
Bernoulli 26(3), 2020, 1765–1796
https://doi.org/10.3150/19-BEJ1166

A fast algorithm with minimax optimal
guarantees for topic models with
an unknown number of topics
XIN BING1,* , FLORENTINA BUNEA1,† and MARTEN WEGKAMP1,2

1Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA.
E-mail: *xb43@cornell.edu; †fb238@cornell.edu
2Department of Mathematics, Cornell University, Ithaca, NY, USA. E-mail: mhw73@cornell.edu

Topic models have become popular for the analysis of data that consists in a collection of n independent
multinomial observations, with parameters Ni ∈ N and �i ∈ [0,1]p for i = 1, . . . , n. The model links all
cell probabilities, collected in a p × n matrix �, via the assumption that � can be factorized as the prod-
uct of two nonnegative matrices A ∈ [0,1]p×K and W ∈ [0,1]K×n. Topic models have been originally
developed in text mining, when one browses through n documents, based on a dictionary of p words, and
covering K topics. In this terminology, the matrix A is called the word-topic matrix, and is the main target
of estimation. It can be viewed as a matrix of conditional probabilities, and it is uniquely defined, under
appropriate separability assumptions, discussed in detail in this work. Notably, the unique A is required to
satisfy what is commonly known as the anchor word assumption, under which A has an unknown number
of rows respectively proportional to the canonical basis vectors in R

K . The indices of such rows are re-
ferred to as anchor words. Recent computationally feasible algorithms, with theoretical guarantees, utilize
constructively this assumption by linking the estimation of the set of anchor words with that of estimating
the K vertices of a simplex. This crucial step in the estimation of A requires K to be known, and cannot be
easily extended to the more realistic set-up when K is unknown.

This work takes a different view on anchor word estimation, and on the estimation of A. We propose a
new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms,
and that estimates K from the observed data. We derive new finite sample minimax lower bounds for the
estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where
our estimator is minimax adaptive. Our finite sample analysis is valid for any n,Ni,p and K , and both p

and K are allowed to increase with n, a situation not handled well by previous analyses.
We complement our theoretical results with a detailed simulation study. We illustrate that the new al-

gorithm is faster and more accurate than the current ones, although we start out with a computational and
theoretical disadvantage of not knowing the correct number of topics K , while we provide the competing
methods with the correct value in our simulations.

Keywords: adaptive estimation; anchor words; high dimensional estimation; identification; latent model;
minimax estimation; nonnegative matrix factorization; overlapping clustering; separability; topic model

1. Introduction

1.1. Background

Topic models have been developed during the last two decades in natural language process-
ing and machine learning for discovering the themes, or “topics”, that occur in a collection of
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documents. They have also been successfully used to explore structures in data from genetics,
neuroscience and computational social science, to name just a few areas of application. Earlier
works on versions of these models, called latent semantic indexing models, appeared mostly
in the computer science and information science literature, for instance [12,17,20,21]. Bayesian
solutions, involving latent Dirichlet allocation models, have been introduced in [10] and MCMC-
type solvers have been considered by [16], to give a very limited number of earlier references. We
refer to [8] for a in-depth overview of this field. One weakness of the earlier work on topic models
was of computational nature, which motivated further, more recent, research on the development
of algorithms with polynomial running time, see, for instance, [1,2,4,18]. Despite these recent
advances, fast algorithms leading to estimators with sharp statistical properties are still lacking,
and motivates this work.

We begin by describing the topic model, using the terminology employed for its original usage,
that of text mining. It is assumed that we observe a collection of n independent documents,
and that each document is written using the same dictionary of p words. For each document
i ∈ [n] := {1, . . . , n}, we sample Ni words and record their frequencies in the vector Xi ∈ R

p . It
is further assumed that the probability �ji with which a word j appears in a document i depends
on the topics covered in the document, justifying the following informal application of the Bayes’
theorem,

�ji := Pi (Word j) =
K∑

k=1

Pi (Word j | Topic k)Pi (Topic k).

The topic model assumption is that the conditional probability of the occurrence of a word, given
the topic, is the same for all documents. This leads to the topic model specification:

�ji =
K∑

k=1

P(Word j | Topic k)Pi (Topic k) for each j ∈ [p], i ∈ [n]. (1)

We collect the above conditional probabilities in the p ×K word-topic matrix A and we let Wi ∈
R

K denote the vector containing the probabilities of each of the K topics occurring in document
i ∈ [n]. With this notation, data generated from topic models are observed count frequencies Xi

corresponding to independent

Yi := NiXi ∼ Multinomialp(Ni,AWi) for each i ∈ [n]. (2)

Let X be the p × n observed data matrix, W be the K × n matrix with columns Wi , and � be
the p × n matrix with entries �ji satisfying (1). The topic model therefore postulates that the
expectation of the word-document frequency matrix X has the non-negative factorization

� := E[X] = AW, (3)

and the goal is to borrow strength across the n samples to estimate the common matrix of condi-
tional probabilities, A. Since the columns in �,A and W are probabilities specified by (1), they
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have non-negative entries and satisfy

p∑
j=1

�ji = 1,

p∑
j=1

Ajk = 1,

K∑
k=1

Wki = 1 for any k ∈ [K] and i ∈ [n]. (4)

In Section 2, we discuss in detail separability conditions on A and W that ensure the uniqueness
of the factorization in (3).

In this context, the main goal of this work is to estimate A optimally, both computationally
and from a minimax-rate perspective, in identifiable topic models, with an unknown number K

of topics, that is allowed to depend on n,Ni,p.

1.2. Outline and contributions

In this section, we describe the outline of this paper and give a precise summary of our re-
sults which are developed via the following overall strategy: (i) We first show that A can be
derived, uniquely, at the population level, from quantities that can be estimated independently
of A. (ii) We use the constructive procedure in (i) for estimation, and replace population level
quantities by appropriate estimates, tailored to our final goal of minimax optimal estimation of
A in (3), via fast computation.

Recovery of A at the population level

We prove in Propositions 2 and 3 of Section 3 that the target word-topic matrix A can be uniquely
derived from �, and give the resulting procedure in Algorithm 1. The proofs require the separa-
bility Assumptions 1 and 2, common in the topic model literature, when K is known. All model
assumptions are stated and discussed in Section 2, and informally described here. Assumption 1
is placed on the word-topic matrix A, and is known as the anchor-word assumption as it requires
the existence of words that are solely associated with one topic. In Assumption 2, we require that
W have full rank.

To the best of our knowledge, parameter identifiability in topic models received a limited
amount of attention. If model (3) and Assumptions 1 and 2 hold, and provided that the index set
I corresponding to anchor words, as well as the number of topics K , are known, Lemma 3.1 of [3]
shows that A can be constructed uniquely via �. If I is unknown, but K is known, Theorem 3.1
of [7] further shows that the matrices A and W can be constructed uniquely via �, by connecting
the problem of finding I with that of finding the K vertices of an appropriately defined simplex.
Methods that utilize simplex structures are common in the topic models literature, such as the
simplex structure in the word-word co-occurrence matrix [2,3], in the original matrix � [14],
and in the singular vectors of � [18].

In this work, we provide a solution to the open problem of constructing I , and then A, in topic
models, in the more realistic situation when K is unknown. For this, we develop a method that is
not a variation of the existing simplex-based constructions. Under the additional Assumption 3
of Section 2, but without a priori knowledge of K , we recover the index set I of all anchor words,
as well as its partition I . This constitutes Proposition 2. Our proof only requires the existence of
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one anchor word for each topic, but we allow for the existence of more, as this is typically the
case in practice, see, for instance, [8]. Our method is optimization-free. It involves comparisons
between row and column maxima of a scaled version of the matrix ��T , specifically of the
matrix R given by (11). Example 1 of Section 3 illustrates our procedure, whereas a contrast
with simplex-based approaches is given in Remark 1 of Section 3.

Estimation of A

In Section 5.2, we follow the steps of Algorithm 1 of Section 3, to develop Algorithms 2 and 3
for estimating A from the data.

We show first how to construct estimators of I , I and K , and summarize this construction in
Algorithm 2 of Section 4, with theoretical guarantees provided in Theorem 4. Since we follow
Algorithm 1, this step of our estimation procedure does not involve any of the previously used
simplex recovery algorithms, such as those mentioned above.

The estimators of I , I and K are employed in the second step of our procedure, summarized
in Algorithm 3 of Section 5.2. This step yields the estimator Â of A, and only requires solving
a system of equations under linear restrictions, which, in turn, requires the estimation of the
inverse of a matrix. For the latter, we develop a fast and stable algorithm, tailored to this model,
which reduces to solving K linear programs, each optimizing over a K-dimensional space. This
is less involved, computationally, than the next best competing estimator of A, albeit developed
for K known, in [2]. After estimating I , their estimate of A requires solving p restricted convex
optimization problems, each optimizing over a K-dimensional parameter space.

