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Learning properties of large graphs from samples has been an important problem in statistical network
analysis since the early work of Goodman (Ann. Math. Stat. 20 (1949) 572–579) and Frank (Scand. J.
Stat. 5 (1978) 177–188). We revisit a problem formulated by Frank (Scand. J. Stat. 5 (1978) 177–188) of
estimating the number of connected components in a large graph based on the subgraph sampling model,
in which we randomly sample a subset of the vertices and observe the induced subgraph. The key question
is whether accurate estimation is achievable in the sublinear regime where only a vanishing fraction of the
vertices are sampled. We show that it is impossible if the parent graph is allowed to contain high-degree
vertices or long induced cycles. For the class of chordal graphs, where induced cycles of length four or
above are forbidden, we characterize the optimal sample complexity within constant factors and construct
linear-time estimators that provably achieve these bounds. This significantly expands the scope of previous
results which have focused on unbiased estimators and special classes of graphs such as forests or cliques.

Both the construction and the analysis of the proposed methodology rely on combinatorial properties
of chordal graphs and identities of induced subgraph counts. They, in turn, also play a key role in proving
minimax lower bounds based on construction of random instances of graphs with matching structures of
small subgraphs.

Keywords: chordal graph; minimax lower bound; network sampling; perfect elimination ordering;
subgraph counts; subgraph sampling model

1. Introduction

Counting the number of features in a graph – ranging from basic local structures like motifs
or graphlets (e.g., edges, triangles, wedges, stars, cycles, cliques) to more global features like
the number of connected components – is an important task in network analysis. For example,
the global clustering coefficient of a graph (i.e., the fraction of closed triangles) is a measure of
the tendency for nodes to cluster together and a key quantity used to study cohesion in various
networks [44]. To learn these graph properties, applied researchers typically collect data from
a random sample of nodes to construct a representation of the true network. We refer to these
problems collectively as statistical inference on sampled networks, where the goal is to infer
properties of the parent network (population) from a subsampled version. Below we mention a
few examples that arise in various fields of study.

• Sociology: Social networks of the Hadza hunter-gatherers of Tanzania were studied in [12]
by surveying 205 individuals in 17 Hadza camps (from a population of 517). Another study
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[11] of farmers in Ghana used network data from a survey of 180 households in three vil-
lages from a population of 550 households.

• Economics and business: Low sampling ratios have been used in applied economics (such
as 30% in [18]), particularly for large scale studies [2,20]. A good overview of various
experiments in applied economics and their corresponding sampling ratios can be found in
[8], Appendix F, p. 11. Word of mouth marketing in consumer referral networks was studied
in [51] using 158 respondents from a potential subject pool of 238.

• Genomics: The authors of [55] use protein-protein interaction data and demonstrate that it
is possible to arrive at a reliable statistical estimate for the number of interactions (edges)
from a sample containing approximately 1500 vertices.

• World Wide Web and Internet: Informed random IP address probing was used in [30] in an
attempt to obtain a router-level map of the Internet.

As mentioned earlier, a primary concern of these studies is how well the data represent the
true network and how to reconstruct the relevant properties of the parent graphs from samples.
These issues and how they are addressed broadly arise from two perspectives:

• The full network is unknown due to the lack of data, which could arise from the underlying
experimental design and data collection procedure, see, for example, historical or observa-
tional data. In this case, one needs to construct statistical estimators (i.e., functions of the
sampled graph) to conduct sound inference. These estimators must be designed to account
for the fact that the sampled network is only a partial observation of the true network, and
thus subject to certain inherent biases and variability.

• The full network is either too large to scan or too expensive to store. In this case, approxi-
mation algorithms can overcome such computational or storage issues that would otherwise
be unwieldy. For example, for massive social networks, it is generally impossible to enu-
merate the whole population. Rather than reading the entire graph, query-based algorithms
randomly (or deterministically) sample parts of the graph or adaptively explore the graph
through a random walk [3]. Some popular instances of traversal based procedures are snow-
ball sampling [29] and respondent-driven sampling [54]. Indeed, sampling (based on edge
and degree queries) is a commonly used primitive to speed up computation, which leads to
various sublinear-time algorithms for testing or estimating graph properties such as the av-
erage degree [26], triangle and more general subgraph counts [1,15], expansion properties
[27]; we refer the readers to the monograph [24].

Learning properties of graphs from samples has been an important problem in statistical net-
work analysis since the early work of Goodman [28] and Frank [22]. Estimation of various prop-
erties such as graph totals [21] and connectivity [7,22] has been studied in a variety of sample
models. However, most of the analysis has been confined to obtaining unbiased estimators for
certain classes of graphs and little is known about their optimality. The purpose of this paper
is to initiate a systematic study of statistical inference on sampled networks, with the goal of
determining their statistical limits in terms of minimax risks and sample complexity, achieved by
computationally efficient procedures.

As a first step towards this goal, in this paper we focus on a representative problem introduced
in [22], namely, estimating the number of connected components in a graph from a partial sample
of the population network. In fact, the techniques developed in this paper are also useful for
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estimating other graph statistics such as motif counts, which were studied in the companion
paper [37].

Before we proceed, let us emphasize that the objective of this paper is not testing whether
the graph is connected, which is a property too fragile to test on the basis of a small sampled
graph; indeed, missing a single edge can destroy the connectivity. Instead, our goal is to estimate
the number of connected components with an optimal additive accuracy. Thus, naturally, it is
applicable to graphs with a large number of components.

We study the problem of estimating the number of connected components for two reasons.
First, it encapsulates many challenging aspects of statistical inference on sampled graphs, and
we believe the mathematical framework and machinery developed in this paper will prove useful
for estimating other graph properties as well. Second, the number of connected components
is a useful graph property that quantifies the connectivity of a network. In addition, it finds
use in data-analytic applications related to determining the number of classes in a population
[28]. Another example is the recent work [10], which studies the estimation of the number of
documented deaths in the Syrian Civil War from a subgraph induced by a set of vertices obtained
from an adaptive sampling process (similar to subgraph sampling). There, the goal is to estimate
the number of unique individuals in a population, which roughly corresponds to the number of
connected components in a network of duplicate records connected by shared attributes.

Next we discuss the sampling model, which determines how reflective the data is of the pop-
ulation graph and therefore the quality of the estimation procedure. There are many ways to
sample from a graph (see [13,19] for a list of techniques and [31,40,41] for comprehensive re-
views). For simplicity, this paper focuses on the simplest sampling model, namely, subgraph
sampling, where we randomly sample a subset of the vertices and observe their induced sub-
graph; in other words, only the edges between the sampled vertices are revealed. Results on
estimating motif counts for the related neighborhood sampling model can be found in the com-
panion paper [37]. One of the earliest works that adopts the subgraph sampling model is by Frank
[22], which is the basis for the theory developed in this paper. Drawing from previous work on
estimating population total using vertex sampling [21], Frank obtained unbiased estimators of
the number of connected components and performance guarantees (variance calculations) for
graphs whose connected components are either all trees or all cliques. Extensions to more gen-
eral graphs are briefly discussed, although no unbiased estimators are proposed. This generality
is desirable since it is more realistic to assume that the objects in each class (component) are in
between being weakly and strongly connected to each other, corresponding to having the level
of connectivity between a tree and clique. While the results of Frank are interesting, questions of
their generality and optimality remain open and we therefore address these matters in the sequel.
Specifically, the main goals of this paper are as follows:

• Characterize the sample complexity, that is, the minimal sample size to achieve a given
accuracy, as a function of graph parameters.

• Devise computationally efficient estimators that provably achieve the optimal sample com-
plexity bound.

Of particular interest is the sublinear regime, where only a vanishing fraction of the vertices are
sampled. In this case, it is impossible to reconstruct the entire graph, but it might still be possible
to accurately estimate the desired graph property.



