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In this paper, we study the persistent homology associated with topological crackle generated by distribu-
tions with an unbounded support. Persistent homology is a topological and algebraic structure that tracks
the creation and destruction of topological cycles (generalizations of loops or holes) in different dimensions.
Topological crackle is a term that refers to topological cycles generated by random points far away from the
bulk of other points, when the support is unbounded. We establish weak convergence results for persistence
diagrams – a point process representation for persistent homology, where each topological cycle is repre-
sented by its (birth,death) coordinates. In this work, we treat persistence diagrams as random closed sets,
so that the resulting weak convergence is defined in terms of the Fell topology. Using this framework, we
show that the limiting persistence diagrams can be divided into two parts. The first part is a deterministic
limit containing a densely-growing number of persistence pairs with a shorter lifespan. The second part is
a two-dimensional Poisson process, representing persistence pairs with a longer lifespan.
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1. Introduction

One of the main themes of the present paper is topological crackle. Originally proposed by [1]
as an analogy of audio crackling, topological crackle has been modeled as the layered structure
of an increasing number of topological cycles away from the origin. Typically, crackle appears
in topological manifold learning problems. For example, suppose we wish to recover the topol-
ogy of an annulus. Given a random sample P , a common practice is to place balls of radius r

around P , and consider their union Br(P) (Figure 1). If the sample noise is small enough as in
Figure 1(b), the union Br(P) is similar in shape to an annulus, and recovering its topology is
feasible [28,29]. However, if the distribution of noise has a heavy tail as in Figure 1(c), many ex-
traneous components away from the center of an annulus will make it hard (or even impossible)
to recover its topology. This phenomenon is an example of topological crackle.

Taking a single point at the origin as an underlying manifold, Figure 2 visualizes topological
crackle as a layered structure of Betti numbers of various dimensions. In particular, the kth Betti
number counts the number of k-cycles. Loosely speaking, a k-cycle is a structure that is equiva-
lent to a k-dimensional sphere as a boundary of a (k + 1)-dimensional ball. For each individual
layer except most inner and outer ones, there is a unique dimension k ∈ {0, . . . , d − 1} such that
the kth Betti number is approximated by a Poisson distribution, while all the other Betti numbers
either vanish or diverge [1,32].
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Figure 1. The original space is an annulus. We wish to recover the topology of an annulus from the union
of balls centered around random samples. This figure is taken from [1].

Since topological crackle is typically generated by heavy tailed distributions, the study of its
features belongs to the field of extreme value theory (EVT). EVT studies the extremal behavior
(e.g., maxima) of stochastic processes with a variety of probabilistic and statistical applications.
The standard literature on EVT includes [16,18,34,35]. In recent years, many attempts have been
made to understand the geometric and topological features of multivariate extremes, among them
[4,6,17,37] as well as [1,32] cited above.

Another main theme of this study is persistent homology. Persistent homology is one of the
most heavily used tools in topological data analysis (TDA) that has emerged as a mathematical
tool to analyze data in a way that is low-dimensional, coordinate-free and robust to various de-
formations. The main idea is to extract topological features from data, in a multiscale way that
is stable under perturbations of the data. In order to find such robust structures in a dataset P ,
we may consider the union of balls Br(P) of radius r centered around P . Alternatively, one may
construct a simplicial complex – a higher dimensional notion of a graph that serves as a combi-
natorial representation for the geometric object. In this paper, we will consider the Čech complex
generated by balls of radius r around P , denoted Cr (P) (see Section 2.1 for a formal definition).

Taking the complex Cr (P) and increasing the parameter r , we have a nested sequence of
complexes called a filtration, in which cycles are created and destroyed (become trivial) at various
times. Persistent homology is an algebraic structure that is designed to track these changes in
cycles and produce a list of pairs (birth,death) representing the time (radius) at which each

Figure 2. Topological crackle is a layered structure of Betti numbers. The kth Betti number is denoted as
βk , and “Poi” stands for a Poisson distribution.



Convergence of persistence diagrams 2277

Figure 3. The persistence diagram of a random Čech filtration. On the left figure, the point process is
generated on an annulus in R

2. The persistence diagram on the right describes the birth and death times
(radii) of all the 1-cycles that appear in this filtration. Notice that most of the points in the persistence
diagram are close to the diagonal where birth time equals death time, and one might consider these cycles
as “noise.” There is one point that stands out in the diagram, which corresponds to the hole of the annulus.
The persistent homology was computed using the GUDHI library [38].

cycle first appears in the filtration and the time at which it is terminated (becomes trivial, or
“filled in”), respectively.

Commonly, the output of persistent homology (i.e., a list of birth/death times) is summarized
in a plot known as persistence diagram; see Figure 3. In this plot, a single point is drawn for any
k-cycle, for which the x-axis value represents its birth time, and the y-axis value represents the
death time.

The study of homology and persistent homology generated by random data, started in [24],
and has been an active research topics over the past decade (see the survey in [10]). Much of this
study is dedicated to examining the behavior of noise (i.e., point clouds that contain no intrinsic
topological structure), and can be thought of as the study of “null-models” for TDA.

The primary objective of the current study is to establish limit theory of persistence diagram
associated with topological crackle. A key notion in our approach is the so-called Fell topology,
which is the most standard topology on closed sets [27], allowing us to treat persistence diagram
as a random closed set in R

2. A more formal discussion on the Fell topology is given in Sec-
tion 2.3. The main discovery of the present paper is that under some assumptions, the persistence
diagram of topological crackle in dimension k for n vertices, denoted �

(k)
n , has the following

limit.

�(k)
n ⇒ �(k,p) ∪ Bk,p−1, n → ∞, (1.1)

where �(k,p) is a spatial Poisson process associated with k-cycles generated on p vertices, and
Bk,p−1 is a related deterministic set, both formally defined in Section 3; see also Figure 6. The
convergence “⇒” is in the Fell topology for closed sets.
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We remark that the notion of Fell topology is totally new within the context of TDA, while it
is more common in EVT. For example, stochastic properties of standard graphical tools in EVT,
such as a mean excess plot and a QQ-plot, have been explored via convergence theorems under
the Fell topology [14,15,19]. Other publications in EVT, which use Fell topology but are not
related to graphical tools, include [3,36].

From the viewpoints of TDA, highly relevant to this paper is the work in [23], studying the
distribution of points in the persistence diagram generated by point processes in a d-dimensional
box. In [23], persistence diagrams are considered as Radon measures, for which the authors prove
the existence of a limit in the form of a deterministic measure. In addition, they provide a law of
large numbers and a central limit theorem for the persistent Betti numbers, that is, the number of
k-cycles that exist over a given range of radii.

In the case of topological crackle, the analysis in [23] is no longer valid. Alternatively, we
shall exploit the idea of [1,31,32], which have studied fixed, rather than persistent, homology
generated by distributions with unbounded supports. The first main finding in [1,31,32] was that
if the underlying distribution generating data, has a tail at least as heavy as that of an exponential
distribution, then k-cycles keep appearing far away from the origin. The second main finding
in [1,31,32] was the emergence of a layered structure dividing the Euclidean space as in Fig-
ure 2, with each layer occupied by cycles of different dimensions and amounts. Briefly, as we get
closer to the origin, the higher-dimensional cycles appear and their number increases. The fact
that different regions in space are occupied by different types of structures at different quantities,
suggests that one may not look for a single limit theorem for fixed and persistent homology. In-
stead, we can only provide separate limit theorems for each individual region. More specifically,
if the cycles are distributed so densely that their number grows to infinity as the sample size in-
creases, the number of cycles (i.e., Betti number) obeys a central limit theorem [31]. On the other
hand, if the spatial distribution of cycles is sparse enough, the Betti numbers will be governed
by a Poisson limit theorem [32]. Similar phenomena have been pointed out in a series of works
[9,12,23,25,39], in which various limit theorems for topological invariants in different regimes
were derived (though they are not directly related to the layered structure described above).

The primary benefit of our approach using the Fell topology is that one can establish limit
theorems for the entire persistence diagram, even though the nature of the distribution of per-
sistence pairs (i.e., points on the persistence diagram) differs from region to region. To see this
more clearly, let us consider the case where the persistence diagram is approximately divided
into two regions, such that the persistence pairs are distributed densely in one region, and in the
other region, the distribution is much more sparse. This is roughly the same picture of persistence
diagram in our main results. In contrast to the previous works cited above, our approach allows to
describe the entire persistence diagram by a “single” limit theorem as in (1.1), which would help
us get a whole picture of the limiting persistence diagram. Note that the persistence diagrams we
study here only describe cycles generated by the crackle, that is, outside a given region, and does
not address the rest of the cycles generated inside and around the core (defined later).

The remainder of this paper is organized as follows. In Section 2, we introduce the terminol-
ogy used throughout the paper. Section 3 provides the main results of this paper, considering
heavy tailed distributions. In Section 4, we discuss the behavior of the model for exponentially
decaying distributions. We will classify the results in terms of heaviness of a tail of an underlying
distribution. Such classification is typical in EVT. The proofs for both sections are presented in
Section 5.
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2. Preliminaries

2.1. Geometric complexes

An abstract simplicial complex over a set S is a collection of finite subsets X ⊂ 2S with the
requirement that if A ∈ X and B ⊂ A then B ∈ X. A subset in X of size k + 1 is called a k-
simplex, and commonly denoted as σ = [x0, . . . , xk].

In this work, we discuss abstract simplicial complexes that are generated by a set of points P ⊂
R

d , called geometric complexes. Among many candidates of geometric complexes (see [21]), the
present paper focuses on one of the most studied ones, a Čech complex. For construction, we start
by fixing a radius r > 0, and drawing balls of radius r around the points in P .

