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1. Introduction

Describing the properties of the sample paths of stochastic processes is one of the leading threads
of modern stochastic analysis: such a line of research started with the investigation of the almost
sure continuity properties of the paths of a real-valued Brownian motion (Bt )t≥0, such as Hölder
continuity, followed by the important notions of fast and slow points introduced by Taylor. See,
for example, the three classical references [10,14,20] for formal statements, as well as for an
historical overview of this fundamental domain.

A naturally connected question consists in describing the geometric properties of the graph
of {(t,Bt ) : t ≥ 0}, in terms of box, packing and Hausdorff dimensions – see Section 2.1 for
precise definitons. In this respect, the case of the Brownian motion is [14,23,24] now very well
understood, and many researchers have tried, often successfully, to obtain similar results for
other widely used classes of processes: fractional Brownian motions and more general Gaussian
processes, Lévy processes, solutions of SDE or SPDE’s (see [2,12,17,18,22,27] for instance, and
the numerous references therein). Despite these remarkable efforts, many important questions in
this area are almost completely open for future research.

Another description of random trajectories was proposed in terms of sojourn times. The ob-
jective is to describe the (asymptotic) proportion of time spent by a stochastic process in a given
region. Sojourn times have been studied by many authors (see, for instance, [6,7,19,25] and the
references therein) and play a key role in understanding various features of the paths of stochastic
processes, especially those of Brownian motion.

In this paper, we focus on the sojourn times associated with the paths of a fractional Brownian
motion (FBM) inside the domain {(t, u) : t ≥ 0 and |u| ≤ tγ }, where γ ≥ 0. It is known that, for
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Figure 1. The red subset of the real line is a simulation of the set Eγ , with γ = 0.22 and H = 0.43.

every ε > 0 and with probability one, after some large time t , an FBM B := (Bt )t≥0 does not
intersect the domain {(t, u) : t ≥ 0 and |u| ≥ tH+ε}; this last fact can be directly deduced from
the law of the iterated logarithm (LIL) for B at infinity, which by time inversion is a consequence
of the LIL for B at zero – see, for example, the classical reference [16] for a statement. For this
reason, in what follows we restrict our study to the case γ ∈ [0,H ], and investigate the sets

Eγ := {
t ≥ 0 : |Bt | ≤ tγ

}
(1)

in terms of various large scale dimensions: the Lebesgue density, the logarithmic density, and the
macroscopic box and Hausdorff dimensions. A simulation of the set Eγ appears in Figure 1.

The last two notions evoked above have been introduced in the late 1980s by Barlow and
Taylor (see [3,4]), in order to formally define the fractal dimension of a discrete set. One of
the main motivations for the theory developed in [3] was for example, to describe the asymptotic
properties of the trajectory of a random walk on Z

2, whereas the focus in [4] was the computation
of the macroscopic Hausdorff dimension of an α-stable random walk. Proper definitions are given
in the next section. These dimensions have proven to be relevant in other situations, in particular
when describing the high peaks of (random) solutions of the stochastic heat equation, see the
seminal works of Khoshnevisan, Kim and Xiao [11,13].



Sojourn times for fractional Brownian motion 1621

The present paper can be seen as a follow-up and a non-trivial extension of [21], where anal-
ogous results were obtained in the case of B being a standard Brownian motion. One of the
principal motivations of our analysis is indeed to understand how much the findings of [21] rely
on the specific features of Brownian motion, such as the (strong and weak) Markov properties,
the associated reflection principle, as well as the fine properties of local times. While all these
features are heavily exploited in [21], the novel approach developed in our paper shows that the
dimensional analysis of sojourn times initiated in [21] can be substantially extended to the non-
Markovian setting of a fractional Brownian motion with arbitrary Hurst index. We believe that
our techniques might be suitably adapted in order to study sojourn times associated with even
larger classes of Gaussian processes or Gaussian fields.

