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We prove a refined Cramér-type moderate deviation result by taking into account of the skewness in nor-
mal approximation for sums of local statistics of independent random variables. We apply the main result
to k-runs, U-statistics and subgraph counts in the Erdős–Rényi random graph. To prove our main result,
we develop exponential concentration inequalities and higher-order tail probability expansions via Stein’s
method.
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1. Introduction

Moderate deviations date back to Cramér [17] who obtained expansions for tail probabilities for
sums of independent random variables about the normal distribution. Let Wn = ∑n

i=1 Xi/
√

n

where {X1,X2, . . .} are independent and identically distributed (i.i.d.) with EX1 = 0, EX2
1 = 1,

and Eet0|X1| < ∞ for a constant t0 > 0. It is known that (cf. Petrov [21], Chapter 8, Theorem 1)∣∣∣∣P(Wn > x)

1 − �(x)
− 1

∣∣∣∣ ≤ C(1 + x3)√
n

for 0 ≤ x ≤ C0n
1/6 (1.1)

and ∣∣∣∣ P(Wn > x)

(1 − �(x))eγ x3/6
− 1

∣∣∣∣ ≤ C

(
1 + x√

n
+ x4

n

)
for 0 ≤ x ≤ C0n

1/4, (1.2)

where C0 is any fixed constant, � denotes the standard normal distribution function, γ = EW 3
n =

EX3
1/

√
n and C is a positive constant depending only on t0, C0, and the moment generating

function Eet0|X1|. The range 0 ≤ x = o(n1/6) (0 ≤ x = o(n1/4), resp.) for the relative error in
(1.1) ((1.2), resp.) to vanish is optimal. We refer to results such as (1.1) as Cramér-type moderate
deviations. We refer to the modification of the normal distribution function in (1.2) as skewness
correction, and results such as (1.2) as refined Cramér-type moderate deviations.

In statistical inference problems, it is crucial to compute the p-value of a test statistic, which
is defined to be the probability that the statistic is greater than or equal to the actual observed
value under the null hypothesis. Such a p-value is typically small. When the test statistic is
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asymptotically normal, Cramér-type moderate deviations provide theoretical justification of us-
ing the normal tail probability to approximate the p-value with a small relative error. When the
sample size is relatively small and the underlying distribution is not symmetric, it has been ob-
served empirically that making a skewness correction can greatly improve the accuracy of the
tail probability approximation. See, for example, Tu and Siegmund [30] and Tang and Siegmund
[29] for sums of independent random variables and Chen and Zhang [10] for dependent random
variables. See also Table 1 below. Refined Cramér-type moderate deviations provide theoretical
justification of such a skewness correction.

The main purpose of this paper is to prove a refined Cramér-type moderate deviation for sums
of local statistics of independent random variables. For a positive integer m, let {X1, . . . ,Xm} be
a sequence of independent random variables in a general space. Let

W =
n∑

i=1

ξi,

where for each i ∈ {1, . . . , n}, ξi is a real-valued function of a small subset of {X1, . . . ,Xm}.
Absolute-error bounds in normal approximation for such W are well studied in the literature.

See, for example, Chen and Shao [14] for results under a more general local dependence setting.
However, the accuracy of tail probability approximations for such W is less well understood.
Recently, Zhang [31] considered Cramér-type moderate deviations as in (1.1) for such W .

Assume EW = 0, EW 2 = 1 and let γ = EW 3. Our main result is a general relative-error
bound (cf. (2.3)) for ∣∣∣∣ P(W > x)

(1 − �(x))eγ x3/6
− 1

∣∣∣∣
under certain boundedness conditions (cf. (2.1)). For standardized sums of i.i.d., bounded random
variables, our bound vanishes for the optimal range 0 ≤ x = o(n1/4). We apply our main result to
k-runs, U-statistics, and subgraph counts in the Erdős–Rényi random graph. In each application,
our bound vanishes for presumably the optimal range of x in terms of the system size.

Our proof is based on Stein’s method, which was introduced by Stein [28] for normal ap-
proximation. We refer to Chen, Goldstein and Shao [13] for an introduction to the method and
a survey of its recent developments. Chen, Fang and Shao [11] developed the method to prove
Cramér-type moderate deviation results in normal approximation without skewness correction
for dependent random variables under a boundedness condition. Chen, Fang and Shao [12] and
Shao, Zhang and Zhang [27] considered Poisson approximation and nonnormal approximations,
respectively. Zhang [31] refined the results in Chen, Fang and Shao [11] by relaxing the bound-
edness condition. Braverman and Dai [7], Chapter 4, obtained a Cramér-type moderate deviation
result in a higher-order approximation for the Erlang-C queuing model. His proof relies heav-
ily on explicit expressions of certain conditional expectations in the model. To prove our general
bound, we develop Stein’s method for exponential concentration inequalities (cf. Proposition 3.2)
and for higher-order tail probability expansions. For the latter, we use P(Zγ > x) in place of

(1 − �(x))eγ x3/6 for an intermediate approximation, where Zγ follows a suitable standardized
Poisson distribution.
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Related results are available in the literature. (a) Asymptotic expansions in the central limit
theorem have been extensively studied. See, for example, Petrov [21] for the classical Edgeworth
expansion and Barbour [1] and Rinott and Rotar [22] for related expansions using Stein’s method.
These expansions require either a continuity condition on the random variable or a smoothness
condition on certain test functions. The O(1/

√
n) rate of convergence in the absolute-error bound

for normal approximation for sums of n independent discrete random variables generally can not
be improved. Nevertheless, (1.2), as well as our main result, shows that it is still possible to
improve the accuracy in terms of the relative error in tail probability approximations using an
appropriate expansion. (b) In the proof of our main result, we use a standardized Poisson distri-
bution for an intermediate approximation. Translated Poisson distributions have been proposed
as alternatives to normal distributions to approximate lattice random variables in the total varia-
tion distance. See, for example, Röllin [24], Röllin [25], Barbour, Luczak and Xia [4], Barbour,
Luczak and Xia [5], and Barbour and Xia [6]. Instead of matching the support of random vari-
ables as in these results, we use standardized Poisson distributions to correct for skewness. See
Rio [23] for a similar use of standardized Poisson distributions.

The remainder of this paper is organized as follows. In Section 2, we state the general relative-
error bound in normal approximation with skewness correction for sums of local statistics of in-
dependent random variables and discuss applications to k-runs, U-statistics, and subgraph counts
in the Erdős–Rényi random graph. In Section 3, we prove an exponential concentration inequal-
ity, which is crucial to the proof of the general bound. In Section 4, we prove the general bound.

2. Main results

2.1. A general relative-error bound

For a positive integer N , denote [N ] := {1, . . . ,N}. Let m and n be positive integers. Let {Xα :
α ∈ [m]} be a sequence of independent random variables. Let W = ∑n

i=1 ξi , where each ξi is a
function of {Xα : α ∈ Ii} for some Ii ⊂ [m]. For α ∈ [m], let Nα = {i ∈ [n] : α ∈ Ii}.

Theorem 2.1. Under the above setting, assume that Eξi = 0 for each i ∈ [n] and Var(W) = 1.
Assume further that

|ξi | ≤ δ, |Ii | ≤ s, |Nα| ≤ d, (2.1)

where | · | denotes the cardinality when applied to a set. Denote γ := EW 3. Let C0 be any fixed
constant. For

0 ≤ x ≤ C0
(
mns4d4δ5)−1/2

, (2.2)

we have ∣∣∣∣ P(W > x)

(1 − �(x))eγ x3/6
− 1

∣∣∣∣ ≤ Cmns4d4δ5(1 + x2), (2.3)

where C is a positive constant depending only on C0.
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Clearly, applying the above result to −W yields∣∣∣∣ P(W < −x)

�(−x)e−γ x3/6
− 1

∣∣∣∣ ≤ Cmns4d4δ5(1 + x2).
To illustrate that the range of x for the relative error in our approximation to vanish is correct,

we first consider the standardized sums of i.i.d., bounded random variables. Let X1,X2, . . . be
i.i.d. with EXi = 0, EX2

i = 1, |Xi | ≤ C1 < ∞. For an integer n ≥ 1, let ξi = Xi/
√

n for each
i ∈ [n] and let W = ∑n

i=1 ξi . This satisfies the assumptions in Theorem 2.1 with

m = n, δ = C1√
n
, s = 1, d = 1, γ = EX3

1√
n

.

Let C0 be any fixed constant. From (2.3), we have, for 0 ≤ x ≤ C0n
1/4,∣∣∣∣ P(W > x)

(1 − �(x))eγ x3/6
− 1

∣∣∣∣ ≤ C√
n

(
1 + x2), (2.4)

where C is a positive constant depending only on C0 and C1.

