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Abstract. Suppose that A and B are positive operators on an ordered Ba-
nach space with a normal and generating cone satisfying 0 ≤ AB ≤ BA. It is
known that, in this case, we have

r(AB) ≤ r(A)r(B) and r(A+B) ≤ r(A) + r(B).

In this article we consider less restrictive assumptions on A and B which give us
the same inequalities as above. Moreover, we also prove these inequalities in a
more general setting of ordered algebras, and we consider related results in the
Banach algebra setting. We apply our results to the essential spectral radius ress
of AM-compact operators and prove the equality ress(AB +BA) = 2ress(AB)
under reasonable assumptions.

1. Introduction

It is well known that the inequalities

r(AB) ≤ r(A)r(B) and r(A+B) ≤ r(A) + r(B) (1.1)

(for the spectral radius r) hold for arbitrary commuting bounded operators A
and B on every Banach space X. It is also known that inequalities in (1.1) hold
if A and B are positive operators on an ordered Banach space with a normal and
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generating cone satisfying 0 ≤ AB ≤ BA (see, e.g., [22] or [23]). In this article,
we find other less restrictive assumptions under which these inequalities hold.
Closely related conditions to our assumptions have already appeared in different
contexts (see, e.g., [13], [12], [15], [8], and the references therein).

The paper is organized as follows. In Section 3 we prove (1.1) in a general setting
of ordered algebras, and in Section 4 we consider related results in the setting of
Banach algebras. In Sections 5 and 6 we apply our results to the spectral radius
of positive operators and to the essential spectral radius ress of AM-compact
operators. Moreover, we also prove that the equality ress(AB +BA) = 2ress(AB)
holds under reasonable assumptions (Theorems 6.8 and 6.9).

2. Preliminaries

Let E be an ordered vector space. By E+ we denote the set of all positive
vectors in E. If p is a seminorm on E, then the positive cone E+ is called p-normal
whenever there exists γ > 0 such that 0 ≤ x ≤ y implies p(x) ≤ γp(y). If p is a
norm on an ordered vector space E, we will refer to a p-normal cone simply as a
normal cone.

An ordered vector space A that is an algebra as well, is said to be an ordered
algebra whenever A+ · A+ ⊆ A+ and 1 ∈ A+ whenever A is unital. If A is a
nonunital ordered algebra, we can extend the ordering to the standard unitization
A1 by (a, λ) ≥ (0, 0) whenever a ∈ A+ and λ ≥ 0. If a is an element in a nonunital
algebra A, then we denote by a1 ∈ A1 the element (a, 0) ∈ A1. If p is a seminorm
on a nonunital algebra A, then we denote by p1 the seminorm on A1 defined by
p1((a, λ)) = p(a)+ |λ|. If p is submultiplicative on A, then it should be clear that
p1 is submultiplicative on A1.

Let p be a seminorm on a partially ordered algebra A. It is not hard to see
that whenever A is a nonunital ordered algebra with a p-normal positive cone,
then the positive cone A+

1 of the unitization A1 is p1-normal.
Let A be an algebra, and let p be a submultiplicative seminorm on A. The

p-spectral radius rp on A, defined by

rp(a) = lim sup
n→∞

p(an)
1
n ,

satisfies rp(a) ≤ p(a) and is equal to

rp(a) = lim
n→∞

p(an)
1
n = inf

n∈N
p(an)

1
n .

Indeed, if we denote pn = p(an), then submultiplicativity of p implies that we
have

pn+m ≤ pnpm (2.1)

for all n,m ∈ N. A well-known calculus lemma asserts that, for any sequence
of nonnegative real numbers {pn}n∈N which satisfy inequalities in (2.1) for all
n,m ∈ N, we have

lim
n→∞

p
1
n
n = inf

n∈N
p

1
n
n .
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It is not hard to see that, for an arbitrary element a in a nonunital algebra
A with a submultiplicative seminorm p, we have rp1(a1) = rp(a). The element
a ∈ A is called p-quasinilpotent if rp(a) = 0 and it is called p-power bounded if
there exists a positive constant N > 0 such that p(an) ≤ N for every n ∈ N. If a
is p-power bounded, then rp(a) ≤ 1.

The equality (ba)n = b(ab)n−1a implies rp(ab) = rp(ba) for all a, b ∈ A.
Throughout the article we use the notation a0b = b = ba0.