From now on, every random object considered in the paper is defined on a common probability
space (�,A,P), with E denoting expectation with respect to P.

2. Assumptions and main results

2.1. Densities and dimensions

In what follows, the symbol ‘Leb‘ stands for the one-dimensional Lebesgue measure. For any set
A, we denote by |A| its cardinality whereas, for any subset E ⊂R

+,

pix(E) = {
n ∈N : dist(n,E) ≤ 1

}
is the set of integers that are at distance less than one from E. It is clear that Leb(E) ≤ |pix(E)|,
while the converse inequality does not hold in general.

We will now describe the main notions and concepts that are used in this paper, in order to
describe the size of the set of sojourn times Eγ = {t ≥ 0 : |Bt | ≤ tγ }. We refer the reader to
[11–13] for further details concerning the forthcoming Definitions 1, 2 and 3.

The simplest way of assessing the size of Eγ simply consists in estimating how fast the
Lebesgue measure of Eγ ∩ [0, t] grows with t . For a general set E ⊂ R

+, this yields the fol-
lowing definition.

Definition 1. Let E ⊂R
+. The logarithmic density of E is defined as

Denlog E = lim sup
n→+∞

log2 Leb(E ∩ [1,2n])
n

.

This notion will be compared with a similar quantity, obtained by replacing the Lebesgue
measure of a given subset of E by the cardinality of its pixel set.

Definition 2. Let E ⊂R
+. The pixel density of E is defined by

Denpix E = lim sup
n→+∞

log2 |pix(E ∩ [1,2n])|
n

.
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The last notion we will deal with is the macroscopic Hausdorff dimension, introduced by
Barlow and Taylor (as discussed above), in order to quantify a sort of “fractal” behavior of self-
similar structures sitting on infinite lattices.

Following the notations of [11,13], we consider the annuli S0 = [0,1) and Sn = [2n−1,2n),
for n ≥ 1. For any ρ ≥ 0, any set E ⊂R

+ and any n ∈N
∗, we define

νn
ρ(E) = inf

{
m∑

i=1

(
Leb(Ii)

2n

)ρ

: m ≥ 1, Ii ⊂ Sn,E ∩ Sn ⊂
m⋃

i=1

Ii

}
, (2)

where Ii are non-trivial intervals with integer boundaries (hence their length is always greater
or equal than 1). The infimum is thus taken over a finite number of finite families of non-trivial
intervals.

Definition 3. Let E ⊂R
+. The macroscopic Hausdorff dimension of E is defined as

DimH E = inf

{
ρ ≥ 0 :

∑
n≥0

νn
ρ(E) < +∞

}
. (3)

Observe that DimH E ∈ [0,1] for any E ⊂R
+: indeed, choosing as covering of E ∩Sn the in-

tervals of length 1 partitioning Sn, we get νn
1+ε(E) ≤ 2−nε for any ε > 0, so that

∑
nε0 νn

1+ε(E) <

+∞.
The macroscopic Hausdorff dimension DimH E of E ⊂ R

+ does not depend on its bounded
subsets, since the series in (3) converges if and only if its tail series converges. In particular, every
bounded set E has a macroscopic Hausdorff dimension equal to zero – the converse is not true,
for instance DimH

⋃
n≥1{2n} = 0.

Observe also that the local structure of E does not really influence the value of DimH (E),
since the “natural” scale at which E is observed is 1.

The value of DimH E describes the asymptotic distribution of E ⊂R
+ on R

+. The difference
between DimH E and the previously introduced dimensions is that while Denpix E (or Denlog E)
only counts the number of points of E ∩Sn (or, equivalently, measures E ∩ [1,2n]), the quantity
DimH E takes into account the geometry of the set E, in particular by considering the most
efficient covering of E ∩ Sn. For instance, as an intuition, the value of ν

ρ
n (E) is large when all

the points of E ∩ Sn are more or less uniformly distributed in Sn, while it is much smaller when
these points are all located in the same region (in that case, one large interval is the best possible
covering).