The roadmap for proving Theorem 2.1. First, we prove an absolute-error bound in normal ap-
proximation for W using standard techniques in Stein’s method and argue that (2.3) holds for
bounded x. Next, to circumvent the problem that (1 −�(x))eγ x3/6 is in general not a probability
distribution function, we use a standardized Poisson distribution, which has right-tail probabili-
ties equivalent to (1 −�(x))eγ x3/6 up to the range of x of interest (cf. (4.4)), for an intermediate
approximation. In applying Stein’s method for Poisson approximations to our problem, we face
with two difficulties: (1) the random variable of interest W may not have the same support as the
Poisson random variable; (2) we need an error bound that depends on x in an optimal way. We
overcome the first difficulty by extending the solution to the Stein equation for the standardized
Poisson distribution to the whole real line and control the error introduced by the extension. To
overcome the second difficulty, we need optimal upper bounds for P(W > x), P(x ≤ W ≤ x +ε)

and related quantities. We do it by proving moment generating function bounds and concentra-
tion inequalities for W in Section 3. The local dependence structure assumed above Theorem 2.1
is crucial in obtaining these bounds.

Remark 2.1. For any integer k ≥ 3, corrections to the normal distribution function can be for-
mally expressed as

(
1 − �(x)

)
exp

(
k−2∑
v=1

qvx
v+2

)
,

where qv is a constant that depends on the cumulants of W up to the (v +2)th order. For a sum of
n i.i.d. random variables with finite moment generating functions, this approximation is accurate

up to x = o(n
k−1

2(k+1) ) (cf. Petrov [21], Chapter 8, Theorem 1). We only considered k = 3 in this
paper. One obstacle to obtaining a complete proof for even higher-order expansions using our



Refined Cramér-type moderate deviation 2323

approach is that the exponential concentration inequality (cf. Proposition 3.2) is only useful in
the range x = o(n1/4).

2.2. Applications

In this subsection, we apply Theorem 2.1 to three examples: k-runs, U-statistics and subgraph
counts in the Erdős–Rényi random graph. All the examples fit exactly into the local dependence
structure stated in Theorem 2.1. There are, however, examples possessing a local dependence
structure but may not fit into our framework. For example, the so-called m-dependent sequence
{ξi,1 ≤ i ≤ n} only requires {ξk : k ≤ j} to be independent of {ξk : k ≥ j + m + 1} for any j ; the
ξ s may not be functions of an underlying independent sequence.

2.2.1. k-Runs

Let n > k > 1 be integers. Let p ∈ (0,1). Let X1, . . . ,Xn be i.i.d. and P(Xi = 1) = 1 − P(Xi =
0) = p. Let

W =
n∑

i=1

ξi, ξi = XiXi+1 · · ·Xi+k−1 − pk

σ
,

where σ is the normalizing constant such that Var(W) = 1, and Xn+i := Xi for i ≥ 1. It satisfies
the assumptions in Theorem 2.1 with

m = n, δ = 1

σ
, s = k, d = k.

Therefore, we obtain the following.

Proposition 2.1. Let γ = EW 3 with the W above. Let C0 be any fixed constant. We have, for
0 ≤ x ≤ C0(σ

5/n2k8)1/2,

max

{∣∣∣∣ P(W < −x)

�(−x)e−γ x3/6
− 1

∣∣∣∣,
∣∣∣∣ P(W > x)

(1 − �(x))eγ x3/6
− 1

∣∣∣∣
}

≤ Cn2k8

σ 5

(
1 + x2),

where C is a positive constant depending only on C0.

In Propositions 2.1 and 2.3, the formulation of the problem is not symmetric; therefore, we
state the bound for both the left and right tail probabilities. The computation of σ 2 and γ is not
central to our study and is omitted from this and the next two examples. If k and p are fixed, then
the range of x for the relative-error bound to vanish is 0 ≤ x = o(n1/4), which is presumably
optimal in comparison to the i.i.d. case.

In the following, we provide empirical evidence of the advantage of skewness correction.
Consider k = 2. It can be computed that

σ 2 = n
(
p2 + 2p3 − 3p4)
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Table 1. n = 1500, p = 0.25, γ ≈ 0.138. Values of LN(Lskew) and
RN(Rskew) based on 106 repetitions

x LN Lskew RN Rskew

2 −0.195 −0.032 0.262 0.050
2.5 −0.238 0.093 0.344 −0.063
3 −0.538 −0.138 0.476 −0.208
3.5 −0.811 −0.491 1.201 −0.182
4 −0.968 −0.862 1.810 −0.358

and

γ = n

σ 3

(
p2 + 6p3 − 3p4 − 24p5 + 20p6).

In Table 1, we provide simulated values (based on 106 repetitions) for

LN := P(W < −x)

�(−x)
− 1, Lskew := P(W < −x)

�(−x)e−γ x3/6
− 1,

and

RN := P(W > x)

1 − �(x)
− 1, Rskew := P(W > x)

(1 − �(x))eγ x3/6
− 1,

for the case n = 1500 and p = 0.25 and various values of x. Table 1 clearly shows that the tail
probability approximations with skewness correction is much more accurate.

2.2.2. U-statistics

Let X1,X2, . . . be a sequence of i.i.d. random variables. Let s ≥ 2 be a fixed integer. Let h :
R

s →R be a symmetric, Borel-measurable function. We consider the Hoeffding [20] U-statistic

∑
1≤i1<···<is≤m

h(Xi1, . . . ,Xis ).

Assume that

Eh(X1, . . . ,Xs) = 0,
∣∣h(X1, . . . ,Xs)

∣∣ ≤ C1 < ∞
and the U-statistic is nondegenerate, namely, Eg2(X1) > 0, where

g(x) := E
(
h(X1, . . . ,Xs)|X1 = x

)
.

Applying Theorem 2.1 to the U-statistic above yields the following result.
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Proposition 2.2. In the above setting, let

W = 1

σ

∑
1≤i1<···<is≤m

h(Xi1, . . . ,Xis ),

where

σ 2 = Var

[ ∑
1≤i1<···<is≤m

h(Xi1 , . . . ,Xis )

]
.

Let γ = EW 3. Let C0 be any fixed constant. We have, for 0 ≤ x ≤ C0m
1/4,∣∣∣∣ P(W > x)

(1 − �(x))eγ x3/6
− 1

∣∣∣∣ ≤ C√
m

(
1 + x2)

where C is a positive constant depending only on C0, h and the distribution of X1.

Proof. The above W satisfies the assumptions in Theorem 2.1 with

n =
(

m

s

)
, δ = C1

σ
, d ≤ ms−1.

From (5.13) of Hoeffding [20] and the nondegeneracy condition, we have

σ 2 ≥
(

m

s

)
s

(
m − s

s − 1

)
Eg2(X1) 
 m2s−1.

The proposition then follows from (2.3). �

Remark 2.2. Chen and Shao [15] obtained a bound on the Kolmogorov distance in normal
approximation for nondegenerate U-statistics. The references therein comprise a large body of
literature on the rate of convergence in normal approximation for U-statistics. Our relative error
bound for the skewness corrected tail probability approximation for U-statistics seems to be new.

2.2.3. Subgraph counts in the Erdős–Rényi random graph

Let K(N,p) be the Erdős–Rényi random graph with N vertices. Each pair of vertices is con-
nected with probability p and remains disconnected with probability 1 − p, independent of all
else. Let G be a given fixed graph. For any graph H , let v(H) and e(H) denote the number of
its vertices and edges, respectively. Let v = v(G), e = e(G). Theorem 2.1 leads to the following
result.

Proposition 2.3. Let S be the number of copies (not necessarily induced) of G in K(N,p), and
let W = (S − ES)/

√
Var(S) be the standardized version. Let γ = EW 3. Let C0 be any fixed

constant. We have, for 0 ≤ x ≤ C0[N6(1 − p)5/2p5e/ψ5/2]1/2,

max

{∣∣∣∣ P(W < −x)

�(−x)e−γ x3/6
− 1

∣∣∣∣,
∣∣∣∣ P(W > x)

(1 − �(x))eγ x3/6
− 1

∣∣∣∣
}

≤ C(G)ψ5/2

(1 − p)5/2p5eN6

(
1 + x2),



2326 X. Fang, L. Luo and Q.-M. Shao

where C(G) is a constant depending only on C0 and G, and

ψ = min
H⊂G,e(H)>0

{
Nv(H)pe(H)

}
.

Proof. In this proof, C denotes positive constants that are allowed to depend on C0 and the given
fixed graph G. Let the potential edges of K(N,p) be denoted by (e1, . . . , e(N

2)
). In applying

Theorem 2.1, let W = ∑
i∈I Xi , where the index set is

I =
{
i = (i1, . . . , ie) : 1 ≤ i1 < · · · < ie ≤

(
N

2

)
,Gi := (ei1, . . . , eie ) is a copy of G

}
,

Xi = σ−1(Yi − pe
)
, σ 2 := Var(S), Yi =

e∏
l=1

Eil ,

and Eil is the indicator of the event that the edge eil is connected in K(N,p). The above W

satisfies the assumptions in Theorem 2.1 with

n := |I | ≤ Nv, m =
(

N

2

)
, δ = 1

σ
, s ≤ C, d ≤ CNv−2.

It is known that (cf. (3.7) of Barbour, Karoński and Ruciński [3])

σ 2 ≥ C(1 − p)N2vp2eψ−1.