For other relevant facts and definitions on ordered vector spaces, ordered alge-
bras, ordered Banach spaces, and Banach lattices and operators acting on them,
we refer the reader to [3], [4], and [18].

3. p-Spectral radius inequalities

The proof of the following result on the monotonicity of the p-spectral radius
is straightforward (and similar to the proof of [18, Theorem 4.1]) and is therefore
omitted.

Lemma 3.1. Let A be an ordered algebra, and let B be its subalgebra. Let p be a
submultiplicative seminorm on B such that the subcone B+ = B∩A+ is p-normal.
If a, b ∈ A+ and n0 ∈ N are such that an, bn ∈ B+ and an ≤ bn for all n ≥ n0,
then rp(a) ≤ rp(b).

The following two theorems generalize well-known results on the submultiplica-
tivity and subadditivity of the spectral radius in several directions.

Theorem 3.2. Let A be an ordered algebra, let p be a submultiplicative seminorm
on A, and let k ∈ N0. Let B be a subalgebra in A ordered by a p-normal cone
B+ = A+ ∩ B which satisfies A+B+A+ ⊆ B+. Let a, b ∈ A+, and suppose that
there exists a p-power bounded element c ∈ A+ such that ac ≤ ca, bc ≤ cb, and
ab ≤ cba. If at least one of the elements a and b is contained in B+, then

rp(c
kba) ≤ rp(a)rp(b), rp(ab) ≤ rp(a)rp(b) and (3.1)

rp(cba− ab) ≤ rp(cba) ≤ rp(a)rp(b). (3.2)

If, in addition, p(c) < 1, then elements ab, ba, ckba, and cba− ab are p-quasinil-
potent.

Proof. At first, we will prove by induction on n that the inequality

(ckba)n ≤ c
n(n−1+2k)

2 bnan (3.3)

holds for all n ∈ N and k ∈ N0. For n = 1, inequality (3.3) is obvious. Assume
now that inequality (3.3) holds for some positive integer n. Then we have

(ckba)n+1 ≤ c
n(n−1+2k)

2 bnanckba ≤ c
n(n−1+2k)

2
+k+nbn+1an+1 = c

(n+1)(n+2k)
2 bn+1an+1,

and the induction step is completed.
Since the cone B+ is p-normal, there exists a positive constant γ > 0 such that

p(x) ≤ γp(y) whenever 0 ≤ x ≤ y holds in B. The p-power boundedness of the
element c implies that there exists a positive constant N > 0 such that p(cn) ≤ N
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for every n ∈ N. Since B+ satisfies A+B+A+ ⊆ B+, it follows that both sides of
inequality (3.3) are contained in B+ and so

p
(
(ckba)n

)
≤ γp(c

n(n−1+2k)
2 bnan)

for all n ∈ N, n ≥ 2. Since p is submultiplicative and c is p-power bounded, we
have

p
(
(ckba)n

)
≤ γp(c

n(n−1+2k)
2 )p(bn)p(an) ≤ γNp(bn)p(an) (3.4)

for all n ∈ N, n ≥ 2. By taking the nth roots in inequality (3.4) and letting n
go to infinity, we obtain rp(c

kba) ≤ rp(b)rp(a). When k = 0 we obtain also the
second inequality in (3.1) since rp(ba) = rp(ab), and when k = 1 we obtain the
right-hand side of inequality (3.2). Inequality (3.2) follows from the fact that 0 ≤
cba− ab ≤ cba and 0 ≤ (cba− ab)n ≤ (cba)n for all n ∈ N. Since (cba− ab)n ∈ B+

and (cba)n ∈ B+ for all n ≥ 3, the p-normality of the cone B+ implies (3.2) by
Lemma 3.1.

Suppose now that p(c) < 1 and k ∈ N0. From inequality (3.4) we obtain

p
(
(ckba)n

) 1
n ≤ γ

1
np(c)

n−1+2k
2 p(bn)

1
np(an)

1
n . (3.5)

Since p(c) < 1, the right-hand side of inequality (3.5) tends to zero when n →
∞, so that we obtain rp(c

kba) = 0. When k = 0 we obtain that ab and ba
are p-quasinilpotent, and when k = 1 we obtain that cba is p-quasinilpotent.
Inequality (3.2) implies rp(cba− ba) = 0, which completes the proof. �

Theorem 3.3. Let A be an ordered algebra, and let p be a submultiplicative
seminorm on A such that the cone A+ is p-normal. Let a, b, and c be positive
elements in A satisfying ac ≤ ca, bc ≤ cb, and ab ≤ cba. If c is p-power bounded,
then

rp(a+ b) ≤ rp(a) + rp(b). (3.6)

Proof. If A is not unital, then p1 is a submultiplicative seminorm on A1 and the
cone A+

1 is p1-normal. We also have a1c1 ≤ c1a1, b1c1 ≤ c1b1, and a1b1 ≤ c1b1a1.
Since we also have rp1(x1) = rp(x) for all x ∈ A and c1 is p1-power bounded, we
may assume without loss of generality that A is unital.