Standard inequalities exploited in our paper are (see [3,11])

DimH E ≤ Denpix E and DenlogE ≤ Denpix E. (4)

These inequalities are strict in general, in particular the first one will be strict for the sets we
focus on in this paper.
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2.2. Fractional Brownian motion

Throughout the paper, B = (Bt )t≥0 denotes a one-dimensional fractional Brownian motion
(FBM) of index H ∈ (0,1). This means that B is a continuous Gaussian process, centered, self-
similar of index H , and with stationary increments. All these properties (in particular, the fact
that one can always select a continuous modification of B) are simple consequences of the fol-
lowing expression for its covariance function R:

R(u, v) = E[BuBv] = 1

2

(
u2H + v2H − |v − u|2H

)
.

One can easily check that

I :=
∫∫

[0,1]2

dudv√
R(u,u)R(v, v) − R(u, v)2

< +∞. (5)

By virtue of this fact, the local time (Lx
t )x∈R,t≥0 associated with B is well defined in L2(�) by

the following integral relation:

Lx
t = 1

2π

∫
R

dy e−iyx

∫ t

s

du eiyBu, (6)

see, for example, [5]. For each t , the local time x 
→ Lx
t is the density of the occupation measure

μt(A) = Leb{s ∈ [0, t] : Bs ∈ A} associated with B . Otherwise stated, one has that Lt = dμt

d Leb .
A last property that we will need in order to conclude our proofs, and that is an immediate

consequence of the Volterra representation of B (see, e.g., [15], Proposition 2.5), is that the
natural filtration associated with FBM is Brownian. By this, we mean that there exists a standard
Brownian motion (Wu)u≥0 defined on the same probability space than B such that its filtration
satisfies

σ {Bu : u ≤ t} ⊂ σ {Wu : u ≤ t} (7)

for all t > 0.

2.3. Our results

Let the notation of the previous sections prevail (in particular B denotes a FBM of index H ∈
(0,1)). The first result proved in this paper concerns the logarithmic and macroscopic densities
of the sojourn times Eγ , as defined in (1).

Theorem 1. Fix γ ∈ [0,H). Then

Denpix Eγ = Denlog Eγ = γ + 1 − H a.s. (8)

Our second theorem deals with the macroscopic Hausdorff dimension of all sets Eγ .



1624 I. Nourdin, G. Peccati and S. Seuret

Theorem 2. Fix γ ∈ [0,H). Then

DimH Eγ = 1 − H a.s. (9)

The fact that the macroscopic box and Hausdorff dimension differ asserts that the trajectory
enjoys some specific geometric properties. This can be interpreted by the fact that the set Eγ is
not uniformly distributed (if it were, then both dimensions would coincide), which relies on the
intuition that the trajectory of an FBM does not fluctuate too rapidly from one region to the other.

Actually, the lower bound for the dimension DimH Eγ ≥ 1−H in Theorem 2 will follow from
the next statement, which evaluates the dimension of the level sets

Lx := {t : Bt = x} (10)

and which is of independent interest.

Theorem 3. Fix x ∈ R. Then

DimH Lx = 1 − H a.s. (11)

The connection between Theorem 2 and Theorem 3 can be heuristically understood by observ-
ing that, when t is large and for a fixed x, the relation t ∈ Lx implies that t ∈ Eγ , and therefore
DimH Eγ ≥ DimH Lx , owing to the fact that, as explained above, the quantity DimH A does not
depend on the bounded subsets of a given A ⊂R+.

Remark 1. The fact that the pixel and logarithmic dimension of Eγ depend on γ could in
principle be interpreted as a sort of multifractal property of B (see, e.g., [8]). Notice, though,
that multifractality usually reflects an important variability in the local behaviors of the sample
path of the process under consideration – whereas here we investigate “large-scale” dimensions
which do not take into account the local variations (since the size of the boxes we use is always
greater than 1). In addition, the macroscopic Hausdorff dimension of Eγ is independent of γ .
Hence, our study rather emphasizes the monofractality of the fBm B .