The proposition then follows from (2.3). �

Remark 2.3. Barbour, Karoński and Ruciński [3] first studied normal approximation for the
above W using Stein’s method. Because ψ ≤ N2p, if p is fixed, then the range of x for the
relative error to vanish is o(N1/2). It is presumably optimal and larger than the range of o(N1/3),
for which Zhang [31] proved that the relative error in normal approximation vanishes.

3. Exponential concentration inequality

3.1. Preliminaries

Let {X′
α : α ∈ [m]} be an independent copy of {Xα : α ∈ [m]}. For each α ∈ [m], let W {α} be

defined as for W at the beginning of Section 2.1, except by changing Xα to X′
α . We have

L
(
W,W {α}) = L

(
W {α},W

)
. (3.1)

From (2.1), we have ∣∣W − W {α}∣∣ ≤ 2dδ. (3.2)
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By the Efron–Stein inequality, we have

C2 :=
m∑

α=1

E
(
W − W {α})2 ≥ 2 Var(W) = 2. (3.3)

Moreover, it is straightforward to verify that 1 ≤ nδ and

1 = Var(W) ≤ nsdδ2,

m∑
α=1

E
(
W − W {α})2 ≤ 4md2δ2, |γ | ≤ 4ns2d2δ3. (3.4)

We have the following local dependence structure for W . (LD1): For i ∈ [n], let Ai = {j ∈
[n] : Ij ∩ Ii = ∅}; hence, ξi is independent of {ξj : j /∈ Ai}. (LD2): For i ∈ [n] and j ∈ Ai , let
Aij = {k ∈ [n] : Ik ∩ (Ii ∪ Ij ) = ∅}; hence, {ξi, ξj } is independent of {ξk : k /∈ Aij }. (LD3): For
i ∈ [n], j ∈ Ai and k ∈ Aij , let Aijk = {l ∈ [n] : Il ∩ (Ii ∪ Ij ∪ Ik) = ∅}; hence, {ξi, ξj , ξk} is
independent of {ξl : l /∈ Aijk}. From (2.1), we have

|Ai |, |Aij |, |Aijk| ≤ 3sd. (3.5)

For A ⊂ [n], denote ξA = ∑
i∈A ξi and ξi := ξ{i}. We have

γ = EW 3 = 2
n∑

i=1

∑
j∈Ai

∑
k∈Aij

Eξiξj ξk −
n∑

i=1

∑
j,k∈Ai

Eξiξj ξk. (3.6)

Let

V1 =
m∑

α=1

(
W − W {α}), V2 =

m∑
α=1

(
W − W {α})2

.

Lemma 3.1. Regard V1 and V2 as functions of the independent random variables {Xα : α ∈
[m]} ∪ {X′

α : α ∈ [m]}. For some β ∈ [m], if we change Xβ or X′
β to another independent copy,

V1 is changed by at most 2sdδ, and V2 is changed by at most 4sd2δ2.

Proof of Lemma 3.1. For each α ∈ [m], define {ξ {α}
i : i ∈ [n]} as for {ξi : i ∈ [n]}, except by

changing Xα to X′
α . We have

W {α} =
n∑

i=1

ξ
{α}
i .

From the definition of Nα and Ii , we have

V1 =
m∑

α=1

∑
i∈[n]

(
ξi − ξ

{α}
i

) =
m∑

α=1

∑
i∈Nα

(
ξi − ξ

{α}
i

) =
n∑

i=1

∑
α∈Ii

(
ξi − ξ

{α}
i

)
.
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Changing Xβ or X′
β only affects (ξi − ξ

{α}
i ) if i ∈ Nβ , which has cardinality at most d by (2.1).

From |Ii | ≤ s and |ξi − ξ
{α}
i | ≤ 2δ (cf. (2.1)), V1 is changed by at most 2sdδ.

Now we turn to V2. We have

V2 =
m∑

α=1

[∑
i∈Nα

(
ξi − ξ

{α}
i

)]2

=
m∑

α=1

∑
i,j∈Nα

(
ξi − ξ

{α}
i

)(
ξj − ξ

{α}
j

)

=
∑

i,j∈Nα

Ii∩Ij =∅

∑
α∈Ii∩Ij

(
ξi − ξ

{α}
i

)(
ξj − ξ

{α}
j

)
.

Reasoning similar to that for V1 above leads to the observation that changing Xβ or X′
β changes

V2 by at most 4sd2δ2. �

3.2. Moment generating function bound

Proposition 3.1. Let C0 be any fixed constant. Under the assumptions in Theorem 2.1, for

0 ≤ t ≤ C0
(
ns2d2δ3)−1/2

,

we have

EetW ≤ C exp

(
t2

2
+ γ t3

6

)
, (3.7)

where C is a positive constant depending only on C0.

Proof. In this proof, C denotes positive constants that can depend on C0, O(a) denotes a quan-
tity such that |O(a)| ≤ Ca. Let h(t) = EetW . We follow the standard way of proving exponential
bounds in Stein’s method by first bounding h′(t) using the local dependence structure (LD1)–
(LD3) of W stated in Section 3.1, then obtaining an upper bound for (logh(t))′, and finally
proving (3.7).

Note that from t = O(1)(ns2d2δ3)−1/2 and nδ ≥ 1, we have

sdδt = O(1). (3.8)

Because ξi is independent of W − ξAi
by (LD1), Eξi = 0, |Ai | ≤ Csd from (3.5) and |ξi | ≤ δ

from (2.1), we have

h′(t) = EWetW =
n∑

i=1

Eξie
tW =

n∑
i=1

Eξi

[
etW − et(W−ξAi

)
]

=
n∑

i=1

Eξi

[
ξAi

tetW − ξ2
Ai

2
t2etW + O

(
s3d3δ3t3etW+Csdδt

)]
. (3.9)
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For the first term on the right-hand side of (3.9), we have, recalling
∑n

i=1 EξiξAi
= EW 2 = 1

and using similar arguments as above for the error term,

n∑
i=1

EξiξAi
tetW

=
n∑

i=1

∑
j∈Ai

Eξiξj tEe
t(W−ξAij

) +
n∑

i=1

∑
j∈Ai

Eξiξj t
[
etW − e

t(W−ξAij
)]

= th(t) +
n∑

i=1

∑
j∈Ai

Eξiξj tE
[
e
t(W−ξAij

) − etW
] +

n∑
i=1

∑
j∈Ai

Eξiξj t
[
etW − e

t(W−ξAij
)]

= th(t) +
n∑

i=1

∑
j∈Ai

E[ξiξj − Eξiξj ]ξAij
t2etW + O

(
ns3d3δ4t3etW+Csdδt

)
. (3.10)

For the second terms on the right-hand of (3.9) and of (3.10), we have, by recalling (3.6),

n∑
i=1

E
[
ξiξAi

ξAij
− (EξiξAi

)ξAij
− ξiξ

2
Ai

/2
]
t2etW

=
n∑

i=1

∑
j∈Ai

∑
k∈Aij

E

[
ξiξj ξk − (Eξiξj )ξk − ξiξj ξkI (k ∈ Ai)

2

]
t2Ee

t(W−ξAijk
)

+
n∑

i=1

∑
j∈Ai

∑
k∈Aij

E

[
ξiξj ξk − (Eξiξj )ξk − ξiξj ξkI (k ∈ Ai)

2

]
t2[etW − e

t(W−ξAijk
)]

= γ
t2h(t)

2
+ O

(
ns3d3δ4t3etW+Csdδt

)
. (3.11)

Combining (3.9), (3.10) and (3.11), we have

h′(t) = th(t) + γ
t2h(t)

2
+ O

(
ns3d3δ4t3eCsdδt

)
h(t). (3.12)

Recall (3.8). Because h(0) = 1, we have

logh(t) =
∫ t

0

[
u + γ u2/2 + O

(
ns3d3δ4u3)]du = t2

2
+ γ t3

6
+ O

(
ns3d3δ4t4).

This implies (3.7) because from t = O(1)(ns2d2δ3)−1/2 and (3.4), we have

ns3d3δ4t4 ≤ Cns3d3δ4

n2s4d4δ6
= C

nsdδ2
≤ C. (3.13)

�



2330 X. Fang, L. Luo and Q.-M. Shao

3.3. Exponential concentration inequality

What we call a concentration inequality here is a smoothing inequality originally used in normal
approximation by Esseen [18]. It was developed via Stein’s method in, for example, Ho and
Chen [19] and Chen and Shao [14]. Shao [26] developed exponential concentration inequalities
in normal approximation for nonlinear statistics.

Proposition 3.2. Let C0 be any fixed constant. Under the assumptions of Theorem 2.1, for dδ ≤
1/2 and

1 ≤ x ≤ C0
(
ns2d2δ3)−1/2

,

we have, for any ε > 0,

P(x ≤ W ≤ x + ε) ≤ Cms2d2δ2(ε + dδ)eεxx exp

(
−x2

2
+ γ x3

6

)
+ exp

(
− 1

Cms2d4δ4

)
,

where C is a positive constant depending only on C0.