Definition 2.1. A Čech complex Cr (P) is defined by the following two conditions:

1. The 0-simplices are the points in P .
2. A k-simplex [x0, . . . , xk] is in Cr (P) if

⋂k
j=0 B(xj ; r) �=∅,

where B(x; r) = {y ∈ R
d : ‖x − y‖ < r} is an open ball of radius r around x ∈ R

d and ‖ · ‖
denotes the Euclidean norm.

One of the key properties of the Čech complex Cr (P), known as the Nerve lemma (see, e.g.,
Theorem 10.7 of [8]), asserts that the union of balls Br(P) := ⋃

p∈P B(p; r) and Cr (P) are
homotopy equivalent.

2.2. Persistent homology

In this section, we wish to describe homology and persistent homology in a slightly non-rigorous
way, which is enough for the reader to follow the statements and proofs in this paper. We suggest
[13,20] as a good introductory reading, while a more rigorous coverage of algebraic topology is
in [22].

Let X be a topological space. In this paper, we will consider homology with field co-
efficients F, in which case homology is essentially a sequence of vector spaces denoted
H0(X),H1(X),H2(X), . . . . In particular, Hk(X) is the quotient group ker ∂k/ im ∂k+1, where ∂k ,
∂k+1 are boundary maps for X. In other words, the basis of Hk(X) corresponds to a topological
invariant generated by nontrivial k-dimensional cycles as a boundary of a (k + 1)-dimensional
body (henceforth we simply call it “k-cycle”). If the dimension k is small, one can understand the
concept more intuitively. For example, the basis of H0(X) corresponds to the connected com-
ponents in X, and the basis of H1(X) corresponds to closed loops in X. The basis of H2(X)

corresponds to cavities or “air bubbles” in X. Finally, the kth Betti number, denoted βk(X), is
the rank of Hk(X), representing the number of k-cycles in X; see Figure 4.

In addition to the topology of a single space X, homology theory also analyzes mappings
between spaces. If f : X → Y is a map between topological spaces, then the induced map
f∗ : Hk(X) → Hk(Y ) is a linear transformation, describing how k-cycles in X are transformed
into k-cycles in Y (or disappear). Persistent homology can be thought of as a “multiscale”
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Figure 4. (a) One-dimensional sphere. (b) One-dimensional disk. (c) Two-dimensional sphere. (d) Two-di-
mensional torus. In (c), any closed loop winding around a sphere will vanish when it moves up and reaches
the pole, so β1 = 0. In (d), there are two independent closed loops, so β1 = 2. This figure was taken from
[31].

version of homology, designed to describe topological properties in a sequence of spaces. Let
{Xt }t be a filtration of spaces, so that Xs ⊂ Xt for all s ≤ t . In this case, one can consider the
collection of vector spaces {Hk(Xt)}t , together with the corresponding linear transformations
ı
(s,t)∗ : Hk(Xs) → Hk(Xt ) for all s ≤ t induced by the inclusion map ı(s,t) : Xs → Xt . Such a

sequence is called a persistence module (cf. [13]). Essentially, this sequence allows us to track
the evolution of k-cycles as they are formed and terminated throughout the filtration. Any k-cycle
in this context is often referred to as a persistence k-cycle.

The theory developed for persistence modules allows for the definitions of barcodes, which
consist of persistence intervals of the form [birth,death), representing the time (the value of t )
when a given cycle first appears and the time when it disappears, respectively. Commonly, the
information on the kth persistent homology is graphically provided via kth persistence diagram.
This is a two-dimensional plot, where each persistence interval of the form [birth, death) is repre-
sented as a single point, with the x-axis representing birth time and the y-axis representing death
time. The points on the kth persistence diagram are called the kth persistence pairs. Figure 3
shows an example of a first-order persistence diagram generated by a Čech filtration {Cr (P)}r ,
where P is a random sample from an annulus.

For the study of a Čech filtration, some structure must be imposed on persistence diagrams.
First, notice that any persistence diagram is a subset of

� := {
(x, y) : 0 ≤ x ≤ y

}
,

as death times always come after birth times. Further, given m,k and b0, if we consider k-cycles
generated on m points whose birth time is b0, then there is a maximum value d0 ∝ b0m

1/k for
the possible death time (see Lemma 4.1 in [11]). Denoting πk,m = d0/b0, the scaling invariance
of persistent homology implies that all k-cycles generated on m points are restricted to the region

�k,m := {
(x, y) : 0 ≤ x ≤ y ≤ πk,mx

}⊂ �.

More precisely πk,m is a constant for which forming a persistence k-cycle is possible if (x, y) ∈
�k,m, but it becomes infeasible whenever y > πk,mx. Notice that m has to be at least k + 2 in
order to generate any cycles in the kth persistent homology for the Čech filtration. Finally, �k,m

is nondecreasing in m, that is, �k,m1 ⊂ �k,m2 for all m1 ≤ m2; see Figure 5.
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Figure 5. The structure of persistence diagrams generated by a Čech filtration. Note that �k,m represents
the region in which the kth persistence pairs generated by subsets of size m, may appear. For a Čech
filtration, m has to be at least k + 2.

2.3. Fell topology

The novel idea of the current paper is to treat random points in the persistence diagram as closed
sets in �. To this aim, we introduce Fell topology, which is perhaps the most standard topology
on closed sets. Let F(�) be the space of closed sets of �. A sequence of closed sets (Fn)

converges to another closed set F if and only if the following two conditions hold:

• F hits an open set G, that is, F ∩G �=∅, implies there exists N ≥ 1 such that for all n ≥ N ,
Fn hits G.

• F misses a compact set K , that is, F ∩ K = ∅, implies there exists N ≥ 1 such that for all
n ≥ N , Fn misses K .

By this property, Fell topology can be recognized as “hit and miss” topology. The main reference
used in this paper is [27].

The Fell topology is metrizable, and hence induces a Borel σ -field B(F(�)). Given a proba-
bility space (�,A,P), we say that S : � → F(�) is a random closed set if

{ω : S ∩ K �=∅} ∈A

for every compact set K in �, that is, observing S, one can always determine if S hits or misses
any given compact set. Let us provide some facts about the convergence of a sequence of random
closed sets. Given random closed sets (Sn) and S, the weak convergence Sn ⇒ S in F(�) is
implied by

P(Sn ∩ K �=∅) → P(S ∩ K �=∅)

for every compact subset K ⊂ �. For a measurable set A ⊂ � and ε > 0, denote by

(A)ε− = {
(x, y) ∈ � : d((x, y),A

)
< ε

}
(2.1)
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an open ε-envelop in terms of the Euclidean metric d . We say that Sn converges to S in proba-
bility if

P
([(

Sn \ (S)ε−
)∪ (

S \ (Sn)
ε−)]∩ K �=∅

)→ 0, n → ∞,

for every ε > 0 (see Definition 6.19 in [27]).

3. Main results – Regularly varying tail case

In this section, we describe in detail the problem studied in this paper, and present the main
results.

3.1. Definitions

The present section considers the following family of density functions with regularly varying
tail. As is well known in EVT, in the one-dimensional case, the regular variation of a tail com-
pletely characterizes the maximum-domain of attraction of a Fréchet distribution [18].

Definition 3.1. Let f : Rd → R be a probability density function. Let Sd−1 be the unit sphere
in R

d .

1. We say that f is spherically symmetric if f (ρθ1) = f (ρθ2) for any ρ ∈ R+ and θ1, θ2 ∈
Sd−1. For such functions, we define f (ρ) := f (ρθ) for any θ ∈ Sd−1.

2. We say that a spherically symmetric f has a regularly varying tail if there exists α > d

such that

lim
ρ→∞

f (ρt)

f (ρ)
= t−α for all t > 0. (3.1)

Let X1,X2, . . . be a sequence of i.i.d. random variables, having a common density function f

satisfying the conditions in Definition 3.1. Let Nn ∼ Poisson(n) be a Poisson random variable,
independent of (Xi). Define the following point process:

Pn :=
{

{X1, . . . ,XNn} if Nn > 0,

∅ if Nn = 0.
(3.2)

Then one can show that Pn is a spatial Poisson process on R
d with intensity function nf (see,

e.g., Chapter 5 in [35]).
Let R = R(n) be a sequence of n growing to infinity, and consider

LR = {
x ∈ R

d : ‖x‖ ≥ R
}= (

B(0;R)
)c

.

The main objective in this paper is to study the “extreme-value behavior” of the persistent ho-
mology for the Čech filtration. More concretely, we study the behavior of persistence cycles
far away from the origin, generated by the points in Pn,R := Pn ∩ LR for large enough n. In
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other words, we aim to analyze the limiting distribution of persistent homology for the filtration
{Cr (Pn,R)}r≥0.

To that end, we define the following functions and objects. Recall that � = {(x, y) ∈ R
2 : 0 ≤

x ≤ y} is the upper infinite triangle in the first quadrant. Let k ≥ 1 be an integer which remains
fixed throughout the paper. For any finite set Y ⊂R

d , let PHk(Y) be the kth persistent homology
generated by {Cr (Y)}r≥0. We now define the finite counting measure on �,

μ
(k)

Y (·) :=
∑

γ∈PHk(Y)

δ(γb,γd )(·), (3.3)

where γ represents a persistence cycle in PHk(Y) such that (γb, γd) are its birth and death times
(radii), respectively. Moreover, δ(x,y)(·) is the Dirac measure at (x, y). In other words, μ

(k)

Y rep-
resents all the pairs (γb, γd) that appear in the kth persistence diagram generated by the set Y .
The finiteness of μ

(k)

Y comes from a simple fact that if |Y| = m (| · | denotes cardinality of a given
set), the number of k-cycles supported on m vertices is bounded by the number of k-simplices,
which itself is bounded by

( m
k+1

)
.

We need a few more definitions before introducing the main point processes. For a collection
Y,Z of points in R

d with Y ⊂Z , define

hR(Y) := 1
{
Y ∩ B(0;R) =∅

}
,

gM(Y,Z) := 1
{
CM(Y) is a connected component of CM(Z)

}
,

gM(Y) := gM(Y,Y) = 1
{
CM(Y) is connected

}
.