3. Proof of Theorem 1: Values of DenpixEγ and DenlogEγ

In what follows, C > 0 always denotes a constant whose value is immaterial and may change
from one line to the other.

3.1. Upper bounds

Recalling the second part of (4), it is enough to find an upper bound for Denpix Eγ , which will
also be an upper bound for DenlogEγ .
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Fix γ ∈ (0,H), and consider Denpix Eγ . First, we observe that

E
(∣∣pix(Eγ ) ∩ [

1,2n
]∣∣) =

2n∑
m=1

P
(∃s ∈ [m − 1,m + 1], |Bs | ≤ sγ

)

=
2n∑

m=1

P

(
∃s ∈

[
1 − 1

m
,1 + 1

m

]
, |Bs | ≤ sγ mγ−H

)

≤
2n∑

m=1

(
A−

1/m + A+
1/m

)
where

A−
ε := P

(∃s ∈ [1 − ε,1], |Bs | ≤ εH−γ
)

A+
ε := P

(∃s ∈ [1,1 + ε], |Bs | ≤ 2εH−γ
)
.

Lemma 4. For every ε small enough,

max
(
A−

ε ,A+
ε

) ≤ 3εH−γ . (12)

Proof. Let us consider A−
ε first. We have

A−
ε ≤ P

(|B1| ≤ 2εH−γ
)

+ P
(∃s ∈ [1 − ε,1], |Bs − B1| ≥ εH−γ

)
.

The term P(|B1| ≤ 2εH−γ ) is easily bounded by CεH−γ , so let us concentrate on the term
P(∃s ∈ [1 − ε,1], |Bs − B1| ≥ εH−γ ). Set Xs = B1 − B1−s , s ∈ [0,1]. Observe that X is also a
FBM. We have

P
(∃s ∈ [1 − ε,1], |Bs − B1| ≥ εH−γ

)
= P

(∃s ∈ [0,1], |Xεs | ≥ εH−γ
) = P

(∃s ∈ [0,1], |Xs | ≥ ε−γ
)

= P

(
sup

s∈[0,1]
|Xs | ≥ ε−γ

)
≤ 2P

(
sup

s∈[0,1]
Xs ≥ ε−γ

)

where last inequality makes use of the fact that X
law= −X. It is well-known that, by virtue of

the Borell and Tsirelson-Ibragimov-Sudakov inequalties (see, e.g., [1], Section 2.1), setting α =
E[sup[0,1] B] and because E[B2

s ] = s2H ≤ 1 for all s ∈ [0,1]:

P
(

sup
[0,1]

X ≥ u
)

≤ e− (u−α)2
2 , u ≥ 0. (13)



1626 I. Nourdin, G. Peccati and S. Seuret

(That α is finite is part of the result.) We deduce that

P
(∃s ∈ [1 − ε,1], |Bs − B1| ≥ εH−γ

) ≤ 2e− (ε−γ −α)2
2 = O

(
εδ

)
,

for every δ > 0 when ε becomes small enough. Hence, the result. An analogous argument leads
to the same estimate for the set A+

ε . �

Going back to A−
1/m and A+

1/m, we obtain from Lemma 4 that

max
(
A−

1/m,A+
1/m

) = O
(
mγ−H

)
.

We consequently conclude that

E
(∣∣pix(Eγ ) ∩ [

1,2n
]∣∣) ≤

2n∑
m=1

(
A−

1/m + A+
1/m

) = O
(
2n(γ+1−H)

)
.

Choosing ρ > γ + 1 − H , we have

∑
n≥1

P
(∣∣pix(Eγ ) ∩ [

1,2n
]∣∣ > 2nρ

) ≤ C
∑
n≥1

2n(1+γ−H)

2nρ
< +∞.

