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We study frequentist properties of a Bayesian high-dimensional multivariate linear regression model with
correlated responses. The predictors are separated into many groups and the group structure is pre-
determined. Two features of the model are unique: (i) group sparsity is imposed on the predictors; (ii) the
covariance matrix is unknown and its dimensions can also be high. We choose a product of independent
spike-and-slab priors on the regression coefficients and a new prior on the covariance matrix based on
its eigendecomposition. Each spike-and-slab prior is a mixture of a point mass at zero and a multivariate
density involving the �2,1-norm. We first obtain the posterior contraction rate, the bounds on the effective
dimension of the model with high posterior probabilities. We then show that the multivariate regression
coefficients can be recovered under certain compatibility conditions. Finally, we quantify the uncertainty
for the regression coefficients with frequentist validity through a Bernstein–von Mises type theorem. The
result leads to selection consistency for the Bayesian method. We derive the posterior contraction rate using
the general theory by constructing a suitable test from the first principle using moment bounds for certain
likelihood ratios. This leads to posterior concentration around the truth with respect to the average Rényi
divergence of order 1/2. This technique of obtaining the required tests for posterior contraction rate could
be useful in many other problems.

Keywords: Bayesian variable selection; covariance matrix; group sparsity; multivariate linear regression;
posterior contraction rate; Rényi divergence; spike-and-slab prior

1. Introduction

Asymptotic behaviors of variable selection methods for linear regression were extensively stud-
ied [6]. However, theoretical studies on Bayesian variable selection methods were limited to
relatively simple settings [3,8,9,25,30,32]. For example, Castillo et al. [8] studied a sparse linear
regression model in which the response variable is one-dimensional and the variance is known.
However, it is not straightforward to extend those results to multivariate linear regression with
unknown covariance matrix (or even the univariate case with unknown variance).

Predictors can often be naturally clustered in groups, as in the following examples.

1. Cancer genomics study. The relationship between clinical phenotypes and DNA mutations
is an important issue for biologists. DNA mutations are detected by DNA sequencing. Since these

1350-7265 © 2020 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/20-BEJ1198
mailto:bo.ning@yale.edu
mailto:seonghyun.jeong@chicagobooth.edu
mailto:sghosal@ncsu.edu


2354 B. Ning, S. Jeong and S. Ghosal

mutations are spaced linearly along the DNA sequence, it is often assumed that the adjacent DNA
mutations on the chromosome have a similar genetic effect and should be grouped together [21].

2. Multi-task learning. When information for multiple tasks is shared, solving tasks simulta-
neously is desirable to improve learning efficiency and prediction accuracy. Relevant information
is preserved across different equations by grouping them together [23].

3. Causal inference in advertising. When measuring the effectiveness of an advertising cam-
paign running on stores, counterfactuals need to be constructed using the sales data at some
control stores chosen by a variable selection method [27]. Stores within the same geographical
region share the same demographic information, and so can be grouped together before selection.

Driven by those applications, new variable selection methods designed to select or not select
variables as groups were developed by imposing group-sparsity on the regression coefficients
as in the group-lasso [38]. This method replaces the �1-norm in the penalty term of the lasso
with the �2,1-norm, which comprises of the �2-norm put on the predictors within each group
and the �1-norm is put across the groups. Theoretical properties of the group-lasso were studied,
and its benefits over the lasso in the group selection problem were demonstrated [20,23,24,26].
Recently, various Bayesian methods for selecting variables as groups were also proposed [10,11,
18,21,22,31,36]. However, their large-sample frequentist properties are largely unknown.

In this paper, we study a Bayesian method for the multivariate linear regression model with two
distinct features: group-sparsity imposed on the regression coefficients and an unknown covari-
ance matrix. To the best of our knowledge, even in a simpler setting without the group-sparsity
structure, convergence and selection properties of methods for high-dimensional regression with
a multivariate response having an unknown covariance matrix have not been studied in either the
frequentist or the Bayesian literature. However, it is important to understand the theoretical prop-
erties of these methods because correlated responses arise in many applications. For example, in
the study of the causal effect of an advertising campaign, sales in different stores are usually
spatially correlated [27]. Furthermore, when the dimension of the covariance matrix is large, it
would affect the quality of the estimation of the regression coefficients.

When the covariance matrix is unknown and high-dimensional, standard techniques for pos-
terior concentration rates [3,8,25] cannot be applied. Also, the general theory of posterior con-
traction under the average squared Hellinger distance [17] is not sufficient to obtain the rate in
terms of the Euclidean metric on the regression parameter. In order to obtain that rate through the
general theory, we shall construct certain required tests directly by controlling the moments of
likelihood ratios with the parameter space broken up in small pieces. This leads to the posterior
contraction rate with respect to the negative average log-affinity, which can be subsequently con-
verted to the rate with respect to the Euclidean metric on the regression parameter. The technique
of controlling error probabilities by a moment bound on likelihood ratios appears to be new in
the Bayesian literature and may be useful to study rates in other problems.

In this paper, we consider a multivariate linear regression model

Yi =
G∑

j=1

Xijβj + εi, i = 1, . . . , n, (1.1)

where Yi is a 1 × d response variable, i = 1, . . . , n, Xij is a 1 × pj predictor variable,
j = 1, . . . ,G, βj is a pj × d matrix containing the regression coefficients, and ε1, . . . , εn are
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independent identically distributed (i.i.d.) as N (0,�) with � being a d × d unknown covariance
matrix. In other words, in the regression model, there are G > 1 non-overlapping groups of pre-
dictor variables with the group structure being predetermined. We denote the groups which con-
tain at least a non-zero coordinate as non-zero groups and the remaining groups as zero groups.
The number of total groups G is clearly bounded by p. The case G = p reduces to individual
coordinates’ sparsity. Thus, the results derived in our paper are also applicable to the ungrouped
setting.

The above model can be rewritten in the vector form as

Yi = Xiβ + εi,

where β = (β ′
1, . . . ,β

′
G)′ is a p × d matrix, where p =∑G

j=1 pj , and Xi = (Xi1, . . . ,XiG) is a
1 × p vector. The dimension p can be very large and the dimension d can be large as well, but
to a lesser extent.

To allow derivation of asymptotic properties of estimation and selection, certain conditions on
the growth of p, G, d and p1, . . . , pG need to be imposed. The dimension p can grow at a rate
faster than the sample size n, but we require that the total number of the coefficients in all non-
zero groups together are less than n in order. We further assume that the number of coordinates
in any single group must be of the order less than n, G ≥ nc, for some positive constant c, and
logG grows slower than n. Finally, to make the covariance matrix consistently estimable, we
assume that for the dimension d of the covariance matrix, d2 logn grows at a rate slower than n.

As for the priors, we choose the product of d independent spike-and-slab priors for β and a
prior on � through its eigendecomposition. The latter seems to be a new addition to the literature.
The spike-and-slab prior is a mixture of point mass for the zero coordinates and a density for non-
zero coordinates. In the ungrouped setting, commonly used densities for non-zero coordinates are
a Laplace density [8], a Cauchy density [7] and a normal density with mean chosen by empirical
Bayes methods [3,25]. In this paper, we choose a density for the non-zero coordinates involving
the �2,1-norm (see (2.1)), which corresponds to the penalty function of the group-lasso. We derive
an explicit expression for the normalizing constant of this density.

We shall use the following notations. We assume that G1, . . . ,GG are G disjoint groups such
that

⋃G
j=1 Gj = {1, . . . , p}. Since these groups are given and will be kept the same throughout,

they will be dropped from the subscripts. Each pj is the number of elements in Gj . Let pmax =
max{pj : 1 ≤ j ≤ G}. For each k = 1, . . . , d , let Sk ⊆ {1, . . . ,G} stand for the collection of
indices of non-zero groups for the kth component and sk = |Sk| stand for its cardinality. Let
S0,k be the set consisting of the indices of the true non-zero groups. Let S = (S1, . . . , Sd) be the
d-tuple of the model indices, and define s = ∑d

k=1 sk , pSk
= ∑

j∈Sk
pj , and pS = ∑d

k=1 pSk
.

Similar notations are used for the corresponding true values S0,k, s0,k, S0, s0,pS0,k
and pS0 . We

also define Sβ,k , sβ,k , Sβ , and sβ for an arbitrary p × d matrix β .
For a vector A, let ‖A‖1, ‖A‖2,1 and ‖A‖ be the �1-, �2,1- and �2-norm of A, respectively,

where ‖A‖2,1 =∑G
j=1 ‖Aj‖ with Aj being the subvector of A consisting of k ∈ Gj coordinates.

For a matrix B , denote Bk as the kth column of B . Let ‖B‖F be the Frobenius norm, ‖B‖ be
the spectral norm of B , and the matrix norm ‖B‖◦ = max{‖Bj‖ : 1 ≤ j ≤ G}, where Bj is
the submatrix of B consisting of columns Bk with k ∈ Gj coordinates. For a d × d symmetric
positive definite matrix D, let eig1(D), . . . , eigd(D) denote the eigenvalues of D ordered from
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the smallest to the largest; also, let Tr(D) and det(D) stand for the trace and the determinant
of D. For a scalar c, we denote by |c|, the absolute value of c.

Let ρ(f,g) = − log(
∫

f 1/2g1/2dν) be the Rényi divergence of order 1/2 between densities
f and g and h2(f, g) = ∫

(f 1/2 − g1/2)2dν be their squared Hellinger distance. The Kullback–
Leibler divergence and the Kullback–Leibler variation between f and g are respectively given
by K(f,g) = ∫

f log(f/g) and V (f,g) = ∫
f (log(f/g) − K(f,g))2. The notation ‖μ − ν‖TV

denotes the total variation distance between two probability measures μ and ν.
We let N(ε,F, ρ) stand for the ε-covering number of a set F with respect to a metric ρ, which

is the minimal number of ε-balls in ρ-metric needed to cover the set F . Let I d stand for the d

dimensional identity matrix and 1 stand for the indicator function.
The symbols � and � will be used to denote inequality up and down to a constant while a 	 b

stand for C1a ≤ b ≤ C2a for two constants C1 and C2. The notations a 
 b and a ∨ b stand for
a/b → 0 and max{a, b} respectively. The symbol δ0(·) stands for the probability measure with
all its mass at 0.