For n ∈ N and k ∈ N0 we define the elements qn,k(c) ∈ A in the following way:
qn,0(c) = qn,n(c) = 1 (the unit element of A), and for k ∈ N let

qn+1,k(c) = qn,k−1(c) + qn,k(c)c
k.

Note that
(
n
k

)
+
(

n
k−1

)
=

(
n+1
k

)
implies that qn,k(c) is the sum of

(
n
k

)
(not necessarily

distinct) powers of the element c.
We will prove by induction on n that

(a+ b)n ≤
n∑

k=0

qn,k(c)b
n−kak (3.7)
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for all n ∈ N. For n = 1 the claim is trivially true. Suppose now that inequality
(3.7) holds for some n ∈ N. Then we have

(a+ b)n+1 ≤
( n∑

k=0

qn,k(c)b
n−kak

)
(a+ b)

≤
n∑

k=0

qn,k(c)b
n−kak+1 +

n∑
k=0

qn,k(c)c
kbn−k+1ak

=
n+1∑
k=1

qn,k−1(c)b
n−k+1ak +

n∑
k=0

qn,k(c)c
kbn−k+1ak

=
n+1∑
k=0

qn+1,k(c)b
n+1−kak,

which completes the induction step.
Inequality (3.7) and the fact that the cone A+ is p-normal imply that there

exists γ > 0 such that

p
(
(a+ b)n

)
≤ γp

( n∑
k=0

qn,k(c)b
n−kak

)
for all n ∈ N. Since c is p-power bounded, there exists M ≥ 1 such that

p
(
(a+ b)n

)
≤ γM

(
p(bn) +

n−1∑
k=1

(
n

k

)
p(ak)p(bn−k) + p(an)

)
(3.8)

for all n ∈ N. Let us choose now an arbitrary ε > 0. Then there exists L > 0
such that for any n ∈ N we have p(an) ≤ L(rp(a)+ ε)n and p(bn) ≤ L(rp(b)+ ε)n.
Hence, applying (3.8) it follows that

p
(
(a+ b)n

)
≤ γML

n∑
k=0

(
n

k

)(
rp(a) + ε

)k(
rp(b) + ε

)n−k

= γML
(
rp(a) + rp(b) + 2ε

)n
.

By taking the nth roots and letting n go to infinity, we obtain rp(a+ b) ≤ rp(a)+
rp(b)+2ε. Since ε > 0 was arbitrary, we finally have rp(a+ b) ≤ rp(a)+ rp(b). �

The following result follows from Theorems 3.2 and 3.3.

Corollary 3.4. Let A be an ordered algebra, and let p be a submultiplicative
seminorm on A. Let B be a subalgebra in A ordered by a p-normal cone B+ =
A+ ∩ B which satisfies A+B+A+ ⊆ B+. Let a, b ∈ A+ be such that ab ≥ ba or
ba ≥ ab. If at least one of the elements a and b is contained in B+, then

rp(ab− ba) ≤ rp(ab) ≤ rp(a)rp(b). (3.9)

If a and b are both in B+, then (3.6) holds.
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Proof. As in the proof of Theorem 3.3, we may assume without loss of generality
that A is unital. In this case the result follows from Theorems 3.2 and 3.3 by
taking c to be the unit element of A. �

Remark 3.5. In particular, Theorem 3.2 and Corollary 3.4 hold whenever A is
an ordered algebra and p is a submultiplicative seminorm on A such that the
positive cone A+ is p-normal.

4. Related results in Banach algebras

Recall that the spectrum of an element a of a nonunital Banach algebra A is
defined as the spectrum of the element a1 in the standard unitization A1 of A.
Let r(a) denote the spectral radius of a ∈ A.

The following theorem is a version of our results in the setting of Banach alge-
bras. Since its proof is very similar to the proofs of Theorem 3.2 and Theorem 3.3,
we omit it.