Using the Borel–Cantelli lemma we infer that, with probability one,∣∣pix(Eγ ) ∩ [
1,2n

]∣∣ ≤ 2nρ

for every large enough integer n. Hence, Denpix Eγ ≤ ρ. Letting ρ ↓ γ + 1 − H leads to
Denpix Eγ ≤ γ + 1 − H .

�

Remark 2. We could have proved directly the upper bound for Denlog Eγ as follows. Introduce

Sγ (t) = Leb
{
0 ≤ s ≤ t : |Bs | ≤ sγ

}
. (14)

Its expectation can be estimated:

E
(
Sγ (t)

) =
∫ t

0
P
(|Bs | ≤ sγ

)
ds =

∫ t

0
P
(|B1| ≤ sγ−H

)
ds

∼ Ctγ+1−H , (15)

where the Fubini theorem, the self-similarity of B and then the fact that B1 ∼ N (0,1) have
been successively used. The same argument (based on Borel–Cantelli) as the one used above to
conclude that Denpix Eγ ≤ γ + 1 − H , allows one to deduce the desired result.
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3.2. Lower bounds

To obtain the announced lower bounds, we first evaluate the second moment of Sγ (t) (defined in
(14)). We have, with �u,v denoting the covariance matrix of (Bu,Bv),

E
(
Sγ (t)2)
=

∫∫
[0,t]2

P
(|Bu| ≤ uγ , |Bv| ≤ vγ

)
dudv

= t2
∫∫

[0,1]2
P
(|Bu| ≤ uγ tγ−H , |Bv| ≤ vγ tγ−H

)
dudv

= t2

2π

∫∫
[0,1]2

dudv√
det�u,v

∫∫
R2

e− 1
2 (x,y)T �−1

u,v(x,y)1{ |x| ≤ uγ tγ−H

|y| ≤ vγ tγ−H

} dx dy.

Upper bounding e− 1
2 {...}, u and v by 1 and using that (5) is satisfied, we deduce that

E
(
Sγ (t)2) ≤ Ct2γ+2−2H . (16)

Applying the Paley–Zygmund inequality together with the estimate (15), we deduce from (16)
that, for any fixed 0 < c < 1, there exists c′ > 0 such that

P
(
Sγ

(
2n

) ≥ c2n(γ+1−H)
) ≥ (1 − c)

E(Sγ (2n))2

E(Sγ (2n)2)
≥ c′.

The Borel–Cantelli lemma ensures that, for infinitely many integers n, Sγ (2n) ≥ c2n(γ+1−H).
This fact implies that DenlogEγ ≥ γ + 1 − H . Finally, using the right inequality in (4), we
directly obtain Denpix Eγ ≥ γ + 1 − H .

4. Proof of Theorem 2: Value of DimH Eγ

4.1. Upper bound for DimHEγ

In what follows, c > 0 denotes a universal constant whose value is immaterial and may change
from one line to another.

Let us fix 0 ≤ γ < H , as well as η > 0 (as small as we want). We are going to prove that
DimH Eγ ≤ 1 − H + η. Letting η tend to zero will then give the result.

Fix ρ > 1 − H + η. Consider for every integer n ≥ 1 and i ∈ {0, . . . , �2n−1/2n
γ
H �} the times

tn,i = 2n−1 + i2n
γ
H .