1638 J.M. Klusowski and Y. Wu

The problem of estimating the number of connected components in a large graph has also been
studied in the computer science literature, where the goal is to design randomized algorithms
with sublinear (in the size of the graph) time complexity. The celebrated work [9] proposed
a randomized algorithm to estimate the number of connected components in a general graph
(motivated by computing the weight of the minimum spanning tree) within an additive error of
εN for graphs with N vertices and average degree davg, with runtime O(

davg

ε2 log
davg
ε

). Their
method relies on data obtained from a random sample of vertices and then performing a breadth
first search on each vertex which ends according to a random stopping criterion. The algorithm
requires knowledge of the average degree davg and must therefore be known or estimated a priori.
The runtime was further improved to O(ε−2 log 1

ε
) by modifying the stopping criterion [4]. In

these algorithms, the breadth first search may visit many of the edges and explore a larger fraction
of the graph at each round. From an applied perspective, such traversal based procedures can be
impractical or impossible to implement in many statistical applications due to limitations inherent
in the experimental design and it is more realistic to treat the network data as a random sample
from a parent graph.

Finally, let us compare, conceptually, the framework in the present paper with the work on
model-based network analysis, where networks are modeled as random graphs drawn from spe-
cific generative models, such as the stochastic block model [32], graphons [23], or exponential
random graph models [33] (cf. the recent survey [41]), and performance analysis of statistical
procedures for parameter estimation or clustering are carried out for these models. In contrast, in
network sampling we adopt a design-based framework [31], where the graph is assumed to be
deterministic and the randomness comes from the sampling process.

Organization

The paper is organized as follows. In Section 2, we formally define the estimation problem,
the subgraph sampling model, and describe what classes of graphs we will be focusing on. To
motivate our attention on specific classes of graphs (chordal graphs with maximum degree con-
straints), we show that in the absence of such structural assumptions, sublinear sample complex-
ity is impossible in the sense that at least a constant faction of the vertices need to be sampled.
Section 3 introduces the definition of chordal graphs and states our main results in terms of the
minimax risk and sample complexity. In Section 4, after introducing the relevant combinato-
rial properties of chordal graphs, we define the estimator of the number of connect components
and provide its statistical guarantees. We also propose a heuristic for constructing an estimator
on non-chordal graphs. In Section 5, we develop a general strategy for proving minimax lower
bound for estimating graph properties and particularize it to obtain matching lower bounds for
the estimator constructed in Section 4.

The supplemental article [38] contains some of the technical proofs, additional results for the
uniform sampling model and for forests and graphs with long cycles, and a numerical study of the
proposed estimators on synthetic and real data for various graphs (see Appendix 6, Appendix 7,
and Appendix 8, respectively).
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Notations

We use standard big-O notations, e.g., for any positive sequences {an} and {bn}, an = O(bn) or
an � bn if an ≤ Cbn for some absolute constant C > 0, an = o(bn) or an � bn or if liman/bn =
0. Furthermore, the subscript in an = Or(bn) means an ≤ Crbn for some constant Cr depending
on the parameter r only. For positive integer k, let [k] = {1, . . . , k}. Let Bern(p) denote the
Bernoulli distribution with mean p and Bin(N,p) the binomial distribution with N trials and
success probability p.

Next, we introduce some graph-theoretic notations that will be used throughout the paper. Let
G = (V ,E) be a simple undirected graph. Let e = e(G) = |E(G)| denote the number of edges,
v = v(G) = |V (G)| denote the number of vertices, and cc = cc(G) be the number of connected
components in G. The neighborhood of a vertex u is denoted by NG(u) = {v ∈ V (G) : {u,v} ∈
E(G)}.

Two graphs G and G′ are isomorphic, denoted by G � G′, if there exists a bijection between
the vertex sets of G and G′ that preserves adjacency, that is, if there exists a bijective function
g : V (G) → V (G′) such that {g(u), g(v)} ∈ E(G′) if and only if {u,v} ∈ E(G). The disjoint
union of two graphs G and G′, denoted G + G′, is the graph whose vertex (resp. edge) set is the
disjoint union of the vertex (resp. edge) sets of G and of G′. For brevity, we denote by kG to the
disjoint union of k copies of G.

We use the notation Kn, Pn, and Cn to denote the complete graph, path graph, and cycle graph
on n vertices, respectively. Let Kn,n′ denote the complete bipartite graph with nn′ edges and
n + n′ vertices. Let Sn denote the star graph K1,n on n + 1 vertices.

We need two types of subgraph counts: Denote by s(H,G) (resp. n(H,G)) the number of ver-
tex (resp. edge) induced subgraphs of G that are isomorphic to H .1 For example, s( , ) = 2
and n( , ) = 8. Let ω(G) denote the clique number, that is, the size of the largest clique
in G.

2. Model

2.1. Subgraph sampling model

To fix notations, let G = (V ,E) be a simple, undirected graph on N vertices. In the subgraph
sampling model, we sample a set of vertices denoted by S ⊂ V , and observe their induced sub-
graph, denoted by G[S] = (S,E[S]), where the edge set is defined as E[S] = {{i, j} ∈ E : i, j ∈
S}. See Figure 1 for an illustration. To simplify notations, we abbreviate the sampled graph G[S]
as G̃.

According to how the set S of sampled vertices is generated, there are two variations of the
subgraph sampling model [22]:

1The subgraph counts are directly related to the graph homomorphism numbers [43], Section 5.2. Denote by inj(H,G)

the number of injective homomorphisms from H to G and ind(H,G) the number of injective homomorphisms that also
preserve non-adjacency. Then ind(H,G) = s(H,G)aut(H) and inj(H,G) = n(H,G)aut(H), where aut(H) denotes the
number of automorphisms (i.e. isomorphisms to itself) for H .
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Figure 1. Subgraph sampling.

• Uniform sampling: Exactly n vertices are chosen uniformly at random without replacement
from the vertex set V . In this case, the probability of observing a subgraph isomorphic2 to
H with v(H) = n is equal to

P[G̃ � H ] = s(H,G)(
N
n

) . (1)

• Bernoulli sampling: Each vertex is sampled independently with probability p, where p is
called the sampling ratio. Thus, the sample size |S| is distributed as Bin(N,p), and the
probability of observing a subgraph isomorphic to H is equal to

P[G̃ � H ] = s(H,G)pv(H)(1 − p)v(G)−v(H). (2)

The relation between these two models is analogous to that between sampling without replace-
ments and sampling with replacements. In the sublinear sampling regime where n � N , they are
nearly equivalent. For technical simplicity, we focus on the Bernoulli sampling model and we
refer to n � pN as the effective sample size. Extensions to the uniform sampling model will be
discussed in Section 7.1 of Appendix 7.

A number of previous work on subgraph sampling is closely related with the theory of graph
limits [6], which is motivated by the so-called property testing problems in graphs [24]. Accord-
ing to [6], Definition 2.11, a graph parameter f is “testable” if for any ε > 0, there exists a sample
size n such that for any graph G with at least n vertices, there is an estimator f̂ = f̂ (G̃) such
that P[|f (G) − f̂ | > ε] < ε. In other words, testable properties can be estimated with sample
complexity that is independent of the size of the graph. Examples of testable properties include
the edge density e(G)/

(v(G)
2

)
and the density of maximum cuts MaxCut(G)

v(G)2 , where MaxCut(G) is
the size of the maximum edge cut-set in G [25]; however, the number of connected components

2Note that it is sufficient to describe the sampled graph up to isomorphism since the property cc we want to estimate is
invariant under graph isomorphisms.
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cc(G) or its normalized version cc(G)
v(G)

are not testable.3 Instead, our focus is to understand the
dependency of sample complexity of estimating cc(G) on the graph size N as well as other graph
parameters. It turns out for certain classes of graphs, the sample complexity grows sublinearly in
N , which is the most interesting regime.