The remainder of the paper is organized as follows. Section 2 describes the priors, along with
the necessary assumptions. Section 3 provides the main results. Section 4 discusses algorithms
for computation. The proofs of two main theorems are given in Section 5. The Supplementary
Material [28] gives an auxiliary result and presents analogous but slightly weaker results on
posterior contraction and selection using a conjugate inverse-Wishart prior on the covariance
matrix.

2. Prior specifications

In this section, we introduce the priors used in this paper. We let β and � be independently
distributed in the prior. The prior for β is mixed over several dimensions and each component of
the prior density depends on the �2,1-norm of β , while a spike-and-slab prior is put on the group
dimension. We put a prior on the covariance matrix through its eigendecomposition � = PDP ′,
with independent inverse Gaussian priors for each diagonal entry of D and the uniform prior for
P on the group of orthogonal matrices.

2.1. Prior for regression coefficients

We denote the kth column of β by βk and let the notations βk,Sk
and βk,Sc

k
stand for the collection

of regression coefficients in the kth column of the non-zero groups and the zero groups, respec-
tively. A spike-and-slab prior is constructed as follows. First, the dimension s is chosen from a
prior π on the set {0,1, . . . ,Gd}. Next, a d-tuple S of subsets is randomly chosen from the set
{1, . . . ,G}d such that

∑d
k=1 sk = s. Finally, for each k, a vector βk,Sk

is independently chosen
from a probability density gSk

on R
pSk given by (2.2), and the remaining coordinates βk,Sc

k
set

to 0. To summarize, the prior for β is

(S,β) → π(s)
1(

Gd
s

) d∏
k=1

gSk
(βk,Sk

)δ0(βk,Sc
k
), (2.1)

where the density π(s) is the prior for the dimension s.
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Assumption 1 (Prior on dimension). For some constants A1,A2,A3,A4 > 0,

A1

(G ∨ npmax)A3
≤ π(s)

π(s − 1)
≤ A2

(G ∨ npmax)A4
, s = 1, . . . ,Gd.

If sparsity is imposed at the individual level, that is, pmax = 1, then the assumption is identical
to the one given in [8]. Prior distributions satisfying the assumption can easily be constructed.
For example, the complexity prior given by Castillo et al. [8] satisfies the above assumption if
pmax = 1, and it can also be easily modified to consider the case when pmax > 1.

When sparsity is at the individual level, the Laplace density [8] or the Cauchy density [7] is
generally chosen for g, since the normal density has a too sharp tail that overshrinks the non-zero
coefficients, although some empirical Bayes modifications of the mean can overcome the issue
(see [3,25]). However, in our setting, as sparsity is imposed at the group level, like the group
lasso, we consider the following density using the �2,1-norm:

gSk
(βk,Sk

) =
(∏

j∈Sk

(
λk

aj

)pj
)

exp
(−λk‖βk,Sk

‖2,1
)
, (2.2)

where aj = √
π(�(pj + 1)/�(pj /2 + 1))1/pj ≥ 2 (see Lemma S.1 in the Supplementary Mate-

rial [28]). This density has its tail lighter than the corresponding Laplace density. From Stirling’s
approximation, it follows that aj = O(p

1/2
j ). A relevant elliptical prior distribution is considered

in [13].
A prior of this type involving the �2,1-norm was also used in the Bayesian literature in group-

sparsity problems [36], but an explicit expression of the normalizing constant was not obtained.
Since the normalizing constant depends on the dimension, its value will play a role in the poste-
rior contraction rate.

The tuning parameter λk in the prior needs to be bounded both from above and below, specified
in Assumption 2 below. A value too large will shrink the non-zero coordinates too much towards
to 0. A value too small will be unable to prevent many false signals appearing in the model,
which can make the posterior to contract slower.

Assumption 2. For some constants B1,B2,B3 > 0 and each k = 1, . . . , d , λ ≤ λk ≤ λ, where

λ = ‖X‖◦
B1(G1/pmax ∨ n)B2

, λ = B3‖X‖◦
√

logG ∨ pmax logn. (2.3)

The constants B1, B2, B3 can be chosen large enough so that the range can be sufficiently
wide. In particular, if pmax = 1, this above reduces to the one in [8].

Assumption 2 will be coupled with Assumption 3 in Section 3.1 on the true parameters. A par-
ticularly interesting case is that every λk is set to the lower bound λ for every k. Then the bound
requirement on the true signal will be rather mild.
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2.2. Prior for the covariance matrix

For a prior on the covariance matrix �, we use its eigendecomposition PDP ′. We put an inverse
Gaussian prior independently on each eigenvalue of �, or equivalently, on each diagonal entry
of D. This prior is chosen because of its exponentially decaying tail on both sides. The orthogonal
matrix P is given the Haar measure on the compact Lie group of d × d orthogonal matrices,
which is a Riemannian manifold of dimension d(d − 1)/2 embedded in R

d×d .
We found that the naturally conjugate inverse Wishart prior on � may induce a suboptimal

posterior contraction rate due to its weaker tail property when d increases to infinity. Never-
theless, because of the practical importance of this prior, we present the contraction rate for this
prior in the Supplementary Material [28]. When d is fixed, the rate is the same as in the main the-
orem in this paper using the above stated prior on �. When additional structure like sparsity are
assumed on large covariance or precision (inverse covariance) matrices, prior distributions can
be assigned by respecting such structure [1,2,29]. In such a situation, an improved rate may be
possible; see the remark at the end of Section 3.1. Other significant priors used in the literature,
such as reference priors [34,37], are harder to handle because the general theory of posterior con-
traction does not apply to these improper priors, and moreover, tail bounds for the corresponding
eigenvalue distribution need to be available.

3. Main results

3.1. Posterior contraction rate

We study the posterior contraction rate for the model and the priors given in Section 2. We
denote β0 and �0 as the true values of β and �, respectively. Recall the notations s0,k = |S0,k|,
S0 = (S0,1, . . . , S0,d ), and s0 =∑d

k=1 s0,k .
The general theory of posterior contraction for independent non-identically distributed obser-

vations (see Theorem 8.23 of [17]) is often used to derive a posterior contraction rate. The general
theory characterizes the contraction rate in terms of the average squared Hellinger distance by
default, unless an additional testing property in the model is established. However, closeness
in terms of the average squared Hellinger distance between multivariate normal densities with
varying mean and an unknown covariance does not necessarily imply that the mean parameters
in the two densities are also close on average in terms of the Euclidean distance. To alleviate the
problem, we work directly with the average Rényi divergence of order 1/2, which is still very
tractable in the multivariate normal setting, and gives rise to closeness in terms of the desirable
Euclidean distance. To this end, we directly construct a suitable test using the likelihood ratio for
the null against some representative points in the alternative described by the complement of a
Rényi ball around the null intersected with a sieve, and then showing that such a test also works
well for testing the null value against a neighborhood of the representative point, by controlling
the moments of the likelihood ratio of the representative point and the points in the neighbor-
hood. Finally, by controlling the number of pieces needed to cover the sieve, we construct a
single test with the required control over the error probabilities for testing the null value against
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the whole of the alternative intersected with the sieve, which can then be used in the general
theory of posterior contraction.

By applying the general theory, we require the true values of β0 and �0 to be restricted into
certain regions (see Assumption 3 below). This restriction seems essential because of unknown
spread and the general theory requires a lower bound on the prior concentration. Use of refined
conditions (such as (8.26) and (8.27) in [17]) may be able to improve the requirement, but their
use require also obtaining bounds in the opposite direction, which are a lot harder. This is unlike
[8], who assumed the variance is known. Their setting is probably one of the few situations where
it is possible to obtain results uniformly over the whole space.

Assumption 3. The true values satisfy β0 ∈ B0 and �0 ∈ H0, for

B0 =
{

β :
d∑

k=1

‖βk‖2,1 ≤ β

}
, H0 = {� : b1I d ≤ � ≤ b2I d}, (3.1)

where b1, b2 > 0 are fixed values and β = s0(logG ∨ pmax logn)/max{λk : 1 ≤ k ≤ d}.

The largest value of β is obtained by taking λk = λ for all k. In this case, the upper bound
becomes β = B1s0(logG ∨ pmax logn)(G1/pmax ∨ n)B2/‖X‖◦, which is a very mild restriction if
B2 is chosen large enough in relation (2.3).

Theorem 3.1. For the model (1.1) and the priors given in Section 2, we have that for a sufficiently
large M1 > 0,

sup
β0∈B0,�0∈H0

E0�
(
β : ∥∥X(β − β0)

∥∥2
F

≥ M1nε2
n|Y1, . . . , Yn

)→ 0, (3.2)

sup
β0∈B0,�0∈H0

E0�
(
� : ‖� − �0‖2

F ≥ M1ε
2
n|Y1, . . . , Yn

)→ 0, (3.3)

where

εn = max

{√
s0 logG

n
,

√
s0pmax logn

n
,

√
d2 logn

n

}
→ 0. (3.4)

Remark 1. Unlike in the classical approach where variable selection is regulated by a penalty
function that corresponds to a prior density on the regression coefficients, in the Bayesian ap-
proach, sparsity is imposed by the prior on the dimension. The prior density on the regression
coefficients still plays a significant role in controlling the prior concentration and the tail behav-
ior, but to a lesser extent. Thus, instead of using the prior given in (2.2), one can also choose a
Laplace density for the coordinates in the non-zero groups. Then the �2,1-norm of β0,k , ‖β0,k‖2,1,
in the set B0 should be replaced by ‖β0,k‖1. Clearly, ‖β0,k‖2,1 ≤ ‖β0,k‖1, and hence in the latter
case, the set B0 will be smaller. Besides the spike-and-slab prior we used, other densities for the
slab part such as the elliptical Laplace distribution proposed by Gao et al. [13] and even normal
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distributions can also be used for variable selection. However, β in the set B0 may need to be
adjusted.