To prove Proposition 3.2, we apply the following lemma, which provides moment generating
function bounds for a function of independent random variables. It is proved in a manner similar
to that in Chatterjee [8]. See Chatterjee [9] and Chen and Röllin [16] for related ideas.

Lemma 3.2. Let V = h(Y1, . . . , YN) where (Y1, . . . , YN) are independent. Assume that EV = 0.
Let (Ỹ1, . . . , ỸN ) be an independent copy of (Y1, . . . , YN). Suppose that for any i ∈ [N ],∣∣h(Y1, . . . , YN) − h(Y1, . . . , Yi−1, Ỹi , Yi+1, . . . , YN)

∣∣ ≤ δ3.

Then we have, for any θ > 0,

EeθV ≤ exp
(
Nδ2

3θ2/4
)
.

Proof of Lemma 3.2. Let V0 = V and for i ∈ [N ], let

Vi = h(Ỹ1, . . . , Ỹi , Yi+1, . . . , YN)

and

U ′
i = h(Y1, . . . , Yi−1, Ỹi , Yi+1, . . . , YN).

For a > 0 and θ ≥ 0, let ma(θ) = Eeθ(V ∧a). As in the proof of Proposition 3.1, we follow the
standard way of obtaining the exponential bound by considering m′

a(θ). Because VN is indepen-
dent of V and EVN = 0, we have

m′
a(θ) = E(V ∧ a)eθ(V ∧a) ≤ EV eθ(V ∧a) = E(V − VN)eθ(V ∧a) =

N∑
i=1

E(Vi−1 − Vi)e
θ(V ∧a).
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Note that E(Vi−1 −Vi)e
θ(V ∧a) = E(Vi −Vi−1)e

θ(U ′
i∧a), which is a consequence of the exchange-

ability of Yi and Ỹi . Therefore,

m′
a(θ) ≤ 1

2

N∑
i=1

E(Vi−1 − Vi)
(
eθ(V ∧a) − eθ(U ′

i∧a)
)
.

From the fact that (cf. (7) of Chatterjee [8]) for any x, y ∈ R,∣∣∣∣ex − ey

x − y

∣∣∣∣ ≤ 1

2

(
ex + ey

)
,

we have

m′
a(θ) ≤ θ

4

N∑
i=1

E|Vi−1 − Vi |
∣∣V − U ′

i

∣∣(eθ(V ∧a) + eθ(U ′
i∧a)

)

= θ

2

N∑
i=1

E|Vi−1 − Vi |
∣∣V − U ′

i

∣∣eθ(V ∧a),

again by the exchangeability of Yi and Ỹi . From the boundedness conditions on |Vi−1 − Vi | and
|V − U ′

i |, we have

m′
a(θ) ≤ θ

2
Nδ2

3ma(θ), ∀θ ≥ 0,

which implies

ma(θ) ≤ exp
(
Nδ2

3θ2/4
)
.

The lemma is proved by letting a → ∞. �

Proof of Proposition 3.2. In this proof, we use c and C to denote positive constants that can de-
pend only on C0. We follow the approach of Shao [26], who proved an exponential concentration
inequality for normal approximation of nonlinear statistics. The basic idea is choosing a suitable
function (3.14) in the Stein identity for W in (3.15). One side of the Stein identity has a lower
bound in terms of P(x ≤ W ≤ x + ε), and the other side has a suitable upper bound, leading to
our result.

Recall W {α} from Section 3.1. Let I be a uniform random variable on [m] and independent of
all else. Let W ′ = W {I }. Define

f (w) =

⎧⎪⎨
⎪⎩

0, w ≤ x − 2dδ,

exw(w − x + 2dδ), x − 2dδ < w ≤ x + ε + 2dδ,

ex(x+ε+2dδ)(ε + 4dδ), w > x + ε + 2dδ.

(3.14)

From (3.1), we have

L
(
W,W ′) = L

(
W ′,W

)
.
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Hence

E
(
W − W ′)(f (W) + f

(
W ′)) = 0.

Rewrite it as

LHS := 2E
(
W − W ′)f (W) = E

(
W − W ′)(f (W) − f

(
W ′)) =: RHS. (3.15)

Part I: Upper bound for LHS.

Averaging over I :

LHS = 2

m

m∑
α=1

E
(
W − W {α})f (W).

Recall V1 = ∑m
α=1(W −W {α}) and note that x − 2dδ ≥ 0 by the assumptions of the proposition.

From the upper bound on f , we have

|LHS| ≤ 2

m
E|V1|(ε + 4dδ)ex(x+ε+2dδ)I (W ≥ x − 2dδ)

≤ 2

m
(ε + 4dδ)ex(x+ε+2dδ)

[
E|V1|I

(|V1| > M(x − 2dδ)
)

+ MEWI(W ≥ x − 2dδ)
]
, (3.16)

where M ≥ 1 is to be chosen above (3.20). Note that V1 is symmetrical. For the first term on the
right-hand side of (3.16), we have

E|V1|I
(|V1| > M(x − 2dδ)

)
= 2EV1I

(
V1 > M(x − 2dδ)

)
≤ 2M(x − 2dδ)P

(
V1 > M(x − 2dδ)

) + 2
∫ ∞

M(x−2dδ)

P (V1 > y)dy. (3.17)

Applying Lemma 3.2 with θ = x and Lemma 3.1 to V1, we have

EexV1 ≤ exp
(
Cms2d2δ2x2).

Therefore,

E|V1|I
(|V1| > M(x − 2dδ)

)
≤ 2M(x − 2dδ)

eCms2d2δ2x2

exM(x−2dδ)
+ 2

∫ ∞

M(x−2dδ)

eCms2d2δ2x2

exy
dy

≤ Ce2Mdδxe−Mx2
MxeCms2d2δ2x2

.
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Now we consider the second term on the right-hand side of (3.16). Note that |γ x| ≤
Cns2d2δ3x ≤ C (cf. (3.4)) for the range of x in the proposition to be nonempty. Following
reasoning similar to that for (3.13) and (3.8), we have ns3d3δ4x3 ≤ ns3d3δ4x4 ≤ C and

sdδx ≤ C. (3.18)

From the proof of Proposition 3.1 (cf. (3.12)), we have

EWexW ≤ Cx exp

(
x2

2
+ γ x3

6

)
.

Therefore, from (3.18),

EWI (W ≥ x − 2dδ) ≤ EWexW/ex(x−2dδ) ≤ Cx exp

(
−x2

2
+ γ x3

6

)
.

Combining the above bounds, we have

|LHS| ≤ C

m
ex2

(ε + dδ)eεxMx
[
e2Mdδxe−Mx2+Cms2d2δ2x2 + e−x2/2+γ x3/6]. (3.19)

Now let M = C(ms2d2δ2 + 1) for a sufficiently large C. Note that from (3.3) and (3.4), we have
1 ≤ 2md2δ2. Recall 2dδ ≤ 1 from the assumption of the proposition. The first term inside the
brackets in (3.19) is dominated by the second term, and we have

|LHS| ≤ C

m
ex2

(ε + dδ)eεxms2d2δ2x exp

(
−x2

2
+ γ x3

6

)
. (3.20)

Part II: Lower bound for RHS.

Because f is increasing and for x − 2dδ ≤ w ≤ x + ε + 2dδ,

f ′(w) = xexw(w − x + 2dδ) + exw ≥ ex(x−2dδ),

we have, from (3.2) and (3.18),

RHS = E
(
W − W ′)(f (W) − f

(
W ′))

≥ E
(
W − W ′)(f (W) − f

(
W ′))I (x ≤ W ≤ x + ε)I

(∣∣W − W ′∣∣ ≤ 2dδ
)

≥ cE
(
W − W ′)2

ex2
I (x ≤ W ≤ x + ε).

Averaging over I , we have, recalling V2 = ∑m
α=1(W − W {α})2,

RHS ≥ c

m
ex2

EI (x ≤ W ≤ x + ε)V2.
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Recall from (3.3) that EV2 = C2. We have

RHS ≥ cC2

m
ex2

EI (x ≤ W ≤ x + ε)I (V2 ≥ C2/2)

≥ cC2

m
ex2(

P(x ≤ W ≤ x + ε) − P(V2 < C2/2)
)
.

We now find an upper bound for the second probability, which equals

P(EV2 − V2 > C2/2).

Applying Lemmas 3.2 and 3.1 to EV2 − V2, we have

P(EV2 − V2 > C2/2) ≤ e−θC2/2 exp
(
Cms2d4δ4θ2) = exp

(
− 1

Cms2d4δ4

)

by choosing the optimal θ = C2/4Cms2d4δ4 and using C2 ≥ 2 from (3.3). We have arrived at:

RHS ≥ c

m
ex2

[
P(x ≤ W ≤ x + ε) − exp

(
− 1

Cms2d4δ4

)]
. (3.21)

The proof is finished by combining (3.20) and (3.21). �

4. Proof of the main result

In this section, we prove our main result, Theorem 2.1. The lemmas stated in the proof are
proved below. In this section, we use C to denote positive constants and use K to denote positive
integers. They can depend only on C0 and may differ in different expressions. We use O(a) to
denote a quantity such that |O(a)| ≤ Ca.