We assess the theoretical performance of our estimator Â with respect to the L1,∞ and L1
losses defined below, by providing finite sample lower and upper bounds on these quantities, that
hold for all p, K , Ni and n. In particular, we allow K and p to grow with n, as we expect that
when the number of available documents n increases, so will the number K of topics that they
cover, and possibly the number p of words used in these documents. Specifically, we let HK

denote the set of all K × K permutation matrices and define:

‖Â − A‖1,∞ := max
1≤k≤K

p∑
j=1

|Âjk − Ajk|, ‖Â − A‖1 :=
p∑

j=1

K∑
k=1

|Âjk − Ajk|,

L1,∞(Â,A) := min
P∈HK

‖Â − AP‖1,∞, L1(Â,A) := min
P∈HK

‖Â − AP‖1.

We provide upper bounds for L1(Â,A) and L1,∞(Â,A) in Theorem 7 of Section 5.3. To bench-
mark these upper bounds, Theorem 6 in Section 5.1 shows that the corresponding lower bounds
are:

inf
Â

sup
A

PA

{
L1,∞(Â,A) ≥ c0

√
K(|Imax| + |J |)

nN

}
≥ c1,

inf
Â

sup
A

PA

{
L1(Â,A) ≥ c0K

√ |I | + K|J |
nN

}
≥ c1,

(5)

for absolute constants c0 > 0 and c1 ∈ (0,1] and assuming N := N1 = · · · = Nn for ease of
presentation. The infimum is taken over all estimators Â, while the supremum is taken over all
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matrices A in a prescribed class A, defined in (34). The lower bounds depend on the largest
number of anchor words within each topic (|Imax|), the total number of anchor words (|I |), and
the number of non-anchor words (|J |) with J := [p] \ I . In Section 5.3, we discuss conditions
under which our estimator Â is minimax optimal, up to a logarithmic factor, under both losses.
To the best of our knowledge, these lower and upper bounds on the L1,∞ loss of our estimators
are new, and valid for growing K and p. They imply the more commonly studied bounds on the
L1 loss.

Our estimation procedure and the analysis of the resulting estimator Â are tailored to count
data, and utilize the restrictions (4) on the parameters of model (3). Consequently, both the es-
timation method and the properties of the estimator differ from those developed for general
identifiable latent variable models, for instance, those in [6], and we refer to the latter for further
references and a recent overview of estimation in such models.

To the best of our knowledge, computationally efficient estimators of the word-topic matrix
A in (3), that are also accompanied by a theoretical analysis, have only been developed for the
situation in which K is known in advance. Even in that case, the existing results are limited.

Arora et al. [2,3] are the first to analyze theoretically, from a rate perspective, estimators of A

in the topic model. They establish upper bounds on the global L1 loss of their estimators, and
their analysis allows K and p to grow with n. Unfortunately, these bounds differ by at least a
factor of order p3/2 from the minimax optimal rate given by our Theorem 7, even when K is
fixed and does not grow with n.

The recent work of [18] is tailored to topic models with a small, known, number of topics K ,
which is independent of the number of documents n. Their procedure makes clever use of the
geometric simplex structure in the singular vectors of �. To the best of our knowledge, [18] is the
first work that proves a minimax lower bound for the estimation of A in topic models, with respect
to the L1 loss, over a different parameter space than the one we consider. We discuss in detail
the corresponding rate over this space, and compare it with ours, in Remark 5 in Section 5.1.
The procedure developed by [18] is rate optimal for fixed K , under suitable conditions tailored
to their set-up (see pages 13–14 in [18]).

We defer a detailed rate comparison with existing results to Remark 5 of Section 5.1 and to
Section 5.3.1.

In Section 6, we present a simulation study, in which we compare numerically the quality of
our estimator with that of the best performing estimator to date, developed in [2], which also
comes with theoretical guarantees, albeit not minimax optimal. We found that the competing es-
timator is generally fast and accurate when K is known, but it is very sensitive to the misspecifi-
cation of K , as we illustrate in Appendix G of the Supplementary Material [5]. Further, extensive
comparisons are presented in Section 6, in terms of the estimation of I , A and the computational
running time of the algorithms. We found that our procedure dominates on all these counts.

Finally, the proofs of Propositions 1 and 2 of Section 3 and the results of Sections 4 and 5 are
deferred to the appendices.

Summary of new contributions. We propose a new method that estimates

(a) the number of topics K ;
(b) the anchor words and their partition;
(c) the word-topic matrix A;
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and provide an analysis under a finite sample setting, that allows K , in addition to Ni and p to
grow with the sample size (number of documents) n. In this regime,

(d) we establish a minimax lower bound for estimating the word-topic matrix A;
(e) we show that the number of topics can be estimated correctly, with high probability;
(f) we show that A can be estimated at the minimax-optimal rate.

Furthermore,

(g) the estimation of K is optimization free;
(h) the estimation of the anchor words and that of A is scalable in n,Ni , p and K .

To the best of our knowledge, estimators of A that are scalable not only with p, but also with K ,
and for which (a), (b) and (d)–(f) hold are new in the literature.

1.3. Notation

The following notation will be used throughout the entire paper.
The integer set {1, . . . , n} is denoted by [n]. For a generic set S, we denote |S| as its cardinality.

For a generic vector v ∈ R
d , we let ‖v‖q denote the vector �q norm, for q = 0,1,2, . . . ,∞

and supp(v) denote its support. We denote by diag(v) a d × d diagonal matrix with diagonal
elements equal to v. For a generic matrix Q ∈ R

d×m, we write ‖Q‖∞ = max1≤i≤d,1≤j≤m |Qij |,
‖Q‖1 = ∑

1≤i≤d,1≤j≤m |Qij | and ‖Q‖∞,1 = max1≤i≤d

∑
1≤j≤m |Qij |. For the submatrix of A,

we let Qi· and Q·j be the ith row and j th column of Q. For a set S, we let QS denote its |S|×m

submatrix. We write the d × d diagonal matrix

DQ = diag
(‖Q1·‖1, . . . ,‖Qd·‖1

)
and let (DQ)ii denote the ith diagonal element.

We use an � bn to denote there exists an absolute constant c > 0 such that an ≤ cbn, and write
an � bn if there exists two absolute constants c, c′ > 0 such that cbn ≤ an ≤ c′bn.

We let n stand for the number of documents and Ni for the number of randomly drawn words
at document i ∈ [n]. Furthermore, p is the total number of words (dictionary size) and K is the
number of topics. We define M := maxi Ni ∨n∨p. Finally, I is the (index) set of anchor words,
and its complement J := [p] \ I forms the (index) set of non-anchor words.

2. Preliminaries

In this section, we introduce and discuss the assumptions under which A in model (3) can be
uniquely determined via �, although W is not observed.

2.1. An information bound perspective on model assumptions

If we had access to W in model (3), then the problem of estimating A would become the more
standard problem of estimation in multivariate response regression under the constraints (4), and
dependent errors. In that case, A is uniquely defined if W has full rank, which is our Assump-
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tion 2 below. Since W is not observable, we mentioned earlier that the identifiability of A requires
extra assumptions. We provide insight into their nature, via a classical information bound calcu-
lation. We view W as a nuisance parameter and ask when the estimation of A can be done with
the same precision whether W is known or not. In classical information bound jargon [11], we
study when the parameters A and W are orthogonal. The latter is equivalent with verifying

E

[
−∂2�(X1, . . . ,Xn)

∂Ajk ∂Wk′i

]
= 0 for all j ∈ [p], i ∈ [n] and k, k′ ∈ [K], (6)

where �(X1, . . . ,Xn) is the log-likelihood of n independent multinomial vectors. Proposition 1
below gives necessary and sufficient conditions for parameter orthogonality.

Proposition 1. If X1, . . .Xn are an independent sample from (2), and (3) holds, then A and W

are orthogonal parameters, in the sense (6) above, if and only if the following holds:∣∣supp(Aj ·) ∩ supp(W·i )
∣∣ ≤ 1 for all j ∈ [p], i ∈ [n]. (7)

We observe that condition (7) is implied by either of the two following extreme conditions:

(1) All rows in A are proportional to canonical vectors in R
K , which is equivalent to assuming

that all words are anchor words.
(2) C := n−1WWT is diagonal.

In the first scenario, each topic is described via words exclusively used for that topic, which is
unrealistic. In the second case, the topics are totally unrelated to one another, an assumption that
is not generally met, but is perhaps more plausible than (1). Proposition 1 above shows that one
cannot expect the estimation of A in (3), when W is not observed, to be as easy as that when
W is observed, unless the very stringent conditions of this proposition hold. However, it points
towards quantities that play a crucial role in the estimation of A: the anchor words and the rank
of W . This motivates the study of this model, with both A and W unknown, under the more
realistic assumptions introduced in the next section and used throughout this paper.

2.2. Main assumptions

We make the following three main assumptions:

Assumption 1. For each topic k = 1, . . . ,K , there exists at least one word j such that Ajk > 0
and Aj� = 0 for any � �= k.

Assumption 2. The matrix W has rank K ≤ n.