Remark 2. When G = p, and hence pmax = 1, the posterior contraction rate simplifies to εn =
max{√(s0 logp)/n,

√
(d2 logn)/n}. The first term in the rate is the same as the rate obtained

when the sparsity is imposed at the individual level, such as in [6] and [8]. When G 
 p, the
same rate can be obtained if pmax logn� logG.

The first term of the rate in Theorem 3.1 coincides with the rate obtained for a group-lasso
estimator of the multi-task learning problem studied by Lounici et al. [24]. Their setup is not
directly comparable with ours but their analogous rate coincides with ours up to a logarithmic
factor and they showed its optimality in a minimax sense. Under the setting d = 1, the rate
obtained in [20] is

√
(pS0 + s0 logG)/n, which is only slightly faster than our rate, and will

coincide with ours up to the logarithmic factor whenever pS0 	 s0pmax. This can often happen
provided that the non-zero groups are not consisting of a few large and several small groups.

If there is an additional lower-dimensional structure in the orthogonal matrix P , the last term
in (3.4) may be improved, because in a lower-dimensional manifold, the prior concentration rate
will be higher and the entropy estimates will be lower. The simplest of that is the trivial case
P = I , which leads to diagonal covariance matrix and the reduction of d2 to d . More generally,
a block-diagonal structure with L non-overlapping blocks of size d1, . . . , dL,

∑L
l=1 dl = d , will

reduce d2 to
∑L

l=1 d2
l .

From Theorem 3.1, the posterior contraction rate slows down significantly if the dimension of
the covariance is too high, but a better rate may be possible if a lower dimensional structures is
present in the covariance of the precision matrix. For instance, if the responses are independent
across components, then the model (1.1) can be written as d independent model with each one is

σk
−1Yik = σk

−1Xiβk + εik, εik ∼N (0,1).

Then one can estimate the parameters in the d models separately. The posterior concen-
tration rate for each corresponding posterior becomes εn = (

∑d
k=1 ε2

n,k)
1/2, where εn,k =

max{√(s0,k logG)/n,
√

(s0,kpmax logn)/n} is the individual rates for the kth component, k =
1, . . . , d .

3.2. Dimensionality and recovery

In this section, we show dimensionality control and recovery properties of the the marginal pos-
terior of β .

Lemma 3.2 (Dimension). For the model (1.1) and the priors given in Section 2, we have that
for a sufficiently large number M2 > 0,

sup
β0∈B0,�0∈H0

E0�
(
β : sβ ≥ M2s

�|Y1, . . . , Yn

)→ 0,

where s� = s0 ∨ {d2 logn/(logG ∨ pmax logn)}.
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From Lemma 3.2, s� > s0 if d2 logn � s0(logG ∨ pmax logn). This means that the support of
the posterior can substantially overshoot the true dimension s0. In the next corollary, we show
that even when s� > s0, the posterior is still able to recover β0 in terms of the distance to the
truth.

Corollary 3.3 (Recovery). For the model (1.1) and the priors given in Section 2, we have that
for a sufficiently large constant M3 > 0,

sup
β0∈B0,�0∈H0

E0�

(
‖β − β0‖2

F ≥ M3nε2
n

‖X‖2◦φ2
�2

(s0 + M2s�)
|Y1, . . . , Yn

)
→ 0, (3.5)

where φ2
�2

is the restricted eigenvalue (see Definition 3.4 below).

The lower bound in (3.5) becomes easier to understand if we consider the simplest setting that
G = p (hence pmax = 1), d2 logn < s0 logG, and each entry in X is i.i.d. and follows a standard
Gaussian distribution. Under this setting,

√
n� ‖X‖◦ �

√
n logp in probability, s� = s0, and the

lower bound becomes M3s0 logp/(nφ2
�2

((M2 + 1)s0) by plugging-in the lower bound of ‖X‖◦,
which goes to 0 as n → ∞.

Definition 3.4 (Restricted eigenvalue). The smallest scaled singular value of dimension s̃ is
defined as

φ2
�2

(s̃) = inf

{ ‖Xβ‖2
F

‖X‖2◦‖β‖2
F

,0 ≤ sβ ≤ s̃

}
. (3.6)

As p � n, the smallest eigenvalue of the design matrix must be 0. The restricted eigenvalue
condition keeps the smallest eigenvalue for the sub-matrix of the design matrix, corresponding
to the coefficients within non-zero groups, bounded away from 0.

The results in terms of other norms for the difference between β and β0 can be also derived
by assuming different assumptions on the smallest eigenvalue for the sub-matrix of the design
matrix. For example, by using the uniform compatibility condition (in Definition 3.5 below), we
can conclude that for a sufficiently large number M4 > 0,

sup
β0∈B0,�0∈H0

E0�

((
d∑

k=1

‖βk − β0,k‖2,1

)2

≥ M4s
�nε2

n

‖X‖2◦φ2
�2,1

(s0 + M2s�)

∣∣∣Y1, . . . , Yn

)
→ 0. (3.7)

We omit the proof since it is almost identical to that of Corollary 3.3.

Definition 3.5 (Uniform compatibility, �2,1-norm). The �2,1-compatibility number in vectors
of dimension s̃ is defined as

φ2
�2,1

(s̃) = inf

{
sβ‖Xβ‖2

F

‖X‖2◦(
∑d

k=1 ‖βk‖2,1)2
,0 ≤ sβ ≤ s̃

}
.
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By the Cauchy–Schwarz inequality,
√

sβ‖β‖F ≥ ∑d
k=1 ‖βk‖2,1, and it follows that φ�2(s̃) ≤

φ�2,1(s̃) for any s̃ 
 Gd .

3.3. Distributional approximation

To establish selection consistency, Castillo et al. [8] devised a key technique through a distribu-
tional approximation for the posterior distribution. As in a Bernstein–von Mises (BvM) theorem,
the posterior distribution of the regression parameter is approximated by a relatively simpler
distribution, but unlike in a traditional BvM theorem for increasing dimensional parameters [4,
15,16] or low-dimensional functionals [12,14], the approximating distribution is a mixture of
multivariate normal instead of a single one.

To derive an appropriate distributional approximation, we rewrite the model (1.1) as

Yi = Vec(β)X̃i + εi, i = 1, . . . , n,

where Vec(β) is obtained by stacking all the columns of β into a pd-dimensional row vector,
X̃i = I d ⊗ X′

i is a pd × d block-diagonal matrix. The log-likelihood function is given by

�n(β,�) = −nd

2
log(2π) − n

2
log

(
det(�)

)− 1

2

n∑
i=1

∥∥�−1/2(Yi − Vec(β)X̃i

)′∥∥2
. (3.8)

For any measurable subset B of Rp×d , the marginal posterior distribution of β is

�(β ∈ B|Y1, . . . , Yn) =
∫ ∫

B exp(�n(β,�) − �n(β0,�0)) d�(β) d�(�)∫ ∫
exp(�(β,�) − �(β0,�0)) d�(β) d�(�)

, (3.9)

with

d�(β) =
∑

S:s≤Gd

π(s)(
Gd
s

) d∏
k=1

{(∏
j∈Sk

(
λk

aj

)pj
)

exp
(−λk‖βk,Sk

‖2,1
)
dβk,Sk

⊗ δSc
k

}
.

In the next theorem, we shall show that under certain conditions, the posterior probability
�(β ∈ B|Y1, . . . , Yn) can be approximated by

�∞(β ∈ B|Y1, . . . , Yn) =
∫
B exp{�n(β,�0) − �n(β0,�0)}dU(β)∫

exp{�n(β,�0) − �n(β0,�0)}dU(β)
,

where

dU(β) =
∑

S:s≤M2s
�

π(s)(
Gd
s

) d∏
k=1

{(∏
j∈Sk

(
λk

aj

)pj
)

dβk,Sk
⊗ δSc

k

}
. (3.10)

This means that �n(β,�) can be replaced by �n(β,�0) with the true �0 and the impact of
the �2,1-term in the prior density vanishes. Let X̃i,S be the submatrix of X̃i chosen by S, with
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its dimension pS × d . If pS ≤ n for a given S, the maximum likelihood estimator (MLE) for
β�

S = (β ′
1,S1

, . . . , β ′
d,Sd

)′ given the true covariance matrix �0 is unique. We denote the MLE and
the information matrix as

β̂�
S =

(
n∑

i=1

X̃i,S�−1
0 X̃

′
i,S

)−1( n∑
i=1

X̃i,S�−1
0 Y ′

i

)
, ÎS = 1

n

n∑
i=1

X̃i,S�−1
0 X̃

′
i,S .

Then we can also write

�∞(β ∈ ·|Y1, . . . , Yn) ∝
∑

S:s≤M2s
�

w∞
S N

(
β̂�

S, n−1
Î
−1
S

)⊗ δSc , (3.11)

where

w∞
S ∝ π(s)(

Gd
s

)
(

d∏
k=1

∏
j∈Sk

(
λk

√
2π

aj

)pj

)
det(nÎS)−1/2 exp

{
1

2

n∑
i=1

∥∥�−1/2
0 X′

i,S β̂�
S

∥∥2

}
,

with
∑

S w∞
S = 1.

Before we formally state the theorem, we recall the notion of the small λ regime (see [8]).
Clearly, bounded λ-values belong to the small λ regime. In our setting, we say λk belongs to the
small λ regime if

max
{
λkεn

√
s�n/‖X‖◦ : 1 ≤ k ≤ d

}→ 0. (3.12)

In this regime, the impact of the �2,1-penalty vanishes, and hence the MLE β̂�
S is asymptotically

unbiased and does not depend on the choice of different values of λk . When choosing the value of
λk outside the small λ regime, this MLE is no longer asymptotically unbiased (see Theorem 11
of the Supplementary Material of [8]). In order to make the remainder of the approximation tend
to zero, we also assume that

ε2
n

√
s�n

(√
s�nε2

n ∨
√

pmaxd3 logG
)→ 0 (3.13)

for �n(β,�) to be replaced by �n(β,�0).
Both conditions, (3.12) and (3.13), may look complicated. Let us consider the simplest setting

mentioned in Section 3.2 again—that is, G = p, d2 logn < s0 logG, all entries in X are i.i.d.
standard Gaussian. Under this setting, (3.12) becomes maxk λks0

√
logp/n → 0 by plugging-in

the lower bound of ‖X‖◦ and (3.13) reduces to (s2
0 ∨ d3)(logp)3s3

0 
 n, which implies that

s0 
 min( n1/3

d logp
, n1/5

(logp)3/5 ).