4.1. Proof of Theorem 2.1

First, we have the following absolute-error bound in normal approximation for W , which is
proved by a standard application of Stein’s method for sums of locally dependent random vari-
ables.

Lemma 4.1.

sup
x∈R

∣∣P(W ≤ x) − �(x)
∣∣ ≤ Cns2d2δ3. (4.1)

From (3.3) and (3.4), we have

|γ |x2 ≤ Cns2d2δ3x2 ≤ Cmns4d4δ5x2 ≤ C (4.2)
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for x in (2.2). If x is bounded, from (4.2), we have

∣∣(1 − �(x)
) − (

1 − �(x)
)
eγ x3/6

∣∣ ≤ C|γ | ≤ Cns2d2δ3. (4.3)

From (4.1), (4.3) and (4.2), (2.3) holds for bounded x. Therefore, without loss of generality, we
can assume in the following proof that x is sufficiently large and mns4d4δ5, and hence |γ |, is
sufficiently small. These conditions may be used implicitly below.

We only prove for the case γ = 0. The case γ = 0 follows from a similar and simpler proof
by working directly with the standard normal distribution. For γ = 0, (1 − �(x))eγ x3/6 is no
longer a distribution function. We are not aware of any version of Stein’s method that is directly
applicable to signed-measure approximations. Instead, we use a standardized Poisson distribu-
tion, which has right-tail probabilities equivalent to (1 − �(x))eγ x3/6 up to the range of x of
interest (cf. (4.4)), for an intermediate approximation. Although other intermediate approxima-
tions might also work, we choose Poisson approximation because it is well studied in the Stein’s
method literature and many relevant results are available.

Let Zγ = γ (Yγ − 1
γ 2 ), where Yγ ∼ Poi( 1

γ 2 ). We have EZγ = 0, EZ2
γ = 1, EZ3

γ = γ . From
Cramér’s expansion, see, for example, Petrov [21], Chapter 8, Theorem 2, we have

P(Zγ > x)

(1 − �(x))eγ x3/6
= 1 + O

(|γ |)(1 + x) + O
(
γ 2)x4 for 0 ≤ x ≤ C0|γ |−1/2 (4.4)

for |γ | ≤ 1. Therefore, it suffices to prove

∣∣P(W > x) − P(Zγ > x)
∣∣ ≤ Cmns4d4δ5(1 + x2)(1 − �(x)

)
eγ x3/6

≤ Cmns4d4δ5x exp

(
−x2

2
+ γ x3

6

)
. (4.5)

Denote the support of Zγ by

S =
{
γZ+ − 1

γ

}
.

We denote

α = ns2d2δ3

and use them interchangeably below. Let

h+
α (w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 w < x,

1 − 2

(
w − x

α

)2

x ≤ w < x + α/2,

2

(
1 − w − x

α

)2

x + α/2 ≤ w < x + α,

0 w ≥ x + α
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and h−
α (w) := h+

α (w +α). Let hα = h+
α or hα = h−

α . The following holds for either choice of hα .
It is straightforward to verify that h′

α exists and is continuous and

∣∣h′
α(w1)

∣∣ ≤ 2

α
,

∣∣∣∣h′
α(w1) − h′

α(w2)

w1 − w2

∣∣∣∣ ≤ 8

α2
, ∀w1 = w2.

Note that

Eh−
α (W) − Eh−

α (Zγ ) − P(x − α < Zγ ≤ x)

≤ P(W ≤ x) − P(Zγ ≤ x)

≤ Eh+
α (W) − Eh+

α (Zγ ) + P(x < Zγ ≤ x + α). (4.6)

For w0 ∈ S , |w0| = O(|γ |−1/2) and sufficiently small |γ |, applying Stirling’s approximation and
Taylor’s expansion to the Poisson probability, we have

P(Zγ = w0) = P

(
Yγ = w0

γ
+ 1

γ 2

)
= |γ |√

2π
exp

(
−w2

0

2
+ γw3

0

6
+ O(1)

)
. (4.7)

Therefore, the difference between P(W ≤ x) − P(Zγ ≤ x) and Ehα(W) − Ehα(Zγ ) in (4.6) is
bounded by

P(x − α < Zγ ≤ x + α) = O(α) exp

(
−x2

2
+ γ x3

6

)
, (4.8)

which is bounded by the right-hand side of (4.5). To bound Ehα(W) − Ehα(Zγ ), consider the
Stein equation for Zγ :

1

γ

(
f (w + γ ) − f (w)

) − wf (w) = hα(w) − Ehα(Zγ ). (4.9)

Unlike the standard application of Poisson approximation in the Stein’s method literature, our
problem here has two difficulties: (1) the random variable of interest W may not have the same
support as Zγ ; (2) we need an error bound that depends on x in an optimal way. To overcome
these difficulties, in the following, we first extend the solution to (4.9) to the whole real line and
control the error introduced by the extension (from Lemma 4.2 to (4.21)). Then, we control the
main error term, namely the expectation of the left-hand side of (4.9) with w replaced by W and
with the extended solution f (from Lemma 4.5 to the end of the proof). To have the optimal
dependence of the error bound on x, we make use the moment generating function bound and
the concentration inequality established in Propositions 3.1 and 3.2, respectively.

The Stein equation (4.9) has the following solution f := fhα on S : f (−1/γ ) = 0 and for
w0 ∈ S\{− 1

γ
},

f (w0) = 1
1
γ
P (Yγ = 1

γ 2 + w0
γ

− 1)
E

[
hα(Zγ ) − Ehα(Zγ )

]
I

(
Yγ ≤ 1

γ 2
+ w0

γ
− 1

)

= − 1
1
γ
P (Yγ = 1

γ 2 + w0
γ

)
E

[
hα(Zγ ) − Ehα(Zγ )

]
I

(
Yγ ≥ 1

γ 2
+ w0

γ

)
, (4.10)
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where we recall that Yγ ∼ Poi(1/γ 2). From the expression of f in (4.10) and |hα(Zγ ) −
Ehα(Zγ )| ≤ 1, we have

∣∣f (w0)
∣∣ ≤ 1

|γ | min

{γ 2P(Yγ ≤ 1
γ 2 + w0

γ
− 1)

P (Yγ = 1
γ 2 + w0

γ
− 1)

,
γ 2P(Yγ ≥ 1

γ 2 + w0
γ

)

P (Yγ = 1
γ 2 + w0

γ
)

}
.

From the proof of Lemma 1.1.1 of Barbour, Holst and Janson [2] (cf. (1.20) and (1.21) therein),
if w0 ≤ γ , then the first term inside the minimum is bounded by 2(1 ∧ |γ |), and if w0 > γ , then
the second term inside the minimum is bounded by 2(1 ∧ |γ |). Therefore,∣∣f (w0)

∣∣ ≤ 2. (4.11)

Because in general our W has different support from S , we extend f to f : R → R as follows.
Let f (w0) = 0 for w0 ∈ {γZ− − 1

γ
}. For w between w0 and w0 +γ such that w0 ∈ {γZ− 1

γ
}, we

define f (w) to be a fifth-order polynomial function such that it matches the discrete derivatives
at w0 and w0 + γ up to the second order. In more detail, let

f0 := f (w0), f1 := f (w0 + γ ), f2 := f (w0 + 2γ ), f−1 := f (w0 − γ ),

f ′
0 := f1 − f−1

2γ
, f ′

1 := f2 − f0

2γ
, (4.12)

f ′′
0 := f1 − 2f0 + f−1

γ 2
, f ′′

1 := f2 − 2f1 + f0

γ 2
, (4.13)

and let

f (w) =
6∑

i=1

bi(w − w0)
6−i , (4.14)

where

b1 = − 1

γ 2
· f ′′

1 − f ′′
0

γ
, b2 = 5

2γ
· f ′′

1 − f ′′
0

γ
,

b3 = −3

2
· f ′′

1 − f ′′
0

γ
, b4 = f ′′

0

2
, b5 = f ′

0, b6 = f0.

In the following, for any w ∈ R, let w0 be such that w0 ∈ {γZ − 1
γ
} and w0 + γ < w ≤ w0 if

γ < 0 and w0 ≤ w < w0 + γ if γ > 0. For a random variable W , W0 is defined in the same way
as for w0.

It follows from the construction of f above that f ′′(w) exists and is continuous and f (3)(w)

exists for w /∈ S . For w ∈ S , we define f (3)(w) = 0 as they will not enter into consideration
when we do Taylor’s expansion below (cf. (4.28)). Note that

f (w) = O(1)
(
f (w0 − γ ) + f (w0) + f (w0 + γ ) + f (w0 + 2γ )

)
. (4.15)
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Therefore, from (4.11), f is bounded. Note that after such extension, f no longer satisfies (4.9)
exactly, except on S . However, we can quantify the error as in the following lemma.