(3.4)

The point processes we will examine in this paper are

�(k,m)
n (·) :=

∑
Y⊂Pn,|Y |=m

hR(Y)gM(Y,Pn)μ
(k)

Y (M·),

�(k)
n (·) :=

∞∑
m=k+2

�(k,m)
n (·),

(3.5)

where M = M(n) is a sequence of n, which will be explicitly determined below together with
R = R(n). Note that M ≡ constant is permissible as a special case. The process �

(k,m)
n represents

the persistence k-cycles that are generated by the Poisson process Pn,R defined above, such that
the vertices forming these cycles belong to a single connected component of size m in the com-
plex CM(Pn,R). By the construction of (3.5) and the assumption that the random points generat-
ing data have a continuous distribution, the process �

(k,m)
n is simple (i.e., supx∈� �

(k,m)
n ({x}) ≤ 1

a.s.) and finite. Forming a k-cycle in the Čech complex requires at least k + 2 vertices; hence, the
sum defining �

(k)
n only starts at m = k + 2. Furthermore, �

(k)
n is almost surely a sum of finite

number of point processes, since �
(k,m)
n ≡ 0 for all m > |Pn|.

Finally, we remark that the same (or even easier) analysis can apply even when k = 0. There,
many of the objects and functions will be degenerate, and we need to slightly modify the nor-
malizing constants in the main theorem of the next section. In order to avoid blurring the main
message of this paper, we only study the case k ≥ 1.
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3.2. Weak convergence

The primary goal in this paper is to prove a weak convergence theorem for �
(k)
n as n → ∞.

Since the point process �
(k,m)
n in (3.5) is simple and finite, the support of �

(k,m)
n is a finite

random closed set (see Corollary 8.2 in [27]). By a slight abuse of notation, the letter �
(k,m)
n is

used to denote both a point process and a random closed set as its support. In the latter treatment,
�

(k)
n can be denoted as a union of �

(k,m)
n ’s,

�(k)
n =

∞⋃
m=k+2

�(k,m)
n .

This also represents almost surely a finite random closed set, because �
(k,m)
n = ∅ whenever

m > |Pn|.
Consequently, the topology we use for the weak convergence below is Fell topology on closed

sets of �. All the proofs, including those for corollaries that follow after Theorem 3.2, are de-
ferred to Section 5.2.

Theorem 3.2. Let f be a probability density function satisfying the conditions in Definition 3.1,
and suppose that R = R(n),M = M(n) are chosen such that R → ∞, M/R → 0 as n → ∞.
Assume that there exists an integer p ≥ k + 2 satisfying

npMd(p−1)Rd
(
f (R)

)p → 1, n → ∞. (3.6)

Then, as n → ∞,

�(k,m)
n ⇒

⎧⎪⎨⎪⎩
∅ in F(�) if m > p,

�(k,p) in F(�) if m = p,

Bk,m in F(�) if k + 2 ≤ m < p,

(3.7)

and further,

�(k)
n ⇒ �(k,p) ∪ Bk,p−1 in F(�), (3.8)

where ⇒ denotes weak convergence.

The weak limits �(k,p) and Bk,m are formally defined below; see Figure 6.

• �(k,p) – a (finite) random closed set characterized as a Poisson random measure on �,
whose mean measure is given by

E
(∣∣�(k,p) ∩ A

∣∣) := sd−1

p!(αp − d)

∫
(Rd )p−1

g1(0,y)μ
(k)
(0,y)

(A)dy, A ⊂ �, (3.9)

where sd−1 is the volume of the (d−1)-dimensional unit sphere in R
d , y = (y1, . . . , yp−1) ∈

(Rd)p−1, (0,y) = (0, y1, . . . , yp−1) ∈ (Rd)p , and so, g1(0,y) = g1(0, y1, . . . , yp−1).
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Figure 6. A cartoon for the limiting kth persistence diagram. The solid area represents Bk,p−1, where the
persistence pairs are dense enough, so that the entire region is covered. The grey area is Bk,p \ Bk,p−1,

where only a finite number of Poisson points, denoted �(k,p), are scattered in the limit.

• Bk,m – a nonrandom closed set of � defined as follows. Recall that for a given subsets of
size m, the kth persistence pairs (γb, γd) are limited to the region �k,m = {(x, y) : 0 ≤ x ≤
y ≤ πk,mx} ⊂ �. Next, define

bk,m := sup
{
γb : (γb, γd) ∈ PHk(Y), |Y| = m,C1(Y) is connected

}
,

that is, bk,m is the largest birth time for persistence k-cycles that are generated on m vertices
and connected at unit radius. Finally, define

Bk,m := �k,m ∩ ([0, bk,m] ×R+
)
.

In other words, Bk,m is the area in which the kth persistence pairs generated by subsets of m

points that are connected at unit radius, may appear. Note that Bk,m is increasing in m, that
is, Bk,m1 ⊂ Bk,m2 for all m1 ≤ m2. In particular, only Bk,p−1 will contribute to the limiting
persistence diagram in (3.8); see Figure 6.

Let us provide some intuition behind our theorem. As detailed in Lemmas 5.1 and 5.2, we can
show that for a measurable set A ⊂ � with A ∩ Bk,k+2 �=∅,

E
(∣∣�(k,p)

n ∩ A
∣∣)→ E

(∣∣�(k,p) ∩ A
∣∣) ∈ (0,∞), n → ∞, (3.10)

and as n → ∞,

E
(∣∣�(k,m)

n ∩ A
∣∣)→ 0 if m > p, (3.11)

E
(∣∣�(k,m)

n ∩ A
∣∣)→ ∞ if k + 2 ≤ m < p. (3.12)
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Among these three results, the first indicates that there asymptotically exist at most finitely many
persistence k-cycles that are generated on p vertices in the complex CM(Pn,R). Because of the

rareness of persistence k-cycles, the set �
(k,p)
n will become “Poissonian” in the limit. Namely,

as n → ∞,

�
(k,p)
n ⇒ �(k,p) in F(�). (3.13)

Additionally, (3.11) implies that any persistence k-cycles supported on more than p vertices will
vanish in the limit. In other words, �

(k,m)
n converges to an empty set for all m > p, that is,

�(k,m)
n ⇒ ∅ in F(�) if m > p. (3.14)

As for the remaining sets �
(k,m)
n for k + 2 ≤ m < p, (3.12) implies that there appear infinitely

many persistence k-cycles as n → ∞, that are generated on m vertices in CM(Pn,R). Accord-
ingly, �

(k,m)
n consists of infinitely many kth persistence pairs as n → ∞, and ultimately, it con-

verges to a deterministic closed set Bk,m,

�(k,m)
n ⇒ Bk,m in F(�) if k + 2 ≤ m < p. (3.15)

Finally, combining (3.13), (3.14) and (3.15), along with an increasing property of Bk,m, one
should get that

�(k)
n ⇒ �(k,p) ∪

p−1⋃
m=k+2

Bk,m = �(k,p) ∪ Bk,p−1 in F(�).

Remark 3.3. Note that (3.6) implicitly rules out a very quick decay of M . If M decays to zero so
quickly that lim supn→∞ npMd(p−1) < ∞, then (3.6) implies that lim infn→∞ Rd(f (R))p > 0,
but this contradicts with (3.1). At the same, the condition M/R → 0 prevents a quick divergence
of M . So the limiting behavior of M is controlled on both sides. Moreover, generalizing (3.6) to
the case when the limit is a finite and positive constant is easy. It will simply change the mean
measure in (3.9) up to constant factors. For simplicity of notation, we shall assume that the limit
in (3.6) is 1.

Example 3.4. We consider a simple density with a Pareto tail,

f (x) = C

1 + ‖x‖α
, (3.16)

where C is a normalizing constant. Taking M ≡ 1 and solving (3.6) with respect to R, we obtain

R = (Cn)p/(αp−d). (3.17)

This sequence grows at a regularly varying rate with index p/(αp−d). Assuming (3.16) together
with other conditions in Theorem 3.2, the weak convergence (3.8) holds.



Convergence of persistence diagrams 2287

Before concluding this section, we state three corollaries of Theorem 3.2. In the first corollary,
we assume that instead of (3.6), R and M satisfy

npMd(p−1)Rd
(
f (R)

)p → 0, np−1Md(p−2)Rd
(
f (R)

)p−1 → ∞ as n → ∞. (3.18)

To see the difference between (3.6) and (3.18), we simplify the situation by assuming (3.16)
and taking M ≡ 1. It is then elementary to show that the R satisfying (3.18) grows faster than
the right-hand side of (3.17), that is, R−1(Cn)p/(αp−d) → 0 as n → ∞. This means that unlike
(3.10), we obtain E(|�(k,p)

n ∩A|) → 0 as n → ∞, in which case the random part �(k,p) vanishes
from the limit. A formal statement is given below.

Corollary 3.5. Suppose that instead of (3.6), R and M satisfy (3.18). Then, as n → ∞,

�(k,m)
n ⇒

{
∅ in F(�) if m ≥ p,

Bk,m in F(�) if k + 2 ≤ m < p,

and also,

�(k)
n ⇒ Bk,p−1 in F(�).

For the second corollary, we again assume the condition at (3.6). We here aim to study the
maximal lifespan (i.e., death time – birth time) of persistence k-cycles in the limiting persistence
diagram. For the required analyses, we need a continuous functional T : F(�) →R+ defined by

T (F ) = sup
(x,y)∈F

(y − x). (3.19)

This functional captures the maximal vertical distance from the points in F ⊂ � to the diagonal
line. For the remainder of this discussion, fix t ∈ (0, bk,p−1), and define

It := � ∩ ([0, t] ×R+
)
,

Jt := {
(x, y) ∈ �k,p ∩ It : y − x > T (�k,p−1 ∩ It )

}
.

