the network provided above will become
the basis of the norm topology we are looking for in statement (3) of Theorem 1.2.
Indeed, we complete inclusion (4.1) arguing that

x ∈ Nn
r,i + BZ(0, δn) ⊂Mr,i

σ(X,Z)
+ BZ(0, δn) ⊆ x+ BZ(0, 2ε)

if we take the integer n large enough. So the family⋃
n,r∈N

{
Nn

r,i + BZ(0, δn)
∣∣ i ∈ Ir

}
is a basis of the norm topology with the required properties. The converse follows
from statement (3) in Theorem 3.2 �

5. Some applications for C (K) spaces

Let us recall the following definition related to descriptiveness (see [12]).

Definition 5.1. Let (X, τ) be a topological space and let d be a metric on X. It is
said that X has countable cover by sets of small local diameter (d-SLD, for short)
if for every ε > 0 there exists a decomposition

X =
⋃
n∈N

Xε
n

such that, for each n ∈ N, every point of Xε
n has a relatively nonempty τ neigh-

borhood of d-diameter less than ε.

In other words (X, τ) has d-SLD if and only if the identity map from (X, τ) into
(X, d) is σ-continuous. If (X, τ) is of the kind Cp(K) or a Banach space endowed
with its weak topology, then X has ‖ · ‖-SLD if and only if the normed space X
is τ -descriptive (see [24] and Chapter 3 in [21]).
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In [10], it was shown that, for every compact totally ordered space K, the space
C (K) has a pointwise-Kadec renorming. For an arbitrary product of compact
linearly ordered spaces, the same is true by [2]. Lexicographic products provide
a wide class of examples of compact spaces K such that C(K) has a pointwise
Kadec equivalent norm but not equivalent LUR norm. It is unknown whether
the existence of a pointwise-Kadec renorming for each of C (K) and C (L) implies
the existence of such a renorming for C (K × L). If L belongs to the class of
spaces obtained by closing the class of compact metrizable spaces under inverse
limits of transfinite continuous sequences of retractions, then C (K × L) has a
pointwise-Kadec renorming was a main result in [2]. Ribarska and Babev have
proved in [30] that the function space C (K × L) has an equivalent LUR norm
provided that both C (K) and C (L) are LUR renormable. An analogous result
holds for LUR norms which are pointwise lower semicontinuous. The main result
in [29] is the following.

Theorem 5.2. If K and L are Hausdorff compacta such that Cp(K) admits a
pointwise Kadec norm and Cp(L) has ‖ · ‖-SLD, then Cp(K × L) has ‖ · ‖-SLD.

Actually Ribarska observed that the theorem is possible to be proved with
the following hypothesis, instead of the existence of a pointwise Kadec norm:
there exists a nonnegative, homogeneous, norm-continuous, and pointwise lower
semicontinuous function F on Cp(K) with ‖h‖ ≤ F (h) ≤ 2‖h‖ whenever h ∈
C (K) and such that the norm and the pointwise topology coincide on the set
S = {h ∈ C (K) | F (h) = 1}. Using Lemma 1.3 or Remark 3.8 for Theorem 3.2
we arrive to the following result.

Theorem 5.3. If K and L are Hausdorff compacta such that both Cp(K) and
Cp(L) have ‖ · ‖-SLD, then Cp(K × L) has ‖ · ‖-SLD.

We will continue proving more permanence results for the class of compact
Hausdorff spaces K such that Cp(K) has ‖ · ‖-SLD. In that context, Theorem 5.3
is the starting point. Similar results are going to be valid for the class of compact
Hausdorff spaces K such that C (K) has an equivalent LUR norm. Thus by prop-
erty (R), we will denote one of the following three properties: “having ‖ · ‖-SLD
with the pointwise topology,” “having an equivalent LUR norm,” or “having an
equivalent pointwise lower semicontinuous LUR norm.” The following generalizes
Corollary 8 of [18].

Theorem 5.4. Let K be a compact space and let Kn ⊆ K be compact subsets such
that every space C (Kn) has the property (R). If there is a lower semicontinuous
metric d on K such that

K =
⋃
n∈N

Kn

d

,

then C (K) has the property (R).

Proof. We will prove the result when the property (R) is the LUR renormability
of the space, and we will give hints to modify the proof for the other properties.
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Let ‖ · ‖n an equivalent LUR norm on C (Kn) bounded by the supremum norm.
For every n ∈ N, define

On(f) = sup
{∣∣f(x)− f(y)

∣∣ ∣∣∣ x, y ∈ K, d(x, y) ≤ 1

n

}
and consider the equivalent norm 9 · 9 on C (K) defined by the formula

9f92 = ‖f‖2 +
∑
n∈N

2−n‖f|Kn
‖2
n
+
∑
n∈N

2−nOn(f)
2.