Theorem 4.1. Let A be a Banach algebra, and let k ∈ N0. Suppose that the
elements a, b, and c satisfy ac = ca, bc = cb, and ab = cba. If c is power-bounded,
then

r(ab) ≤ r(a)r(b), r(ckba) ≤ r(a)r(b), and r(a+ b) ≤ r(a) + r(b).

If ‖c‖ < 1, then ab, ba, and ckba are quasinilpotent.

Note that the conditions ac = ca, bc = cb, and ab = cba, where c is power-
bounded, are natural. Operators satisfying closely related conditions have already
been studied in the context of spectral algebras and related invariant subspace
problems (see, e.g., [13, Proposition 2.3], [12], [15], [8], and the references therein).

An important example of a Banach algebra is the Calkin algebra. Let X be a
Banach space, and let π be the canonical projection of L(X) to the Calkin algebra
L(X)/K(X), where L(X) and K(X) denote the set of all bounded and compact
linear operators on X, respectively. The essential spectral radius ress(T ) of the
operator T is defined as the spectral radius of the element π(T ) in the Calkin
algebra. An operator T is said to be a Riesz operator whenever ress(T ) = 0.

Applying Theorem 4.1 to the Calkin algebra L(X)/K(X), we obtain the fol-
lowing result for the essential spectral radius ress.

Corollary 4.2. Let X be a Banach space, let k ∈ N0, and let A, B, C be bounded
operators on X that satisfy AC = CA, BC = CB, and AB = CBA. If C is
power-bounded, then the following inequalities hold:

ress(AB) ≤ ress(A)ress(B), ress(C
kBA) ≤ ress(A)ress(B), and

ress(A+B) ≤ ress(A) + ress(B).

If ‖C‖ < 1, then AB, BA, and CkBA are Riesz operators.



SPECTRAL RADIUS INEQUALITIES FOR POSITIVE OPERATORS 139

5. Spectral radius inequalities for positive operators

A linear operator T on an ordered Banach space E is said to be positive when-
ever the positive cone E+ is invariant under T . An operator T on E is said to
be a regular operator (notation T ∈ Lr(E)) whenever it is a linear combination
of positive operators. A positive operator on an ordered Banach space with a
closed and generating cone is bounded (see [4]). In particular, a positive operator
on a Banach lattice is bounded. If the cone E+ of an ordered Banach space is
generating, then we can introduce a partial ordering on L(E) by A ≥ B whenever
A−B is a positive operator on E, so that, in this case, L(E) with a positive cone
L+(E) becomes an ordered algebra.

Let E be a Banach lattice. The set L(E) of all bounded operators on E equipped
with the operator norm is an example of an ordered normed algebra. It is well
known that the operator norm on the positive cone of positive operators on a
Banach lattice is monotone.

An operator T on a Banach lattice is said to be an AM-compact operator when-
ever T maps order intervals to relatively compact sets. It is obvious that every
compact operator is an AM-compact operator; however, there exist AM-compact
operators that are not compact. For example, the identity operator on lp-space
(1 ≤ p < ∞) is an AM-compact operator that is not a compact operator (see [2,
Problem 10.3.7]).

The following theorem states that the cone of positive operators in Lr(E) is
normal whenever the cone of the underlying ordered Banach space E is normal,
closed, and generating. This result follows immediately from a result of Wick-
stead [20, Theorem 3.1]. Since it enables us to construct new examples of ordered
Banach spaces with normal cones from given ones, we include its short proof.

Theorem 5.1. Let E be an ordered Banach space with a closed, generating, and
normal cone. Then the cone of all positive operators on E is a normal cone of
Lr(E).

Proof. By the Krein–Šmulian theorem (see [4, Theorem 2.37]), there exists a
constant ρ > 0 such that, for each x ∈ E, there exist positive vectors y, z ∈ E
satisfying

x = y − z, ‖y‖ ≤ ρ‖x‖, and ‖z‖ ≤ ρ‖x‖. (5.1)

Since the cone of E is normal as well, [4, Theorem 2.38] implies that there exists
a constant c > 0 such that ‖x‖ ≤ cmax{‖y‖, ‖z‖} whenever y ≤ x ≤ z.