In other words, Jt consists of points (x, y) in �k,p ∩ It such that y − x exceeds the maximal
lifespan that can be attained by the points in �k,p−1 ∩ It . See Figure 7.

The following corollary describes the limiting behavior of the T (�
(k)
n ∩ IMt ), that is, the max-

imal lifespan of the persistence k-cycles generated by �
(k)
n , with the restriction that the birth

time is less than Mt . The proof is immediate via continuous mapping theorem. Indeed applying
a continuous functional (3.19) to the weak convergence in Theorem 3.2 can yield the required
result.

Corollary 3.6. Under the assumptions of Theorem 3.2, we have

T
(
�(k)

n ∩ IMt

)⇒ Zt in R+, n → ∞,
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Figure 7. A dashed line segment [a, b] is parallel to the diagonal line. The shaded area is Jt , in which
there are at most finitely many Poisson points, representing persistence pairs with longer lifespan. The
region �k,p−1 ∩ It is densely covered by persistence pairs with shorter lifespan. If Jt contains points, the
maximal lifespan of persistence k-cycles can be attained by one of these points. If Jt does not contain any
points, the maximal lifespan is nonrandom and is equal to T (�k,p−1 ∩ It ), which is represented by a line
segment [b, c].

where

Zt =
{

T (�k,p−1 ∩ It ) if �(k,p) ∩ Jt =∅,

T
(
�(k,p) ∩ Jt

)
if �(k,p) ∩ Jt �=∅.

The last statement says that if the limiting Poisson random measure �(k,p) has no points in Jt ,
the weak limit Zt takes a purely deterministic value, and the “nonrandom” set �k,p−1 ∩ It yields
the maximal lifespan. On the other hand, if �(k,p) has at least one points in Jt , the corresponding
lifespan is necessarily longer than T (�k,p−1 ∩ It ). Then the actual value of Zt is random.

For the third corollary, recall that
⋃∞

m=p �
(k,m)
n asymptotically consists of the kth persistence

pairs that are generated by a finite number of components of size p. Since the number of kth
persistence pairs is almost surely finite, the weak convergence can be reformulated as that in the
space MP(�) of locally finite counting measures on �. We here equip MP(�) with the vague
topology (see [34]).

Corollary 3.7. Under the conditions of Theorem 3.2, we take �
(k,m)
n as a point process. Then

∞∑
m=p

�(k,m)
n ⇒ �(k,p) in MP(�).
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4. Exponentially decaying tails case

In the present section, we wish to study the case where the distribution generating random points
has an exponentially decaying tail. The results in this case are parallel to those of the previous
section except for the normalization and limiting distributions.

To define the density function, we use the von Mises function. The following setup is somewhat
typical in EVT; see [4,6,30,32].

Definition 4.1 (von Mises function). We say that ψ : R+ → R is a von Mises function, if ψ is
C2, ψ ′(z) > 0, and

lim
z→∞ψ(z) = ∞, lim

z→∞
d

dz

(
1

ψ ′(z)

)
= 0.

In this section, we study density functions f : Rd → R+ of the form

f (x) = L
(‖x‖)e−ψ(‖x‖). (4.1)

Let a(z) := 1/ψ ′(z), then from Definition 4.1 we have that a′(z) → 0, z → ∞. Therefore,

lim
z→∞

a(z)

z
= 0. (4.2)

We assume that L : R+ → R+ is flat for a, that is,

lim
t→∞

L(t + a(t)v)

L(t)
= 1, (4.3)

uniformly on v ∈ [−K,K] for every K > 0. Furthermore, we assume that for some γ ≥ 0, z0 > 0
and C ≥ 1, we have

L(zt)

L(z)
≤ Ctγ for all t > 1, z ≥ z0. (4.4)

Condition (4.3) together with (4.1) implies that the tail of f is determined by the function ψ

(or equivalently a), and is independent of L. Thus, we can classify f in terms of the asymptotics
of a. If a(z) converges to a positive, finite constant as z → ∞, we say that f has an (asymptotic)
exponential tail. If a(z) diverges as z → ∞ we say that f has a subexponential tail, and finally,
if a(z) → 0, we say that f has a superexponential tail.

As in the previous section, we need to choose a radius R = R(n) and connectivity value M =
M(n), for topological crackle to occur. In [32], it was shown that the occurrence of topological
crackle depends on the limit

c := lim
n→∞

a(R)

M
.

In particular, if c = 0, topological crackle never occurs, and random points are densely scattered
near the origin, so that placing unit balls around the points constitutes a topologically contractible
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object called core; see [1]. Since the main focus of the present work is topological crackle, we do
not treat the case c = 0 and always assume c ∈ (0,∞]. By definition, if M is a positive constant
and c ∈ (0,∞], then f never has a superexponential tail.

We now describe a series of results analogous to those in the previous section. The proof is
presented in Section 5.3.

Theorem 4.2. Let f be a probability density function of the form (4.1), and suppose that R =
R(n),M = M(n) are chosen such that R → ∞, M/R → 0, a(R)/M → c ∈ (0,∞] as n → ∞.
Assume that there exists an integer p ≥ k + 2 such that

npMd(p−1)a(R)Rd−1(f (R)
)p → 1, n → ∞. (4.5)

Then, as n → ∞,

�(k,m)
n ⇒

⎧⎪⎨⎪⎩
∅ in F(�) if m > p,

�(k,p) in F(�) if m = p,

Bk,m in F(�) if k + 2 ≤ m < p,

and further,

�(k)
n ⇒ �(k,p) ∪ Bk,p−1 in F(�),

where �(k,p) is defined below, and Bk,m is the same nonrandom set as in Theorem 3.2.

Similar to Theorem 3.2, the limit �(k,p) above is a (finite) random closed set characterized as
a Poisson random measure. Here, the mean measure of �(k,p) is given by

1

p!
∫ ∞

0
dρ

∫
Sd−1

J (θ)dθ

∫
(Rd )p−1

dyg1(0,y)μ
(k)
(0,y)(·) (4.6)

× e−pρ−c−1∑p−1
i=1 〈θ,yi 〉1

{
ρ + c−1〈θ, yi〉 ≥ 0, i = 1, . . . , p − 1

}
,

where 〈·, ·〉 denotes scalar product and

J (θ) = sind−2(θ1) sind−3(θ2) · · · sin(θd−2) (4.7)

is the Jacobian. Interestingly, if c = ∞, (4.6) coincides with (3.9) up to multiplicative constants,
implying that the two limiting Poisson random measures coincide regardless of heaviness of the
tail of an underlying distribution. As in the heavy tail case, generalizing the limit value in (4.5)
is straightforward; see Remark 3.3.

Notice that the main difference between (3.6) and (4.5) lies only in the growth rate of R. To
see this, take M ≡ 1, and consider the simple example

f (x) = Ce−‖x‖τ /τ , 0 < τ ≤ 1.

Then a(z) = z1−τ , and the solution to (4.5) is given by

R = (
τ logn + p−1(d − τ) log(τ logn) + τ logC

)1/τ
,
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which grows logarithmically, whereas, as seen in Example 3.4, the R in the heavy tail setup
grows at a regularly varying rate.

We now present the statements equivalent to those in Corollaries 3.5, 3.6 and 3.7.

Corollary 4.3. Suppose that instead of (4.5), R and M satisfy

npMd(p−1)a(R)Rd−1(f (R)
)p → 0, n → ∞,

np−1Md(p−2)a(R)Rd−1(f (R)
)p−1 → ∞, n → ∞.

Then, as n → ∞,

�(k,m)
n ⇒

{
∅ in F(�) if m ≥ p,

Bk,m in F(�) if k + 2 ≤ m < p,

and also,

�(k)
n ⇒ Bk,p−1 in F(�).

Corollary 4.4. Under the assumptions of Theorem 4.2, we have, as n → ∞,

T
(
�(k)

n ∩ IMt

)⇒ Zt in R+, n → ∞,

where Zt is given by

Zt =
{

T (�k,p−1 ∩ It ) if �(k,p) ∩ Jt =∅,

T
(
�(k,p) ∩ Jt

)
if �(k,p) ∩ Jt �=∅.

Corollary 4.5. Under the assumptions of Theorem 4.2, we take �
(k,m)
n as a point process. Then

∞∑
m=p

�(k,m)
n ⇒ �(k,p) in MP(�).

5. Proofs

In this section, we provide the proofs for all the statements in this paper. We split the proofs
between the regularly varying and the exponentially decaying tail cases.

5.1. Some notation

The following notation will be used throughout the proofs. For x ∈ R
d , y = (y1, . . . , ym) ∈

(Rd)m, and r > 0, define

x + ry := (x + ry1, . . . , x + rym) ∈ (Rd
)m

.
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The proofs will involve calculating certain volumes, which we define next. Let

Br (x) :=
m⋃

i=1

B(xi; r), x = (x1, . . . , xm) ∈ (Rd
)m

,

be a union of m closed balls of radius r , and let

Qr(x) :=
∫
Br (x)

f (z)dz, (5.1)

be the probability measure of the given union of balls.
We denote by λm the Lebesgue measure on R

m. Finally, the notation C∗ will represent a
generic positive constant, which does not depend on n and may vary between (or even within)
the lines.

5.2. Regularly varying tails

Our main goal in this section is to prove the results for the regularly varying tail case. We do not
present the proof of Corollary 3.5, since it is very similar to that for Theorem 3.2. Further, the
proof of Corollary 3.6 will be skipped, because the statement is nearly obvious. We will use the
following auxiliary point process. Recalling the definitions of a counting measure at (3.3) and
hR,gM in (3.4), we define

�̃(k,m)
n (·) :=

∑
Y⊂Pn,|Y |=m

hR(Y)gM(Y)μ
(k)

Y (M·),

�̃(k)
n (·) :=

∞∑
m=k+2

�̃(k,m)
n (·).