2.2. Classes of graphs

Before introducing the classes of graphs we consider in this paper, we note that, unless further
structures are assumed about the parent graph, estimating many graph properties, including the
number of connected components, has very high sample complexity that scales linearly with the
size of the graph. Indeed, there are two main obstacles in estimating the number of connected
components in graphs, namely, high-degree vertices and long induced cycles. If either is allowed
to be present, we will show that even if we sample a constant faction of the vertices, any estimator
of cc(G) has a worst-case additive error that is almost linear in the network size N . Specifically,

• For any sampling ratio p bounded away from 1, as long as the maximum degree is allowed
to scale as �(N), even if we restrict the parent graph to be acyclic, the worst-case estimation
error for any estimator is �(N).

• For any sampling ratio p bounded away from 1/2, as long as the length of the induced
cycles is allowed to be �(logN), even if we restrict the parent graph to have maximum
degree 2, the worst-case estimation error for any estimator is �( N

logN
).

The precise statements follow from the minimax lower bounds in Theorem 14 and Theorem 13
of Appendix 7. Below we provide an intuitive explanation for each scenario.

For the first claim involving large degree, consider a pair of acyclic graphs G and G′, where
G is the star graph on N vertices and G′ consisting of N isolated vertices. Note that as long as
the center vertex in G is not sampled, the sampling distributions of G and G′ are identical. This
implies that the total variation between the sampled graph under G and G′ is at most p. Since the
numbers of connected components in G and G′ differ by N − 1, this leads to a minimax lower
bound for the estimation error of �(N) whenever p is bounded away from one.

The effect of long induced cycles is subtler. The key observation is that a cycle and a path
(or a cycle versus two cycles) locally look exactly the same. Indeed, let G (resp. G′) consists
of N/(2r) disjoint copies of the smaller graph H (resp. H ′), where H is a cycle of length 2r

and H ′ consists of two disjoint cycles of length r . Both G and G′ have maximum degree 2 and
contain induced cycles of length at most 2r . The local structure of G and G′ is the same (e.g.,
each connected subgraph with at most r − 1 vertices appears exactly N times in each graph)
and the sampled versions of H and H ′ are identically distributed provided at most r − 1 vertices
are sampled. Thus, we must sample at least r vertices (which occurs with probability at most
e−r(1−2p)2

) for the distributions to be different. By a union bound, it can be shown that the total
variation between the sampled graphs G̃ and G̃′ is O((N/r)e−r(1−2p)2

). Thus, whenever the

3To see this, recall from [6], Theorem 6.1(b), an equivalent characterization of f being testable is that for any ε > 0,
there exists a sample size n such that for any graph G with at least n vertices, |f (G) −Ef (G̃)| < ε. This is violated for
star graphs G = SN as N → ∞.
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sampling ratio p is bounded away from 1/2, choosing r = �(logN) leads to a near-linear lower
bound �( N

logN
).

The difficulties caused by high-degree vertices and long induced cycles motivate us to con-
sider classes of graphs defined by two key parameters, namely, the maximum degree d and the
length of the longest induced cycles c. The case of c = 2 corresponds to forests (acyclic graphs),
which have been considered by Frank [22]. The case of c = 3 corresponds to chordal graphs,
that is, graphs without induced cycle of length four or above, which is the focus of this paper.
It is well known that various computation tasks that are intractable in the worst case, such as
maximal clique and graph coloring, are easy for chordal graphs; it turns out that the chordality
structure also aids in both the design and the analysis of computationally efficient estimators
which provably attain the optimal sample complexity.

3. Main results

This section summarizes our main results in terms of the minimax risk of estimating the number
of connected components over various class of graphs. As mentioned before, for ease of expo-
sition, we focus on the Bernoulli sampling model, where each vertex is sampled independently
with probability p. Similar conclusions can be obtained for the uniform sampling model upon
identifying p = n/N , as given in Section 7.1.

When p grows from 0 to 1, an increasing fraction of the graph is observed and intuitively
the estimation problem becomes easier. Indeed, all forthcoming minimax rates are inversely pro-
portional to powers of p. Of particular interest is whether accurate estimation in the sublinear
sampling regime, that is, p = o(1). The forthcoming theory will give explicit conditions on p for
this to hold true.

As mentioned in the previous section, the main class of graphs we study is the so-called
chordal graphs (see Figure 2 for an example):

Definition 1. A graph G is chordal if it does not contain induced cycles of length four or above,
i.e., s(Ck,G) = 0 for k ≥ 4.

Figure 2. Examples of chordal and non-chordal graphs both with three connected components.
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We emphasize that chordal graphs are allowed to have arbitrarily long cycles but no induced
cycles longer than three. The class of chordal graphs encompasses forests and disjoint union
of cliques as special cases, the two models that were studied in Frank’s original paper [22]. In
addition to constructing estimators that adapt to larger collections of graphs (for which forests
and unions of cliques are special cases), we also provide theoretical analysis and optimality
guarantees – elements that were not considered in past work.

Next, we characterize the rate of the minimax mean-squared error for estimating the number of
connected components in a chordal graph, which turns out to depend on the number of vertices,
the maximum degree, and the clique number. The upper and lower bounds differ by at most a
multiplicative factor depending only on the clique number. To simplify the notation, henceforth
we denote q = 1 − p.

Theorem 1 (Chordal graphs). Let G(N,d,ω) denote the collection of all chordal graphs on N

vertices with maximum degree and clique number at most d and ω ≥ 2, respectively. Then

inf
ĉc

sup
G∈G(N,d,ω)

EG

∣∣ĉc − cc(G)
∣∣2 = �ω

((
N

pω
∨ Nd

pω−1

)
∧ N2

)
,

where the lower bound holds provided that p ≤ p0 for some constant p0 < 1
2 that only depends

on ω. Furthermore, if p ≥ 1/2, then for any ω,

inf
ĉc

sup
G∈G(N,d,ω)

EG

∣∣ĉc − cc(G)
∣∣2 ≤ Nq(d + 1). (3)

Specializing Theorem 1 to ω = 2 yields the minimax rates for estimating the number of trees
in forests for small sampling ratio p. The next theorem shows that the result holds verbatim even
if p is arbitrarily close to 1, and, consequently, shows minimax rate-optimality of the bound in
(3). The lower bound component is proved in Section 7.3 of Appendix 7.

Theorem 2 (Forests). Let F(N,d) � G(N,d,2) denote the collection of all forests on N ver-
tices with maximum degree at most d . Then for all 0 ≤ p ≤ 1 and 1 ≤ d ≤ N ,

inf
ĉc

sup
G∈F(N,d)

EG

∣∣ĉc − cc(G)
∣∣2 


(
Nq

p2
∨ Nqd

p

)
∧ N2. (4)

The upper bounds in the previous results are achieved by unbiased estimators. As (3) shows,
they work well even when the clique number ω grow with N , provided we sample more than
half of the vertices; however, if the sample ratio p is below 1

2 , especially in the sublinear regime
of p = o(1) that we are interested in, the variance is exponentially large. To deal with large
d and ω, we must give up unbiasedness to achieve a good bias-variance tradeoff. Such biased
estimators, obtained using the smoothing technique introduced in [49], lead to better performance
as quantified in the following theorem. The proofs of these bounds are given in Theorem 7 and
Theorem 9.
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Theorem 3 (Chordal graphs). Let G(N,d) denote the collection of all chordal graphs on N

vertices with maximum degree at most d . Then, for any p < 1/2,

inf
ĉc

sup
G∈G(N,d)

EG

∣∣ĉc − cc(G)
∣∣2 � N2(N/d2)− p

2−3p .

Finally, for the special case of graphs consisting of disjoint union of cliques, as the following
theorem shows, there are enough structures so that we no longer need to impose any condition
on the maximal degree. Similar to Theorem 3, the achievable scheme is a biased estimator, sig-
nificantly improving the unbiased estimator in [22,28] which has exponentially large variance.

Theorem 4 (Cliques). Let C(N) denote the collection of all graphs on N vertices consisting of
disjoint unions of cliques. Then, for any p < 1/2,

inf
ĉc

sup
G∈C(N)

EG

∣∣ĉc − cc(G)
∣∣2 ≤ N2(N/4)

− p
2−3p .