Assumption 3. The inequality

cos
(
∠(Wi·,Wj ·)

)
<

ζi

ζj

∧ ζj

ζi

for all 1 ≤ i �= j ≤ K,

holds, with ζi := ‖Wi·‖2/‖Wi·‖1.
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Conditions on A and W under which A can be uniquely determined from � are generically
known as separability conditions, and were first introduced by [15], for the identifiability of the
factors in general nonnegative matrix factorization (NMF) problems. Versions of such conditions
have been subsequently adopted in most of the literature on topic models, which are particular
instances of NMF, see, for instance, [2,3,7].

In the context and interpretation of the topic model, the commonly accepted Assumption 1
postulates that for each topic k there exists at least one word solely associated with that topic.
Such words are called anchor words, as the appearance of an anchor word is a clear indicator of
the occurrence of its corresponding topic, and typically more than one anchor word is present.
For future reference, for a given word-topic matrix A, we let I := I (A) be the set of anchor
words, and I be its partition relative to topics:

Ik := {
j ∈ [p] : Ajk > 0,Aj� = 0 for all � �= k

}
, I :=

K⋃
k=1

Ik, I := {I1, . . . , IK }. (8)

Earlier work [1] proposes a tensor-based approach that does not require the anchor word assump-
tion, but assumes that the topics are uncorrelated. [9,19] showed that, in practice, there is strong
evidence against the lack of correlation between topics. We therefore relax the orthogonality con-
ditions on the matrix W in our Assumption 2, similar to [2,3]. We note that in Assumption 2 we
have K ≤ n, which translates as: the total number K of topics covered by n documents is smaller
than the number of documents.

Assumption 2 guarantees that the rows of W , viewed as vectors in R
n, are not parallel, and

Assumption 3 strengthens this, by placing a mild condition on the angle between any two rows
of W . If, for instance, WWT is a diagonal matrix, or if ζi is the same for all i ∈ [K], then As-
sumption 2 implies Assumption 3. However, the two assumptions are not equivalent, and neither
implies the other, in general. We illustrate this in the examples of Section E.1 in the Supplemen-
tary Material [5]. It is worth mentioning that, when the columns of W are i.i.d. samples from the
Dirichlet distribution as commonly assumed in the topic model literature [8–10], Assumption 3
holds with high probability under mild conditions on the hyper-parameter of the Dirichlet distri-
bution. We defer their precise expressions to Lemma 17 in Appendix E.3 of the Supplementary
Material [5].

We discuss these assumptions further in Remark 1 of Section 3 and Remark 3 of Section 4
below.

3. Exact recovery of I , I and A at the population level

In this section, we construct A via �. Under Assumptions 1 and 3, we show first that the set of
anchor words I and its partition I can be determined, from the matrix R given in (11) below.
We begin by re-normalizing the three matrices involved in model (3) such that their rows sum up
to 1:

W̃ := D−1
W W, �̃ := D−1

� �, Ã := D−1
� ADW. (9)
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Then

�̃ = ÃW̃ , (10)

and

R := n�̃�̃T = ÃC̃ÃT , (11)

with C̃ = nW̃W̃T . This normalization is standard in the topic model literature [2,3], and it pre-
serves the anchor word structure: matrices A and Ã have the same support, and Assumption 1
is equivalent with the existence, for each k ∈ [K], of at least one word j such that Ãjk = 1 and
Ãj� = 0 for any � �= k. Therefore, A and Ã have the same I and I . We differ from the existing
literature in the way we make use of this normalization and explain this in Remark 1 below. Let

Ti := max
1≤j≤p

Rij , Si := {
j ∈ [p] : Rij = Ti

}
for any i ∈ [p]. (12)

In words, Ti is the maximum entry of row i, and Si is the set of column indices of those entries in
row i that equal to the row maximum value. The following proposition shows the exact recovery
of I and I from R.

Proposition 2. Assume that model (3) and Assumptions 1 and 3 hold. Then:

(a) i ∈ I ⇐⇒ Ti = Tj , for all j ∈ Si .
(b) The anchor word set I can be determined uniquely from R. Moreover, its partition I is

unique and can be determined from R up to label permutations.

The proof of this proposition is given in Appendix A, and its success relies on the equivalent
formulation of Assumption 3,

min
1≤i<j≤K

(C̃ii ∧ C̃jj − C̃ij ) > 0.

The short proof of Proposition 3 below gives an explicit construction of A from

� := 1

n
��T , (13)

using the unique partition I of I given by Proposition 2 above.

Proposition 3. Under model (3) and Assumptions 1, 2 and 3, A can be uniquely recovered from
� with given I , up to column permutations.

Proof. Given the partition of anchor words I = {I1, . . . , IK }, we construct a set L = {i1, . . . , iK }
by selecting one anchor word ik ∈ Ik for each topic k ∈ [K]. We let AL be the diagonal matrix

AL = diag(Ai11, . . . ,AiKK). (14)
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We show first that B := AA−1
L can be constructed from �. Assuming, for now, that B has been

constructed, then A = BAL. The diagonal elements of AL can be readily determined from this
relationship, since, via model (3) satisfying (4), the columns of A sum up to 1:

1 = ‖A·k‖1 = Aikk‖B·k‖1 (15)

for each k. Therefore, although B is only unique up to the choice of L and of the scaling matrix
AL, the matrix A with unit column sums thus constructed is unique.

It remains to construct B from �. Let J = {1, . . . , p} \ I . We let BJ denote the |J | × K

sub-matrix of B with row indices in J and BI denote the |I | × K sub-matrix of B with row
indices in I . Recall that C := n−1WWT . Model (3) implies the following decomposition of the
submatrix of � with row and column indices in L ∪ J :[

�LL �LJ

�JL �JJ

]
=

[
ALCAL ALCAT

J

AJ CAL AJ CAT
J

]
.

In particular, we have

�LJ = ALCAT
J = ALC

(
ALA−1

L

)
AT

J = �LL

(
A−1

L AT
J

) = �LLBT
J . (16)

Note that Aikk > 0, for each k ∈ [K], from Assumption 1 which, together with Assumption 2,
implies that �LL is invertible. We then have

BJ = �JL�−1
LL. (17)

On the other hand, for any i ∈ Ik , for each k ∈ [K], we have Bik = Aik/Aikk , by the definition
of B . Also, model (3) and Assumption 1 imply that for any i ∈ Ik ,

1

n

n∑
t=1

�it = Aik

(
1

n

n∑
t=1

Wkt

)
. (18)

Therefore, the matrix BI has entries

Bik = ‖�i·‖1

‖�ik ·‖1
for any i ∈ Ik and k ∈ [K]. (19)

This, together with BJ given above completes the construction of B , and uniquely deter-
mines A. �

Our approach for recovering both I and A is constructive and can be easily adapted to esti-
mation. For this reason, we summarize our approach in Algorithm 1 and illustrate the algorithm
with a simple example.
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Algorithm 1 Recover the word-topic matrix A from �

Require: true word-document frequency matrix � ∈ R
p×n

1: procedure TOP(�)
2: compute � = n−1��T and R from (11)
3: recover I via FINDANCHORWORDS(R)

4: construct L = {i1, . . . , iK } by choosing any ik ∈ Ik , for k ∈ [K]
5: compute BI from (17) and BJ from (19)
6: recover A by normalizing B to unit column sums
7: return I and A

8: procedure FINDANCHORWORDS(R)
9: initialize I =∅ and P = [p]

10: while P �=∅ do
11: take any i ∈P , compute Si and Ti from (12)
12: if ∃j ∈ Si s.t. Ti �= Tj then
13: P =P \ {i}
14: else
15: P =P \ Si and Si ∈ I
16: return I

Example 1. Let K = 3,p = 6, n = 3 and consider the following A and W :

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.3 0 0
0.2 0 0
0 0.5 0
0 0 0.4

0.2 0.5 0.3
0.3 0 0.3

⎤⎥⎥⎥⎥⎥⎥⎦ , W =
⎡⎣0.6 0.2 0.2

0.3 0.7 0.0
0.1 0.1 0.8

⎤⎦ , � = AW =

⎡⎢⎢⎢⎢⎢⎢⎣
0.18 0.06 0.06
0.12 0.04 0.04
0.15 0.35 0.00
0.04 0.04 0.32
0.30 0.42 0.28
0.21 0.09 0.30

⎤⎥⎥⎥⎥⎥⎥⎦ .

Applying FINDANCHORWORDS in Algorithm 1 to R gives I = {{1,2}, {3}, {4}} from

R =

⎡⎢⎢⎢⎢⎢⎢⎣
1.32 1.32 0.96 0.72 0.96 1.02
1.32 1.32 0.96 0.72 0.96 1.02
0.96 0.96 1.74 0.30 1.15 0.63
0.72 0.72 0.30 1.98 0.89 1.35
0.96 0.96 1.15 0.89 1.03 0.92
1.02 1.02 0.63 1.35 0.92 1.19

⎤⎥⎥⎥⎥⎥⎥⎦ =⇒

T1 = 1.32, S1 = {1,2}, 1 −�
T2 = 1.32, S2 = {1,2}, 2 −�
T3 = 1.74, S3 = {3}, 3 −�
T4 = 1.98, S4 = {4}, 4 −�
T5 = 1.15, S5 = {3}, 5 − x
T6 = 1.35, S6 = {4}, 6 − x

Based on the recovered I , the matrix A can be recovered from Proposition 3, which is executed
via steps 4–6 in Algorithm 1. Specifically, by taking L = {1,3,4} as the representative set of
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anchor words, it follows from (17) and (19) that

BI =

⎡⎢⎢⎣
1 0 0

2/3 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ ,

BJ =
[

0.03 0.06 0.04
0.02 0.02 0.04

]⎡⎣0.01 0.02 0.01
0.02 0.05 0.01
0.01 0.01 0.04

⎤⎦−1

=
[

2/3 1 3/4
1 0 3/4

]
.