Theorem 3.6 (Distributional approximation). For the model (1.1), the priors given in Section 2
with λ in the small λ regime, and the sequence

δn(s0) = εn

√
s�nmax

(
max{λk : 1 ≤ k ≤ d}/‖X‖◦, ε2

n

√
s�n, εn

√
pmaxd3 logG

)
,
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we have that any positive sequence ηn → 0 and some positive constant c > 0,

sup
β0∈{B0:δn(s0)<ηn,

φ�2,1 (s0+M2s
�)>c},�0∈H0

E0
∥∥�(β ∈ ·|Y1, . . . , Yn) − �∞(β ∈ ·|Y1, . . . , Yn)

∥∥
TV → 0.

3.4. Selection

In this section, we establish selection consistency using the Bernstein–von Mises theorem of the
previous section. We assume that the dimension of the covariance and the coordinates in the non-
zero groups are sufficiently small. We also assume that the smallest signal cannot be too small;
that is, the signal lies in the set

B̃ =
{
β : min

{‖βjk‖2 : j ∈ S0,k, k = 1, . . . , d
}≥ M3nε2

n

‖X‖2◦φ2
�2

(s0 + M2s�)

}
. (3.14)

This condition can be viewed as the Beta-min condition under the group sparsity setting. The
lower bound displayed in the condition is derived from (3.5). Unlike the Beta-min condition in
[8] which requires that each individual coordinate is bounded away from 0, our condition allows
zero coordinates in a non-zero group.

The Beta-min condition is not vacuous, in that the lower bound in (3.1) is smaller than
the upper bound in (3.14). To see this, note that under the small λ regime, (maxk λk)

−1 �√
s�nε2

n/‖X‖◦. Therefore, β̄ � √
nε2

n/‖X‖◦, and the right side coincides with the lower bound
up to a constant, establishing the claim.

We now complete this section by stating the following theorem.

Theorem 3.7 (Selection consistency). For the model (1.1), the priors given in Section 2, some
positive constant c > 0, and some sequences ηn → 0 and sn ≤ Ga with a < A4 − 3/2, we have
that

sup
β0∈{B0∩B̃:s0≤sn,δn(s0)≤ηn,

φ�2,1 (s0+M2s
�)>c},�0∈H0

E0�(β : Sβ = S0|Y1, . . . , Yn) → 1.

Under the conditions in Theorem 3.7, the marginal posterior distribution of β in non-zero
groups can be further approximated by a multivariate normal distribution with mean Vec(β̂�

S0
)

and the covariance matrix Î−1
S0

= n(
∑n

i=1 Xi,S0�
−1
0 X′

i,S0
)−1. Therefore, credible sets for β can

be obtained directly from the approximating multivariate normal density. Under the setting of
the theorem, the lower bound in the Beta-min condition goes to zero, implying that the condition
becomes milder with increasing sample size.

4. Computational algorithms

Various sampling-based computation algorithms have been developed to compute the posterior
distribution in the sparse linear regression model with a spike-and-slab prior under the setting that
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the covariance matrix � = σ 2I d and sparsity is imposed on individual coefficients. A summary
of those algorithms is provided in Section 5 of [8]. Recently, Xu and Ghosh [36] developed an
MCMC algorithm using a spike-and-slab prior for group variable selection. They placed a beta-
binomial prior on the dimension and a prior involves �2,1 norm, similar to ours, on the regression
coefficients.

Since priors used in this paper are new, we outline an MCMC algorithm to compute the pos-
terior distribution. For each iteration of the algorithm, one can sampling S and β using the re-
versible jump Metropolis–Hasting algorithm as the prior for β is not conjugate and the dimension
of β can vary. Then sample � through sampling P and D, and then calculating PDP ′. To sam-
ple the diagonal elements of D, one can convert them to the log-scale and then for each element,
choose the proposal density as a normal distribution centered at its current value in log scale.
To sample P , one can draw a new value P � uniformly from the group of orthogonal matrices.
Then the acceptance ratio equals to the likelihood ratio. When d is large, in order to increase
the acceptance rate of the Metropolis–Hasting algorithm, one can restrict the proposal density
to local moves through multiplying by a random orthogonal matrix within a set distance from
the identity matrix. If the conjugate inverse Wishart prior is used instead, then the conditional
posterior distribution of � is also an inverse Wishart distribution. One can sample � from that
distribution directly.

5. Proofs

The lower bound for the denominator in the expression for the posterior probability obtained in
the following result relies on sufficient prior concentration near the truth and is instrumental in
establishing the posterior contraction rate. Let f stands for the joint density of (Y1, . . . , Yn) under
a generic value of the parameter (β,�) and f0 stand for that under the true value (β0,�0).

Lemma 5.1. For some constant C1 > 0, B0 and H0 are defined in (3), we have sup{P0(E
c
n) :

β0 ∈ B0,�0 ∈H0} → 0, where the set En = {∫ ∫ f
f0

d�(β) d�(�) ≥ e−C1nε2
n }.

Proof. In view of Lemma 8.10 of [17], it suffices that

− log�
{
(β,�) : K(f0, f ) ≤ nε2

n,V (f0, f ) ≤ nε2
n

}
� nε2

n, (5.1)

where K(f0, f ) and V (f0, f ) respectively stand for the average Kullback–Leibler divergence
and average Kullback–Leibler variation between f0 and f given by

1

n
K(f0, f ) = 1

2

(
Tr
(
�−1�0

)− d − log det
(
�−1�0

)+ 1

n

n∑
i=1

∥∥�−1/2(β − β0)
′X′

i

∥∥2

)
,

1

n
V (f0, f ) = 1

2

(
Tr
((

�−1�0
)2)− 2 Tr

(
�−1�0

)+ d
)+ 1

n

n∑
i=1

∥∥�1/2
0 �−1(β − β0)

′X′
i

∥∥2
.
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Define a set of covariance matrices A1 and A2 a set of pairs of regression coefficients and co-
variance matrices by

A1 = {
� : Tr

(
�−1�0

)− d − log det
(
�−1�0

)≤ ε2
n,

Tr
((

�−1�0
)2)− 2 Tr

(
�−1�0

)+ d ≤ ε2
n

}
,

A2 =
{

(β,�) :
n∑

i=1

∥∥�−1/2(β − β0)
′X′

i

∥∥2 ≤ nε2
n,

n∑
i=1

∥∥�1/2
0 �−1(β − β0)

′X′
i

∥∥2 ≤ nε2
n/2

}
.

Then a lower bound for the prior probability in (5.1) can be obtained by lower bounding �(A1)

and �(A2|A1) separately and multiplying.
Writing �∗ = �

−1/2
0 ��

−1/2
0 , A1 can be written as

A1 =
{

� :
d∑

k=1

(
eigk

(
�∗−1)− 1 − log eigk

(
�∗−1))≤ ε2

n,

d∑
k=1

(
eigk

(
�∗−1)− 1

)2 ≤ ε2
n

}
.

By Taylor’s expansion log(x + 1) = x − x2/2 + o(1) as x → 0 and since εn → 0, it follows that
the second condition in A1 implies the first, and hence A1 = {� :∑d

k=1(eigk(�
∗−1)− 1)2 ≤ ε2

n}
for sufficiently large n. Since the eigenvalues of �0 are between b1 and b2 by Assumption 3,
Lemma A.1 of [2] gives that

∑d
k=1(eigk(�

∗−1)−1)2 ≤ b2
2‖�−1 −�−1

0 ‖2
F , and hence A1 ⊃ {� :

‖�−1 − �−1
0 ‖F ≤ εn/b2} for sufficiently large n. Writing in terms of the eigendecomposition

� = PDP ′, the triangle inequality, the norm-inequality ‖AB‖F ≤ min{‖A‖‖B‖F ,‖A‖F ‖B‖}
and the facts that ‖P ‖ = 1 = ‖P 0‖ and ‖D−1

0 ‖ is bounded, we have that∥∥�−1 − �−1
0

∥∥
F

≤ ‖P 0‖‖P‖∥∥D−1 − D−1
0

∥∥
F

+ (‖P 0‖
∥∥D−1

0

∥∥+ ‖P‖∥∥D−1
∥∥)‖P − P 0‖F

�
∥∥D−1 − D−1

0

∥∥
F

+ ‖P − P 0‖F + ∥∥D−1 − D−1
0

∥∥
F
‖P − P 0‖F ,

since ‖D−1‖ ≤ ‖D−1
0 ‖+‖D−1 −D−1

0 ‖, and the spectral norm is always bounded by the Frobe-
nius norm. Therefore, we have that

A1 ⊃ {
� : ∥∥D−1 − D−1

0

∥∥
F

≤ εn/c1,‖P − P 0‖F ≤ εn/c1
}

for some c1 > 0. Using the independence in the prior distribution of eigenvalues and positive
lower bound for the prior density at all concerned true value �0, it is easy to see that log�{� :
‖D−1 − D−1

0 ‖F ≤ εn/c1} � −d log(1/εn) � −d logn. To lower bound �(P : ‖P − P 0‖F ≤
εn/c1), note that � is the Haar measure on a compact Lie group of dimension d(d − 1)/2.
This means that all translates of {P : ‖P − P 0‖F ≤ εn/c1} have the same probability, and N

many such translates can cover the entire set of d × d orthogonal matrices, where N stands
for the εn/c1-covering number of the set of d × d orthogonal matrices in terms of the Frobenius
distance. A crude upper bound for N is easily obtained by embedding the set of d ×d orthogonal
matrices in [−1,1]d2