The collection tn,i generates the intervals In,i = [tn,i , tn,i+1), together with the associated event

En,i = {∃t ∈ In,i : |Bt | ≤ tγ
}
.
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Set εn,i = 2n
γ
H /tn,i , so that In,i = [tn,i , tn,i (1 + εn,i)), and observe that the ratio between any

two of the quantities 2n(
γ
H

−1), εn,i and t
γ
H

−1
n,i are bounded uniformly with respect to n and i. By

self-similarity, we have that, when n becomes large,

P(En,i) = P
(∃τ ∈ [1,1 + εn,i] : |Bτ ·tn,i

| ≤ (τ · tn,i )
γ
)

= P
(∃τ ∈ [1,1 + εn,i] : |Bt | ≤ t

γ−H

n,i τ γ
)

≤ P
(∃τ ∈ [1,1 + εn,i] : |Bt | ≤ 2t

γ−H

n,i

)
≤ P

(∃τ ∈ [1,1 + εn,i], |Bt | ≤ cεH
n,i

)
≤ P

(∃t ∈ [1,1 + εn,i], |Bt | ≤ ε
H−η
n,i

)
.

The last estimate holds because η is a small positive real number and εn,i tends to zero. By
Lemma 4, we deduce that P(En,i) ≤ cε

H−η
n,i and then

P(En,i) ≤ c2n(γ−H)
H−η
H .

Now observe that En,i is realized if and only if Eγ ∩ In,i �= ∅. So, using the intervals In,i as a
covering of Eγ ∩ In,i �=∅, we obtain from (2) that

E
[
νn
ρ(Eγ )

] ≤ E

(�2n−1−n
γ
H �∑

i=0

(
Leb(In,i)

2n

)ρ

11En,i

)

≤ 2ρn(
γ
H

−1)

�2n−1−nγ/H �∑
i=0

P(En,i)

≤ c2n
H−γ

H
(1−H+η−ρ).

Thus, the Fubini theorem entails E[∑∞
n=1 νn

ρ(Eγ )] < +∞ as soon as ρ > 1−H +η. This implies
that for such ρ’s, the sum

∑∞
n=1 νn

ρ(Eγ ) is finite almost surely. In particular, DimH Eγ ≤ ρ for
every ρ > 1 − H + η. Since such a relation holds for an arbitrary (small) ρ > 0, we deduce the
desired conclusion.

4.2. Lower bound DimH Eγ ≥ 1 − H

This lower bound follows from the lower bound in Theorem 3, as proved in Section 5.3.
Indeed, assume that DimH L0 ≥ 1 − H , which is an almost sure consequence of Theorem 3.

Obviously L0 ⊂ Eγ , hence DimH Eγ ≥ 1 − H , which is the desired conclusion.
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5. Proof of Theorem 3

5.1. A slight modification of DimH E

In this section, we use a slightly modified version of νn
ρ defined as

ν̃n
ρ (E) = inf

{
m∑

i=1

(
Leb(Ii)

2n

)ρ∣∣∣∣log2
Leb(Ii)

2n

∣∣∣∣1−ρ

: m ≥ 1, Ii ⊂ Sn,E ∩ Sn ⊂
m⋃

i=1

Ii

}
. (17)

The introduction of a logarithm factor makes some computations easier in Section 5.3. The quan-
tities νn

ρ lead to the same notion of dimension. Indeed, it is easily proved [11,21] that one can
replace ν by ν̃ in (3), so that

DimH E = inf

{
ρ ≥ 0 :

∑
n≥0

ν̃n
ρ (E) < +∞

}
. (18)

5.2. Upper bound for DimH Lx

The argument exploited in the present section is comparable to the one used in Section 4.2.
Since every levet set Lx defined by (10) is ultimately included in Eγ for every γ > 0, and

since all the dimensions we consider do not depend of any bounded subset of Eγ , we easily
obtain from (4) and Theorem 1 that DimHLx ≤ 1 − H + γ , for any γ > 0. Letting γ ↓ 0, one
sees that DimHLx ≤ 1 − H .

5.3. Lower bound for DimH Lx

Let us now introduce the random variables

Yx
n = Lx2nH

2n − Lx2nH

2n−1

2n(1−H)
and Fx

N :=
N∑

n=1

Yx
n . (19)

The random sequence (F x
N)N≥1 is non-decreasing and we denote by Fx∞ its limit, that is, Fx∞ =∑

n≥1 Yx
n .