Finally, A is recovered by normalizing B = [BT
I ,BT

J ]T to have unit column sums,

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

2/3 0 0
0 1 0
0 0 1

2/3 1 3/4
1 0 3/4

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣0.3 0 0

0 0.5 0
0 0 0.4

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0.3 0 0
0.2 0 0
0 0.5 0
0 0 0.4

0.2 0.5 0.3
0.3 0 0.3

⎤⎥⎥⎥⎥⎥⎥⎦ .

Remark 1 (Contrast with existing results). It is easy to see that the rows in R (or, alterna-
tively, �̃) corresponding to non-anchor words j ∈ J are convex combinations of the rows in R

(or �̃) corresponding to anchor words i ∈ I . Therefore, finding K representative anchor words,
amounts to finding the K vertices of a simplex. The latter can be accomplished by finding the
unique solution of an appropriate linear program, that uses K as input, as shown by [7]. This
result only utilizes Assumption 1 and a relaxation of Assumption 2, in which it is assumed that
no rows of W̃ are convex combinations of the rest. To the best of our knowledge, Theorem 3.1 in
[7] is the only result to guarantee that, after representative anchor words are found, a partition of
I in K groups can also be found, for the specified K .

When K is not known, this strategy can no longer be employed, since finding the representative
anchor words requires knowledge of K . However, we showed that this problem can still be solved
under our mild additional Assumption 3. This assumption allows us to provide the if and only if
characterization of I proved in part (i) of Proposition 2. Moreover, part (ii) of this proposition
shows that K is in one-to-one correspondence with the number of groups in I , and we exploit
this observation for the estimation of K .

4. Estimation of the anchor word set and of the number of
topics

Algorithm 1 above recovers the index set I , its partition I and the number of topics K from the
matrix

R = n�̃�̃T = (
nD−1

�

)
�
(
nD−1

�

)
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Algorithm 2 Estimate the partition of the anchor words I by Î
Require: matrix R̂ ∈ R

p×p , C1 and Q ∈R
p×p such that Q[j, �] := C1δj�

1: procedure FINDANCHORWORDS(R̂, Q)
2: initialize Î =∅

3: for i ∈ [p] do
4: âi = arg max1≤j≤p R̂ij

5: set Î (i) = {� ∈ [p] : R̂iâi
− R̂il ≤ Q[i, âi] + Q[i, �]} and ANCHOR(i) = TRUE

6: for j ∈ Î (i) do
7: âj = arg max1≤k≤p R̂jk

8: if |R̂ij − R̂j âj
| > Q[i, j ] + Q[j, âj ] then

9: ANCHOR(i) = FALSE

10: break
11: if ANCHOR(i) then
12: Î = MERGE(Î (i), Î)
13: return Î = {Î1, Î2, . . . , ÎK̂}

14: procedure MERGE(Î (i), Î)
15: for G ∈ Î do
16: if G ∩ Î (i) �=∅ then
17: replace G in Î by G ∩ Î (i)

18: return Î
19: Î (i) ∈ Î
20: return Î

with � = n−1��T . Algorithm 2 is a sample version of Algorithm 1. It has O(p2) computational
complexity and is optimization free.

The matrix � is replaced by the observed frequency data matrix X ∈ R
p×n with indepen-

dent columns X1, . . .Xn. Since they that are assumed to follow the multinomial model (2), an
unbiased estimator of � is given by

�̂ := 1

n

n∑
i=1

[
Ni

Ni − 1
XiX

T
i − 1

Ni − 1
diag(Xi)

]
(20)

with Ni representing the total number of words in document i. We then estimate R by

R̂ := (
nD−1

X

)
�̂
(
nD−1

X

)
. (21)

The quality of our estimator depends on how well we can control the noise level R̂ − R. In the
computer science related literature, albeit for different algorithms, [3,7], only global ‖R̂ − R‖∞,1
control is considered, which ultimately impacts negatively the rate of convergence of A. In gen-
eral latent models with pure variables, the latter being the analogues of anchor words, [6] de-
veloped a similar algorithm to ours, under a less stringent ‖R̂ − R‖∞ control, which is still not
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precise enough for sharp estimation in topic models. To see why, we note that Algorithm 2 in-
volves comparisons between two different entries in a row of R̂. In these comparisons, we must
allow for small entry-wise error margins. These margin levels are precise bounds C1δj� such that
|R̂j� −Rj�| ≤ C1δj� for all j, � ∈ [p], with high probability, for some universal constant C1 > 1.
The explicit deterministic bounds are stated in Proposition 8 of Appendix C.2, while practical
data-driven choices are based on Corollary 9 of Appendix C.2 and given in Section 6.

Since the estimation of I is based on R̂ which is a perturbation of R, one cannot distinguish
an anchor word from a non-anchor word that is very close to it, without further signal strength
conditions on Ã. Nevertheless, Theorem 4 shows that even without such conditions we can still
estimate K consistently. Moreover, we guarantee the recovery of I and I with minimal mistakes.
Specifically, we denote the set of quasi-anchor words by

J1 := {
j ∈ J : there exists k ∈ [K] such that Ãjk ≥ 1 − 4δ/ν

}
, (22)

where

ν := min
1≤i<j≤K

(C̃ii ∧ C̃jj − C̃ij ) (23)

and

δ := max
1≤j,�≤p

δj�. (24)

In the proof of Proposition 2, we argued that the set of anchor words, defined in Assumption 1,
coincide with those of the scaled matrix Ã given in (9). The words corresponding to indices in
J1 are almost anchor words, since in a row of Ã corresponding to such index the largest entry is
close to 1, while the other entries are close to 0, if δ/ν is small.

For the remaining of the paper we make the blanket assumption that all documents have equal
length, that is, N1 = · · · = Nn = N . We make this assumption for ease of presentation only, as
all our results continue to hold when the documents have unequal lengths.

Theorem 4. Under model (3) and Assumption 1, assume

ν > 2 max
{
2δ,

√
2‖C̃‖∞δ

}
(25)

with ν defined in (23), and

min
1≤j≤p

1

n

n∑
i=1

�ji ≥ 2 logM

3N
, min

1≤j≤p
max

1≤i≤n
�ji ≥ (3 logM)2

N
. (26)

Then, with probability greater than 1 − 8M−1, we have

K̂ = K, I ⊆ Î ⊆ I ∪ J1, Iπ(k) ⊆ Îk ⊆ Iπ(k) ∪ J
π(k)
1 for all 1 ≤ k ≤ K,

where J k
1 := {j ∈ J1 : Ãjk ≥ 1 − 4δ/ν} and π : [K] → [K] is some label permutation.
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If we further impose the signal strength assumption J1 =∅, the following corollary guarantees
exact recovery of all anchor words.

Corollary 5. Under model (3) and Assumption 1, assume ν > 4δ, (26) and J1 =∅. With proba-
bility greater than 1−8M−1, we have K̂ = K , Î = I and Îk = Iπ(k), for all 1 ≤ k ≤ K and some
permutation π .

Remark 2.

(1) Condition (26) is assumed for the analysis only and the implementation of our procedure
only requires N ≥ 2. Furthermore, we emphasize that (26) is assumed to simplify our
presentation. In particular, we used it to obtain the precise expressions of δ̂j� and η̂j�

given in (50)–(51) of Section 6. In fact, (26) can be relaxed to

min
1≤j≤p

1

n

n∑
i=1

�ji ≥ c logM

nN
(27)

for some sufficiently large constant c > 0, under which more complicated expressions of
δ′
j� and η′

j� can be derived, see Corollary 10 of Appendix C.2. Theorem 4 continues to
hold, provided that (25) holds for δ′ = maxj,� δ′

j� in lieu of δ, that is,

ν > 2 max
{
2δ′,

√
2‖C̃‖∞δ′}. (28)

Note that condition (27) implies the restriction

nN ≥ c · p logM, (29)

by using

min
1≤j≤p

1

n

n∑
i=1

�ji ≤ 1

p

p∑
j=1

1

n

n∑
i=1

�ji = 1

p
. (30)

Intuitively, both (26) and (27) preclude the average frequency of each word, over all doc-
uments, from being very small. Otherwise, if a word rarely occurs, one cannot reasonably
expect to detect/sample it: ‖Xj ·‖1 will be close to 0, and the estimation of R in (21) be-
comes problematic. For this reason, removing rare words or grouping several rare words
together to form a new word are commonly used strategies in data pre-processing [2–4,
10], which we also employ in the data analyses presented in Section 6.