, giving the estimate N ≤ (2c1/εn)
d2

. This leads to the estimate log�{� :
‖P − P 0‖F ≤ εn/c1} � −d2 log(2c1/εn) � −d2 logn. Thus, log�(A1) � −d2 logn using the
prior independence of D and P .
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To derive a lower bound for �(A2|A1), we first note that ‖�−1 − �−1
0 ‖F � εn implies that

‖�−1‖ and ‖�∗−1‖ are bounded by a fixed constant, and hence n−1 ∑n
i=1 Xi(β − β0)�

−1 ×
(β − β0)

′X′
i and n−1‖�∗−1‖‖�−1

0 ‖∑n
i=1 ‖Xi(β − β0)‖2 are both bounded by a constant mul-

tiple of n−1 ∑n
i=1 ‖Xi(β − β0)‖2 = n−1‖X(β − β0)‖2

F . Now by the inequality

∥∥X(β − β0)
∥∥

F
≤ ‖X‖◦

G∑
j=1

‖βj − β0j‖F ≤ ‖X‖◦
d∑

k=1

‖βk − β0,k‖2,1, (5.2)

to bound �(A2|A1) from below, it suffices to bound �(
∑d

k=1‖βk − β0,k‖2,1 ≤ crn), where
rn =√

nε2
n/‖X‖◦ and c is a positive constant. By (2.1), this can be further bounded below by

π(s0)
1(

Gd
s0

) ∫∑d
k=1 ‖βS0,k

−β0,S0,k
‖2,1≤crn

d∏
k=1

gs0,k
(βS0,k

) dβS0,1 . . . dβS0,d
. (5.3)

By changing the variable βS0,k
−β0,S0,k

to β̌S0,k
and using the fact that ‖x‖ ≤ ‖x‖1 for any vector

x, the integral in (5.3) is bounded below by

e−∑d
k=1 λk‖β0,k‖2,1

∫
∑d

k=1 ‖β̌S0,k
‖1≤crn

d∏
k=1

gs0,k
(β̌S0,k

) dβ̌S0,1 . . . dβ̌S0,d

≥ e−∑d
k=1 λk‖β0,k‖2,1

d∏
k=1

∏
j∈S0,k

(
2λk

ajλ

)pj

×
∫
∑d

k=1 ‖β̌S0,k
‖1≤crn

(
λ

2

)pS0

e
−λ

∑d
k=1 ‖β̌S0,k

‖1 dβ̌S0,1 . . . dβ̌S0,d
.

Using the result that the integrand equals to the probability of the first pS0 events of a Poisson
process happen before time crn (similar to the argument used to derive (6.2) in [8]), the last
display is further bounded below by

e−∑d
k=1 λk‖β0,k‖2,1

{
d∏

k=1

∏
j∈S0,k

(
2λk

ajλ

)pj

}
e−λcrn

1

pS0 !
(λcrn)

pS0

≥ e−∑d
k=1 λk‖β0,k‖2,1−λcrn

{
d∏

k=1

∏
j∈S0,k

(
2

aj

)pj

}
1

pS0 !
(λcrn)

pS0 .

Hence, by Assumption 1, (5.3) is bounded below by

π(0)A
s0
1

(G ∨ npmax)A3s0(Gd)s0
e−∑d

k=1 λk‖β0,k‖2,1−λcrn
(λcrn)

pS0

pS0 !
d∏

k=1

∏
j∈S0,k

(
2

aj

)pj

,
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implying that log�(K(f0, f ) ≤ nε2
n,V (f0, f ) ≤ nε2

n) is bounded below by

−d2 logn + logπ(0) + s0 logA1 − (A3 + 1)s0(logG + pmax logn + logd) −
d∑

k=1

λk‖β0,k‖2,1

− λcrn + pS0 log(λcrn) − log(pS0 !) −
d∑

k=1

∑
j∈S0,k

pj log(aj /2). (5.4)

As π(0) is bounded away from zero, and Assumption 2 gives λcrn − pS0 log(λcrn) �√
nεn

√
logG + (pS0/pmax) logG � nε2

n , the second, sixth, and seventh terms are controlled.
Also, since

∑d
k=1 ‖β0,k‖2,1 ≤ β with the expression of β is displayed in (3.1), we have∑d

k=1 λk‖β0,k‖2,1 ≤ max1≤k≤d λk

∑d
k=1 ‖β0,k‖2,1 ≤ nε2

n . Furthermore, since log(pS0 !) ≤
pS0 logpS0 and aj = O(p

1/2
j ), we obtain that log(pS0 !) + ∑d

k=1
∑

j∈S0,k
pj log(aj /2) �

s0pmax logn ≤ nε2
n . Thus, (5.4) is bounded below by a constant multiple of −nε2

n . �

Proof of Lemma 3.2. Let Bn = {β : sβ < r}. We show that E0�(β ∈ Bc
n|Y1, . . . , Yn) → 0 as

n → ∞ for r ≥ s0. By Lemma 5.1, the denominator of (3.9) in the expression for �(β ∈ Bc
n|

Y1, . . . , Yn) with Bn as above, is bounded below by e−C1nε2
n with a large probability. To upper

bound the corresponding numerator, note that its expectation is

E0

(∫ ∫
Bc

n

(f/f0) d�(β) d�(�)

)
≤
∫
Bc

n

d�(β) = �(sβ ≥ r) =
∞∑

s=r

π(s),

and by Assumption 1 and A2/(G ∨ npmax)A4 ≤ 1/2 as n → ∞, the bound simplifies to

π(s0)

(
A2

(G ∨ npmax)A4

)r−s0 ∞∑
j=0

(
A2

(G ∨ npmax)A4

)j

≤ 2

(
A2

(G ∨ npmax)A4

)r−s0

.

Therefore, because E0�(Bc
n|Y1, . . . , Yn) ≤ E0�(Bc

n|Y1, . . . , Yn)1En +P0(E
c
n) and P0(E

c
n) → 0,

choosing r = M2{s0 ∨[d2 logn/(logG∨pmax logn)]} for some M2 large enough, we obtain that
E0�(Bc

n|Y1, . . . , Yn) is bounded above by

exp
(
C1nε2

n + log 2 + (r − s0)
(
logA2 − A4(logG ∨ pmax logn)

))+ o(1) → 0. �

Proof of Theorem 3.1. The proof contains two parts. In the first part, we obtain the posterior
contraction rate with respect to the average negative log-affinity. In the second part, we use the
results obtained from the first part to derive (3.2) and (3.3).
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Part I. Note that for every ε > 0,

E0�

(
(β,�) ∈ R

p×d ×H : 1

n

n∑
i=1

ρ(fi, f0,i ) > ε

∣∣∣Y1, . . . , Yn

)

≤ E0�

(
(β,�) ∈ Bn ×H : 1

n

n∑
i=1

ρ(fi, f0,i ) > ε

∣∣∣Y1, . . . , Yn

)
+E0�

(
Bc

n|Y1, . . . , Yn

)
,

where H is the space of d × d positive definite matrices and Bn = {β : sβ < M2s
�}. The second

term on the right-hand side goes to zero by Lemma 3.2, and hence it suffices to show that the
first term goes to zero for ε2 = M1ε

2
n .

Define the sieve

Fn =
{
(β,�) ∈ Bn ×H : max

1≤j≤G
1≤k≤d

‖βjk‖ ≤ Hn,n
−1 < eig1

(
�−1), eigd

(
�−1)≤ n

}
,

where Hn = pmaxn/λ for λ given in (2.3). Then

�
(
(Bn ×H) \Fn

)≤
∑

S:s≤M2s
�

π(s)(
Gd

s

) d∑
k=1

∑
j∈Sk

�
(‖βjk‖ ≥ Hn

)

+ �
(
eig1

(
�−1)≤ n−1)+ �

(
eigd

(
�−1)≥ n

)
. (5.5)

It is easy to see that ‖βjk‖ is gamma distributed with shape parameter pj and scale parameter
λk . Applying the tail-estimate of a gamma density [[5], page 29] and the inequality 1 + x −√

1 + 2x ≥ (x − 1)/2, for any x > 0, we have that

�
(‖βjk‖ > Hn

)≤ exp

(
−pj

(
1 + λkHn

pj

−
√

1 + 2
λkHn

pj

))
≤ exp(−λHn + pmax)

for j = 1, . . . ,G, k = 1, . . . , d , leading to the estimate

M2s
�∑

s=1

π(s)s exp(−λHn + pmax) ≤ exp
(
log

(
M2s

�
)− pmax(n − 1)

)
.

The second and third terms in (5.5) are both bounded by e−c2n for some c2 > 0 by the tail
property of inverse-Gaussian distribution. Therefore, for all sufficiently large n, �((Bn × H) \
Fn) ≤ exp(−(1 + C1)nε2

n).
Next, we construct a test ϕn such that

Ef0ϕn � e−M1nε2
n/2, sup

f ∈Fn:ρ(f0,f )>M1nε2
n

Ef (1 − ϕn) � e−M1nε2
n (5.6)
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for some M1 > C1 + 1, where f0 = ∏n
i=1 f0,i , f0,i = N (Xiβ0,�0) and f = ∏n

i=1 fi , fi =
N (Xiβ,�), i = 1, . . . , n, as required for an application of the general theory of posterior con-
traction. To this end, we first consider testing H0 : f = f0 against a single point f = f1 in the
alternative. Consider the most powerful Neyman-Pearson test φn = 1{f1/f0 ≥ 1}. If the average
Réyni divergence −n−1 log

∫
f

1/2
0 f

1/2
1 between f0 and f1 is bigger than ε2 > 0, then

Ef0φn = Ef0(
√

f1/f0 ≥ 1) ≤
∫ √

f0f1 ≤ e−nε2
,

Ef1(1 − φn) = Ef1(
√

f0/f1 ≥ 1) ≤
∫ √

f0f1 ≤ e−nε2
.