(5.2)

The only difference between �
(k,m)
n and �̃

(k,m)
n is that the latter does not require the subsets Y to

form a connected component of CM(Pn,R), that is, Y does not need to be isolated from the rest
of the complex. Consequently, we have �̃

(k,m)
n (·) ≥ �

(k,m)
n (·). As in the case of (3.5), we may

and will denote by (5.2) the corresponding random closed sets. Indeed the proof below uses (3.5)
and (5.2) as random closed sets only, except for the argument for Corollary 3.7.

Since the proof of Theorem 3.2 is rather long, we shall outline the main idea of its proof. We
start with two lemmas (i.e., Lemmas 5.1 and 5.2 below) to evaluate asymptotic first and second
moments associated to �

(k,p)
n and �

(k,p−1)
n . We divide the proof of (3.8) into three parts as below.

The arguments in Part I and Part II will immediately imply (3.7) as well.
Part I – Prove the “random” part of the limit, that is,

∞⋃
m=p

�(k,m)
n ⇒ �(k,p) in F(�). (5.3)
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Part II – Prove the “nonrandom” part of the limit, that is,

p−1⋃
m=k+2

�(k,m)
n ⇒ Bk,p−1 in F(�). (5.4)

Part III – Combine I and II to conclude the statement in the theorem,

�(k)
n ⇒ �(k,p) ∪ Bk,p−1 in F(�). (5.5)

In particular, the argument in Part I is closely related to the proof of [32], the main tool of which is
Stein’s Poisson approximation theorem (e.g., Theorem 2.1 in [33]). The arguments in Part II and
Part III exploit some of the basic properties of the Fell topology. In particular, the deterministic
set Bk,p−1 is handled by the second moment result in Lemma 5.2.

Lemma 5.1. Let A ⊂ � be a measurable set, such that A ∩ Bk,p �= ∅. Under the assumptions
of Theorem 3.2,

lim
n→∞E

(∣∣�(k,p)
n ∩ A

∣∣)= lim
n→∞E

(∣∣�̃(k,p)
n ∩ A

∣∣)= E
(∣∣�(k,p) ∩ A

∣∣) ∈ (0,∞).

Lemma 5.2. Let A ⊂ � be a measurable set, with A ∩ Bk,p−1 �= ∅. Under the assumptions of
Theorem 3.2,

E
(∣∣�(k,p−1)

n ∩ A
∣∣)∼ C1

(
nMdf (R)

)−1
, n → ∞,

and

Var
(∣∣�(k,p−1)

n ∩ A
∣∣)≤ C2

(
nMdf (R)

)−1
,

where C1 and C2 are positive constants, independent of n and depending only on d, k,p,A, and
a probability density f .

Next, we prove Lemma 5.1, while the proof for Lemma 5.2 is of a similar nature, and post-
poned to the Appendix.

Proof of Lemma 5.1. We will prove the limit for �
(k,p)
n only, since the limit for �̃

(k,p)
n can be

proved in the same way. It follows from the Palm theory for Poisson processes (e.g., Section 1.7
in [33]) that

E
(∣∣�(k,p)

n ∩ A
∣∣)= np

p! E
[
hR(Xp)gM(Xp,Xp ∪Pn)μ

(k)

Xp
(MA)

]
, (5.6)

where Xp = (X1, . . . ,Xp) is a set of p i.i.d. points with probability density f , and independent
of Pn. Note that for the set Xp to be disconnected from the rest of the complex CM(Pn,R), we
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require that Pn ∩B2M(Xp) =∅. Therefore, by the conditioning on Xp we have

E
(∣∣�(k,p)

n ∩ A
∣∣)= np

p! E
[
hR(Xp)gM(Xp)μ

(k)

Xp
(MA)P

(
Pn ∩B2M(Xp) =∅|Xp

)]
= np

p! E
[
hR(Xp)gM(Xp)μ

(k)

Xp
(MA)e−nQ2M(Xp)

]
= np

p!
∫

(Rd )p
hR(x)gM(x)μ(k)

x (MA)e−nQ2M(x)

p∏
i=1

f (xi)dx.

Performing the change of variables x1 ↔ x, xi ↔ x + Myi−1, i = 2, . . . , p, we have

E
(∣∣�(k,p)

n ∩ A
∣∣)= np

p! M
d(p−1)

∫
Rd

dx

∫
(Rd )p−1

dyhR(x, x + My)gM(x, x + My)

× μ
(k)
(x,x+My)

(MA)e−nQ2M(x,x+My)f (x)

p−1∏
i=1

f (x + Myi)

= np

p! M
d(p−1)

∫
Rd

dx

∫
(Rd )p−1

dyhR(x, x + My)g1(0,y)μ
(k)
(0,y)(A)

× e−nQ2M(x,x+My)f (x)

p−1∏
i=1

f (x + Myi),

where the second equality follows from the translation invariance and scaling properties of gM

and μ(k). Next, we apply a polar coordinate transform x ↔ (r, θ) where r ∈ [0,∞) and θ ∈ Sd−1,
which is followed by another change of variable r ↔ Rρ. Notice also that

hR(Rρθ,Rρθ + My) = 1{ρ ≥ 1}h1(ρθ + My/R).

Combining all of these together, we obtain

E
(∣∣�(k,p)

n ∩ A
∣∣)= np

p! M
d(p−1)Rd

(
f (R)

)p ∫ ∞

1
ρd−1 dρ

∫
Sd−1

J (θ)dθ

∫
(Rd )p−1

dy

× h1(ρθ + My/R)g1(0,y)μ
(k)
(0,y)

(A)

× e−nQ2M(Rρθ,Rρθ+My) f (Rρ)

f (R)

p−1∏
i=1

f (R‖ρθ + Myi/R‖)
f (R)

, (5.7)

where J (θ) is the Jacobian given by (4.7).
Our next goal is to find the limit of the individual terms inside the integral. First, no-

tice that since M/R → 0 we have that h1(ρθ + My/R) → 1 for all ρ ≥ 1, θ ∈ Sd−1, and
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y = (y1, . . . , yp−1) ∈ (Rd)p−1. Next, appealing to the regular variation of f in (3.1), we have

f (Rρ)

f (R)

p−1∏
i=1

f (R‖ρθ + Myi/R‖)
f (R)

→ ρ−αp

for all ρ ≥ 1, θ ∈ Sd−1, and y ∈ (Rd)p−1.
Finally, we verify that the exponential term in (5.7) converges to one. To evaluate Q2M , we

apply the change of variable z ↔ Rρθ + Mv in (5.1). This yields

nQ2M(Rρθ,Rρθ + My) = nMdf (R)

∫
B2(0,y)

f (R‖ρθ + Mv/R‖)
f (R)

dv

≤ nMdf (R) sup
v∈B2(0,y)

f (R‖ρθ + Mv/R‖)
f (R)

λd

(
B2(0,y)

)
.

Observe that for all ρ ≥ 1, θ ∈ Sd−1, and v ∈ B2(0,y) such that C1(0,y) is connected, we have,
for large enough n,

‖ρθ + Mv/R‖ ≥ ρ

2
≥ 1

2
.

Therefore, the Potter bound for regularly varying functions (e.g., Theorem 1.5.6 in [7] or Propo-
sition 2.6 in [35]) gives, for every 0 < ζ < α − d ,

sup
v∈B2(0,y)

f (R‖ρθ + Mv/R‖)
f (R)

≤ C∗ sup
v∈B2(0,y)

max
{‖ρθ + Mv/R‖−α+ζ ,‖ρθ + Mv/R‖−α−ζ

}
≤ C∗.

Thus, for all ρ, θ,y we have

nQ2M(Rρθ,Rρθ + My) ≤ C∗nMdf (R).

Recalling (3.6), together with the assumption M/R → 0, ensures that nMdf (R) → 0, from
which we can conclude that e−nQ2M(Rρθ,Rρθ+My) → 1.

Assuming that the dominated convergence theorem applies (as justified next), while using
(3.6), we can conclude that

E
(∣∣�(k,p)

n ∩ A
∣∣)→ 1

p!
∫ ∞

1
ρd−1−αp dρ

∫
Sd−1

J (θ)dθ

∫
(Rd )p−1

g1(0,y)μ
(k)
(0,y)(A)dy

= sd−1

p!(αp − d)

∫
(Rd )p−1

g1(0,y)μ
(k)
(0,y)(A)dy

= E
(
�(k,p)(A)

)
, n → ∞.

It now remains to establish an integrable upper bound for an integrand in (5.7), in order to apply
the dominated convergence theorem. First, the exponential term in (5.7) is obviously bounded by
one. As for the ratio of the densities, applying the Potter bound repeatedly we derive that, for



2296 T. Owada and O. Bobrowski

every 0 < ζ < α − d , there exists a C > 0 (we have introduced a specific constant C, not a
generic one, for later use) such that, for sufficiently large n,

f (Rρ)

f (R)
1{ρ ≥ 1} ≤ C max

{
ρ−α+ζ , ρ−α−ζ

}
1{ρ ≥ 1} = Cρ−α+ζ 1{ρ ≥ 1}, (5.8)

and for each i = 1, . . . , p − 1,

f (R‖ρθ + Myi/R‖)
f (R)

1
{‖ρθ + Myi/R‖ ≥ 1

}
≤ C max

{‖ρθ + Myi/R‖−α+ζ ,‖ρθ + Myi/R‖−α−ζ
}
1
{‖ρθ + Myi/R‖ ≥ 1

}≤ C. (5.9)

Since ∫ ∞

1
ρd−1−α+ζ dρ

∫
(Rd )p−1

g1(0,y)μ
(k)
(0,y)(A)dy < ∞,

we now obtain the required integrable bound. �

Proof of Theorem 3.2. Below we present the proofs of (5.3), (5.4) and (5.5) in Parts I–III.
Proof of (5.3) in Part I:
By virtue of Theorem 6.5 in [27], it is enough to verify that for every compact subset A ⊂ �

with A ∩ Bk,p �=∅, we have

P

( ∞⋃
m=p

�(k,m)
n ∩ A �=∅

)
→ P

(
�(k,p) ∩ A �=∅

)
.