(2) To interpret the requirement J1 =∅, by recalling that Ã = D−1
� ADW ,

Ãjk = n−1‖Wk·‖1Ajk

n−1‖�j ·‖1

can be viewed as

P(Topic k | Word j) = P(Topic k) × P(Word j | Topic k)

P(Word j)
.
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If J1 �= ∅, then P(Topic k | Word j) ≈ 1, for a quasi-anchor word j . Then, quasi-anchor
words also determine a topic, and it is hopeless to try to distinguish them exactly from
the anchor words of the same topic. However, Theorem 4 shows that in this case our
algorithm places quasi-anchor words and anchor words for the same topic in the same
estimated group, as soon as (25) of Theorem 4 holds. When we have only anchor words,
and no quasi-anchor words, J1 = ∅, there is no possibility for confusion. Then, we can
have less separation between the rows of W , ν > 4δ, and exact anchor word recovery, as
shown in Corollary 5.

Remark 3 (Assumption 3 and condition ν > 4δ).

(1) The exact recovery of anchor words in the noiseless case (Proposition 2) relies on As-
sumption 3, which requires the angle between two different rows of W not be too small in
the following sense:

cos
(
∠(Wi·,Wj ·)

)
<

ζi

ζj

∧ ζj

ζi

for all 1 ≤ i �= j ≤ K (31)

with ζi := ‖Wi·‖2/‖Wi·‖1. Therefore, the more balanced the rows of W are, the less
restrictive this assumption becomes. The most ideal case is mini ζi/maxi ζi → 1 under
which (31) holds whenever two rows of W are not parallel, whereas the least favorable
case is mini ζi/maxi ζi → 0, for which we need the rows of W close to orthogonal (the
topics are uncorrelated).

Although in this work the matrix W has non-random entries, it is interesting to study
when (31) holds, with high probability, under appropriate distributional assumptions
on W . A popular and widely used distribution of the columns of W is the Dirichlet distri-
bution [10]. Lemma 17 in the Supplementary Material [5] shows that, when the columns
of W are i.i.d. samples from the Dirichlet distribution, (31) holds with high probability,
under mild conditions on the hyper-parameter of the Dirichlet distribution.

(2) We prove in Lemma 15 that Assumption 3 is equivalent with ν > 0, where we recall that
ν has been defined in (23). For finding the anchor words from the noisy data, we need that
ν > 4δ, a strengthened version of Assumption 3. Furthermore, Lemmas 15 and 16 in the
Supplementary Material [5] guarantee that there exists a sequence εn such that ν > 4δ is
implied by

cos
(
∠(Wi·,Wj ·)

)
<

(
ζi

ζj

∧ ζj

ζi

)
(1 − εn) for all 1 ≤ i �= j ≤ K. (32)

Thus, we need εn more separation between any two different rows of W than what we
require in (31). Under the following balance condition of words across documents

max
1≤i≤n

�ji

/(
1

n

n∑
i=1

�ji

)
= o(

√
n) for 1 ≤ j ≤ p, (33)

Lemma 16 guarantees that εn → 0 as n → ∞. The same interplay between the angle of
rows of W and their balance condition as described in part (1) above holds. We view (33)
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as a reasonable, mild, balance condition, as it effectively asks the maximum frequency of
each particular word, across documents not be larger than the average frequency of that
word over the n documents, multiplied by

√
n.

If the columns of W follow the Dirichlet distribution, under mild conditions on the
hyper-parameter, we directly prove, in Lemma 17 in the Supplementary Material [5], that
ν > 4δ holds with probability greater than 1 − O(M−1) with M := n ∨ p ∨ N .

5. Estimation of the word–topic membership matrix

We derive minimax lower bounds for the estimation of A in topic models, with respect to the
L1 and L1,∞ losses in Section 5.1. We follow with a description of our estimator Â of A, in
Section 5.2. In Section 5.3, we establish upper bounds on L1(A, Â) and L1,∞(A, Â), for the
estimator Â constructed in Section 5.2, and provide conditions under which the bounds are min-
imax optimal.

5.1. Minimax lower bounds

In this section, we establish the lower bound of model (3) based on L1(Â,A) and L1,∞(Â,A)

for any estimator Â of A over the parameter space

A
(
K, |I |, |J |) := {

A ∈R
p×K
+ : AT 1p = 1K,A has |I | anchor words

}
, (34)

where 1d denotes the d-dimensional vector with all entries equal to 1. Let

W = W 0 + 1

nN
1K1T

K − K

nN
IK, W 0 = {e1, . . . , e1︸ ︷︷ ︸

n1

, e2, . . . , e2︸ ︷︷ ︸
n2

, . . . , eK, . . . , eK︸ ︷︷ ︸
nK

} (35)

with
∑K

k=1 nk = n and |ni − nj | ≤ 1 for 1 ≤ i, j ≤ K . We use ek and I d to denote, respectively,
the canonical basis vectors in R

K and the identity matrix in R
d×d . It is easy to verify that W

defined above satisfies Assumptions 2 and 3. Denote by PA the joint distribution of (X1, . . . ,Xn),
under model (3) for this choice of W . Let |Imax| = maxk |Ik|.

Theorem 6. Under model (3), assume (2) and let |I | + K|J | ≤ c(nN), for some universal con-
stant c > 1. Then, there exist c0 > 0 and c1 ∈ (0,1] such that

inf
Â

sup
A

PA

{
L1(Â,A) ≥ c0K

√ |I | + K|J |
nN

}
≥ c1. (36)

Moreover, if K(|Imax| + |J |) ≤ c(nN) holds, we further have

inf
Â

sup
A

PA

{
L1,∞(Â,A) ≥ c0

√
K(|Imax| + |J |)

nN

}
≥ c1.

The infÂ is taken over all estimators Â of A; the supremum is taken over all A ∈A(K, |I |, |J |).
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Remark 4. The product nN is the total number of sampled words, while |I | + K|J | is the
number of unknown parameters in A ∈ A(K, |I |, |J |). Since we do not make any further struc-
tural assumptions on the parameter space, we studied minimax-optimality of estimation in topic
models with anchor words in the regime

nN > c
(|I | + K|J |),

in which one can expect to be able to develop procedures for the consistent estimation of the
matrix A.

In order to facilitate the interpretation of the lower bound of the L1-loss, we can rewrite the
second statement in (36) as

inf
Â

sup
A∈A(K,|I |,|J |)

PA

{
L1(Â,A)

‖A‖1
≥ c0

√ |I | + K|J |
nN

}
≥ c1,

using the fact ‖A‖1 = K . Thus, the right-hand side becomes the square root of the ratio between
number of parameters to estimate and overall sample size.

Remark 5. When K is known and independent of n or p, [18] derived the minimax rate (37) of
L1(A, Â) in their Theorem 2.2:

inf
Â

sup
A∈A(p,K)

P

{
L1(A, Â) ≥ c1

√
p

nN

}
≥ c2 (37)

for some constants c1, c2 > 0. The parameter space considered in [18] for the derivation of the
lower bound in (37) is

A(p,K) = {
A ∈ R

p×K
+ : AT 1p = 1K,‖Aj ·‖1 ≥ c3/p,∀j ∈ [p]}

for some constant c3 > 0, and the lower bound is independent of K . In contrast, the lower
bound in Theorem 6 holds over A(K, |I |, |J |) ⊆ A(p,K), and the dependency on K in (36)
is explicit. The upper bounds derived for L1(A, Â) in both this work and [18] correspond to
A ∈ A(K, |I |, |J |), making the latter the appropriate space for discussing attainability of lower
bounds.

Nevertheless, we notice that, when K is treated as a fixed constant, and recalling that |I | +
|J | = p, the lower bounds over both spaces have the same order of magnitude,

√
p/nN . From

this perspective, when K is fixed, the result in [18] can be viewed as a minimax result over the
smaller parameter space.

A non-trivial modification of the proof in [18] allowed us to recover the dependency on K

that was absent in their original lower bound (37): the corresponding rate is
√

pK/nN , and it
is relative to estimation over the larger parameter space A(p,K). For comparison purposes, we
note that this space corresponds to A(K, |I |, |J |), with I =∅ and |J | = p. In this case, our lower
bound (36) becomes K

√
pK/nN , larger by a factor of K than the bound that can be derived by

modifying arguments in [18]. Therefore, Theorem 6 improves upon existing lower bounds for
estimation in topic models without anchor words and with a growing number of topics, and
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offers the first minimax lower bound for estimation in topic models with anchor words and a
growing K .