The test φn can also have exponentially small probability of type II error at other alternatives,
because by the Cauchy–Schwarz inequality,

Ef (1 − φn) ≤ {
Ef1(1 − φn)

}1/2{
Ef1(f/f1)

2}1/2
. (5.7)

so that the expression can be controlled properly if the second factor grows at most like ecnε2

where c > 0 can be chosen suitably small. Now we show that Ef1(f/f1)
2 is bounded for every

density with parameters such that

‖β1 − β‖∞ ≤ 1

s�
√

pmaxn‖X‖◦
, ‖�1 − �‖ ≤ 1

n2d
,

∥∥�−1
∥∥≤ n. (5.8)

To see this, we observe that for ��
1 = �−1/2�1�

−1/2,

Ef1(f/f1)
2 = (

det
(
��

1

))n/2(det
(
2I − ��

1
−1))−n/2

× exp

(
n∑

i=1

Xi(β − β1)�
−1/2(2��

1 − I
)−1

�−1/2(β − β1)
′X′

i

)
. (5.9)

Because � ∈ Fn, the condition ‖�1 − �‖ ≤ δ′
n = 1/(n2d) implies that∥∥��

1 − I
∥∥≤ ∥∥�−1

∥∥‖�1 − �‖ ≤ n‖�1 − �‖ ≤ nδ′
n,

and hence 1 − nδ′
n ≤ eig1(�

�
1) ≤ eigd(��

1) ≤ 1 + nδ′
n. Therefore, we obtain that

(
det(��

1)

det(2I − ��
1
−1)

)n/2

= exp

(
n

2

d∑
k=1

log
(
eigk

(
��

1

))− n

2

d∑
k=1

log

(
2 − 1

eigk(�
�
1)

))

≤ exp

(
dn

2
log

(
1 + nδ′

n

)− dn

2
log

(
1 − nδ′

n

1 − nδ′
n

))
.

By the inequalities 1 − x−1 ≤ logx ≤ x − 1 for x > 0, the display is further bounded by

exp

(
n2dδ′

n

2
+ dn

2

(
nδ′

n

1 − 2nδ′
n

))
≤ exp

(
n2dδ′

n

)= e.
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By the inequality (5.2), we bound the exponential term in (5.9) by

∥∥�−1
∥∥∥∥(2��

1 − I
)−1∥∥ n∑

i=1

∥∥Xi(β1 − β)
∥∥2

2

≤ ∥∥�−1
∥∥∥∥(2��

1 − I
)−1∥∥‖X‖2◦

(
d∑

k=1

‖β1,k − βk‖2,1

)2

.

Since ‖(2��
1 − I )−1‖ ≤ 2, ‖�−1‖ ≤ n, and

∑d
k=1‖β1,k − βk‖2,1 ≤ sβ1−β

√
pmax‖β1 −

β‖∞ ≤ 2M2s
�√pmax‖β1 − β‖∞ on Fn, the display is further bounded by the expression

8M2
2ns�2pmax‖X‖2◦‖β1 − β‖2∞ ≤ 8M2

2 . Hence, we conclude that (5.7) is bounded by a mul-

tiple of e−nε2
for every density with its parameter in the piece.

The desired test ϕn satisfying (5.6) is obtained as the maximum of all tests φn described above,
for each piece required to cover the sieve. To complete the proof of (5.6), we need to show that
logN∗ � nε2

n , where N∗ is the number of pieces satisfying (5.8) needed to cover the sieve Fn

(see Lemma D.3 of [17]). It is easy to see that logN∗ is bounded by

logN

(
1

s�
√

pmaxn‖X‖◦
,
{
β : sβ ≤ M2s

�, max
1≤j≤G
1≤k≤d

‖βjk‖ < Hn

}
,‖·‖∞

)

+ logN

(
1

n2d
,
{
� : n−1 < eig1

(
�−1), eigd

(
�−1)< n

}
,‖·‖

)
.

The first term of the display is bounded by

logN

(
1

s�
√

pmaxn‖X‖◦
,
{
β : sβ ≤ M2s

�,‖β − β0‖∞ < Hn

}
,‖·‖∞

)

≤ log

{(
Gd

M2s
�

)(
3
√

pmaxns�Hn‖X‖◦
)M2s

�
npmax

}

� s� logG + s�pmax(logn + log
(
Hn‖X‖◦

)
(5.10)

while the second term is bounded by

logN

(
1

n2d
,
{
� : n−1 < eig1

(
�−1)},‖·‖)≤ logN

(
1

n2d
,
{
� : ‖�‖F < n

√
d
}
,‖·‖F

)

≤ d2 log
(
n3d3/2),

both of which are bounded by a constant multiple of nε2
n .

Choosing ε = M1ε
2
n for a sufficiently large M1 > 1+C1, we thus have (5.6). We finally obtain

that the posterior �(
∑n

i=1 ρ(fi, f0,i ) > M1nε2
n|Y1, . . . , Yn) goes to zero in P0-probability.
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Part II. Observe that n−1 ∑n
i=1 ρ(fi, f0,i ) is equal to

− log

(
(det(�))1/4(det(�0))

1/4

(det((� + �0)/2))1/2

)
+ 1

8n

n∑
i=1

Xi(β − β0)

(
� + �0

2

)−1

(β − β0)
′X′

i .

Then
∑n

i=1 ρ(fi, f0,i )� nε2
n implies the relations

− log

(
(det(�))1/4(det(�0))

1/4

(det((� + �0)/2))1/2

)
� ε2

n, (5.11)

1

8n

n∑
i=1

Xi(β − β0)
(
(� + �0)/2

)−1
(β − β0)

′X′
i � ε2

n. (5.12)

First, we show that the probability of (5.11) goes to 1 implies (3.3). Let

d2(�,�0) = h2(N (0,�),N (0,�0)
)= 1 − (det(�))1/4(det(�0))

1/4

(det((� + �0)/2))1/2
.

The eigenvalues of �0 lie in [b1, b2], by Lemma 2 of [33], and so d2(�,�0) � ‖�−1/2
0 (� −

�0)�
−1/2
0 ‖2

F , if the left-hand side is sufficiently small. Since

− log

(
(det(�))1/4(det(�0))

1/4

(det((� + �0)/2))1/2

)
= − log

(
1 − d2(�,�0)

)≥ d2(�,�0),

we obtain that ‖� − �0‖2
F � ε2

n . This proves (3.3).
Next, we show that the probability (5.12) goes to 1 implies (3.2). Given (3.3) and by Assump-

tion 3, we obtain that

‖� + �0‖2 = ‖� − �0 + 2�0‖2 ≤ 2‖� − �0‖2
F + 8‖�0‖2 � ε2

n + 1.

Hence using eig1((� + �0/2)−1) = (eigd(� + �0/2))−1 = ‖(� + �0/2)‖−1 ≥ (1 + ε2
n)−1/2,

(5.12) implies that

ε2
n ≥ 1

8n

n∑
i=1

∥∥Xi(β − β0)
∥∥2
∥∥∥∥� + �0

2

∥∥∥∥
−1

� 1

n

n∑
i=1

∥∥Xi(β − β0)
∥∥2

/

√
ε2
n + 1.

Combining with (3.3), we obtain (3.2). �

Proof of Theorem 3.6. Let Hn = {� ∈ H : ‖� − �0‖2
F ≤ M1ε

2
n} and

�n =
{

β ∈R
p×d : sβ ≤ M2s

�,

(
d∑

k=1

‖βk − β0,k‖2,1

)2

≤ M4nε2
ns�

‖X‖2◦φ2
�2,1

(s0 + M2s�)

}
,
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where H is a space of d × d positive definite matrices. The proof contains two parts. In the
first part, we show that the total variation distance between �(β ∈ ·|Y1, . . . , Yn) and �̌n(β ∈ ·|
Y1, . . . , Yn) := �̌n((β,�) ∈ · ×Hn|Y1, . . . , Yn) is small, where �̌n((β,�) ∈ · × ·|Y1, . . . , Yn) is
the renormalized measure of �((β,�) ∈ ·× ·|Y1, . . . , Yn) restricted to the set �n ×Hn. We also
show that the total variation distance between �∞(β ∈ ·|Y1, . . . , Yn) and �̌∞

n (β ∈ ·|Y1, . . . , Yn)

is small, where �̌∞
n (β ∈ ·|Y1, . . . , Yn) is the measure �∞(β ∈ ·|Y1, . . . , Yn) restricted and

renormalized to �n. In the second part, we show that the total variation distance between
�̌n(β ∈ ·|Y1, . . . , Yn) and �̌∞

n (β ∈ ·|Y1, . . . , Yn) is small.
For any set A, let �A(·) be the renormalized measure of �(·) which is restricted to the set A.

Then ‖�(·) − �A(·)‖ ≤ 2�(Ac). Clearly,

E0
∥∥�(β ∈ ·|Y1, . . . , Yn) − �̌n(β ∈ ·|Y1, . . . , Yn)

∥∥
TV → 0,

by (3.3) and (3.7). To show that

E0
∥∥�∞(β ∈ ·|Y1, . . . , Yn) − �̌∞

n (β ∈ ·|Y1, . . . , Yn)
∥∥

TV → 0,

we write

�∞(
β ∈ �c

n|Y1, . . . , Yn

)=
∫
�c

n
exp{�n(β,�0) − �n(β0,�0)}dU(β)∫

exp{�n(β,�0) − �n(β0,�0)}dU(β)
, (5.13)

with dU(β) defined in (3.10). By (3.8), �n(β,�0) − �n(β0,�0) equals to

−1

2

n∑
i=1

∥∥�−1/2
0 X̃

′
i Vec(β − β0)

′∥∥2 +
n∑

i=1

(
Yi − Vec(β0)X̃i

)
�−1

0 X̃
′
i Vec(β − β0)

′.