Alternatively, the above results are summarized in Table 1 in terms of the sample complexity,
that is, the minimum sample size that allows an estimator cc(G) within an additive error of εN

with probability, say, at least 0.99, uniformly for all graphs in a given class. Here the sample
size is understood as the average number of sampled vertices n = pN . We have the following
characterization:

A consequence of Theorem 2 is that if the effective sample size n scales as O(max(
√

N,d)),
for the class of forests F(N,d) the worse-case estimation error for any estimator is �(N), which
is within a constant factor to the trivial error bound when no samples are available. Conversely,
if n � max(

√
N,d), which is sublinear in N as long as the maximal degree satisfies d = o(N),

then it is possible to achieve a non-trivial estimation error of o(N). More generally for chordal

graphs, Theorem 1 implies that if n = O(max(N
ω−1
ω , d

1
ω−1 N

ω−2
ω−1 )), the worse-case estimation

error in G(N,d,ω) for any estimator is at least �ω(N),

Table 1. Sample complexity for various classes of graphs

Graph Sample complexity n

Chordal �ω

(
max

{
N

ω−2
ω−1 d

1
ω−1 ε

− 2
ω−1 ,N

ω−1
ω ε− 2

ω

})
Forest �

(
max

{
d
ε2 ,

√
N
ε

})
Cliques �

(
N

logN
log 1

ε

)
, ε ≥ N−1/2+�(1)∗

∗The lower bound part of this statement follows from [60], Section 3,
which shows the optimality of Theorem 4.
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4. Algorithms and performance guarantees

In this section, we propose estimators which provably achieve the upper bounds presented in
Section 3 for the Bernoulli sampling model. In Section 4.1, we highlight some combinatorial
properties and characterizations of chordal graphs that underpin both the construction and the
analysis of the estimators in Section 4.2. The special case of disjoint unions of cliques is treated
in Section 4.3, where the estimator of Frank [22] is recovered and further improved. Analogous
results for the uniform sampling model are given in Section 7.1 of Appendix 7. Finally, in Sec-
tion 4.4, we discuss a heuristic to generalize the methodology to non-chordal graphs.

4.1. Combinatorial properties of chordal graphs

In this subsection, we discuss the relevant combinatorial properties of chordal graphs which aid
in the design and analysis of our estimators. We start by introducing a notion of vertex elimination
ordering.

Definition 2. A perfect elimination ordering (PEO) of a graph G on N vertices is a vertex
labelling {v1, v2, . . . , vN } such that, for each j , NG(vj ) ∩ {v1, . . . , vj−1} is a clique.

In other words, if one eliminates the vertices sequentially according to a PEO starting from
the last vertex, at each step, the neighborhood of the vertex to be eliminated forms a clique; see
Figure 3 for an example. A classical result of Dirac asserts that the existence of a PEO is in fact
the defining property of chordal graphs (cf. e.g., [58], Theorem 5.3.17).

Theorem 5. A graph is chordal if and only if it admits a PEO.

In general a PEO of a chordal graph is not unique; however, it turns out that the size of each
neighborhood in the vertex elimination process is unique up to permutation, a fact that we will
exploit later on. The next lemma makes this claim precise. For brevity, we defer its proof to
Appendix 6.

Figure 3. A chordal graph G with PEO labelled. In this example, cc(G) = 3 = 16 − 19 + 6 =
s(K1,G) − s(K2,G) + s(K3,G).
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Lemma 1. Let {v1, . . . , vN } and {v′
1, . . . , v

′
N } be two PEOs of a chordal graph G. Let cj and c′

j

denote the cardinalities of NG(vj ) ∩ {v1, . . . , vj−1} and NG(v′
j ) ∩ {v′

1, . . . , v
′
j−1}, respectively.

Then there is a bijection σ : [N ] → [N ] such that cσ(j) = c′
j for all j .

Recall that s(Ki,G) denotes the number of cliques of size i in G. For any chordal graph G, it
turns out that the number of components can be expressed as an alternating sum of clique counts
(cf. e.g., [58], Exercise 5.3.22, p. 231); see Figure 3 for an example. Instead of the topological
proof involving properties of the clique simplex of chordal graphs [14,46], in the next lemma
we provide a combinatorial proof together with a sandwich bound. The main purpose of this
exposition is to explain how to enumerate cliques in chordal graphs using vertex elimination,
which plays a key role in analyzing the statistical estimator developed in the next subsection.

Lemma 2. For any chordal graph G,

cc(G) =
∑
i≥1

(−1)i+1s(Ki,G). (5)

Furthermore, for any r ≥ 1,

2r∑
i=1

(−1)i+1s(Ki,G) ≤ cc(G) ≤
2r−1∑
i=1

(−1)i+1s(Ki,G). (6)

Proof. Since G is chordal, by Theorem 5, it has a PEO {v1, . . . , vN }. Define

Cj � NG(vj ) ∩ {v1, . . . , vj−1}, cj � |Cj |. (7)

Since the neighbors of vj among v1, . . . , vj−1 form a clique, we obtain
( cj

i−1

)
new cliques of size

i when we adjoin the vertex vj to the subgraph induced by v1, . . . , vj−1. Thus,

s(Ki,G) =
N∑

j=1

(
cj

i − 1

)
. (8)

Moreover, note that cc(G) =∑N
j=1 1{cj = 0}. Hence, it follows that

2r−1∑
i=1

(−1)i+1s(Ki,G)

=
2r−1∑
i=1

(−1)i+1
N∑

j=1

(
cj

i − 1

)
=

N∑
j=1

2r−1∑
i=1

(−1)i+1
(

cj

i − 1

)

=
N∑

j=1

2(r−1)∑
i=0

(−1)i
(

cj

i

)
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=
N∑

j=1

((
cj − 1

2(r − 1)

)
1{cj �= 0} + 1{cj = 0}

)

≥
N∑

j=1

1{cj = 0} = cc(G),

and

2r∑
i=1

(−1)i+1s(Ki,G) =
2r∑

i=1

(−1)i+1
N∑

j=1

(
cj

i − 1

)
=

N∑
j=1

2r∑
i=1

(−1)i+1
(

cj

i − 1

)

=
N∑

j=1

2r−1∑
i=0

(−1)i
(

cj

i

)
=

N∑
j=1

(
−
(

cj − 1
2r − 1

)
1{cj �= 0} + 1{cj = 0}

)

≤
N∑

j=1

1{cj = 0} = cc(G).
�

4.2. Estimators for chordal graphs

4.2.1. Bounded clique number: Unbiased estimators

In this subsection, we consider unbiased estimation of the number of connected components in
chordal graphs. As we will see, unbiased estimators turn out to be minimax rate-optimal for
chordal graphs with bounded clique size. The subgraph count identity (5) suggests the following
unbiased estimator

ĉc = −
∑
i≥1

(
− 1

p

)i

s(Ki, G̃). (9)

Indeed, since the probability of observing any given clique of size i is pi , (9) is clearly unbiased
in the same spirit of the Horvitz-Thompson estimator [34]. In the case where the parent graph G

is a forest, (9) reduces to the estimator ĉc = v(G̃)/p − e(G̃)/p2, as proposed by Frank [22].
A few comments about the estimator (9) are in order. First, it is completely adaptive to the

parameters ω, d and N , since the sum in (9) terminates at the clique number of the subsampled
graph. Second, it can be evaluated in time that is linear in v(G̃) + e(G̃). Indeed, the next lemma
gives a simple formula for computing (9) using the PEO. Since a PEO of a chordal graph G can
be found in O(v(G) + e(G)) time [52,56] and any induced subgraph of a chordal graph remains
chordal, the estimator (9) can be evaluated in linear time.4 Recall that q = 1 − p.

4The algorithm in [56] is implemented in R using the max_cardinality() function in the graph package igraph.
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Lemma 3. Let {̃v1, . . . , ṽm}, m = |S|, be a PEO of G̃. Then

ĉc = 1

p

m∑
j=1

(
− q

p

)̃cj

, (10)

where c̃j � |NG̃(̃vj ) ∩ {̃v1, . . . , ṽj−1}| can be calculated from G̃ in linear time.