5.2. An estimation procedure for A

Our estimation procedure follows the constructive proof of Proposition 3. Given the set of esti-
mated anchor words Î = {Î1, . . . , ÎK̂}, we begin by selecting a set of representative indices of
words per topic, by choosing îk ∈ Îk at random, to form L̂ := {̂i1, . . . , îK̂ }. As we explained in
the proof of Proposition 3, we first estimate a normalized version of A, the matrix B = AA−1

L .
We estimate separately BI and BJ . In light of (19), we estimate the |I | × K matrix BI by

B̂ik =
{‖Xi·‖1/‖X̂ik ·‖1, if i ∈ Îk and 1 ≤ k ≤ K̂,

0, otherwise.
(38)

Recall from (17) that BJ = �JL�−1
LL and that Assumption 2 ensures that �LL := ALCAL is

invertible, with � defined in (13). Since we have already obtained Î , we can estimate J by
Ĵ = {1, . . . , p} \ Î . We then use the estimator �̂ given in (20), to estimate �JL by �̂Ĵ L̂. It
remains to estimate the K × K matrix � := �−1

LL. For this, we solve the linear program

(t̂ , �̂) = arg min
t∈R+,�∈RK̂×K̂

t (39)

subject to

‖��̂L̂L̂ − I‖∞,1 ≤ λt, ‖�‖∞,1 ≤ t (40)

with λ = C0 maxi∈L̂

∑
j∈L̂ ηij , where ηij is defined such that |�̂ij − �ij | ≤ C0ηij for all i, j ∈

[p], with high probability, and C0 is a universal constant. The precise expression of ηij is given
in Proposition 8 of Appendix C.2, see also Remark 8 below. To accelerate the computation, we
can decouple the above optimization problem, and solve instead K̂ linear programs separately.
We estimate � by �̂ = (ω̂1, . . . , ω̂K̂ ) where, for any k = 1, . . . , K̂ ,

ω̂k := arg min
ω∈RK̂

‖ω‖1 (41)

subject to

‖�̂L̂L̂ω − ek‖1 ≤ λ‖ω‖1 (42)

with e1, . . . , eK̂ denoting the canonical basis in R
K̂ . After constructing �̂ as above, we estimate

BJ by

B̂Ĵ = (�̂Ĵ L̂�̂)+, (43)

where the operation (·)+ = max(0, ·) is applied entry-wise. Recalling that AL can be determined
from B via (15), the combination of (43) with (38) yields B̂ and hence the desired estimator of A:

Â = B̂ · diag
(‖B̂·1‖−1

1 , . . . ,‖B̂·K̂‖−1
1

)
. (44)
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Algorithm 3 Estimate the word-topic matrix A

Require: frequency data matrix X ∈ R
p×n with document lengths N1, . . . ,Nn; two positive

constants C0,C1 and positive integer T

1: procedure TOP(X,N1, . . . ,Nn;C0,C1)
2: compute �̂ from (20) and R̂ from (21)
3: compute η̂ij and Q[i, j ] := C1δ̂ij from (50) and (51), for i, j ∈ [p]
4: estimate I via FINDANCHORWORDS(R̂,Q)

5: for i = 1, . . . , T do
6: randomly select L̂ and solve �̂ from (41) by using λ = C0 maxi∈L̂

∑
j∈L̂ η̂ij in (42)

7: estimate B from (38) and (43)
8: compute Âi from (44)

9: return Î = {Î1, Î2, . . . , ÎK̂} and Â = T −1 ∑T
i=1 Âi

Remark 6. The decoupled linear programs given by (41) and (42) are computationally attractive
and can be done in parallel. This improvement over (39) becomes significant when K is large.

Remark 7. Since we can select all anchor words with high probability, as shown in Theorem 4,
in practice we can repeat randomly selecting different sets of representatives L̂ from Î several
times, and we can estimate A via (38)–(44) for each L̂. The entry-wise average of these estimates
inherits, via Jensen’s inequality, the same theoretical guarantees shown in Section 5.3, while
benefiting from an improved numerical performance.

Remark 8. To preserve the flow of the presentation we refer to Proposition 8 of Appendix C.2
for the precise expressions of ηij used in constructing the tuning parameter λ. The estimates of
ηij , recommended for practical implementation, are shown in (51) based on Corollary 9 in Ap-
pendix C.2. We also note that in precision matrix estimation, λ is proportional, in our notation, to
the norm ‖�̂LL −�LL‖∞, see, for instance, [6] and the references therein for a similar construc-
tion, but devoted to general sub-Gaussian distributions. In this work, the data is multinomial, and
we exploited this fact to propose a more refined tuning parameter, based on entry-wise control.

We summarize our procedure, called TOP, in Algorithm 3.

5.3. Upper bounds of the estimation rate of ̂A

In this section we derive upper bounds for estimators Â constructed in Section 5.2, under
the matrix ‖ · ‖1 and ‖ · ‖1,∞ norms. Â is obtained by choosing the tuning parameter λ =
C0 maxi∈L̂

∑
j∈L̂ ηij in the optimization (41). To simplify notation and properly adjust the scales,

we define

αj := p max
1≤k≤K

Ajk, γk := K

n

n∑
i=1

Wki for each j ∈ [p], k ∈ [K], (45)
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such that
∑K

k=1 γk = K and p ≤ ∑p

j=1 αj ≤ pK from (4). We further set

αI = max
i∈I

αi, αI = min
i∈I

αi, ρj = αj/αI ,

γ = max
1≤k≤K

γk, γ = min
1≤k≤K

γk.
(46)

For future reference, we note that

γ ≥ 1 ≥ γ .

Theorem 7. Under model (3), Assumptions 1 and 2, assume ν > 4δ, J1 = ∅ and (26). Then,
with probability 1 − 8M−1, we have

min
P∈HK

∥∥Â·k − (AP )·k
∥∥

1 ≤ Rem(I, k) + Rem(J, k) for all 1 ≤ k ≤ K ,

where HK is the space of K × K permutation matrices,

Rem(I, k)�
√

K logM

npN
·
∑
i∈Ik

αi√
αIγ

,

Rem(J, k)�
√

K logM

nN
· γ 1/2‖C−1‖∞,1

K
· αI

αI

(√
|J | +

∑
j∈J

ρj + αI

αI

√
K

∑
j∈J

ρj

)
.

Moreover, summing over 1 ≤ k ≤ K , yields

L1(A, Â) �
K∑

k=1

Rem(I, k) +
K∑

k=1

Rem(J, k).

In Theorem 7, we explicitly state bounds on Rem(I, k) and Rem(J, k), respectively, which
allows us to separate out the error made in the estimation of the rows of A that correspond to
anchor words from that corresponding to non-anchor words. This facilitates the statement and
explanation of the quantities that play a key role in this rate, and of the conditions under which
our estimator achieves near minimax optimal rate, up to a logarithmic factor of M . We summarize
it in the following corollary and the remarks following it. Recall that C = n−1WWT .

Corollary 8 (Attaining the optimal rate). In addition to the conditions in Theorem 7, suppose

(i) αI � αI ,
∑

j∈J ρj � |J |,
(ii) γ � γ ,

∑
k′ �=k

√
Ckk′ = o(

√
Ckk) for any 1 ≤ k ≤ K

hold. Then with probability 1 − 8M−1, we have

L1,∞(A, Â)�
√

K(|Imax| + |J |) logM

nN
, L1(A, Â) � K

√
(|I | + K|J |) logM

nN
. (47)
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Remark 9. The optimal estimation rate depends on the bounds for �̂j� − �j� and R̂j� − Rj�

derived via a careful analysis in Proposition 8 in Appendix C.2. We rule out quasi-anchor words
(J1 = ∅, see Remark 2 as well) since otherwise, the presentation, analysis and proofs will be-
come much more cumbersome.

Remark 10 (Relation between document length N and dictionary size p). Our procedure
can be implemented for any N ≥ 2. However, Theorem 7 and Corollary 8 indirectly impose
some restrictions on N and p. Indeed, the restriction

N ≥ (2p logM/3) ∨ (
9p log2 M/K

)
(48)

is subsumed by (26), via (30) and

min
1≤j≤p

max
1≤i≤n

�ji = min
1≤j≤p

K∑
k=1

Ajk max
1≤i≤n

Wki ≤ 1

p

p∑
j=1

K∑
k=1

Ajk = K

p
.

Inequality (48) describes the regime for which we establish the upper bound results in this sec-
tion, and are able to show minimax optimality, as the lower bound restriction cnN ≥ |I | + |J |K
for some c > 1 in Theorem 6 implies N ≥ p/(cn).

We can extend the range (48) of N at the cost of a stronger condition than (25) on ν. Assume
(28) holds with δ′ = maxj,� δ′

j� and with δ′
j,� defined in Corollary 10 of Appendix C.2. In that

case, as in Remark 2, condition (26) can be relaxed to (27). Provided

min
j∈I

1

n

n∑
i=1

�ji ≥ c logM

N
, min

j∈I
max

1≤i≤n
�ji ≥ c′(logM)2

N
(49)

for some constant c, c′ > 0, we prove in Appendix D.2.3 of the Supplementary Material [5] that
Theorem 7 and Corollary 8 still hold. As discussed in Remark 2, condition (27) implies (29),

N ≥ c · (p logM)/n,

which is a much weaker restriction on N and p than (48). Condition (49) in turn is weaker
than (26) as it only restricts the smallest (averaged over documents) frequency of anchor
words. As a result, (49) does not necessarily imply the constraint (48). For instance, if
minj∈I n−1 ∑n

i=1 �ji � 1/|I |, then (49) is implied by N � |I |(logM)2. The problem of de-
veloping a procedure that can be shown to be minimax-rate optimal in the absence of condition
(49) is left open for future research.