If we prove that 9 · 9 is a w-LUR norm, then the result will follow from [19].
To see that, suppose that 9fk9 = 9f9 and limk 9fk + f9 = 29f9. A standard
convexity argument [3, Fact II.2.3] gives us that (fk) converges to f uniformly on
every Kn. We claim that (fk(x)) converges to f(x) for every x ∈ X. Fix ε > 0
and take n big enough to have On(f) < ε/3 (this is possible because continuous
functions on K are d-uniformly continuous by the lower semicontinuity of the
metric d over K; see the proof of [27, Theorem 4]). Now take y ∈

⋃
m∈NKm such

that d(x, y) < 1/n. If k is big enough, thenOn(fk) < ε/3 and |fk(y)− f(y)| < ε/3.
We have∣∣fk(x)− f(x)

∣∣ ≤ ∣∣fk(x)− fk(y)
∣∣+ ∣∣fk(y)− f(y)

∣∣+ ∣∣f(y)− f(x)
∣∣ < ε,

and this end the proof of the claim. Thus we have that (fk) converges to f weakly
by Lebesgue’s theorem and 9 · 9 is w-LUR.

For tp-lower semicontinuous LUR renormability, the proof is the same if we
notice that the norm 9 · 9 built above is tp-lower semicontinuous. For ‖ · ‖-SLD
consider the formula

Φ(f) =
∑
n∈N

2−nϕn(f|Kn
) +

∑
n∈N

2−nOn(f),

where ϕn are Kadec functions on C (Kn). The convexity argument above can be
replaced by an argument of lower semicontinuity in order to obtain that Φ is a
Kadec function on C (K). �

Corollary 5.5. Let K be a norm fragmented w∗-compact subset of X∗ and let

H = co(K)
w∗

. If C (K) has the property (R), then C (H) also has the property (R).

Proof. First notice that if K is a norm-fragmented w∗-compact subset of X∗, then

co(K)
w∗

= co(K)
‖·‖

by a result of Namioka [23, Theorema 2.5]. Also notice that if L is a compact
Hausdorff space such that C (L) has the property (R), then C (L′) has the property
(R) for any compact L′ which is continuous image of L. LetKn be the set of convex
combinations of at most n points of K. It is easy to see that Kn is compact and
continuous image of L = ∆×Kn, where

∆ =
{
(λi)

n
i=1

∣∣∣ λi ≥ 0,
n∑

i=1

λi = 1
}
.



304 S. FERRARI ET AL.

By Ribarska’s result, C (L) has the property (R), and so C (Kn) does also. Now

we have H =
⋃

n∈NKn, and the result follows from Proposition 5.4. �

Under the hypothesis of the preceding corollary, the LUR norm can be made
pointwise lower semicontinuous always. Indeed, for a Radon–Nikodým compact
K, the space C (K) has an equivalent pointwise lower semicontinuous norm such
that pointwise and weak topologies coincide on the unit sphere by [27, Theorem 4].
Then it is possible to apply [28, Theorem A].

6. Open problems

In relation to the descriptive properties, let us remind that for a descriptive
Banach space the family of weak Borel sets coincides with the norm Borel sets (see
[8], [24]). Based on a sophisticated construction of Todorcevic [31], Marciszewki
and Pol have proved that it is consistent the existence of a compact scattered
space K such that in the function space C (K) each norm-open set is an Fσ-set
with respect to the weak topology, but the identity map

Id :
(
C (K), w

)
→

(
C (K), ‖ · ‖∞

)
is not σ-continuous (see [17]). Descriptive Banach spaces are weakly Čech ana-
lytic and coincide with the ones that can be represented with a Souslin scheme
of Borel subsets in their σ(X∗∗, X∗) biduals. The fact that every weakly Čech
analytic Banach space is σ-fragmented is the main result in [14]. The reverse
implications are open questions considered in [12], [13], and we recall here the
following problem.

Problem 6.1. Is there any gap between the classes of descriptive Banach spaces
and that of σ-fragmented Banach spaces?

After the seminal work of Hansell in [8], we know that a covering property on
the weak topology of a Banach space, known as hereditarely weakly θ-refinability,
is a necessary and sufficient condition for the coincidence of both classes. Indeed,
all known examples of normed spaces which are not weakly θ-refinable are not
σ-fragmentable by the norm (see [4], [5]). For spaces of continuous functions on
trees, Haydon has proved that there is no gap between σ-fragmented and the
pointwise Kadec renormability property of the space (see [9]). We can consider a
particular case of the former question as follows.

Problem 6.2. Let X be a weakly Čech analytic Banach space where every norm-
open set is a countable union of sets which are differences of closed sets for the
weak topology. Does it follow that the identity map Id : (X,w) → (X, ‖ · ‖) is
σ-continuous?

In the particular case of a Banach space X with the Radon–Nikodým property,
it is still an open problem to decide if X has even an equivalent strictly convex
norm. In that case, the LUR renormability reduces to the question of Kadec
renormability by our results in [20]. So we summarize here.
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Problem 6.3. If the Banach space X has the Radon–Nikodým property, does it
follow that X has an equivalent Kadec norm? Does it have an equivalent strictly
convex norm?

Let us remark here that a result of Yost and Plicko in [26, Theorem 3] shows
that the Radon–Nikodým property does not imply the separable complementation
property. Thus there is no possible approach to the former question based on the
projectional resolution of the identity which works for the dual case, as in [7].
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18. A. Moltó, J. Orihuela, and S. Troyanski, Locally uniformly rotund renorming and frag-
mentability, Proc. Lond. Math. Soc. (3) 75 (1997), no. 3, 619–640. Zbl 0909.46011.
MR1466663. DOI 10.1112/S0024611597000452. 302
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