We can proceed as follows:∣∣∣∣∣P
( ∞⋃

m=p

�(k,m)
n ∩ A �=∅

)
− P

(
�(k,p) ∩ A �=∅

)∣∣∣∣∣
≤ ∣∣P(�(k,p)

n ∩ A =∅
)− P

(
�(k,p) ∩ A =∅

)∣∣+ P

( ∞⋃
m=p+1

{
�(k,m)

n ∩ A �=∅
})

≤ ∣∣P(�̃(k,p)
n ∩ A =∅

)− P
(
�(k,p) ∩ A =∅

)∣∣+ P
((

�̃
(k,p)
n \ �

(k,p)
n

)∩ A �=∅
)

+ P

( ∞⋃
m=p+1

{
�(k,m)

n ∩ A �=∅
})

≤ ∣∣P(�̃(k,p)
n ∩ A =∅

)− P
(
�(k,p) ∩ A =∅

)∣∣+E
[∣∣�̃(k,p)

n ∩ A
∣∣− ∣∣�(k,p)

n ∩ A
∣∣]

+
∞∑

m=p+1

E
(∣∣�(k,m)

n ∩ A
∣∣),

=: T1 + T2 + T3, (5.10)
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where the last step follows from Markov’s inequality. To complete the proof, we thus need to
show that Ti → 0 for i = 1,2,3. First, T2 → 0 follows as a direct consequence of Lemma 5.1.

Next, we show that T1 → 0. To this end, we introduce an i.i.d. random sample version of
�̃

(k,p)
n . More specifically, let

In :=
{{

(i1, . . . , ip) ∈ N
p
+ : 1 ≤ i1 < · · · < ip ≤ n

}
if n ≥ p,

∅ if n < p,

and

ηi,n := hR(Xi)gM(Xi)μ
(k)

Xi
(MA),

where Xi = (Xi1, . . . ,Xip ) for i = (i1, . . . , ip) ∈ In. Notice that the Xi ’s here are the same as
those in (3.2) to generate Pn. In other words, ηi,n is the total number of the kth persistence pairs
lying in MA and generated by the subset Xi, with the restriction that Xi is connected and each
point in Xi lies outside B(0;R). We now claim that

P

(∑
i∈In

ηi,n = 0

)
− P

(
�̃

(k,p)
n ∩ A =∅

)→ 0, n → ∞.

For any integer-valued random variables Y1 and Y2 defined on the same probability space we
have ∣∣P(Y1 = 0) − P(Y2 = 0)

∣∣≤ E
(|Y1 − Y2|

)
.

Therefore,∣∣∣∣P(∑
i∈In

ηi,n = 0

)
− P

(
�̃

(k,p)
n ∩ A =∅

)∣∣∣∣≤ E

[∣∣∣∣∑
i∈In

ηi,n − ∣∣�̃(k,p)
n ∩ A

∣∣∣∣∣∣]

=
∞∑

m=0

P
(|Pn| = m

)
E

[∣∣∣∣∑
i∈In

ηi,n −
∑
i∈Im

ηi,n

∣∣∣∣]

=
∞∑

m=0

P
(|Pn| = m

) ∣∣∣∣(n

p

)
−
(

m

p

)∣∣∣∣E(ηi,n), (5.11)

where i in the last line is an arbitrary element of In. Returning to (5.6), we find that the ex-
pectation portion of the right-hand side in (5.6) is asymptotically equal to E(ηi,n). Additionally,

Lemma 5.1 ensures that E(|�(k,p)
n ∩ A|) tends to a positive constant as n → ∞. Hence the right-

most term at (5.11) can be bounded by

C∗
∞∑

m=0

P
(|Pn| = m

)
n−p

∣∣∣∣(n

p

)
−
(

m

p

)∣∣∣∣ , (5.12)
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which itself is further bounded by

C∗
{

n−p

∣∣∣∣(n

p

)
− np

p!
∣∣∣∣+ 1

p!E
[∣∣∣∣( |Pn|

n

)p

− 1

∣∣∣∣]+ n−p
∞∑

m=0

P
(|Pn| = m

)∣∣∣∣(m

p

)
− mp

p!
∣∣∣∣
}

.

It is now straightforward to show that each of the three terms converges to 0 as n → ∞.
To prove T1 → 0, it now suffices to show that

P

(∑
i∈In

ηi,n = 0

)
− P

(
�(k,p) ∩ A =∅

)→ 0, n → ∞. (5.13)

To this end, our argument relies on the so-called total variation distance, which is defined for
two random variables Y1, Y2 as

dTV(Y1, Y2) := sup
A⊂R

∣∣P(Y1 ∈ A) − P(Y2 ∈ A)
∣∣.

Denoting Z ∼ Poisson(E(
∑

i∈In
ηi,n)), and using the triangle inequality, we have∣∣∣∣P(∑

i∈In

ηi,n = 0

)
− P

(
�(k,p) ∩ A =∅

)∣∣∣∣
≤ dTV

(∑
i∈In

ηi,n,Z

)
+ ∣∣P(Z = 0) − P

(
�(k,p) ∩ A =∅

)∣∣.
Since Z and �(k,p)(A) are both Poisson, an elementary calculation shows that

∣∣P(Z = 0) − P
(
�(k,p) ∩ A =∅

)∣∣≤ ∣∣∣∣E(∑
i∈In

ηi,n

)
−E

(∣∣�(k,p) ∩ A
∣∣)∣∣∣∣

≤ ∣∣E(∣∣�̃(k,p)
n ∩ A

∣∣)−E
(∣∣�(k,p) ∩ A

∣∣)∣∣+ o(1) → 0,

where we have used (5.11) and Lemma 5.1.
In order to bound dTV(

∑
i∈In

ηi,n,Z) we will use Stein–Chen Poisson approximation method.
As preparation, however, we need to define a certain graph on In as follows. For i, j ∈ In, write
i ∼ j if and only if they have at least one common element, that is, |i ∩ j| > 0. Then (In,∼)

constitutes a dependency graph, that is, for every I1, I2 ⊂ In with no edges connecting I1 and
I2, we have that (ηi,n, i ∈ I1) and (ηi,n, i ∈ I2) are independent. Under this setup, Stein’s Poisson
approximation theorem yields

dTV

(∑
i∈In

ηi,n,Z

)
≤ 3

[∑
i∈In

∑
j∈Ni

E(ηi,n)E(ηj,n) +
∑
i∈In

∑
j∈Ni\{i}

E(ηi,nηj,n)

]
,

where Ni = {j ∈ In : i ∼ j} ∪ {i}.
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From the argument before (5.12), we know that for sufficiently large n,

E(ηi,n) ≤ 2

(
n

p

)−1

E
(∣∣�(k,p) ∩ A

∣∣).
Therefore, as n → ∞,

∑
i∈In

∑
j∈Ni

E(ηi,n)E(ηj,n) ≤
(

n

p

)((
n

p

)
−
(

n − p

p

))
4

(
n

p

)−2 (
E
(∣∣�(k,p) ∩ A

∣∣))2 → 0.

For i, j ∈ In with � := |i ∩ j| ∈ {1, . . . , p − 1}, by the same change of variables as in the proof of
Lemma 5.1, we have

E(ηi,nηj,n) = Md(2p−�−1)Rd
(
f (R)

)2p−�
∫ ∞

1
ρd−1 dρ

∫
Sd−1

J (θ)dθ

∫
(Rd )2p−�−1

dy

× h1(ρθ + My/R)g1(0,y)μ
(k)
(0,y)(A)

× e−nQ2M(Rρθ,Rρθ+My) f (Rρ)

f (R)

2p−�−1∏
i=1

f (R‖ρθ + Myi/R‖)
f (R)

= O
(
Md(2p−�−1)Rd

(
f (R)

)2p−�)
.

It follows from (3.6) that

∑
i∈In

∑
j∈Ni\{i}

E(ηi,nηi,n) =
p−1∑
�=1

(
n

p

)(
p

�

)(
n − p

p − �

)
E(ηi,nηj,n)1

{|i ∩ j| = �
}

≤ C∗
p−1∑
�=1

n2p−�Md(2p−�−1)Rd
(
f (R)

)2p−�

≤ C∗nMdf (R) → 0, n → ∞,

and hence, (5.13) is established.
Finally, we turn our attention to showing that T3 → 0 in (5.10). For every m ≥ p+1, repeating

the argument of Lemma 5.1,

E
(∣∣�(k,m)

n ∩ A
∣∣)= nm

m! M
d(m−1)Rd

(
f (R)

)m ∫ ∞

1
ρd−1 dρ

∫
Sd−1

J (θ)dθ

∫
(Rd )m−1

dy

× h1(ρθ + My/R)g1(0,y)μ
(k)
(0,y)(A)

× e−nQ2M(Rρθ,Rρθ+My) f (Rρ)

f (R)

m−1∏
i=1

f (R‖ρθ + Myi/R‖)
f (R)

.
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Using (5.8) and (5.9), together with the fact that for large enough n,

nmMd(m−1)Rd
(
f (R)

)m ≤ 2
(
nMdf (R)

)m−p
,

we have

E
(∣∣�(k,m)

n ∩ A
∣∣)≤ 2Cm

m!
(
nMdf (R)

)m−p

×
∫ ∞

1
ρd−1−α+ζ dρ

∫
Sd−1

J (θ)dθ

∫
(Rd )m−1

g1(0,y)μ
(k)
(0,y)(A)dy

≤ 2sd−1

α − d − ζ

Cm

m!
(

m

k + 1

)(
nMdf (R)

)m−p
∫

(Rd )m−1
g1(0,y)dy,

where at the second step we have applied μ
(k)
(0,y)(A) ≤ ( m

k+1

)
. Next, the well-known fact that

there exist mm−2 spanning trees on a set of m vertices, yields∫
(Rd )m−1

g1(0,y)dy ≤ mm−2ωm−1
d ,

where ωd represents the volume of a unit ball in R
d . To show that T3 → 0, it therefore remains

to verify that

∞∑
m=p+1

Cm

m!
(

m

k + 1

)(
nMdf (R)

)m−p
mm−2ωm−1

d → 0, n → ∞.