We remark from the self-similarity of B that Yx
n

d= Yx
0 , see formula (6).

Let us start with a lemma connecting the r.v. Yx
n to the macroscopic Hausdorff dimension.

Lemma 5. With probability one, there exists a constant K > 0 such that, for every x ∈ R and
every n ≥ 1,

ν̃n
1−H (Lx) ≥ K−1Yx

n .
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Proof. We start by recalling a key result of Xiao (see [26], Theorem 1.2), which describes the
scaling behavior of the local times of stationary Gaussian processes. For this, let us introduce the
random variables

Xn := sup
0≤t≤2n

sup
0≤h≤2n−1

sup
x∈R

Lx
t+h − Lx

t

h1−H (n − log2 h)H
.

Self-similarity of B implies

Xn = sup
0≤t≤1

sup
0≤h≤1/2

sup
x∈R

Lx2nH

2n(t+h) − Lx2nH

2nt

(2nh)1−H (− log2 h)H

d= sup
0≤t≤1

sup
0≤h≤1/2

sup
x∈R

Lx
t+h − Lx

t

h1−H (− log2 h)H
.

By [26], Theorem 1.2, with probability one there exists a constant K > 0 such that

for every n ≥ 1, Xn ≤ K. (20)

Now fix x ∈ R, and consider the associated level set Lx defined by (10). Recall the definition
(17) of ν̃n

1−H (Lx). Choose a covering (Ii)i=1,...,m that minimizes the value in (17), and set Ii =
[xi, yi]. We observe that

ν̃n
1−H (Lx) =

m∑
i=1

(
Leb(Ii)

2n

)1−H ∣∣∣∣log2
Leb(Ii)

2n

∣∣∣∣H

=
m∑

i=1

( |yi − xi |
2n

)1−H ∣∣∣∣log2
|yi − xi |

2n

∣∣∣∣H

≥ K−1
m∑

i=1

Lx2nH

yi
− Lx2nH

xi

2n(1−H)
= K−1

m∑
i=1

Lx2nH
(Ii)

2n(1−H)

≥ K−1
Lx2nH

2n − Lx2nH

2n−1

2n(1−H)
,

where (20) has been used to get the first inequality, and the last inequality holds because the local
time Lx· increases only on the sets Ii (whose union covers Lx ∩ Sn). This proves the claim. �

Remark 3. The introduction of ν̃n
ρ instead of νn

ρ in (18) is key in the last sequence of inequalities
displayed in the previous proof, allowing us to use in a relevant way Xiao’s result (20).

Now, using Lemma 5, and recalling (18), in order to conclude that DimH Lx ≥ 1 − H and
Theorem 3, it is enough to prove that the series

∑
n≥1 Yx

n diverges almost surely. This is the
purpose of the next proposition.
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Proposition 6. For all x ∈R,

P
(
Fx∞ = +∞) = 1. (21)

The proof of Proposition 6 makes use of various arguments involving local times, Brownian
filtration and Kolmogorov 0-1 law. As a preliminary step, we start with the following lemma,
showing that the previous probability is strictly positive. Our key argument can be seen as a
variation of the celebrated Jeulin’s lemma [9], p. 44, allowing one to deduce the convergence of
random series (or integrals), by controlling deterministic series of probabilities.

Lemma 7. For every x ∈R, one has that

P
(
Fx∞ = +∞)

> 0. (22)

Proof. Recalling (6) we have, for every s ≤ t ,

Lx
t − Lx

s = 1

2π

∫
R

dy e−iyx

∫ t

s

du eiyBu .

Using the self-similarity of B through E(B2
u) = u2H

E(B1) = u2H , we deduce:

E
(
Lx

t − Lx
s

) = 1

2π

∫
R

dy e−iyx

∫ t

s

du e− 1
2 y2u2H

= 1

2π

∫ t

s

du

∫
R

dy e−iyxe− 1
2 y2u2H = 1√

2π

∫ t

s

e
− x2

2u2H u−H du.