Proof. Because the subsampled graph G̃ is also chordal, by (8), we have s(Ki, G̃) =∑m
j=1

(
c̃j

i − 1

)
. Thus, (9) can also be written as

ĉc = −
m∑

i=1

(
− 1

p

)i

s(Ki, G̃) = −
m∑

i=1

(
− 1

p

)i m∑
j=1

(
c̃j

i − 1

)

= −
m∑

j=1

m∑
i=1

(
− 1

p

)i (
c̃j

i − 1

)
= 1

p

m∑
j=1

m−1∑
i=0

(
− 1

p

)i (̃
cj

i

)

= 1

p

m∑
j=1

(
− q

p

)̃cj

.
�

In addition to the aforementioned computational advantages of using (10) over (9), let us also
describe why (10) is more numerically stable. Both estimators are equal to an alternating sum of
the form

∑
i ai(−1/p)bi . In (10), ai = qbi /p, whereas ai = −s(Kbi

, G̃) in (9), which can be as
large as O(N2ω) in magnitude. Thus, when G̃ is sufficiently dense, computation of (9) involves
adding and subtracting extremely large numbers – making it prone to integer overflow and suffer
from loss of numerical precision. For example, double-precision floating-point arithmetic (e.g.,
used in R) gives from 15 to 17 significant decimal digits precision. In our experience, this tends
to be insufficient for most mid-sized, real-world networks (see Appendix 8) and the estimator (9)
outputs wildly imprecise numbers.

Using elementary enumerative combinatorics, in particular, the vertex elimination structure of
chordal graphs, the next theorem provides a performance guarantee for the estimator (9) in terms
of a variance bound and a high-probability bound, which, in particular, settles the upper bound
of the minimax mean squared error in Theorem 1 and Theorem 2.

Theorem 6. Let G be a chordal graph on N vertices with maximum degree and clique number
at most d and ω ≥ 2, respectively. Suppose G̃ is generated by the Bern(p) sampling model. Then
ĉc defined in (9) is an unbiased estimator of cc(G). Furthermore,

Var[ĉc] ≤ N

(
q

p
+ d

)((
q

p

)ω−1

∨ q

p

)
≤ N

pω
+ Nd

pω−1
, (11)
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and for all t ≥ 0,

P
[∣∣ĉc − cc(G)

∣∣ ≥ t
]≤ 2 exp

{
− 8pωt2

25(dω + 1)(N + t/3)

}
. (12)

To prove Theorem 6, we start by presenting a useful lemma. Note that Lemma 3 states that ĉc is
a linear combination of (−q/p)̃cj ; here c̃j is computed using a PEO of the sampled graph, which
itself is random. The next result allows us rewrite the same estimator as a linear combination of
(−q/p)̂cj , where ĉj depends on the PEO of the parent graph (which is deterministic). Note that
this is only used in the course of analysis since the population level PEO is not observed. This
representation is extremely useful in analyzing the performance of ĉc and its biased variant in
Section 4.2.2. More generally, we have the following result, which we prove in Appendix 6.

Lemma 4. Let {v1, . . . , vN } be a PEO of G and let {̃v1, . . . , ṽm}, m = |S|, be a PEO of G̃.
Furthermore, let ĉj = |NG̃(vj ) ∩ {v1, . . . , vj−1}| and c̃j = |NG̃(̃vj ) ∩ {̃v1, . . . , ṽj−1}|. Let ĝ =
ĝ(G̃) be a linear estimator of the form

ĝ =
m∑

j=1

g(̃cj ). (13)

Then

ĝ =
N∑

j=1

bjg(̂cj ),

where bj � 1
{
vj ∈ S

}
.

We also need a couple of ancillary results whose proofs are also given in Appendix 6:

Lemma 5 (Orthogonality). Let5

f (k) =
(

− q

p

)k

, k ≥ 0. (14)

Let {bv : v ∈ V } be independent Bern(p) random variables. For any S ⊂ V , define NS =∑
v∈S bv . Then

E
[
f (NS)f (NT )

] = 1{S = T }(q/p)|S|.

In particular, E[f (NS)] = 0 for any S �=∅.

5In fact, the function f (NS) = (− q
p )NS is the (unnormalized) orthogonal basis for the binomial measure that is used in

the analysis of Boolean functions [48], Definition 8.40.
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Lemma 6. Let {v1, . . . , vN } be a PEO of a chordal graph G on N vertices with maximum degree
and clique number at most d and ω, respectively. Let Cj � NG(vj ) ∩ {v1, . . . , vj−1}. Then6∣∣{(i, j) : i �= j,Cj = Ci �=∅

}∣∣≤ N(d − 1). (15)

Furthermore, let

Aj = {vj } ∪ Cj . (16)

Then for each j ∈ [N ], ∣∣{i ∈ [N ] : i �= j,Ai ∩ Aj �=∅
}∣∣≤ dω. (17)

Proof of Theorem 6. For a chordal graph G on N vertices, let {v1, . . . , vN } be a PEO of G.
Recall from (7) that Cj denote the set of neighbors of vj among v1, . . . , vj−1 and cj denotes its
cardinality. That is,

cj = ∣∣NG(vj ) ∩ {v1, . . . , vj−1}
∣∣= j−1∑

k=1

1{vk ∼ vj }.

As in Lemma 4, let ĉj denote the sample version, i.e.,

ĉj �
∣∣NG̃(vj ) ∩ {v1, . . . , vj−1}

∣∣= bj

j−1∑
k=1

bk1{vk ∼ vj },

where bk � 1{vk ∈ S}i.i.d.∼ Bern(p). By Lemma 3 and Lemma 4, ĉc can be written as

ĉc = 1

p

m∑
j=1

f (̃cj ) = 1

p

N∑
j=1

bjf (̂cj ), (18)

where the function f is defined in (14).
To show the variance bound (11), we note that

Var[ĉc] = 1

p2

N∑
j=1

Var
[
bjf (̂cj )

]+ 1

p2

∑
j �=i

Cov
[
bjf (̂cj ), bif (̂ci)

]
. (19)

Note that ĉj | {bj = 1} ∼ Bin(cj ,p). Using Lemma 5, it is straightforward to verify that

Var
[
bjf (̂cj )

]=
⎧⎨⎩p

(
q

p

)cj

if cj > 0,

pq if cj = 0.

(20)

6The bound in (15) is almost optimal, since the left-hand side is equal to N(d − 2) when G consists of N/(d + 1) copies
of stars Sd .
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Since cj ≤ ω − 1, it follows that

Var
[
bjf (̂cj )

] ≤ p

[(
q

p

)ω−1

∨ q

p

]
. (21)

The covariance terms are less obvious to bound; but thanks to the orthogonality property in
Lemma 5, many of them are zero or negative. Let NC �

∑
bj1

{
vj ∈ C

}
. For any j , since vj /∈

Cj by definition, applying Lemma 5 yields

E
[
bjf (̂cj )

] = pE
[
f (NCj

)
] = p1

{
Cj =∅

}
. (22)

Without loss of generality, assume j < i. By the definition of Cj , we have vi /∈ Cj . Next, we
consider two cases separately:

Case I: vj /∈ Ci . If either Cj or Ci is nonempty, Lemma 5 yields

Cov
[
bjf (̂cj ), bif (̂ci )

] (22)= E
[
bibjf (̂cj )f (̂ci )

]
= p2E

[
f (NCj

)f (NCi
)
]

= p21{Cj = Ci}
(

q

p

)cj

.

If Cj = Ci =∅, then Cov[bjf (̂cj ), bif (̂ci )] = Cov[bj , bi] = 0.

Case II: vj ∈ Ci . Then E[bif (̂ci )] = 0 by (22). Using Lemma 5 again, we have

Cov
[
bjf (̂cj ), bif (̂ci )

] = pE

[
bj

(
− q

p

)bj

]
E
[
f (NCj

)f (NCi\{vj })
]

= −pqE
[
f (NCj

)f (NCi\{vj })
]

= −pq1
{
Cj = Ci \ {vj }

}( q

p

)cj

.