Let us choose a positive vector x with ‖x‖ = 1, and let A ≤ B be positive
operators on E. There exist positive vectors y, z ∈ E satisfying x = y−z, ‖y‖ ≤ ρ,
and ‖z‖ ≤ ρ. Since the operator A is positive, we have −Az ≤ Ay−Az ≤ Ay, so
that

‖Ax‖ = ‖Ay − Az‖ ≤ cmax
{
‖Ay‖, ‖Az‖

}
≤ c2max

{
‖By‖, ‖Bz‖

}
≤ c2‖B‖max

{
‖y‖, ‖z‖

}
≤ c2ρ‖B‖.

Since x with ‖x‖ = 1 was arbitrary, we conclude that ‖A‖ ≤ c2ρ‖B‖ and that
the cone of positive operators is normal in Lr(E). �
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Therefore, if positive operators A, B, and C on an ordered Banach space E with
a closed, normal, and generating cone E+ satisfy the assumptions of Theorem 3.2,
then inequalities r(AB) ≤ r(A)r(B) and r(A+B) ≤ r(A)+ r(B) for the spectral
radius hold. In particular, this holds when E is a Banach lattice.

If we omit the assumption that the cone of E+ is closed, then the cone of posi-
tive operators of the space Lr(E) is not necessarily normal. However, inequalities
from Theorem 3.2 and Theorem 3.3 still hold (see Theorem 5.2 below). Before we
prove this result, we recall some general results on local spectral radii of bounded
operators.

Given a real or complex Banach space X, the local spectral radius rT (x) of a
bounded linear operator T on X at vector x is defined as

rT (x) = lim sup
n→∞

‖T nx‖
1
n .

It is easy to see that rT (x) ≤ r(T ) for every x ∈ X. Daneš [6] proved that there
exists x ∈ X with rT (x) equal to r(T ). Moreover, he actually proved that the set{

x ∈ X : rT (x) = r(T )
}

is a second category set (by Baire). Förster and Nagy [10] proved that if E is an
ordered Banach space with a generating cone E+ and T is a positive operator
on E, then

r(T ) = max
x∈E+

rT (x). (5.2)

We present only an outline of the proof of the following result, since we apply
similar arguments as in the proofs of Theorems 3.2 and 3.3.

Theorem 5.2. Let E be an ordered Banach space with a normal and generating
cone, and let k ∈ N0. Let A and B be positive operators on E, and suppose
that there exists a positive power-bounded operator C on E satisfying AC ≤ CA,
BC ≤ CB, and AB ≤ CBA. Then

r(CkBA) ≤ r(A)r(B), r(AB) ≤ r(A)r(B),

r(A+B) ≤ r(A) + r(B) and r(CBA− AB) ≤ r(CBA) ≤ r(A)r(B).

If, in addition, ‖C‖ < 1, then the operators AB, BA, CkBA, and CBA − AB
are quasinilpotent.

Proof. By applying (3.3), the power-boundedness of C, and the normality of the
cone E+, it follows that

rCkBA(x) ≤ r(A)r(B) (5.3)

holds for all x ∈ E+. The inequality r(CkBA) ≤ r(A)r(B) follows from (5.3)
and (5.2).

By applying (3.7), the inequality r(A+B) ≤ r(A)+r(B) is proved in a similar
manner. The rest of the proof is omitted. �

Corollary 5.3. Let E be an ordered Banach space with a normal and gener-
ating cone. Let A and B be positive operators on E with a positive or negative
commutator AB −BA. Then we have

r(AB −BA) ≤ r(AB) ≤ r(A)r(B) and r(A+B) ≤ r(A) + r(B). (5.4)
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Inequalities r(AB − BA) ≤ r(AB) ≤ r(A)r(B) appeared in [7] in the case of
positive operators A and B with a positive commutator AB − BA on Banach
lattices. Zima ([23, Theorem 2.1] and [22]) proved that the same inequalities hold
in the case of ordered Banach spaces with normal and generating cones. Moreover,
Zima [23] proved that

r(AB +BA) = 2r(AB). (5.5)

The following example shows that the assumption on the power-boundedness
of the operator C in Theorem 5.2 cannot be omitted.

Example 5.4. Let E = C2,

A =

[
0 1
1 0

]
, B =

[
0 1
4 0

]
, and C = 4I.

Then r(A) = 1, r(B) = 2,

CBA =

[
4 0
0 16

]
, AB =

[
4 0
0 1

]
, AB −BA =

[
3 0
0 −3

]
and

A+B =

[
0 2
5 0

]
.