By plugging-in the last display into (5.13), the denominator is bounded below by

π(s0)(
Gd
s0

)
(

d∏
k=1

∏
j∈S0,k

(
λk

aj

)pj

)

×
∫

exp

(
−1

2

n∑
i=1

∥∥�−1/2
0 X̃

′
i,S0

β̃S0

∥∥2 +
n∑

i=1

(
Yi − Vec(β0)X̃i

)
�−1

0 X̃
′
i,S0

β̃S0

)
dβ̃S0,

where β̃S0 = ((β1,S0,1 − β0,1,S0,1)
′, . . . , (βd,S0,d

− β0,d,S0,d
)′)′. By Jensen’s inequality, the display

is bounded below by

π(s0)(
Gd
s0

)
(

d∏
k=1

∏
j∈S0,k

(
λk

aj

)pj

)∫
exp

(
−1

2

n∑
i=1

∥∥�−1/2
0 X̃

′
i,S0

β̃S0

∥∥2

)
dβ̃S0 ,

= π(s0)(
Gd
s0

)
(

d∏
k=1

∏
j∈S0,k

(
λk

aj

)pj

)√√√√ (2π)pS0

det(
∑n

i=1 X̃i,S0�
−1
0 X̃

′
i,S0

)
. (5.14)
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Letting �S0 =∑n
i=1 X̃i,S0�

−1
0 X̃

′
i,S0

, we apply Jensen’s inequality to obtain that

det(�S0) ≤ (
Tr(�S0)/pS0

)pS0 ≤
(

max
l

(�S0)l,l

)pS0
,

where (�S0)l,l is the lth diagonal element of �S0 . Note that

max
l

(�S0)l,l ≤ 1

b1
max

1≤j≤G

∥∥∥∥∥
n∑

i=1

X̃i,j X̃
′
i,j

∥∥∥∥∥= 1

b1
max

1≤j≤G
‖Xj‖2 = ‖X‖2◦

b1
,

where X̃i,j = I d ⊗ X′
ij , and hence (5.14) is further bounded below by

π(s0)(
Gd
s0

)
(

d∏
k=1

∏
j∈S0,k

(
λk

aj

)pj

)(
2b1π

‖X‖2◦

)pS0/2

≥ π(s0)

(Gd)s0
∏d

k=1
∏

j∈S0,k
a

pj

j

( √
2b1π

B1(G1/pmax ∨ n)B2

)pS0

≥ π(s0)

(Gd)s0a
s0pmax
j

( √
2b1π

B1(G1/pmax ∨ n)B2

)s0pmax

. (5.15)

We thus obtain a lower bound for the denominator.
The numerator of (5.13) can be written as

∫
�c

n

{
exp

(
−1

2

n∑
i=1

∥∥Vec(β − β0)X̃i�
−1/2
0

∥∥2

)

× exp

(
n∑

i=1

(
Yi − Vec(β0)X̃i

)
�−1

0 X̃
′
i Vec(β − β0)

′
)}

dU(β). (5.16)

Note that

n∑
i=1

(
Yi − Vec(β0)X̃i

)
�−1

0 X̃
′
i Vec(β − β0)

′

=
G∑

j=1

n∑
i=1

(
Yi − Vec(β0)X̃i

)
�−1

0 X̃
′
i,j Vec(βj − β0,j )

′

≤
G∑

j=1

∥∥∥∥∥
n∑

i=1

(
Yi − Vec(β0)X̃i

)
�−1

0 X̃
′
i,j

∥∥∥∥∥‖βj − β0,j‖F . (5.17)
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Using the tail inequality for quadratic forms of Gaussian random variables (Proposition 1 of
[19]), we obtain for every t > 0,

P

(
max

1≤j≤G

∥∥∥∥∥
n∑

i=1

(
Yi − Vec(β0)X̃i

)
�−1

0 X̃
′
i,j

∥∥∥∥∥
2

≥ Tr
(
�′�

)+ 2
√

Tr
((

�′�
)2)

t + 2‖�‖2t

)
≤ Ge−t ,

where � = (X̃1,j�
−1
0 , . . . , X̃n,j�

−1
0 ) ∈ R

pj ×dn. Since Tr(�′�) ≤ pj‖�‖2 and ‖�‖ �
‖(X̃1,j , . . . , X̃n,j )‖ = ‖Xj‖ ≤ ‖X‖◦, choosing t = 2(logG ∨ pmax logn), we obtain

P

(
max

1≤j≤G

∥∥∥∥∥
n∑

i=1

(
Yi − Vec(β0)X̃i

)
�−1

0 X̃
′
i,j

∥∥∥∥∥≥ c4‖X‖◦
√

logG ∨ pmax logn

)
≤ 1

G

for some c4 > 0. Let Dn = c4‖X‖◦
√

logG ∨ pmax logn. Then, with probability tending to one,
(5.17) is further bounded by

Dn

d∑
k=1

‖βk − β0,k‖2,1 ≤ 2Dn‖X(β − β0)‖F |Sβ−β0
|1/2

‖X‖◦φ�2,1(|Sβ−β0
|) − Dn

d∑
k=1

‖βk − β0,k‖2,1

=
2Dn

√
|Sβ−β0

|∑n
i=1‖Vec(β − β0)X̃i‖2

‖X‖◦φ�2,1(|Sβ−β0
|) − Dn

d∑
k=1

‖βk − β0,k‖2,1.

The display is further bounded by

2b2Dn

√
|Sβ−β0

|∑n
i=1‖Vec(β − β0)X̃i�

−1
0 ‖2

‖X‖◦φ�2,1(|Sβ−β0
|) − Dn

d∑
k=1

‖βk − β0,k‖2,1

≤ 1

2

n∑
i=1

∥∥Vec(β − β0)X̃i�
−1
0

∥∥2 + 2b2
2D

2
n|Sβ−β0

|
‖X‖2◦φ2

�2,1
(|Sβ−β0

|) − Dn

d∑
k=1

‖βk − β0,k‖2,1,

by the Cauchy–Schwarz inequality. Therefore, with probability tending to one, (5.16) is bounded
by

∫
�c

n

exp

(
2b2

2D
2
n|Sβ−β0

|
‖X‖2◦φ2

�2,1
(|Sβ−β0

|) − Dn

d∑
k=1

‖βk − β0,k‖2,1

)
dU(β)

≤ exp

(
2b2

2D
2
n(s0 + M2s

�)

‖X‖2◦φ2
�2,1

(s0 + M2s�)
− Dn

√
M4nε2

ns�

2‖X‖◦φ�2,1(s0 + M2s�)

)

×
∑

S:s≤M2s
�

π(s)(
Gd
s

) ∫
�c

n

d∏
k=1

(∏
j∈Sk

(
λk

aj

)pj
)

exp

(
−Dn

2
‖βk − β0,k‖2,1

)
dβSk

⊗ δSc
k
.
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Since c4λk/B3 ≤ Dn for every k ≤ d , the last summation is bounded by

∑
S:s≤M2s

�

π(s)(
Gd
s

)(2B3

c4

)pS

≤ 1,

where the inequality holds by making c4 large enough. Now, plug in Dn and combine the dis-
play with (5.15) to obtain an upper bound of the expectation of (5.13). Since aj = O(p

1/2
j ) and

π(s0) �A
s0
1 /(GA3 ∨nA5pmax)s0 , the upper bound goes to zero as long as M4 is chosen sufficiently

large.
For a measurable subset B of Rp×d , we can write

�̌n(B|Y1, . . . , Yn)

∝
∫

(B∩�n)

∫
Hn

exp(�n(β,�))

exp(�n(β0,�))
exp

(
−

d∑
k=1

λk‖βk‖2,1

)
exp

(
�n(β0,�)

)
d�(�) dU(β),

and

�̌∞
n (B|Y1, . . . , Yn)

∝
∫

(B∩�n)

∫
Hn

exp(�n(β,�0))

exp(�n(β0,�0))
exp

(
−

d∑
k=1

λk‖β0,k‖2,1

)
exp

(
�n(β0,�)

)
d�(�) dU(β).

Note that for sequences of measures (μS ) and (νS ),∥∥∥∥
∑

S μS

‖∑S μS‖TV
−

∑
S νS

‖∑S νS‖TV

∥∥∥∥
TV

≤ 2 sup
S

∥∥∥∥1 − dνS

dμS

∥∥∥∥∞
(see, e.g., page 2011 of [8]). Hence, it suffices to show that

E0 sup
β∈�n

∣∣∣∣1 −
∫
Hn

exp(�n(β,�))
exp(�n(β0,�))

exp(−∑d
k=1 λk‖βk‖2,1) exp(�n(β0,�)) d�(�)∫

Hn

exp(�n(β,�0))
exp(�n(β0,�0))

exp(−∑d
k=1 λk‖β0,k‖2,1) exp(�n(β0,�)) d�(�)

∣∣∣∣→ 0.

Using the property that |1 − ∫
f /

∫
g| ≤ (1 − inf(f/g)) ∨ (sup(f/g) − 1) ≤ sup |1 − f/g|, the

expression in the last display is bounded by

E0 sup
β∈�n

sup
�∈Hn

∣∣∣∣∣1 − exp

(
�̃n(β,�) −

d∑
k=1

λk

(‖βk‖2,1 − ‖β0,k‖2,1
))∣∣∣∣∣

≤ E0 sup
β∈�n

sup
�∈Hn

{(∣∣�̃n(β,�)
∣∣+ max

1≤k≤d
λk

d∑
k=1

‖βk − β0,k‖2,1

)

× exp

(∣∣�̃n(β,�)
∣∣+ max

1≤k≤d
λk

d∑
k=1

‖βk − β0,k‖2,1

)}
,
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where �̃n(β,�) = �n(β,�) + �n(β0,�0) − �n(β,�0) − �n(β0,�). First, it is easy to see that
sup{λk

∑d
k=1 ‖βk − β0,k‖2,1 : β ∈ �n,1 ≤ k ≤ d} → 0 due to the small λ regime. To complete

the proof, we shall show that

E0 sup
β∈�n

sup
�∈Hn

∣∣�̃n(β,�)
∣∣→ 0. (5.18)

It can be easily verified that

∣∣�̃n(β,�)
∣∣≤ 1

2

∣∣∣∣∣
n∑

i=1

Vec(β − β0)X̃i

(
�−1 − �−1

0

)
X̃

′
i Vec(β − β0)

′
∣∣∣∣∣

+
∣∣∣∣∣

n∑
i=1

Vec(β − β0)X̃i

(
�−1 − �−1

0

)(
Yi − Vec(β0)X̃i

)′∣∣∣∣∣.