Remark 11 (Interpretation of the conditions of Corollary 8).

(1) Conditions regarding anchor words. Condition αI � αI implies that all anchor words,
across topics, have the same order of frequency. The second condition

∑
j∈J ρj � |J | is

equivalent with |J |−1 ∑
j∈J ‖Aj ·‖∞ � maxi∈I ‖Ai·‖∞. Thus it holds when the averaged

frequency of non-anchor words is no greater, in order, than the largest frequency among
all anchor words.
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(2) Conditions regarding the topic matrix W . Condition (ii) implies that the topics are bal-
anced, through γ � γ , and prevents too strong a linear dependency between the rows

in W , via
∑

k′ �=k

√
Ckk′ = o(

√
Ckk). As a result, we can show ‖C−1‖∞,1 = O(K) (see

Lemma 14 in the Supplementary Material [5]) and the rate of Rem(J, k) in Theorem 7 can
be improved by a factor of 1/

√
K . The most favorable situation under which condition

(ii) holds corresponds to the extreme case when each document contains a prevalent topic
k, in that the corresponding Wki ≈ 1, and the topics are approximately balanced across
documents, so that approximately n/K documents cover the same prevalent topic. The
minimax lower bound is also derived based on this ideal structure of C. At the other ex-
treme, all topics are equally likely to be covered in each document, so that Wki ≈ 1/K ,
for all i and k. In the latter case, γ � γ ≈ 1, but ‖C−1‖∞,1 may be larger, in order, than

K and the rates in Theorem 7 are slower than the optimal rates by at least a factor of
√

K .
When K is fixed or comparatively small, this loss is ignorable. Nevertheless, our condition
(ii) rules out this extreme case, as in general we do not expect any of the given documents
to cover, in the same proportion, all of the K topics we consider.

Remark 12 (Extensions). Both our procedure and the outline of our analysis can be naturally
extended to the more general Nonnegative Matrix Factorization (NMF) setting, and to different
data generating distributions, as long as Assumptions 1, 2 and 3 hold, by adapting the control of
the stochastic error terms ε.

5.3.1. Comparison with the rates of other existing estimators

As mentioned in the Introduction, the rate analysis of estimators in topic models received very
little attention, with the two exceptions discussed below, both assuming that K is known in
advance.

An upper bound on L1(Â,A) has been established in [2,3], for the estimators Â considered in
these works, and different than ours. Since the estimator of [2] inherits the rate of [3], we only
discuss the latter rate, given below:

L1(A, Â)� a2K3

�δ3
p

·
√

logp

nN
.

Here a can be viewed as γ /γ , � can be treated as the �1-condition number of C = n−1WWT

and δp is the smallest non-zero entry among all the anchor words, and corresponds to αI /p,
in our notation. To understand the order of magnitude of this bound, we evaluate it in the most
favorable scenario, that of W = W 0 in (35). Then � ≤ √

Kσmin(C) � 1/
√

K , where σmin(C) is
the smallest eigenvalue of C, and γ � γ . Since

∑
j∈J ρj � |J | implies αI � p−1 ∑p

j=1 αj and

p ≤ ∑p

j=1 αj ≤ pK , suppose also αI ≥ K . Then, the above rate becomes

L1(A, Â) � p3 ·
√

K logp

nN
,

which is slower than what we obtained in (47) by at least a factor of (p5 logp)1/2/K .
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The upper bound on L1(Â,A) in [18] is derived for K fixed, under a number of non-trivial
assumptions on �, A and W given in their work. Their rate analysis does not assume all anchor
words have the same order of frequency but requires that the number of anchor words in each
topic grows as p2 log2(n)/(nN) at the estimation level. With an abundance of anchor words,
the estimation problem becomes easier, as there will be fewer parameters to estimate. If this
assumption does not hold, the error upper bound established in Theorem 2.1 of [18], for fixed
K , may become sub-optimal by factors in p. In contrast, although in our work we allow for the
existence of more anchor words per topic, we only require a minimum of one anchor word per
topic.

To further understand how the number of anchor words per topic affects the estimation rate, we
consider the extreme example, used for illustration purposes only, of I = {1, . . . , p} := [p], when
all words are anchor words. Our Theorem 6 immediately shows that in this case the minimax
lower bound for L1(Â,A) becomes

inf
Â

sup
A∈A(K,p,0)

PA

{
L1(Â,A) ≥ c0K

√
p

nN

}
≥ c1

for two universal constant c0, c1 > 0, where the infimum is taken over all estimators Â. Theo-
rem 7 shows that our estimator does indeed attain this rate when when γ � 1 and mini∈I ‖Ai·‖1 �
K/p. This rate becomes faster (by a factor

√
K), as expected, since there is only one non-zero

entry of each row of A to estimate. These considerations show that when we return to the realistic
case in which an unknown subset of the words are anchor words, the bounds L1(A, Â), for our
estimator Â, only increase at most by an optimal factor of

√
K , and not by factors depending

on p.

6. Experimental results

Notation: Recall that n denotes the number of documents, N denotes the number of words drawn
from each document, p denotes the dictionary size, K denotes the number of topics, and |Ik|
denotes the cardinality of anchor words for topic k. We write ξ := mini∈I K−1 ∑K

k=1 Aik for
the minimal average frequencies of anchor words i. The quantity ξ plays the same role in our
work as δp defined in the separability assumption of [2]. Larger values are more favorable for
estimation.

Data generating mechanism: For each document i ∈ [n], we randomly generate the topic vec-
tor Wi ∈ R

K according to the following principle. We first randomly choose the cardinality si of
Wi from the integer set {1, . . . , �K/3�}. Then we randomly choose its support of cardinality si
from [K]. Each entry of the chosen support is then generated from Uniform(0,1). Finally, we
normalize Wi such that it sums to 1. In this way, each document contains a (small) subset of
topics instead of all possible topics.

Regarding the word-topic matrix A, we first generate its anchor words by putting Aik :=
Kξ for any i ∈ Ik and k ∈ [K]. Then, each entry of non-anchor words is sampled from a
Uniform(0,1) distribution. Finally, we normalize each sub-column AJk ⊂ A·k to have sum
1 −∑

i∈I Aik .
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Given the matrix A and Wi , we generate the p-dimensional column NXi by independently
drawing N samples from a Multinomialp(N,AWi) distribution.

We consider the setting N = 1500, n = 1500, p = 1000, K = 30, |Ik| = p/100 and ξ = 1/p

as our benchmark setting.
Specification of the tuning parameters in our algorithm: In practice, based on Corollary 9 in

Appendix C.2, we recommend the choices

δ̂j� = n2

‖Xj ·‖1‖X�·‖1

{
η̂j� + 2�̂j�

√
logM

n

[
n

‖Xj ·‖1

(
1

n

n∑
i=1

Xji

Ni

) 1
2

+ n

‖X�·‖1

(
1

n

n∑
i=1

X�i

Ni

) 1
2
]}
(50)

and

η̂j� = 3
√

6
(‖Xj ·‖

1
2∞ + ‖X�·‖

1
2∞
)√ logM

n

(
1

n

n∑
i=1

XjiX�i

Ni

) 1
2

+ 2 logM

n

(‖Xj ·‖∞ + ‖X�·‖∞
)1

n

n∑
i=1

1

Ni

+ 31

√
(logM)4

n

(
1

n

n∑
i=1

Xji + X�i

N3
i

) 1
2

(51)

and set C0 = 0.01 and C1 = 1.1 in Algorithm 3. We found that these choices for C0 and C1 not
only give good overall performance, but are robust as well. To verify this claim, we generated 50
datasets under a benchmark setting of N = 1500, n = 1500, p = 1000, K = 30, |Ik| = p/100
and ξ = 1/p. We first applied our Algorithm 3 with T = 1 to each dataset by setting C1 =
1.1 and varying C0 within the grid {0.001,0.003,0.005, . . . ,0.097,0.099}. The estimation error
L1(Â,A)/K , averaged over the 50 datasets, is shown in Figure 1 and clearly demonstrates that
our algorithm is robust to the choice of C0 in terms of overall estimation error. In addition, we
applied Algorithm 3 by keeping C0 = 0.01 and varying C1 from {0.1,0.2, . . . ,11.9,12}. Since
C1 mainly controls the selection of anchor words in Algorithm 2, we averaged the estimated
topics number K̂ , sensitivity |Î ∩I |/|I | and specificity |Î c ∩I c|/|I c| of the selected anchor words
over the 50 datasets. Figure 2 shows that Algorithm 2 recovers all anchor words by choosing
any C1 from the whole range of [1,10] and consistently estimates the number of topics for all
0.2 ≤ C1 ≤ 10, which strongly supports the robustness of Algorithm 2 relative to the choice of
the tuning parameter C1.