Thus CBA ≥ AB, CA = AC, and CB = BC, but r(CBA) = 16 > r(CBA −
AB) = 15 > r(AB) = 4 > 2 = r(A)r(B) and r(A+B) =

√
10 > 3 = r(A)+r(B).

Example 5.4 shows also that in Corollary 5.3 the positivity of the commuta-
tor cannot be omitted. The following example illustrates that the assumptions
of Theorem 5.2 are sensible if we compare them with the assumptions of Corol-
lary 5.3.

Example 5.5. Let E = C2,

A =

[
1 2
3 4

]
, B =

[
1 1
1 1

]
, and C = 2I.

Then r(B) = 2, r(A) = 0.5(5 +
√
33),

CBA =

[
8 12
8 12

]
, AB =

[
3 3
7 7

]
, AB −BA =

[
−1 −3
3 1

]
and

A+B =

[
2 3
4 5

]
.

Therefore AB − BA and BA− AB are not positive; CBA ≥ AB, CA = AC,
CB = BC, and r(AB) = 10 < r(A)r(B); and r(A + B) = 0.5(7 +

√
57) <

r(A) + r(B).
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6. Essential spectral radius inequalities for positive operators

In this section we apply our general results of Section 3 to the case of the
essential spectral radius of positive AM-compact operators on Banach lattices.

The essential spectral radius is closely related to the measure of noncompact-
ness β : L(X) → [0,∞) defined by

β(T ) = inf
{
δ > 0 : ∃x1, . . . , xn ∈ X such that T (BX) ⊆

n⋃
i=1

B(xi, δ)
}
.

Here BX denotes the closed unit ball of X, and B(xi, δ) denotes the closed ball
with the center xi and radius δ.

The measure of noncompactness is a submultiplicative seminorm on L(X) that
satisfies β(T ) ≤ ‖T‖ (see [1, Lemma 7.59] and its preceding remark; see also [19]
or [14]). Nussbaum [16] proved that

ress(T ) = lim
n→∞

β(T n)
1
n , (6.1)

which is precisely the β-spectral radius rβ(T ) of the operator T . The proof of the
following lemma is straightforward, and so we omit it.

Lemma 6.1. Let S, T1, T2, and R be bounded operators on a Banach lattice E.
If T1 and T2 are AM-compact operators and R is order-bounded, then ST1R and
T1 + T2 are AM-compact operators.

Theorem 6.2. Let k ∈ N0, let E be a Banach lattice such that E and E∗ have
order-continuous norms, and let A, B, and C be positive operators on E satis-
fying AC ≤ CA, BC ≤ CB, and AB ≤ CBA. Suppose that the operator C is
β-power-bounded. If at least one of the operators A and B is AM-compact, then

ress(C
kBA) ≤ ress(A)ress(B),

ress(CBA− AB) ≤ ress(CBA) ≤ ress(A)ress(B).
(6.2)

If A and B are AM-compact, then

ress(A+B) ≤ ress(A) + ress(B). (6.3)

If β(C) < 1, then AB, CkBA, and CBA−AB are Riesz operators. In particular,
if ‖C‖ < 1, then AB, CkBA, and CBA− AB are Riesz operators.

Proof. Let B+ be the set of all positive AM-compact operators on E, and let us
define B := B+−B+. By Lemma 6.1 the set B is an ordered algebra and its positive
cone B+ satisfies Lr(E)+B+Lr(E)+ ⊆ B+. Since the measure of noncompactness
is a submultiplicative seminorm on B which is also monotone on B+ by [17,
Corollary 2.6]; that is, for AM-compact operators 0 ≤ S ≤ T we have β(S) ≤
β(T ), and the result follows by applying (6.1) and Theorems 3.2 and 3.3. �

Corollary 6.3. Let A and B be positive operators with a positive commutator
AB − BA on a Banach lattice E with the property that E and E∗ have order-
continuous norms. If at least one of the operators A and B is AM-compact, then

ress(AB −BA) ≤ ress(AB) ≤ ress(A)ress(B). (6.4)
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If A and B are AM-compact, then

ress(A+B) ≤ ress(A) + ress(B). (6.5)

The following result follows directly from Corollary 6.3.

Corollary 6.4. Let E be a Banach lattice such that E and E∗ have order-
continuous norms, and let A and B be positive operators on E with a positive
commutator AB − BA. Suppose that at least one of the operators A and B is
AM-compact. Then the following statements hold:

(a) If at least one of the operators A and B is a Riesz operator, then AB and
AB −BA are also Riesz operators.