From Stirling’s formula (i.e., m! ≥ (m/e)m for large m enough), we can bound the left-hand side
above by a constant multiple of

∞∑
m=p+1

mk−1(eCωdnMdf (R)
)m−p

,

which clearly vanishes as n → ∞. We thus proved that Ti → 0 for i = 1,2,3 in (5.10), so we
can conclude Part I.

Proof of (5.4) in Part II:
Recall that our goal here is to prove the nonrandom part of the limit, that is,

�̂
(k,p)
n :=

p−1⋃
m=k+2

�(k,m)
n ⇒ Bk,p−1 in F(�). (5.14)

First, for a measurable set A ⊂ � and ε > 0, denote by (A)ε− an open ε-envelop in terms of
the Euclidean metric (see (2.1)). By the definition of convergence in probability under the Fell
topology (see Definition 6.19 in [27]), we need to show that

P
([(

�̂
(k,p)
n \ (Bk,p−1)

ε−)∪ (
Bk,p−1 \ (�̂(k,p)

n

)ε−)]∩ K �=∅
)→ 0
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for every ε > 0 and for every compact set K in �. Since by construction, �̂
(k,p)
n ⊂ Bk,p−1, we

have

�̂
(k,p)
n \ (Bk,p−1)

ε− =∅ a.s.

It thus remains to prove that

P
([

Bk,p−1 \ (�̂(k,p)
n

)ε−]∩ K �=∅
)→ 0, n → ∞.

Note that (�̂
(k,p)
n )ε− is the union of open balls of radius ε centered about the points in �̂

(k,p)
n .

Since K is a closed and bounded set, we can take, without loss of generality, K = ([a, b]×R+)∩
Bk,p−1 for some 0 ≤ a < b < ∞. Let Qp−1 be a collection of cubes in R

2 with side length ε/
√

2
such that each cube intersects with K and the union of these cubes covers K . Then

P
([

(Bk,p−1) \ (�̂(k,p)
n

)ε−]∩ K �=∅
)

≤ P

( ⋃
Q∈Qp−1

p−1⋂
m=k+2

{
�(k,m)

n ∩ Q =∅
})

≤
∑

Q∈Qp−1

P
(
�

(k,p−1)
n ∩ Q =∅

)
≤

∑
Q∈Qp−1

P
(∣∣∣∣�(k,p−1)

n ∩ Q
∣∣−E

(∣∣�(k,p−1)
n ∩ Q

∣∣)∣∣≥ E
(∣∣�(k,p−1)

n ∩ Q
∣∣))

≤
∑

Q∈Qp−1

Var(|�(k,p−1)
n ∩ Q|)

[E(|�(k,p−1)
n ∩ Q|)]2

.

Hence, from Lemma 5.2 we can bound the rightmost term by a constant multiple of nMdf (R).
Since nMdf (R) → 0, the desired result follows.

Proof of (5.5) in Part III:
Here, we wish to combine I and II to conclude the statement in the theorem,

�(k)
n ⇒ �(k,p) ∪ Bk,p−1 in F(�).

Since F(�) is metrizable in the Fell topology (see [2]), (5.14) implies that there exists a metric
on F(�), denoted ρ, such that

ρ
(
�̂

(k,p)
n ,Bk,p−1

) p→ 0. (5.15)

Now, combining the convergences (5.3) and (5.15) gives (see Proposition 3.1 in [35]),( ∞⋃
m=p

�(k,m)
n , �̂

(k,p)
n

)
⇒ (

�(k,p),Bk,p−1
)

in F(�) ×F(�),
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where F(�)×F(�) is equipped with the product topology. Finally, using the fact that (F1,F2) ∈
F(�) × F(�) �→ F1 ∪ F2 ∈ F(�) is continuous (see p. 7 in [26]), we can conclude from the
continuous mapping theorem that

∞⋃
m=k+2

�(k,m)
n ⇒ �(k,p) ∪ Bk,p−1 in F(�).

�

Before finishing this section, we provide a proof for Corollary 3.7.

Proof of Corollary 3.7. To show convergence of
∑∞

m=p �
(k,m)
n in MP(�), we will use Kallen-

berg’s theorem (see Proposition 3.22 in [34]), for which we need to show that for any measurable
set A ⊂ �,

E

[ ∞∑
m=p

�(k,m)
n (A)

]
→ E

(
�(k,p)(A)

)
,

P

( ∞∑
m=p

�(k,m)
n (A) = 0

)
→ P

(
�(k,p)(A) = 0

)
.

The first limit is a direct result of Lemma 5.1 and T3 → 0 in (5.10). For the second limit, we have

P

( ∞∑
m=p

�(k,m)
n (A) = 0

)
= P

(
�

(k,p)
n (A) = 0

)+ o(1)

= P
(
�̃

(k,p)
n (A) = 0

)+ o(1) → P
(
�(k,p)(A) = 0

)
, n → ∞,

where we have used Ti → 0, i = 1,2,3 in (5.10). �

5.3. Exponentially decaying tails

The proof for the exponentially decaying tail case goes mostly parallel to that in the previous
subsection. In particular, regardless of heaviness of the tail of f , the weak limits in Theorems
3.2 and 4.2 are characterized by a Poisson random measure, the only difference lying in the lim-
iting mean measures. Therefore, the current subsection only presents the results on the moment
asymptotics corresponding to Lemmas 5.1 and 5.2. All the arguments that follow are essentially
the same as the heavy tail case, so we omit them.

Lemma 5.3. Let A ⊂ � be a measurable set, such that A ∩ Bk,p �= ∅. Under the conditions of
Theorem 4.2,

lim
n→∞E

(∣∣�(k,p)
n ∩ A

∣∣)= lim
n→∞E

(∣∣�̃(k,p)
n ∩ A

∣∣)= E
(∣∣�(k,p) ∩ A

∣∣) ∈ (0,∞).



Convergence of persistence diagrams 2303

If A ∩ Bk,p−1 �=∅, then

E
(∣∣�(k,p−1)

n ∩ A
∣∣)∼ C3

(
nMdf (R)

)−1
, n → ∞, and

Var
(∣∣�(k,p−1)

n ∩ A
∣∣)≤ C4

(
nMdf (R)

)−1
,

where C3 and C4 are positive constants, independent of n and depending only on d, k,p,A and
the probability density f .

The proof for this lemma is postponed to the Appendix.

Appendix: Proofs for Lemmas 5.2 and 5.3

Proof of Lemma 5.2. Repeating the arguments in the proof of Lemma 5.1, we can write

E
(∣∣�(k,p−1)

n ∩ A
∣∣)= np−1

(p − 1)!M
d(p−2)Rd

(
f (R)

)p−1
∫ ∞

1
ρd−1 dρ

∫
Sd−1

J (θ)dθ

∫
(Rd )p−2

dy

× h1(ρθ + My/R)g1(0,y)μ
(k)
(0,y)(A)

× e−nQ2M(Rρθ,Rρθ+My) f (Rρ)

f (R)

p−2∏
i=1

f (R‖ρθ + Myi/R‖)
f (R)

.

From here, proceeding the same way as in the previous proof, we can conclude that the triple
integral above converges to a positive constant. We also use (3.6) to get that, for some C1 > 0,

E
(∣∣�(k,p−1)

n ∩ A
∣∣)∼ C1

(
nMdf (R)

)−1
, n → ∞. (A.16)

For the result on variance, we begin with writing

E
[∣∣�(k,p−1)

n ∩ A
∣∣2]=

p−1∑
�=0

E

[ ∑
Y⊂Pn

|Y |=|Y ′|=p−1

∑
Y ′⊂Pn

|Y∩Y ′|=�

hR

(
Y ∪Y ′)gM(Y,Pn)gM

(
Y ′,Pn

)

× μ
(k)

Y (A)μ
(k)

Y ′ (A)

]

=:
p−1∑
�=0

I�.

For � = p − 1, we know from (A.16) that Ip−1 ∼ C1(nMdf (R))−1 as n → ∞. For every � ∈
{1, . . . , p−2}, the condition |Y ∩Y ′| = � requires gM(Y,Pn)gM(Y ′,Pn) = 0, as it is impossible
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for Y and Y ′ to be a connected component simultaneously. Therefore, we have

Var
(∣∣�(k,p−1)

n ∩ A
∣∣)=

p−1∑
�=0

I� − [
E
(∣∣�(k,p−1)

n ∩ A
∣∣)]2

∼ C∗(nMdf (R)
)−1 + I0 − [

E
(∣∣�(k,p−1)

n ∩ A
∣∣)]2

.

To finish the proof, we thus need to show that

I0 − [
E
(∣∣�(k,p−1)

n ∩ A
∣∣)]2 → 0, n → ∞.

Applying Palm theory yields

I0 = n2(p−1)

((p − 1)!)2
E
[
hR(Y12)gM(Y1,Y12 ∪Pn)gM(Y2,Y12 ∪Pn)μ

(k)

Y1
(A)μ

(k)

Y2
(A)

]
,

where Y1 and Y2 are disjoint sets of (p − 1) i.i.d. points, respectively, and Y12 := Y1 ∪ Y2 is
independent of Pn. Conditioning on Y12, we have

I0 = n2(p−1)

((p − 1)!)2
E
[
hR(Y12)gM(Y1)gM(Y2)μ

(k)

Y1
(A)μ

(k)

Y2
(A)

× 1
{
BM(Y1) ∩BM(Y2) = ∅

}
e−nQ2M(Y12)

]
.