Throughout, we consider two versions of our algorithm: TOP1 and TOP10 described in Algo-
rithm 3 with T = 1 and T = 10, respectively. We compare TOP with best performing algorithm
available, that of [2]. We denote this algorithm by RECOVER-L2 and RECOVER-KL depending
on which loss function is used for estimating non-anchor rows in their Algorithm 3. In Ap-
pendix G we conducted a small simulation study to compare these two methods, and ours, with
the recent procedure of [18], using the implementation the authors kindly made available to us.
Their method is tailored to topic models with a known, small, number of topics. Our study re-
vealed that, in the “small K” regime, their procedure is comparable or outperformed by existing
methods. Latent Dirichlet Allocation (LDA) [10] is a popular Bayesian approach to topic models,
but is computationally demanding.



1790 X. Bing, F. Bunea and M. Wegkamp

Figure 1. Plots of overall estimation error vs C0. The right plot is zoomed in.

The procedures from [2] have better performance than LDA in terms of overall loss and com-
putational cost, as evidenced by their simulations. For this reason, we only focus on the compari-
son of our method with RECOVER-L2 and RECOVER-KL for the synthetic data. The comparison
with LDA is considered in the semi-synthetic data.

We report the findings of our simulation studies in this section by showing that our algorithms
estimate both the number of topics and anchor words consistently, and have superior performance
in terms of estimation error as well as computational time in various settings over the existing
algorithms.

We re-emphasize that in all the comparisons presented below, the existing methods have as
input the true K used to simulate the data, while we also estimate K . In Appendix G, we show that
these algorithms are very sensitive to the choice of K . This demonstrates that correct estimation
of K is indeed highly critical for the estimation of the entire matrix A.

Figure 2. Plots of K̂ , sensitivity and specificity vs C1 when the true K0 = 30.
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Table 1. Table of anchor recovery and topic recovery for varying |Ik |

Measures TOP RECOVER

|Ik | 2 4 6 8 10 2 4 6 8 10
sensitivity 100% 100% 100% 100% 100% 50% 25% 16.7% 12.5% 10%
specificity 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Number of topics 100% N/A

Topics and anchor words recovery

TOP10 and TOP1 use the same procedure (Algorithm 2) to select the anchor words, likewise for
RECOVER-L2 and RECOVER-KL. We present in Table 1 the observed sensitivity |Î ∩ I |/|I | and
specificity |Î c ∩ I c|/|I c| of selected anchor words in the benchmark setting with |Ik| varying. It
is clear that TOP recovers all anchor words and estimates the topics number K consistently. All
algorithms are performing perfectly for not selecting non-anchor words. We emphasize that the
correct K is given for procedure RECOVER.

Estimation error

In the benchmark setting, we varied N and n over {500,1000,1500,2000,2500}, p over
{500,800,1000,1200,1500}, K over {20,25,30,35,40} and |Ik| over {2,4,6,8,10}, one at a
time. For each case, the averaged overall estimation error ‖Â−AP‖1/K and topic-wise estima-
tion error ‖Â − AP‖1,∞ over 50 generated datasets for each dimensional setting were recorded.
We used a simple linear program to find the best permutation matrix P which aligns Â with A.
Since the two measures had similar patterns for all settings, we only present overall estimation
error in Figure 3, which can be summarized as follows:

– The estimation error of all four algorithms decreases as n or N increases, while it increases
as p or K increases. This confirms our theoretical findings and indicates that A is harder to
estimate when not only p, but K as well, is allowed to grow.

– In all settings, TOP10 has the smallest estimation error. Meanwhile, TOP1 has better per-
formance than RECOVER-L2 and RECOVER-KL except for N = 500 and |Ik| = 2. The
difference between TOP10 and TOP1 decreases as the length N of each sampled document
increases. This is to be expected since the larger the N , the better each column of X ap-
proximates the corresponding column of �, which lessens the benefit of selecting different
representative sets L̂ of anchor words.

– RECOVER-KL is more sensitive to the specification of K and |Ik| than the other approaches.
Its performance increasingly worsens compared to the other procedures for increasing val-
ues of K . On the other hand, when the sizes |Ik| are small, it performs almost as well as
TOP10. However, its performance does not improve as much as the performances of the
other algorithms in the presence of more anchor words.
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Figure 3. Plots of averaged overall estimation error for varying parameter one at a time.

Running time

The running time of all four algorithms is shown in Figure 4. As expected, TOP1 dominates
in terms of computational efficiency. Its computational cost only slightly increases in p or K .
Meanwhile, the running times of TOP10 is better than RECOVER-L2 in most of the settings and
becomes comparable to it when K is large or p is small. RECOVER-KL is overall much more
computationally demanding than the others. We see that TOP1 and TOP10 are nearly independent
of n, the number of documents, and N , the document length, as these parameters only appear in
the computations of the matrix R̂ and the tuning parameters δ̂ij and η̂ij . More importantly, as the
dictionary size p increases, the two RECOVER algorithms become much more computationally
expensive than TOP. This difference stems from the fact that our procedure of estimating A is al-
most independent of p computationally. TOP solves K linear programs in K dimensional space,
while RECOVER must solve p convex optimization problems over in K dimensional spaces.

We emphasize again that our TOP procedure accurately estimates K in the reported times,
whereas we provide the two RECOVER versions with the true values of K . In practice, one needs
to resort to various cross-validation schemes to select a value of K for the RECOVER algorithms,
see [2]. This would dramatically increase the actual running time for these procedures.

Semi-synthetic data from NIPs corpus

In this section, we compare our algorithm with existing competitors on semi-synthetic data, gen-
erated as follows.
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Figure 4. Plots of running time for varying parameter one at a time.

We begin with one real-world dataset,3 a corpus of NIPs articles [13] to benchmark our algo-
rithm and compare TOP1 with LDA [10], RECOVER-L2 and RECOVER-KL. We use the code of
LDA from [22] implemented via the fast collapsed Gibbs sampling with the default 1000 itera-
tions. To preprocess the data, following [2], we removed common stopping words and rare words
occurring in less than 150 documents, and cut off the documents with less than 150 words. The
resultant dataset has n = 1480 documents with dictionary size p = 1253 and mean document
length 858.

To generate semi-synthetic data, we first apply TOP to this real data set, in order to obtain
the estimated word-topic matrix A, which we then use as the ground truth in our simulation
experiments, performed as follows.4 For each document i ∈ [n], we sample Wi from a specific
distribution (see below) and we sample Xi from Multinomialp(Ni,AWi). The estimated A from
TOP (with C1 = 4.5 chosen via cross-validation and C0 = 0.01) contains 178 anchor words and
120 topics. We consider three distributions of W , chosen as in [2]:

3More comparison based on the New York Times dataset is relegated to the supplement [5].
4[2] uses the posterior estimate of A from LDA with K = 100. Since we do not have prior information of K , we instead
use our TOP to estimate it. Moreover, the posterior from LDA does not satisfy the anchor word assumptions and to
evaluate the effect of anchor words, one has to manually add additional anchor words [2]. In contrast, the estimated A

from TOP automatically gives anchor words.
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Figure 5. Plots of averaged overall estimation error and topic-wise estimation error of TOP, RECOVER-L2
(L2), RECOVER-KL (KL) and LDA. TOP estimates K , the other methods use the true K as input. The bars
denote one standard deviation.

(a) symmetric Dirichlet distribution with parameter 0.03;
(b) logistic-normal distribution with block diagonal covariance matrix and ρ = 0.02;
(c) logistic-normal distribution with block diagonal covariance matrix and ρ = 0.2.

Cases (b) and (c) are designed to investigate how the correlation among topics affects the esti-
mation error. To construct the block diagonal covariance structure, we divide the 120 topics into
10 groups. For each group, the off-diagonal elements of the covariance matrix of topics is set to
ρ while the diagonal entries are set to 1. The parameter ρ = {0.02,0.2} reflects the magnitude of
correlation among topics.

The number of documents n is varied as {2000,3000,4000,5000,6000} and the document
length is set to Ni = 850 for 1 ≤ i ≤ n. In each setting, we repeat generating 20 datasets and
report the averaged overall estimation error ‖Â − AP ‖1/K and topic-wise estimation error

Table 2. Running time (seconds) of different algorithms

TOP RECOVER-L2 RECOVER-KL LDA

n = 2000 21.4 428.2 2404.5 3052.3
n = 3000 22.3 348.2 1561.8 4649.5
n = 4000 25.3 353.5 1764.8 6051.1
n = 5000 28.5 349.0 1800.4 7113.0
n = 6000 29.5 346.6 1848.1 7318.4
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‖Â − AP‖1,∞ of different algorithms in Figure 5. The running time of each algorithm is re-
ported in Table 2.

Overall, LDA is outperformed by the other three methods, though its performance might be
improved by increasing the number of iterations. TOP, RECOVER-KL and RECOVER-L2 are
comparable when columns of W are sampled from a symmetric Dirichlet with parameter 0.03,
whereas TOP has better performance when the correlation among topics increases. Moreover,
TOP has the best control of topic-wise estimation error as expected, while the comparison be-
tween RECOVER-KL and RECOVER-L2 depends on the error metric. From the running-time
perspective, TOP runs significantly faster than the other three methods.

Finally, we emphasize that we provide LDA and the two RECOVER algorithms with the true
K , whereas TOP estimates it.
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