(b) If A and B are AM-compact, then the operator A+B is a Riesz operator
if and only if A and B are Riesz operators.

Remark 6.5. In Corollary 4.2, we can, by (6.1) and as in Theorem 6.2, replace
the assumptions that C is power-bounded and ‖C‖ < 1 with weaker assumptions
that C is β-power-bounded and β(C) < 1. We omit the proof.

We continue this section with a result concerning quasinilpotence of positive
commutators of positive operators on Banach lattices. In [5], Bračič et al. consid-
ered spectral properties of positive commutators of positive operators on Banach
lattices. In [5, Theorem 2.2], the authors proved that a positive commutator of
positive compact operators is necessarily quasinilpotent, and they asked whether
a positive commutator of positive operators is quasinilpotent when only one of
the operators A and B is compact. This problem was independently solved in [9]
and [11]. Partial results were previously obtained in [7]. We now recall the main
result from [7].

Theorem 6.6. Let A and B be positive operators on a Banach lattice E such
that A+B is a Riesz operator. If the commutator AB −BA is a power compact
positive operator, then it is a quasinilpotent operator.

Since the preceding result does not follow from results obtained in [9] and [11],
it is of independent interest, as a positive commutator of positive operators can
also be quasinilpotent under different assumptions than the ones from [9] and [11].

The following result extends the class of positive operators with positive quasi-
nilpotent commutators.

Corollary 6.7. Let E be a Banach lattice such that E and E∗ have order con-
tinuous norms, and let A and B be positive AM-compact operators on E with a
positive commutator AB−BA. If A and B are Riesz operators and AB−BA is
power-compact, then AB −BA is quasinilpotent.

Proof. Since A and B are Riesz operators, Corollary 6.4 implies that the operator
A+B is also a Riesz operator. An application of Theorem 6.6 shows that AB−BA
is quasinilpotent. �

We conclude this paper with a result on the essential spectral radius version
of the equality (5.5). If one of the operators A and B is a compact operator on
a Banach space, then we obviously have ress(AB + BA) = ress(AB) = 0. The
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equality ress(AB + BA) = 2ress(AB) is also obvious in the case of commuting
operators A and B on a Banach space.

If E is a Banach lattice and A and B are positive power-compact operators
on E with a positive commutator AB −BA, then the equality ress(AB +BA) =
ress(AB) = 0 holds as well. Indeed, [7, Lemma 2.2] implies that the operator
A+B is power-compact, so that the operator (A+B)2 is power-compact as well.
Therefore, the operator (A+ B)2n is a compact operator on E for some positive
integer n. Inequalities

0 ≤ AB ≤ AB +BA ≤ A2 + AB +BA+B2 = (A+B)2 (6.6)

and [3, Theorem 5.13] imply that (AB)3n and (AB+BA)3n are compact operators,
so that AB and AB+BA are power-compact operators. It follows that ress(AB+
BA) = ress(AB) = 0.

We finish this article with the following two results.

Theorem 6.8. Let E be a Banach lattice such that E and E∗ have order-
continuous norms, and let A and B be positive operators on E with a positive
commutator AB −BA. If at least one of the operators A and B is AM-compact,
then

ress(AB +BA) = 2ress(AB).

Proof. The fact that the commutator AB−BA is a positive operator on E implies
that

0 ≤ 2BA ≤ AB +BA ≤ 2AB.

By the assumption, operators BA, AB, and AB +BA are AM-compact, so that
the monotonicity of the essential spectral radius on the positive cone of the or-
dered algebra generated by positive AM-compact operators gives us

0 ≤ 2ress(BA) ≤ ress(AB +BA) ≤ 2ress(AB).

To finish the proof we apply the equality ress(AB) = ress(BA), which holds for
all bounded operators on Banach spaces. �

Similarly, one can prove the following generalization of Theorem 6.8

Theorem 6.9. Let A be an ordered algebra, and let p be a submultiplicative
seminorm on A. Let B be a subalgebra in A ordered by a p-normal cone B+ =
A+ ∩ B which satisfies A+B+A+ ⊆ B+. Let a, b ∈ A+ be such that ab ≤ ba or
ba ≤ ab. If at least one of the elements a and b is contained in B+, then

rp(ab+ ba) = 2rp(ab).
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