Lemma 4.2. For the above defined f , we have

1

γ

(
f (w + γ ) − f (w)

) − wf (w)

= hα(w) − Ehα(Zγ ) + O(1)I
(|w − x| ≤ Cα

)
+ O

(|γ |) K∑
i=−K

∣∣f (w0 + i · γ )
∣∣ + O(1)I (w < −1/γ + γ )I (γ > 0)

+ O(1)I (w > −1/γ + γ )I (γ < 0). (4.16)

By replacing w by W and w0 by W0 in (4.16) and taking expectations on both sides, we have

Ehα(W) − Ehα(Zγ )

= E

[
1

γ

(
f (W + γ ) − f (W)

) − Wf (W)

]
+ O(1)P

(|W − x| ≤ Cα
)

+ O
(|γ |) K∑

i=−K

E
∣∣f (W0 + i · γ )

∣∣ + O(1)P (W < −1/γ + γ )I (γ > 0)

+ O(1)P (W > −1/γ + γ )I (γ < 0)

=: R1 + R2 + R3 + R4 + R5.

We bound these remainders in the reverse order. If γ > 0, we have, by applying Proposition 3.1
to −W ,

P(W < −1/γ + γ ) ≤ CEe−xW/ex/γ

≤ C exp

(
x2

2
− γ x3

6
− x

|γ |
)

= C|γ | exp

(
−x2

2
+ γ x3

6

)
1

|γ | exp

(
x2 − γ x3

3
− x

|γ |
)

≤ C|γ | exp

(
−x2

2
+ γ x3

6

)
, (4.17)

where we use 1 ≤ x = O(1)|γ |−1/2 and |γ | is sufficiently small (cf. the arguments below (4.3)).
Together with the same bound for R5, we have

|R4| + |R5| ≤ C|γ | exp

(
−x2

2
+ γ x3

6

)
.

To bound R3, we use the following lemma.
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Lemma 4.3. We have

K∑
i=−K

E
∣∣f (W0 + iγ )

∣∣ ≤ CP(W ≥ x − Cα) + CP(Zγ > x − α)

+ CEI (0 ≤ W ≤ x)e
W2

2 − γW3

6 P(Zγ > x − α). (4.18)

For the first term on the right-hand side of (4.18), we have, by (3.7),

P(W ≥ x − Cα) ≤ Ce−x2
exp

(
x2

2
+ γ x3

6

)

= C exp

(
−x2

2
+ γ x3

6

)
.

For the second term on the right-hand side of (4.18), we have, by (4.4),

P(Zγ ≥ x − α) ≤ C

x
exp

(
−x2

2
+ γ x3

6

)
.

For the third term on the right-hand side of (4.18), we have

EI (0 ≤ W ≤ x)e
W2

2 − γW3

6

≤ 1 + C

∫ x

0
(y + 1)e

y2

2 − γy3

6 P(W > y)dy

= O(x), (4.19)

where we use the following lemma in the last step.

Lemma 4.4. For integer k ≥ 1, we have

∫ x

0
yke

y2

2 − γy3

6 P(W > y)dy = O(1)xk.

Combining these bounds, we have

|R3| ≤ C|γ | exp

(
−x2

2
+ γ x3

6

)
.

Next, we use Proposition 3.2 to bound R2 as follows. Recall we assumed without loss of gener-
ality that x is sufficiently large, mns4d4δ5, and hence α, is sufficiently small (cf. (3.4)). We have,



2340 X. Fang, L. Luo and Q.-M. Shao

from Proposition 3.2 and dδ ≤ α (cf. (3.4)),

|R2| ≤ CP
(|W − x| ≤ Cα

)
≤ Cms2d2δ2αx exp

(
−x2

2
+ γ x3

6

)
+ exp

(
− 1

Cms2d4δ4

)

≤ Cms2d2δ2αx exp

(
−x2

2
+ γ x3

6

)

+ C exp

(
− 1

Cms2d4δ4
+ Cx2

)
exp

(
−x2

2
+ γ x3

6

)
. (4.20)

Note that for x = O(mns4d4δ5)−1/2, we have (cf. (3.4))

ms2d4δ4x2 = O

(
ms2d4δ4

mns4d4δ5

)
= O

(
ns2d2δ3

n2s4d2δ4

)
= O

(
ns2d2δ3).

Therefore, the second term on the right-hand side of (4.20) is dominated by the first term and

|R2| ≤ Cmns4d4δ5x exp

(
−x2

2
+ γ x3

6

)
. (4.21)

We are now left to bound R1. By Taylor’s expansion and exploiting the local dependence struc-
ture (LD1)–(LD3) in Section 3.1, we have the following lemma. Note that this is where we use
the crucial choice of Zγ so that it matches the moments of W up to the third order.

Lemma 4.5. We have

E

[
1

γ

(
f (W + γ ) − f (W)

) − Wf (W)

]
= O

(
α2)E∣∣f (3)

(
W + O(α)

)∣∣.
To bound f (3), we use the following lemma.

Lemma 4.6. We have

E
∣∣f (3)

(
W + O(α)

)∣∣
≤ C

α2
P

(|W − x| ≤ Cα
) + CE

(
1 + |W |3)∣∣f (

W + O(α)
)∣∣

+ CE
(
1 + W 2)I (W ≥ x − Cα) + CP(Zγ > x − Cα)

+ C

γ 2
P

(
W ≤ −1/γ + O(α)

)
I (γ > 0) + C

γ 2
P

(
W ≥ −1/γ − O(α)

)
I (γ < 0). (4.22)
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The first term on the right-hand side of (4.22) is bounded as in (4.20) and (4.21). For the
second term on the right-hand side of (4.22), from the proof of Lemma 4.3, we have

E
(
1 + |W |3)∣∣f (

W + O(α)
)∣∣

≤ CE
(
1 + W 3)I (W ≥ x − Cα) + CP(Zγ > x − α)

(
1 + E

∣∣W 3
∣∣)

+ CE
(
1 + W 3)I (0 ≤ W ≤ x)e

W2
2 − γW3

6 P(Zγ > x − α). (4.23)

Similar to (4.19), using Lemma 4.4, we have

E
(
1 + W 3)I (0 ≤ W ≤ x)e

W2
2 − γW3

6

≤ 1 +
∫ x

0

[
3y2 + (

1 + y3)(y − γy2

2

)]
e

y2

2 − γy3

6 P(W > y)dy

= O(1)

∫ x

0

(
1 + y4)e y2

2 − γy3

6 P(W > y)dy

= O(1)x4.

For the third term on the right-hand side of (4.22) and the first term on the right-hand side of
(4.23), we have the following.

Lemma 4.7.

E
(
1 + W 3)I (W ≥ x − Cα) = O(1)x3 exp

(
−x2

2
+ γ x3

6

)
.

Note that

E|W |3 ≤
√

EW 4 ≤ C
√

1 + ns3d3δ4 ≤ C
(
1 + ns2d2δ3) ≤ C.

The fourth term on the right-hand side of (4.22) and the second term on the right-hand side of
(4.23) are bounded from (4.4) by

CP(Zγ > x − Cα) ≤ C

x
exp

(
−x2

2
+ γ x3

6

)
.

The fifth and sixth terms on the right-hand side of (4.22) are bounded in a manner similar as for
R4 (cf. (4.17)) by

C

γ 2
P

(
W ≤ −1/γ + O(α)

)
I (γ > 0)

+ C

γ 2
P

(
W ≥ −1/γ − O(α)

)
I (γ < 0)

≤ C|γ | exp

(
−x2

2
+ γ x3

6

)
.
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In summary, we have

|R1|
exp(−x2/2 + γ x3/6)

≤ Cα2
(

1

α2
mns4d4δ5x + x3

)
≤ Cmns4d4δ5x,

where we use n2s4d4δ6x2 ≤ Cns2d2δ3 ≤ Cmns4d4δ5 (cf. (3.4)). The bound (4.5), hence the
theorem, is proved by combining (4.8) and the bounds on |R1|–|R5|.

4.2. Proofs of lemmas

In the following, we prove the lemmas stated in the proof above.

Proof of Lemma 4.1. Denote the Kolmogorov distance between two probability distributions
by

dK

(
L(X),L(Y )

) := sup
x∈R

∣∣P(X ≤ x) − P(Y ≤ x)
∣∣.

For β > 0 to be chosen, let

gβ(w) =

⎧⎪⎨
⎪⎩

1 w ≤ x,

1 + (x − w)/β x < w ≤ x + β,

0 w > x + β.