To summarize, we have shown that

Cov
[
bjf (̂cj ), bif (̂ci )

] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p2

(
q

p

)cj

if Cj = Ci �=∅,

−pq

(
q

p

)cj

if Cj = Ci \ {vj } and vj ∈ Ci,

0 otherwise.
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Thus,

∑
j �=i

Cov
[
bjf (̂cj ), bif (̂ci)

] ≤
∑

j �=i:Cj =Ci �=∅

p2
(

q

p

)cj

(15)≤ N(d − 1)p2

[(
q

p

)ω−1

∨ q

p

]
. (23)

Finally, combining (19), (21) and (23) yields the desired (11).
The high-probability bound (12) for ĉc follows from the concentration inequality in Lemma 10

in Appendix 6. To apply this result, note that ĉc is a sum of dependent random variables

ĉc =
∑

j∈[N ]
Yj , (24)

where Yj = 1
p
bjf (̂cj ) satisfies E[Yj ] = 0 for cj > 0 and |Yj | ≤ b � ( 1

p
)ω almost surely. Also,

S �
∑

j∈[N ] Var[Yj ] ≤ N( 1
p
)ω by (20). To control the dependency between {Yj }j∈[N ], note that

ĉj = bj

∑
k:vk∈Cj

bk . Thus, Yj only depends on {bk : k ∈ Aj }, where Aj = {vj } ∪ Cj . Define a
dependency graph �, where V (�) = [N ] and

E(�) = {{i, j} : i �= j,Ai ∩ Aj �=∅
}
.

Then � has maximum degree bounded by dω, by Lemma 6. �

4.2.2. Unbounded clique number: Smoothed estimators

Up to this point, we have only considered unbiased estimators of the number of connected com-
ponents. If the sample ratio p is at least 1

2 , Theorem 1 implies its variance is

Var[ĉc] ≤ N(d + 1),

regardless of the clique number ω of the parent graph. However, if the clique number ω grows
with N , for small sampling ratio p the coefficients of the unbiased estimator (9) are as large as 1

pω

which results in exponentially large variance. Therefore, in order to deal with graphs with large
cliques, we must give up unbiasedness to achieve better bias-variance tradeoff. Using a technique
known as smoothing introduced in [49], next we modify the unbiased estimator to achieve a good
bias-variance tradeoff.

To this end, consider a discrete random variable L ∈N independent of everything else. Define
the following estimator by discarding those terms in (10) for which c̃j exceeds L, and then
averaging over the distribution of L. In other words, let

ĉcL � EL

⎡⎣ 1

p

m∑
j=1

(
− q

p

)̃cj

1{̃cj ≤ L}
⎤⎦= 1

p

m∑
j=1

(
− q

p

)̃cj

P
[
L ≥ c̃j

]
. (25)
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Effectively, smoothing acts as soft truncation by introducing a tail probability that modulates
the exponential growth of the original coefficients. The variance can then be bounded by the
maximum magnitude of the coefficients in (25). Like (9), (25) can be computed in linear time.

The next theorem bounds the mean-square error of ĉcL, which implies the minimax upper
bound previously announced in Theorem 3. Its proof is somewhat technical and so we defer it to
Appendix 6.

Theorem 7. Let L ∼ Poisson(λ) with λ = p
2−3p

log(
Np

1+dω
). If the maximum degree and clique

number of G is at most d and ω, respectively, then when p < 1/2,

EG

∣∣ĉcL − cc(G)
∣∣2 ≤ 2N2

(
Np

1 + dω

)− p
2−3p

.

4.3. Unions of cliques

If the parent graph G consists of disjoint union of cliques, so does the sampled graph G̃. Counting
cliques in each connected components, we can rewrite the estimator (9) as

ĉc =
∑
r≥1

(
1 −

(
− q

p

)r)
c̃cr = cc(G̃) −

∑
r≥1

(
− q

p

)r

c̃cr , (26)

where c̃cr is the number of components in the sampled graph G̃ that have r vertices. This co-
incides with the unbiased estimator proposed by Frank [22] for cliques, which is, in turn, based
on the estimator of Goodman [28]. The following theorem, whose proof is given in Appendix 6,
provides an upper bound on its variance, recovering the previous result in [22], Corollary 11.

Theorem 8. Let G be a disjoint union of cliques with clique number at most ω. Then ĉc is an
unbiased estimator of cc(G) and

EG

∣∣ĉc − cc(G)
∣∣2 = Var[ĉc] =

N∑
r=1

(
q

p

)r

ccr ≤ N

((
q

p

)ω

∧ q

p

)
,

where ccr is the number of connected components in G of size r .

Theorem 8 implies that as long as we sample at least half of the vertices, that is, p ≥ 1
2 , for

any G consisting of disjoint cliques, the unbiased estimator (26) satisfies

EG

∣∣ĉc − cc(G)
∣∣2 ≤ N,

regardless of the clique size. However, if p < 1/2, the variance can be exponentially large in
N . Next, we use the smoothing technique again to obtain a biased estimator with near-optimal
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performance. To this end, consider a discrete random variable L ∈ N and define the following
estimator by truncating (26) at the random location L and average over its distribution:

c̃cL � cc(G̃) −EL

[
L∑

r=1

(
− q

p

)r

c̃cr

]
= cc(G̃) −

∑
r≥1

(
− q

p

)r

P [L ≥ r] c̃cr . (27)

The following result, proved in Appendix 6, bounds the mean squared error of c̃cL and, con-
sequently, bounds the minimax risk in Theorem 4. It turns out that the smoothed estimator (27)
with appropriately chosen parameters is nearly optimal. In fact, Theorem 9, whose proof is given
in Appendix 6, gives an upper bound on the sampling complexity (see Table 1), which, in view
of [60], Theorem 4, is seen to be optimal.

Theorem 9. Let G be a disjoint union of cliques. Let L ∼ Pois(λ) with λ = p
2−3p

log(N/4). If
p < 1/2, then

EG

∣∣c̃cL − cc(G)
∣∣2 ≤ N2(N/4)

− p
2−3p .

Remark 1. Alternatively, we could specialize the estimator ĉcL in (25) that is designed for
general chordal graphs to the case when G is a disjoint union of cliques; however, the analysis
is less clean and the results are slightly weaker than Theorem 9.

4.4. Non-chordal graphs

A general graph can always be made chordal by adding edges. Such an operation is called a
chordal completion or triangulation of a graph, henceforth denoted by TRI. There are many
ways to triangulate a graph and this is typically done with the goal of minimizing some objective
function (e.g., number of edges or the clique number). Without loss of generality, triangulations
do not affect the number of connected components, since the operation can be applied to each
component.

In view of the various estimators and their performance guarantees developed so far for chordal
graphs, a natural question to ask is how one might generalize those to non-chordal graphs. One
heuristic is to first triangulate the subsampled graph and then apply the estimator such as (10)
and (25) that are designed for chordal graphs. Suppose a triangulation operation commutes with
subgraph sampling in distribution,7 then the modified estimator would inherit all the performance
guarantees proved for chordal graphs; unfortunately, this does not hold in general. Thus, so far
our theory does not readily extend to non-chordal graphs. Nevertheless, the empirical perfor-
mance of this heuristic estimator is competitive with ĉc in both performance (see Figure 10)
and computational efficiency. Indeed, there are polynomial time algorithms that add at most 8k2

7By “commute in distribution” we mean the random graphs TRI(G̃) and T̃RI(G) have the same distribution. That is, the
triangulated sampled graph is statistically identical to a sampled version of a triangulation of the parent graph.
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edges if at least k edges must be added to make the graph chordal [47].8 In view of the theoreti-
cal guarantees in Theorem 6, it is better to be conservative with adding edges so as the maximal
degree d and the clique number ω are kept small.