On the other hand,[
E
(∣∣�(k,p−1)

n ∩ A
∣∣)]2

= n2(p−1)

((p − 1)!)2
E
[
hR(Y12)gM(Y1)gM(Y2)μ

(k)

Y1
(A)μ

(k)

Y2
(A)e−n(Q2M(Y1)+Q2M(Y2))

]
.

Combining them together, we have

I0 − [
E
(∣∣�(k,p−1)

n ∩ A
∣∣)]2 ≤ E(�n),

where

�n = n2(p−1)

((p − 1)!)2
hR(Y12)gM(Y1)gM(Y2)

× μ
(k)

Y1
(A)μ

(k)

Y2
(A)

(
e−nQ2M(Y12) − e−n(Q2M(Y1)+Q2M(Y2))

)
.

Furthermore, E(�n) can be split into two parts,

E
[
�n

(
1
{
B2M(Y1) ∩B2M(Y2) = ∅

}+ 1
{
B2M(Y1) ∩B2M(Y2) �= ∅

})]
.
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Note that whenever B2M(Y1) ∩ B2M(Y2) = ∅, we have Q2M(Y12) = Q2M(Y1) + Q2M(Y2), in
which case �n = 0. So it suffices to consider the other part only. Bounding an exponential term
by one,

E[�n] ≤ n2(p−1)

((p − 1)!)2
E
[
hR(Y12)gM(Y1)gM(Y2)μ

(k)

Y1
(A)μ

(k)

Y2
(A)1

{
B2M(Y1) ∩B2M(Y2) �=∅

}]
.

Notice that

gM(Y1)gM(Y2)1
{
B2M(Y1) ∩B2M(Y2) �=∅

}≤ g2M(Y12).

This, together with the fact that μ
(k)

Yi
(A) ≤ (

p−1
k+1

)
, yields

E[�n] ≤ n2(p−1)

((p − 1)!)2

(
p − 1
k + 1

)2

E
[
hR(Y12)g2M(Y12)

]
. (A.17)

Calculating the expectation portion as in the proof of Lemma 5.1 and using (3.6), we find that
the right-hand side in (A.17) equals

O
(
n2(p−1)Md(2p−3)Rd

(
f (R)

)2(p−1))= O
((

nMdf (R)
)p−2)→ 0, n → ∞.

Now, the entire proof has been completed. �

Proof of Lemma 5.3. Among these claims in the above lemma, we shall prove the first limit
only, that is,

lim
n→∞E

(∣∣�(k,p)
n ∩ A

∣∣)= E
(∣∣�(k,p) ∩ A

∣∣). (A.18)

The rest of the proofs will be similar, and hence omitted.
Using Palm theory, we have

E
(∣∣�(k,p)

n ∩ A
∣∣)= np

p! E
[
hR(Xp)gM(Xp,Xp ∪Pn)μ

(k)

Xp
(MA)

]
,

where Xp = (X1, . . . ,Xp) denotes i.i.d. points, independent of Pn. Conditioning on Xp and
changing variables x1 ↔ x, xi ↔ x + Myi−1, i = 2, . . . , p, we obtain

E
(∣∣�(k,p)

n ∩ A
∣∣)= np

p! M
d(p−1)

∫
Rd

dx

∫
(Rd )p−1

dyhR(x, x + My)g1(0,y)μ
(k)
(0,y)

(A)

× e−nQ2M(x,x+My)f (x)

p−1∏
i=1

f (x + Myi).
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Changing into polar coordinate change x ↔ (r, θ), along with an additional change of variable
ρ = a(R)−1(r − R) we have

E
(∣∣�(k,p)

n ∩ A
∣∣)= np

p! M
d(p−1)a(R)Rd−1(f (R)

)p ∫ ∞

0
dρ

∫
Sd−1

J (θ)dθ

∫
(Rd )p−1

dy

×
(

1 + a(R)

R
ρ

)d−1

hR

((
R + a(R)ρ

)
θ,
(
R + a(R)ρ

)
θ + My

)
× g1(0,y)μ

(k)
(0,y)(A)e−nQ2M((R+a(R)ρ)θ,(R+a(R)ρ)θ+My)

× f (R + a(R)ρ)

f (R)

p−1∏
i=1

f (‖(R + a(R)ρ)θ + Myi‖)
f (R)

. (A.19)

Using the Taylor expansion, we have∥∥(R + a(R)ρ
)
θ + Myi

∥∥= R + a(R)ρ + M
(〈θ, yi〉 + γn(ρ, θ, yi)

)
, (A.20)

where γn(ρ, θ, yi) → 0 uniformly for ρ > 0, θ ∈ Sd−1, and yi in a bounded set in R
d . Denoting

ξn(ρ, θ, yi) = 〈θ, yi〉 + γn(ρ, θ, yi)

a(R)/M
,

the right-hand side in (A.20) is equal to R + a(R)(ρ + ξn(ρ, θ, yi)). Due to the uniform conver-
gence of γn(ρ, θ, yi), it is easy to show that for every M > 0,

sup
ρ>0,n≥1,θ∈Sd−1

yi∈[−M,M]d

∣∣ξn(ρ, θ, yi)
∣∣< ∞, (A.21)

and further,

ξn(ρ, θ, yi) → c−1〈θ, yi〉 as n → ∞. (A.22)

In the following, we shall compute the limits for each term in (A.19) under the integral sign,
and then establish an appropriate integrable bound for the application of the dominated conver-
gence theorem. From (4.2), we have that (1 + a(R)ρ/R) → 1 for all ρ > 0, and for sufficiently
large n, this is bounded by 2(ρ ∨ 1)d−1. Subsequently, from (A.20) and (A.22), we have that

hR

((
R + a(R)ρ

)
θ,
(
R + a(R)ρ

)
θ + My

)→ 1
{
ρ + c−1〈θ, yi〉 ≥ 0, i = 1, . . . , p − 1

}
.

As for the ratio terms for the density f , using (4.1) we write

f (R + a(R)ρ)

f (R)
= L(R + a(R)ρ)

L(R)
e−[ψ(R+a(R)ρ)−ψ(R)] (A.23)

so that L(R + a(R)ρ)/L(R) → 1 for all ρ > 0, and

e−[ψ(R+a(R)ρ)−ψ(R)] = exp

{
−
∫ ρ

0

a(R)

a(R + a(R)r)
dr

}
→ e−ρ, n → ∞.
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For the last convergence, we applied an elementary result in p. 142 of [18], which asserts that
a(x)/a(x + a(x)r) → 1 as x → ∞, uniformly for r in any bounded interval. In order to give a
proper upper bound for (A.23), we let

qm(n) = ψ−1(ψ(R) + m) − R

a(R)
, m ≥ 1,

equivalently, ψ(R + a(R)qm(n)) = ψ(R) + m. Accordingly to Lemma 5.2 in [5], for every
0 < ε < (d + γp)−1 (γ is a parameter at (4.4)), there exists N ≥ 1 such that qm(n) ≤ emε/ε for
all n ≥ N and m ≥ 1. Since ψ is increasing, we have

e−[ψ(R+a(R)ρ)−ψ(R)]1{ρ > 0} =
∞∑

m=0

1
{
qm(n) < ρ ≤ qm+1(n)

}
e−[ψ(R+a(R)ρ)−ψ(R)]

≤
∞∑

m=0

1
{
0 < ρ ≤ e(m+1)ε/ε

}
e−m

for all n ≥ N . For the derivation of the bound for L, we use (4.4), that is,

L(R + a(R)ρ)

L(R)
1{ρ > 0} ≤ 2C(ρ ∨ 1)γ 1{ρ > 0}

for sufficiently large n. Combining these bounds,

f (R + a(R)ρ)

f (R)
≤ 2C(ρ ∨ 1)γ

∞∑
m=0

1
{
0 < ρ ≤ e(m+1)ε/ε

}
e−m.

We next deal with the product terms of the probability densities in (A.19). For each i =
1, . . . , p − 1, it follows from (A.20), (A.21) and (A.22) that

f (‖(R + a(R)ρ)θ + Myi‖)
f (R)

= L(R + a(R)(ρ + ξn(ρ, θ, yi)))

L(R)

× exp

{
−
∫ ρ+ξn(ρ,θ,yi )

0

a(R)

a(R + a(R)r)
dr

}
→ e−ρ−c−1〈θ,yi 〉

for all ρ > 0, θ ∈ Sd−1, and yi ∈ R
d . As for the suitable integrable bound, simply dropping the

exponential term, we have

f (‖(R + a(R)ρ)θ + Myi‖)
f (R)

≤ C′(ρ ∨ 1)γ (p−1)
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for some constant C′ > 0. For the exponential term in (A.19),

nQ2M

((
R + a(R)ρ

)
θ,
(
R + a(R)ρ

)
θ + My

)
= nMdf (R)

∫
B2(0,y)

f (‖(R + a(R)ρ)θ + Mv‖)
f (R)

dv → 0,

since (4.5) implies nMdf (R) → 0, n → ∞.
Combining all convergence results together, while assuming the applicability of the dominated

convergence theorem, we get (A.18) as desired. Finally, apply all the bounds derived thus far, and
note that∫ ∞

0

∞∑
m=0

1
{
0 < ρ ≤ e(m+1)ε/ε

}
e−m(ρ ∨ 1)d+γp−1 dρ ≤

(
eε

ε

)d+γp ∞∑
m=0

e−[1−ε(d+γp)]m < ∞,

since 0 < ε < (d + γp)−1. Therefore, the dominated convergence theorem is applicable. �
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