First, note that

sup
β∈�n

sup
�∈Hn

∣∣∣∣∣
n∑

i=1

Vec(β − β0)X̃i

(
�−1 − �−1

0

)
X̃

′
i Vec(β − β0)

′
∣∣∣∣∣

≤ sup
�∈Hn

∥∥�−1 − �−1
0

∥∥ sup
β∈�n

∥∥X(β − β0)
∥∥2

F

� ‖X‖2◦ sup
�∈Hn

‖� − �0‖ sup
β∈�n

(
d∑

k=1

‖βk − β0,k‖2,1

)2

,

where the last inequality holds by (5.2) and Assumption 3 since sup{‖� − �0‖ : � ∈ Hn} is
small. The rightmost side of the display is bounded by s�nε3

n which goes to zero by the assump-
tion. Similar to (5.17), we also obtain that

E0 sup
β∈�n

sup
�∈Hn

∣∣∣∣∣Vec(β − β0)

n∑
i=1

X̃i

(
�−1 − �−1

0

)(
Yi − Vec(β0)X̃i

)′∣∣∣∣∣
≤ E0 sup

β∈�n

sup
�∈Hn

G∑
j=1

∥∥Vec(βj − β0,j )
∥∥

F
‖W�,j‖

≤ E0 max
1≤j≤G

sup
�∈Hn

‖W�,j‖ sup
β∈�n

d∑
k=1

‖βk − β0,k‖2,1, (5.19)
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where W�,j =∑n
i=1 X̃i,j (�

−1 −�−1
0 )(Yi −Vec(β0)X̃i )

′. By Lemma 2.2.2 of [35] applied with
ψ2(x) = exp(x2) − 1, we have

E0 max
1≤j≤G

sup
�∈Hn

‖W�,j‖ ≤√
pmaxdE0 max

1≤j≤G
max

1≤�≤pj d
sup

�∈Hn

|W�,j,�|

≤√
pmaxd

∥∥∥ max
1≤j≤G

max
1≤�≤pj d

sup
�∈Hn

|W�,j,�|
∥∥∥

ψ2

�
√

pmaxd logG max
1≤j≤G

max
1≤�≤pj d

∥∥∥ sup
�∈Hn

|W�,j,�|
∥∥∥

ψ2
,

where ‖·‖ψ2 denotes the Orlicz norm and W�,j,� is the �th element of W�,j . By Lemma 2.2.1 of
[35], we have that for every �1,�2 ∈ Hn,

‖W�1,j,� − W�2,j,�‖ψ2 �
√

Var(W�1,j,� − W�2,j,�) ≤ ∥∥�1/2
0

(
�−1

1 − �−1
2

)∥∥‖Xj‖,
which is bounded by ‖�1 − �2‖F ‖X‖◦, by the relations ‖�1 − �2‖F ≤ ‖�1 − �0‖F +
‖�2 − �0‖F � εn and �−1

1 − �−1
2 = −�−1

1 (�1 − �2)�
−1
2 , and the fact that the eigenvalues

of �, and hence also those of �1 and �2, lie between two fixed positive numbers. We see that
W�,j,� is a separable Gaussian process as Hn is a separable metric space under the Frobenius
norm. Hence, by Corollary 2.2.5 of [35], for any fixed �′ ∈Hn and some c5 > 0,

∥∥∥ sup
�∈Hn

|W�,j,�|
∥∥∥

ψ2
� ‖W�′,j,�‖ψ2 +

∫ c5‖X‖◦ diamj (Hn)

0

√
logN

(
ε

2c5‖X‖◦
,Hn,‖·‖F

)
dε,

where diamj (Hn) = sup{‖�1 − �2‖F : �1,�2 ∈ Hn}. By Lemma 2.2.1 of [35] again, we have
that

‖W�′,j,�‖ψ2 �
√

Var(W�′,j,�) ≤ ∥∥�1/2
0

(
�′−1 − �−1

0

)∥∥‖Xj‖�
∥∥�′ − �0

∥∥
F
‖X‖◦.

We also obtain that

∫ c5‖X‖◦ diamj (Hn)

0

√
logN

(
ε

2c5‖X‖◦
,Hn,‖·‖F

)
dε

≤
∫ 2c5

√
M1‖X‖◦εn

0

√
d2 log

(
6c5

√
M1‖X‖◦εn

ε

)
dε

= 12c5

√
M1‖X‖◦dεn

∫ ∞
√

log 3
t2e−t2

dt.

Since the integral term on the rightmost side of the last display is bounded, we finally verify
that ‖sup�∈Hn

|W�,j,�|‖ψ2 � ‖X‖◦dεn for every j and �. Putting everything together, (5.19) is

bounded by a multiple of ε2
n

√
pmaxnd3s� logG which goes to zero by the assumption. We finally

verify (5.18), and hence the proof is complete. �
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Proof of Theorem 3.7. We only need to show that

sup
β0∈{B0:s0≤snδn(s0)≤ηn,

φ�2,1 (s0+M2s
�)>c},�0∈H0

E0�(β : Sβ,1 ⊃ S0,1, . . . , Sβ,d ⊃ S0,d , Sβ �= S0|Y1, . . . , Yn) → 0.

Then the theorem follows by the Beta-min condition. Our proof is similar to the proof of Theo-
rem 4 of [8].

Let Sn = {S : s ≤ M2s
�, S1 ⊃ S0,1, . . . , Sd ⊃ S0,d , S �= S0} and �S =∑n

i=1 X̃i,S�−1
0 X̃

′
i,S . By

Theorem 3.6, it suffices to show that �∞(β : Sβ ∈ Sn|Y1, . . . , Yn) → 0 in probability. By (3.11),
we obtain that �∞(β : Sβ ∈ Sn|Y1, . . . , Yn) ≤∑

S∈Sn
w∞

S /w∞
S0

which can be bounded by

M2s
�∑

s̄=s0+1

{
π(s̄)

(
Gd
s0

)(
Gd−s0
s̄−s0

)
π(s0)

(
Gd
s̄

) max
S∈Sn:s=s̄

[(
d∏

k=1

∏
j∈Sk

(
λj

√
2π

aj

)pj

)(
det�S0

det�S

)1/2

× exp

(
1

2

n∑
i=1

∥∥�−1/2
0 X̃

′
i,S β̂�

S

∥∥2 − 1

2

n∑
i=1

∥∥�−1/2
0 X̃

′
i,S0

β̂�
S0

∥∥2

)]}
. (5.20)

To bound further, we bound each factor in the above expression.
The interlacing theorem applied to �S and its principal submatrix �S0 gives eigm(�S0) ≤

eigm(�S), m = 1, . . . ,
∑d

k=1
∑

j∈S0,k
pj , we have

det(�S0) ≤
∏
m

eigm(�S) ≤ (
eig1(�S)

)pS0 −pS det(�S),

so by (3.6), det(�S0)/det(�S) is bounded by (b−1
2 φ�2(s)‖X‖◦)2(pS0 −pS).

The exponential term QS :=∑n
i=1 ‖�−1/2

0 X̃
′
i,S β̂�

S‖2 −∑n
i=1 ‖�−1/2

0 X̃
′
i,S0

β̂�
S0

‖2 in (5.20) has

a χ2-distribution with degree of freedom pS0 − pS . By Markov’s inequality on the exponential
moment, we have that for every 0 < u < 1/2 and r > 0,

P0

(
max

S∈Sn:s=s̄
QS ≥ r(s̄ − s0)(logG ∨ pmax logn)

)

≤ exp
(−ur(s̄ − s0)(logG ∨ pmax logn)

)
E0

(
max

S∈Sn:s=s̄
euQS

)
≤ Ns̄ exp

(−ur(s̄ − s0)(logG ∨ pmax logn)
)
(1 − 2u)−(pS0 −pS)/2,

where Ns̄ = (
Gd−s0
s̄−s0

)
is the cardinality of the set {S ∈ Sn : s = s̄}. Since Ns̄ ≤ (Gd)s̄−s0 and

d2 logn 
 n, we have that for some c > 0,

P
(
QS ≥ r(s̄ − s0)(logG ∨ pmax logn), for any S ∈ Sn

)
≤
∑
s̄>s0

exp

(
−ur(s̄ − s0)(logG ∨ pmax logn) + 3

2
(s̄ − s0) logG + c(s̄ − s0)pmax

)
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which goes to 0 whenever ur > 3/2. If r > 3, this is ensured by choosing u arbitrarily close to
1/2. Thus with probability tending to 1, (5.20) is bounded by

M2s
�∑

s=s0+1

A
s−s0
1 ss−s0

(G ∨ npmax)A4(s−s0)

(
max1≤k≤d λk

√
2π

b−1
2 ‖X‖◦φ�2(s)

)pmax(s̄−s0) 1

(G ∨ npmax)r(s̄−s0)/2
. (5.21)

Under the small λ regime, for every S such that s ≤ M2s
� � Ga ,

(
max1≤k≤d λk

√
2π

b−1
2 ‖X‖◦φ�2(s)

)pmax(s̄−s0)

≤
(

max1≤k≤d λk

√
2πM2s�

b−1
2 ‖X‖◦φ�2,1(M2s�)

)pmax(s̄−s0)

� 1.

and hence (5.21) goes to 0 if a − A4 + r/2 < 0. If A4 > a + 3/2, this is ensured by choosing r

arbitrarily close to 3. �
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Supplementary Material

Supplement to “Bayesian linear regression for multivariate responses under group spar-
sity” (DOI: 10.3150/20-BEJ1198SUPP; .pdf). In this supplemental material, we provide the
proof of aj in (2.2). More importantly, we derive the posterior contraction rate when choosing
the inverse-Wishart prior for �.
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