It should be noted that blindly applying estimators designed for chordal graphs to the subsam-
pled non-chordal graph without triangulation leads to nonsensical estimates. Thus, preprocessing
the graph appears to be necessary for producing good results. We will leave the task of rigorously
establishing these heuristics for future work.

5. Lower bounds

5.1. General strategy

Next, we give a general lower bound for estimating additive graph properties (e.g. the number of
connected components, subgraph counts) under the Bernoulli sampling model. The proof uses
the method of two fuzzy hypotheses [57], Theorem 2.15, which, in the context of estimating
graph properties, entails constructing a pair of random graphs whose properties have different
average values, and the distributions of their subsampled versions are close in total variation,
which is ensured by matching lower-order subgraph counts or sampling certain configurations
on their vertices. The utility of this result is to use a pair of smaller graphs (which can be found in
an ad hoc manner) to construct a bigger pair of graphs on N vertices and produce a lower bound
that scales with N . The proof of Theorem 10 is furnished in Appendix 6.

Theorem 10. Let f be a graph parameter that is invariant under isomorphisms and additive
under disjoint union, that is, f (G + H) = f (G) + f (H) [43], p. 41. Let G be a class of graphs
with at most N vertices. Let m and M = N/m be integers. Let H and H ′ be two graphs with m

vertices. Assume that any disjoint union of the form G1 + · · · + GM is in G where Gi is either H

or H ′. Suppose M ≥ 300 and TV(P,P ′) ≤ 1/300, where P (resp. P ′) denote the distribution of
the isomorphism class of the sampled graph H̃ (resp. H̃ ′). Let G̃ denote the sampled version of
G under the Bernoulli sampling model with probability p. Then

inf
f̂

sup
G∈G

P
[∣∣f̂ (G̃) − f (G)

∣∣ ≥ 	
] ≥ 0.01, (28)

where 	 � |f (H)−f (H ′)|
8 (

√
N

mTV(P,P ′) ∧ N
m

).

5.2. Bounding total variations between sampled graphs

The application of Theorem 10 relies on the construction of a pair of small graphs H and H ′
whose sampled versions are close in total variation. To this end, we provide two schemes to
bound TV(PH̃ ,PH̃ ′) from above.

8An implementation of graph triangulation R is provided by the is_chordal() function in the package igraph [35].
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5.2.1. Matching subgraphs

Since cc(G) is invariant with respect to isomorphisms, it suffices to describe the sampled graph
G̃ up to isomorphisms. It is well known that a graph G can be determined up to isomorphisms
by its homomorphism numbers that count the number of ways to embed a smaller graph in G.
Among various versions of graph homomorphism numbers (cf. [43], Section 5.2) the one that is
most relevant to the present paper is s(H,G), which, as defined in Section 1, is the number of
vertex-induced subgraphs of G that are isomorphic to H . Specifically, the relevance of induced
subgraph counts to the subgraph sampling model is two-fold:

• The list of vertex-induced subgraph counts {s(H,G) : v(H) ≤ N} determines G up to iso-
morphism and hence constitutes a sufficient statistic for G̃. In fact, it is further sufficient
to summarize G̃ into the list of numbers:9 {s(H, G̃) : v(H) ≤ N,H is connected}, since the
count of any disconnected subgraph is a fixed polynomial of connected subgraph counts.
This is a well-known result in the theory of graph reconstruction [16,39,59]. For example,
for any graph G, we have s( ,G) = (s( ,G)

2

)− s( ,G) and

s( ,G) =
(

s( ,G)

2

)
− s( ,G) − 3s( ,G) − s( ,G)

− 2s( ,G) − s( ,G) − 2s( ,G) − 3s( ,G),

which can be obtained by counting pairs of vertices or edges in two different ways, respec-
tively. See [45], Section 2, for more examples.

• Under the Bernoulli sampling model, the probabilistic law of the isomorphism class of
the sampled graph is a polynomial in the sampling ratio p, with coefficients given by
the induced subgraph counts. Indeed, recall from (2) that P[G̃ � H ] = s(H,G)pv(H)(1 −
p)v(G)−v(H). Therefore two graphs with matching subgraph counts for all (connected)
graphs of n vertices are statistically indistinguishable unless more than n vertices are sam-
pled.

We begin with a refinement of the classical result that says disconnected subgraphs counts
are fixed polynomials of connected subgraph counts. Below we provide a more quantitative ver-
sion by showing that only those connected subgraphs which contain no more vertices than the
disconnected subgraph involved. The proofs of the next set of results are given in Appendix 6.

Lemma 7. Let H be a disconnected graph of v vertices. Then for any G, s(H,G) can be ex-
pressed as a polynomial, independent of G, in {s(g,G) : g is connected and v(g) ≤ v}.

Corollary 1. Suppose H and H ′ are two graphs in which s(h,H) = s(h,H ′) for all connected
h with v(h) ≤ v. Then s(h,H) = s(h,H ′) for all h with v(h) ≤ v.

9This statistic cannot be further reduced because it is known that the connected subgraphs counts do not fulfill any
predetermined relations in the sense that the closure of the range of their normalized version (subgraph densities) has
nonempty interior [16].
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Lemma 8. Let H and H ′ be two graphs on m vertices. If

s(h,H) = s
(
h,H ′) (29)

for all connected graphs h with at most k vertices with k ∈ [m], then

TV(PH̃ ,PH̃ ′) ≤ P
[
Bin(m,p) ≥ k + 1

]≤
(

m

k + 1

)
pk+1. (30)

Furthermore, if p ≤ (k + 1)/m, then

TV(PH̃ ,PH̃ ′) ≤ exp

{
−2(k + 1 − pm)2

m

}
. (31)

In Figure 6, we give an example of two graphs H and H ′ on 8 vertices that have match-
ing counts of connected subgraphs with at most 4 vertices. Thus, by Lemma 8, they also have
matching counts of all subgraphs with at most 4 vertices, and if p ≤ 5/8, then TV(PH̃ ,PH̃ ′) ≤
e− 25

4 (1− 8p
5 )2

.

5.2.2. Labeling-based coupling

It is well known that for any probability distributions P and P ′, the total variation is given by
TV(P,P ′) = infP

[
X �= X′], where the infimum is over all couplings, that is, joint distributions

of X and X′ that are marginally distributed as P and P ′, respectively. There is a natural coupling
between the sampled graphs H̃ and H̃ ′ when we define the parent graph H and H ′ on the same
set of labelled vertices. In some of the applications of Theorem 10, the constructions of H and
H ′ are such that if certain configurations of the vertices are included or excluded in the sample,
the resulting graphs are isomorphic. This property allows us to bound the total variation between
the sampled graphs as follows.

Lemma 9. Let H and H ′ be graphs defined on the same set of vertices V . Let U be a subset of
V and suppose that for any u ∈ U , we have H [V \ {u}] � H ′[V \ {u}]. Then, the total variation
TV(PH̃ ,PH̃ ′) can be bounded by the probability that every vertex in U is sampled, viz.,

TV(PH̃ ,PH̃ ′) ≤ 1 − P
[
H̃ � H̃ ′]≤ p|U |.

If, in addition, H [U ] � H ′[U ], then the total variation TV(PH̃ ,PH̃ ′) can be bounded by the
probability that every vertex in U is sampled and at least one vertex in V \ U is sampled, viz.,

TV(PH̃ ,PH̃ ′) ≤ p|U |(1 − (1 − p)
)|V |−|U |

.

In Figure 4, we give an example of two graphs H and H ′ satisfying the assumption of
Lemma 9. In this example, |U | = 2, and |V | = 8. Note that if any of the vertices in U are re-
moved along with all their incident edges, then the resulting graphs are isomorphic. Also, since
H [U ] � H ′[U ], Lemma 9 implies that TV(PH̃ ,PH̃ ′) ≤ p2(1 − (1 − p)6).
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Figure 4. Example where U = {u1, u2} is an edge. If any of these vertices are not sampled and all incident
edges are removed, the resulting graphs are isomorphic.