Let F := Fgβ be the bounded solution to

F ′(w) − wF(w) = gβ(w) − Egβ(Z), (4.24)

where Z ∼ N(0,1). From Lemma 2.5 of Chen, Goldstein and Shao [13], we have

∣∣F ′(w + v) − F ′(w)
∣∣ ≤ |v|

(
1 + |w| + 1

β

∫ 1

0
I[x,x+β](w + rv) dr

)
. (4.25)

Replacing w by W and taking expectations on both sides of the equation (4.24), we have

P(W ≤ x) − �(x) ≤ Egβ(W) − Egβ(Z) + Egβ(Z) − �(x)

≤ EF ′(W) − EWF(W) + P(x ≤ Z ≤ x + β)

≤ EF ′(W) − EWF(W) + Cβ. (4.26)
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Let U ∼ Unif[0,1] be independent of all else. By (LD1), (LD2), Eξi = 0 and Taylor’s expansion,
we have

EWF(W) =
n∑

i=1

EξiF (W) =
n∑

i=1

Eξi

[
F(W) − F(W − ξAi

)
] =

n∑
i=1

EξiξAi
F ′(W − UξAi

)

=
n∑

i=1

∑
j∈Ai

EξiξjEF ′(W − ξAij
) +

n∑
i=1

∑
j∈Ai

Eξiξj

[
F ′(W − UξAi

) − F ′(W − ξAij
)
]
.

From EW 2 = ∑n
i=1

∑
j∈Ai

Eξiξj = 1, we have

EF ′(W) − EWF(W) =
n∑

i=1

∑
j∈Ai

EξiξjE
[
F ′(W) − F ′(W − ξAij

)
]

−
n∑

i=1

∑
j∈Ai

Eξiξj

[
F ′(W − UξAi

) − F ′(W − ξAij
)
]
.

From (4.25) and the boundedness conditions in (2.1) and (3.5), we have

∣∣EF ′(W) − EWF(W)
∣∣ ≤ Cns2d2δ3

(
1 + 1

β
P

(
W ∈ [x − Csdδ, x + β + Csdδ])).

Using

P
(
W ∈ [x − Csdδ, x + β + Csdδ])) ≤ 2dK

(
L(W),N(0,1)

) + C(sdδ + β),

we have ∣∣EF ′(W) − EWF(W)
∣∣

≤ Cns2d2δ3 + Cns2d2δ3sdδ

β
+ Cns2d2δ3 dK(L(W),N(0,1))

β
. (4.27)

From (4.26) and (4.27), we have

P(W ≤ x) − �(x) ≤ Cβ + Cns2d2δ3 + Cns2d2δ3sdδ

β
+ Cns2d2δ3 dK(L(W),N(0,1))

β
.

From a similar argument for the lower bound, we have

∣∣P(W ≤ x) − �(x)
∣∣ ≤ Cβ + Cns2d2δ3 + Cns2d2δ3sdδ

β
+ Cns2d2δ3 dK(L(W),N(0,1))

β
.

Taking supremum over x, choosing β = 2Cns2d2δ3, solving the resulting recursive inequality
for dK(L(W),N(0,1)), and noting that sdδ ≤ ns2d2δ3 from (3.4), we arrive at

dK

(
L(W),N(0,1)

) ≤ Cns2d2δ3. �



2344 X. Fang, L. Luo and Q.-M. Shao

Proof of Lemma 4.2. We only prove for the case γ > 0. The case γ < 0 can be proved similarly.
For w < − 1

γ
+ γ , because

f (−1/γ ) = 0, f (−1/γ + γ ) = γ
(
1 − Ehα(Zγ )

)
,

f (−1/γ + 2γ ) = γ 2f (−1/γ + γ ) + γ
(
1 − Ehα(Zγ )

)
,

f (−1/γ + 3γ ) = 2γ 2f (−1/γ + 2γ ) + γ
(
1 − Ehα(Zγ )

)
,

we have (cf. (4.15))

1

γ

(
f (w + γ ) − f (w)

) − wf (w) = O(1).

For − 1
γ

+ γ ≤ w and w0 ≤ w < w0 + γ such that w0 ∈ {γZ − 1
γ
}, we have, from the con-

struction of f (cf. (4.14)),

1

γ

(
f (w + γ ) − f (w)

) − wf (w)

= 1

γ

[
f (w0 + γ ) − f (w0)

] − wf (w0) + (w − w0)

{
1

γ

[
f ′(w0 + γ ) − f ′(w0)

] − wf ′(w0)

}

+ (w − w0)
2

2

{
1

γ

[
f ′′(w0 + γ ) − f ′′(w0)

] − wf ′′(w0)

}

+
[
−3(w − w0)

3

2γ
+ 5(w − w0)

4

2γ 2
− (w − w0)

5

γ 3

]

×
{

1

γ

[(
f ′′(w0 + 2γ ) − f ′′(w0 + γ )

) − (
f ′′(w0 + γ ) − f ′′(w0)

)]

− w
(
f ′′(w0 + γ ) − f ′′(w0)

)}

=: H1 + H2 + H3 + H4.

Note that f satisfies (4.9) on S . We have

H1 = 1

γ

[
f (w0 + γ ) − f (w0)

] − w0f (w0) − (w − w0)f (w0)

= hα(w0) − Ehα(Zγ ) + O
(|γ |) K∑

i=−K

∣∣f (w0 + i · γ )
∣∣

= hα(w) − Ehα(Zγ ) + O(1)I
(|w − x| ≤ Cα

) + O
(|γ |) K∑

i=−K

∣∣f (w0 + i · γ )
∣∣.
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For H2, from the expression of f ′ on S (cf. (4.12)) and using again the fact that f satisfies (4.9)
on S , we have

H2 = w − w0

2γ

{
1

γ

[(
f (w0 + 2γ ) − f (w0)

) − (
f (w0 + γ ) − f (w0 − γ )

)]

− w
(
f (w0 + γ ) − f (w0 − γ )

)}

= O(1)
[
hα(w0 + γ ) − hα(w0 − γ )

] + O
(|γ |) K∑

i=−K

∣∣f (w0 + i · γ )
∣∣

= O(1)I
(|w − x| ≤ Cα

) + O
(|γ |) K∑

i=−K

∣∣f (w0 + i · γ )
∣∣.

Similarly, from (4.13),

H3 = (w − w0)
2

2γ 2

{
1

γ

[(
f (w0 + 2γ ) − 2f (w0 + γ ) + f (w0)

)
− (

f (w0 + γ ) − 2f (w0) + f (w0 − γ )
)]

− w
(
f (w0 + γ ) − 2f (w0) + f (w0 − γ )

)}

= O(1)I
(|w − x| ≤ Cα

) + O
(|γ |) K∑

i=−K

∣∣f (w0 + i · γ )
∣∣,

and

H4 = O(1)I
(|w − x| ≤ Cα

) + O
(|γ |) K∑

i=−K

∣∣f (w0 + i · γ )
∣∣.

Equation (4.16) is proved by combining the above estimates and observing that the right-hand
side is bounded. �

Proof of Lemma 4.3. We only prove for the case γ > 0. The case γ < 0 can be proved similarly.
Recall the definition of f . If w0 − γ > x − α, then we use |f (w0)| ≤ C. If w0 ≤ −1/γ , then
f (w0) = 0. If −1/γ ≤ w0 − γ ≤ x − α, then

f (w0) = γP (Zγ ≤ w0 − γ )

P (Zγ = w0 − γ )

[
1 − Ehα(Zγ )

]
.

Recall the proof of (4.11), if −1/γ ≤ w0 − γ ≤ 0, then

0 ≤ f (w0) ≤ 2P(Zγ > x − α).
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If 0 < w0 − γ ≤ x − α, then by (4.7),

∣∣f (w0)
∣∣ ≤ Ce

w2
0

2 − γw3
0

6 P(Zγ > x − α).

The lemma is proved by combining the above bounds and noting that |W − W0| ≤ γ . �

Proof of Lemma 4.4. Similar to the proof of Lemma 5.2 of Chen, Fang and Shao [11] and use
(3.7), we have, for some ε ∈ [0,1],

∫ [x]

0
yke

y2

2 − γy3

6 P(W > y)dy

≤
[x]∑
j=1

jk

∫ j

j−1
e

y2

2 − γy3

6 −jyejyP (W > y)dy

≤
[x]∑
j=1

jke
(j−1)2

2 − γ (j−ε)3

6 −j (j−1)

∫ j

j−1
ejyP (W > y)dy

≤ 2
[x]∑
j=1

jke− j2

2 − γ (j−ε)3

6

∫ ∞

−∞
ejyP (W > y)dy = 2

[x]∑
j=1

jke− j2

2 − γ (j−ε)3

6
1

j
EejW

= O(1)

[x]∑
j=1

jk−1e
γj3

6 − γ (j−ε)3

6 = O(1)xk.

Similarly, we have∫ x

[x]
yke

y2

2 − γy3

6 P(W > y)dy

≤ xk

∫ x

[x]
e

y2

2 − γy3

6 −xyexyP (W > y)dy

≤ xke
[x]2

2 − γ ([x]+ε)3

6 −x[x]
∫ x

[x]
exyP (W > y)dy ≤ 2xke− x2

2 − γ ([x]+ε)3

6

∫ ∞

−∞
exyP (W > y)dy

= O(1)xk.