We observe in particular that E(Lx
1 − Lx

1
2
) > 0, so

P
(
Yx

0 > 0
) = P

(
Lx

1 − Lx
1
2

> 0
)
> 0. (23)

Now fix γ > 0, and consider the event A = {Fx∞ ≤ γ }. We have, by Fubini,

γ ≥ E
(
11AFx∞

) =
∑
n≥1

E
(
11AYx

n

) =
∑
n≥1

∫ +∞

0
P
(
A ∩ {

Yx
n > u

})
du.

Using P(A ∩ B) ≥ (P(A) − P(Bc))+, we deduce that

γ ≥
∑
n≥1

∫ +∞

0

(
P(A) − PYx

n ≤ u
)
)+ du

=
∑
n≥1

∫ +∞

0

(
P(A) − P

(
Yx

0 ≤ u
))

+ du.
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Since the summand does not depend on n, the only possibility is that it is zero, that is,∫ +∞

0

(
P
(
Fx∞ ≤ γ

) − P
(
Yx

0 ≤ u
))

+ du = 0.

This implies, for almost every u ≥ 0 and every γ > 0:

P
(
Fx∞ ≤ γ

) ≤ P
(
Yx

0 ≤ u
)
.

Letting γ → +∞ together with u → 0+, and recalling (23), we conclude that

P
(
Fx∞ = +∞) ≥ P

(
Yx

0 > 0
)
> 0,

which is exactly the desired relation (22). �

It remains us to prove that not only P(F x∞ = +∞) is strictly positive for every x, but in
fact it equals 1. Such a conclusion will follow from the next statement, corresponding to a time-
inversion property of FBM. It can be checked immediately by computing the covariance function
of the process B̃ introduced below.

Lemma 8. The reversed time process u 
→ B̃u defined as B̃0 = 0 and

B̃u := u2H B1/u, u > 0, (24)

is also a FBM.

Let us denote by L̃x
t , Ỹ x

n and F̃ x
N the quantities analogous to Lx

t , Yx
n and Fx

N defined in (19),
but associated with B̃ (see (24)) instead of B . Obviously, (Lx

t )x∈R,t≥0 and (L̃x
t )x∈R,t≥0 have the

same law. So

Fx∞
d= F̃ x∞ :=

+∞∑
n=1

L̃2nH x
2n − L̃2nH x

2n−1

2n(1−H)
.

For a fixed integer n ≥ 1, we have

L̃x2nH

2n − L̃x2nH

2n−1 = 1

2π

∫
R

dye−iy2nH x

∫ 2n

2n−1
dueiyu2H B1/u ,

implying in turn that L̃x2nH

2n − L̃x2nH

2n−1 is σ {Bu : u ≤ 2−(n−1)}-measurable. As a consequence, for
every M ≥ 1,

σ
{
L̃x2nH

2n − L̃x2nH

2n−1 : n ≥ M
} ⊂ σ

{
Bu : u ≤ 2−(M−1)

}
.

The event {F̃ x∞ = +∞} does not depend on the first term of the series, so is a tail event. Otherwise
stated, {

F̃ x∞ = +∞} ∈
⋂
M≥1

σ
{
L̃x2nH

2n − L̃x2nH

2n−1 : n ≥ M
}
.
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Using now (7) (with B̃ instead of B), we deduce that{
F̃ x∞ = +∞} ∈

⋂
M≥1

σ
{
Wu : u ≤ 2−M

}
,

where W is a standard Brownian motion. By the Blumenthal’s 0-1 law for W , we infer that
P(F̃ x∞ = +∞) is either 0 or 1. Remembering Lemma 7, we can conclude that this probability is
one, which implies (21) as claimed. �
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