In the remainder of the section, we apply Theorem 10, Lemma 8, and Lemma 9 to derive
lower bounds on the minimax risk for graphs that contain cycles and general chordal graphs,
respectively. The main task is to handcraft a pair of graphs H and H ′ that either have matching
counts of small subgraphs or for which certain configurations of their vertices induce subgraphs
that are isomorphic.

5.3. Lower bound for chordal graphs

Theorem 11 (Chordal graphs). Let G(N,d,ω) denote the collection of all chordal graphs on
N vertices with maximum degree and clique number at most d and ω ≥ 2, respectively. Assume
that p < 1

2ω100 . Then

inf
ĉc

sup
G∈G(N,d,ω)

EG

∣∣ĉc − cc(G)
∣∣2 = �ω

((
N

pω
∨ Nd

pω−1

)
∧ N2

)
.

Proof. There are two different constructions we give, according to whether d ≥ 2ω or d < 2ω.

Case I: d ≥ 2ω

For every ω ≥ 2 and m ∈N, we construct a pair of graphs H and H ′, such that

v(H) = v
(
H ′)= ω − 1 + m2ω−2 (32)

dmax(H) = dmax
(
H ′)= m2ω−3 + ω − 2, ω ≥ 3 (33)

dmax(H) = 0, dmax
(
H ′)= m, ω = 2 (34)

cc(H) = m + 1, cc
(
H ′)= 1 (35)∣∣s(Kω,H) − s

(
Kω,H ′)∣∣= m (36)

Fix a set of ω − 1 vertices U that forms a clique. We first construct H . For every subset S ⊂ U

such that |S| is even, let VS be a set of m distinct vertices such that the neighborhood of every
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v ∈ VS is given by ∂v = S. Let the vertex set V (H) be the union of U and all VS such that |S| is
even. In particular, because of the presence of S = ∅, H always has exactly m isolated vertices
(unless ω = 2, in which case H consists of m+1 isolated vertices). Repeat the same construction
for H ′ with |S| being odd. Then both H are H ′ are chordal and have the same number of vertices
as in (32), since

v(H) = ω − 1 + m
∑

0≤i≤ω−1, i even

(
ω − 1

i

)
= v

(
H ′)

= ω − 1 + m
∑

0≤i≤ω−1, i odd

(
ω − 1

i

)

which follows from the binomial summation formula. Similarly, (33)–(36) can be readily veri-
fied.

We also have that

s(Ki,H) =
(

ω − 1
i

)
+ m

∑
0≤j≤ω−1,j even

(
ω − 1

j

)(
j

i − 1

)

= s
(
Ki,H

′)=
(

ω − 1
i

)
+ m

∑
0≤j≤ω−1,j odd

(
ω − 1

j

)(
j

i − 1

)

=
(

ω − 1
i

)
+ m

(
ω − 1
i − 1

)
2ω−1−i ,

for i = 1,2, . . . ,ω − 1. This follows from the fact that
∑

0≤j≤ω−1(−1)j
(
ω−1

j

)(
j

i−1

) = 0 and∑
0≤j≤ω−1

(
ω−1

j

)(
j

i−1

)= (
ω−1
i−1

)
2ω−i .

To compute the total variation distance between the sampled graphs, we first assume that H

and H ′ are defined on the same set of labelled vertices V . The key observation is the following:
by construction, H [U ] � H ′[U ] (since U induces a clique) and, furthermore, failing to sample
any vertex in U results in an isomorphic graph, i.e., H [V \ {u}] � H ′[V \ {u}] for any u ∈ U .
Indeed, the structure of the induced subgraph H [V \ {u}] can be described as follows. First, let
U form a clique. Next, for every nonempty subset S ⊂ U \ {u}, attach a set of m distinct vertices
(denoted by VS ) so that the neighborhood of every v ∈ VS is given by ∂v = S. Finally, add m+ 1
isolated vertices. See Figure 4 (ω = 3) and Figure 5 (ω = 4) for illustrations of this property and
the iterative nature of this construction, in the sense that the construction of H (resp. H ′) for
ω = k + 1 can be obtained from the construction of H (resp. H ′) for ω = k by adding another
vertex u to U such that ∂u = U and then adjoining m distinct vertices to every even (resp. odd)
cardinality set S ⊂ U containing u.

Thus by Lemma 9, TV(PH̃ ,PH̃ ′) ≤ p|U | (1 − (1 − p)|V |−|U |)= pω−1(1− (1−p)m2ω−2
). Ac-

cording to (33), we choose m = ⌊
(d − ω + 2)2−ω+3

⌋ ≥ d2−ω+2 if ω ≥ 3 and m = d if ω = 2.
Then we have, TV(PH̃ ,PH̃ ′) = pω−1(1−(1−p)d) ≤ pω−1(pd ∧1). The condition on p ensures
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Figure 5. Example for ω = 4 and m = 3, where U = {u1, u2, u3} form a triangle. If any one or two (as
shown in the figure) of these vertices are not sampled and all incident edges are removed, the resulting
graphs are isomorphic.

that TV(PH̃ ,PH̃ ′) ≤ p < 1/300. In view of Theorem 10 and (35), we have

inf
ĉc

sup
G∈G(N,d,ω)

EG

∣∣ĉc − cc(G)
∣∣2 = �ω

((
N

pω
∨ Nd

pω−1

)
∧ N2

)
,

provided d ≥ 2ω.

Case II: d ≤ 2ω

In this case, the previous construction is no longer feasible and we must construct another pair
of graphs with a smaller maximum degree. To this end, we consider graphs H and H ′ consisting
of disjoint cliques of size at most ω ≥ 2, such that

v(H) = v
(
H ′)= ω2ω−2,

dmax(H) = dmax
(
H ′)= ω − 1,∣∣cc(H) − cc

(
H ′)∣∣= 1.

(37)

If ω is odd, we set

H =
(

ω

ω

)
Kω +

(
ω

ω − 2

)
Kω−2 + · · · +

(
ω

3

)
K3 +

(
ω

1

)
K1

H ′ =
(

ω

ω − 1

)
Kω−1 +

(
ω

ω − 3

)
Kω−3 + · · · +

(
ω

4

)
K4 +

(
ω

2

)
K2.

(38)
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If ω is even, we set

H =
(

ω

ω

)
Kω +

(
ω

ω − 2

)
Kω−2 + · · · +

(
ω

4

)
K4 +

(
ω

2

)
K2

H ′ =
(

ω

ω − 1

)
Kω−1 +

(
ω

ω − 3

)
Kω−3 + · · · +

(
ω

3

)
K3 +

(
ω

1

)
K1.

(39)

For example, for ω = 3, (38) becomes H = +3× and H ′ = 3× ; for ω = 4, (39) becomes
H = + 6 × and H ′ = 4 × + 4 × .

Next we verify that H and H ′ have matching subgraph counts. Indeed, for i = 1,2, . . . ,ω − 1,
s(Ki,H) − s(Ki,H

′) = ∑ω
k=i (−1)k

(
ω
k

)(
k
i

) = 0 and s(Ki,H) = s(Ki,H
′) = 1

2

∑ω
k=i

(
ω
k

)(
k
i

) =
2ω−1−i

(
ω
i

)
. Hence, H and H ′ contain matching number of cliques up to size ω − 1. Note that

the only connected induced subgraphs of H and H ′ with at most ω − 1 vertices are cliques.

Consequently, by (30), TV(PH̃ ,PH̃ ′) ≤ (
ω2ω−2

ω

)
pω and together with Theorem 10 and (37), we

have

inf
ĉc

sup
G∈G(N,d,ω)

EG

∣∣ĉc − cc(G)
∣∣2 ≥ �ω

(
N

pω
∧ N2

)
= �ω

((
N

pω
∨ Nd

pω−1

)
∧ N2

)
,

where the last inequality follows from the current assumption that d ≤ 2ω. The condition on p

ensures that TV(PH̃ ,PH̃ ′) ≤ p2ω−2 < 1/300. �
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