This finishes the proof. �

Proof of Lemma 4.5. The proof is by Taylor’s expansion and by exploiting the local dependence
structure (LD1)–(LD3) in Section 3.1. As we will see below, by the crucial choice of γ , Zγ

matches the moments of W up to the third order and the first and second derivative terms of f

vanish.
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Let U1, U2 be independent ∼ Unif[0,1] and independent of all else. By Taylor’s expansion,

E
1

γ

(
f (W + γ ) − f (W)

)

= E
1

γ

[
γf ′(W) + γ 2

2
f ′′(W) + γ 3(1 − U2)U2f

(3)(W + γU1U2)

]

= Ef ′(W) + γ

2
Ef ′′(W) + O

(
γ 2)E∣∣f (3)

(
W + O

(|γ |))∣∣. (4.28)

By the local dependence structure (LD1)–(LD3) in Section 3.1, Eξi = 0, Taylor’s expansion and
the boundedness conditions in (2.1) and (3.5), we have

EWf (W) =
n∑

i=1

Eξi

[
f (W) − f (W − ξAi

)
]

=
n∑

i=1

Eξi

[
ξAi

f ′(W − ξAi
) + ξ2

Ai

2
f ′′(W − ξAi

) + O
(
s3d3δ3)∣∣f (3)

(
W + O(sdδ)

)∣∣]

=
n∑

i=1

∑
j∈Ai

Eξiξjf
′(W − ξAi

) + 1

2

n∑
i=1

∑
j∈Ai

∑
k∈Ai

Eξiξj ξkf
′′(W − ξAi

)

+ O
(
ns3d3δ4)E∣∣f (3)

(
W + O(sdδ)

)∣∣
=: B1 + B2 + O

(
ns3d3δ4)E∣∣f (3)

(
W + O(sdδ)

)∣∣.
For B1, by a similar expansion as above, we have

n∑
i=1

∑
j∈Ai

Eξiξjf
′(W − ξAi

)

=
n∑

i=1

∑
j∈Ai

EξiξjEf ′(W − ξAij
) +

n∑
i=1

∑
j∈Ai

Eξiξj

[
f ′(W − ξAi

) − f ′(W − ξAij
)
]

= Ef ′(W) +
n∑

i=1

∑
j∈Ai

EξiξjE
[
f ′(W − ξAij

) − f ′(W)
]

+
n∑

i=1

∑
j∈Ai

Eξiξj

[
f ′(W − ξAi

) − f ′(W − ξAij
)
]

= Ef ′(W) −
n∑

i=1

∑
j∈Ai

EξiξjEξAij
f ′′(W − ξAij

) + O
(
ns3d3δ4)E∣∣f (3)

(
W + O(sdδ)

)∣∣

+
n∑

i=1

∑
j∈Ai

Eξiξj (ξAij
− ξAi

)f ′′(W − ξAij
).
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For B2, we have

1

2

n∑
i=1

∑
j∈Ai

∑
k∈Ai

Eξiξj ξkf
′′(W − ξAi

)

= 1

2

n∑
i=1

∑
j∈Ai

∑
k∈Ai

Eξiξj ξkEf ′′(W − ξAijk
)

+ 1

2

n∑
i=1

∑
j∈Ai

∑
k∈Ai

Eξiξj ξk

[
f ′′(W − ξAi

) − f ′′(W − ξAijk
)
]

= 1

2

n∑
i=1

∑
j∈Ai

∑
k∈Ai

Eξiξj ξkEf ′′(W) + 1

2

n∑
i=1

∑
j∈Ai

∑
k∈Ai

Eξiξj ξkE
[
f ′′(W − ξAijk

) − f ′′(W)
]

+ 1

2

n∑
i=1

∑
j∈Ai

∑
k∈Ai

Eξiξj ξk

[
f ′′(W − ξAi

) − f ′′(W − ξAijk
)
]

= 1

2

n∑
i=1

∑
j∈Ai

∑
k∈Ai

Eξiξj ξkEf ′′(W) + O
(
ns3d3δ4)E∣∣f (3)

(
W + O(sdδ)

)∣∣.
Similarly,

−
n∑

i=1

∑
j∈Ai

EξiξjEξAij
f ′′(W − ξAij

)

= −
n∑

i=1

∑
j∈Ai

∑
k∈Aij

EξiξjEξk

[
f ′′(W − ξAij

) − f ′′(W − ξAijk
)
]

= O
(
ns3d3δ4)E∣∣f (3)

(
W + O(sdδ)

)∣∣,
and

n∑
i=1

∑
j∈Ai

Eξiξj (ξAij
− ξAi

)f ′′(W − ξAij
)

=
n∑

i=1

∑
j∈Ai

Eξiξj (ξAij
− ξAi

)f ′′(W) + O
(
ns3d3δ4)E∣∣f (3)

(
W + O(sdδ)

)∣∣.
Recall γ from (3.6). Combining the above estimates, we have

EWf (W) = Ef ′(W) + γ

2
Ef ′′(W) + O

(
ns3d3δ4)E∣∣f (3)

(
W + O(sdδ)

)∣∣. (4.29)
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By (4.28) and (4.29), we conclude that

E

[
1

γ

(
f (W + γ ) − f (W)

) − Wf (W)

]

= O
(
γ 2)Ef (3)

(
W + O

(|γ |)) + O
(
ns3d3δ4)E∣∣f (3)

(
W + O(sdδ)

)∣∣
= O

(
n2s4d4δ6)E∣∣f (3)

(
W + O

(
ns2d2δ3))∣∣,

where we use |γ | ≤ Cns2d2δ3, sdδ ≤ Cns2d2δ3 and ns3d3δ4 ≤ C(ns2d2δ3)2 from (3.4). �

Proof of Lemma 4.6. We only prove for the case γ > 0. The case γ < 0 can be proved similarly.
Note that from the construction of f (cf. (4.14)),

f (3)(w) = O(1)
f ′′(w0 + γ ) − f ′′(w0)

γ
.

For w0 ≤ −1/γ , from the arguments at the beginning of the proof of Lemma 4.2,
f ′′(w0+γ )−f ′′(w0)

γ
= O(1/γ 2). For w0 ≥ −1/γ + γ , from the construction of f (cf. (4.13)) and

the equation (4.9) for w ∈ S , we have

f ′′(w0 + γ ) − f ′′(w0)

γ

= [f (w0 + 2γ ) − 2f (w0 + γ ) + f (w0)] − [f (w0 + γ ) − 2f (w0) + f (w0 − γ )]
γ 3

= [(w0 + γ )f (w0 + γ ) + hα(w0 + γ )] − [w0f (w0) + hα(w0)]
γ 2

− [w0f (w0) + hα(w0)] − [(w0 − γ )f (w0 − γ ) + hα(w0 − γ )]
γ 2

. (4.30)

Rearranging terms, using |h′′
α(w)| ≤ 8

α2 I (x − α ≤ w ≤ x + α) and that f solves (4.9) on S , we
have

(4.30) = O

(
1

α2

)
I
(|w0 − x| ≤ Cα

) + 1

γ

[
f (w0 + γ ) − f (w0)

] + w0

γ 2

[
f (w0 + γ ) − f (w0)

]
− w0 − γ

γ 2

[
f (w0) − f (w0 − γ )

]

= O

(
1

α2

)
I
(|w0 − x| ≤ Cα

) + [
w0f (w0) + hα(w0) − Ehα(Zγ )

](
1 + w0

γ

)

− w0 − γ

γ

[
(w0 − γ )f (w0 − γ ) + hα(w0 − γ ) − Ehα(Zγ )

]
.
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Rearranging terms, using |h′
α(w)| ≤ 2

α
I (x − α ≤ w ≤ x + α) and that f solves (4.9) on S , we

have

(4.30) = O

(
1

α2

)
I
(|w0 − x| ≤ Cα

) + w0f (w0) + (w0 − γ )f (w0 − γ ) + w0f (w0 − γ )

+ hα(w0) − Ehα(Zγ ) + hα(w0 − γ ) − Ehα(Zγ )

+ w0

γ

(
f (w0) − f (w0 − γ )

) + w0

γ

(
hα(w0) − hα(w0 − γ )

)

= O

(
1

α2

)
I
(|w0 − x| ≤ Cα

) + w0f (w0) + (w0 − γ )f (w0 − γ ) + w0f (w0 − γ )

+ hα(w0) − Ehα(Zγ ) + hα(w0 − γ ) − Ehα(Zγ )

+ O

(
1

α

)
xI

(|w0 − x| ≤ Cα
) + w2

0

[
(w0 − γ )f (w0 − γ ) + hα(w0 − γ ) − Ehα(Zγ )

]
.

The lemma is proved by replacing w by W , w0 by W0, and taking expectations. �

Proof of Lemma 4.7. We only prove for the case γ > 0. The case γ < 0 can be proved similarly.
By Proposition 3.1,

P(W > y) ≤ EexW

exy
≤ C exp

(
x2

2
+ γ x3

6
− xy

)
.

Therefore,

E
(
1 + W 3)I (W ≥ x − Cα) = (

1 + y3)P(W > y)|y=x−Cα +
∫ ∞

x−Cα

3y3P(W > y)dy

= O(1)x3 exp

(
−x2

2
+ γ x3

6

)
. �
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