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In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear
regression model with (moderately) high dimensional regressors, where the dimension of the regressors may
increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the
slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite
sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds
builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-
dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–
Nickl and L∞-credible bands for Gaussian white noise models, linear inverse problems, and (possibly
non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for
those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying
advantages of Bayesian credible bands over confidence bands based on extreme value theory.
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1. Introduction

Bayesian inference for high or nonparametric statistical models is an active research area in
the recent statistics literature. Posterior distributions provide not only point estimates but also
credible sets. In a classical regular statistical model with a fixed finite dimensional parameter
space, it is well known that the Bernstein–von Mises (BvM) theorem holds under mild conditions
and the posterior distribution can be approximated (under the total variation distance) by a normal
distribution centered at an efficient estimator (e.g., MLE) and with covariance matrix identical
to the inverse of the Fisher information matrix as the sample size increases. The BvM theorem
implies that a Bayesian credible set is typically a valid confidence set in the frequentist sense,
namely, the coverage probability of a (1 − α)-Bayesian credible set evaluated under the true
parameter value is approaching (1 − α) as the sample size increases; cf. [49], Chapter 10. There
is also a large literature on the BvM theorem in nonparametric statistical models. Compared to
the finite dimensional case, however, Bayesian uncertainty quantification is more complicated
and more sensitive to prior choices in the infinite dimensional case. [19,23] find some negative
results on the BvM theorem in the infinite dimensional case. [6,34,37] develop conditions under
which the BvM theorem holds for Gaussian white noise models and nonparametric regression
models; see also [18,25,46]. Employing weaker topologies than L2, [9] elegantly formulate and
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establish the BvM theorem for Gaussian white noise models; see also [42] for the adaptive BvM
theorem for Gaussian white noise models. Subsequently, [10] establish the BvM theorem in a
weighted L∞-type norm for nonparametric regression and density estimation. There are also
several papers on frequentist coverage errors of Bayesian credible sets in the L2-norm. [36]
study asymptotic frequentist coverage errors of L2-type Bayesian credible sets based on Gaussian
priors for linear inverse problems; see also [45,47] for related results. Using an empirical Bayes
approach, [48] develop L2-type Bayesian credible sets adaptive to unknown smoothness of the
function of interest. We refer the reader to Chapter 7 in [30] and Chapter 12 in [27] for further
references on these topics.

This paper aims at studying frequentist coverage errors of Bayesian credible rectangles in an
approximately linear regression model with an increasing number of regressors. We provide finite
sample bounds on frequentist coverage errors of (quasi-)Bayesian credible rectangles based on
sieve priors, where the model allows both an unknown bias term and an unknown error variance,
and the true distribution of the error term may not be Gaussian. Sieve priors are distributions
on the slope vector whose dimension increases with the sample size. We allow sieve priors to be
non-Gaussian or not to be an independent product. We employ a “quasi-Bayesian” approach with
Gaussian error distributions. The resulting posterior distribution is called a “quasi-posterior.”

An important application of our results is finite sample quantification of Bayesian nonparamet-
ric credible bands based on sieve priors. We derive finite sample bounds on coverage errors of
Castillo–Nickl [10] and L∞-credible bands in Gaussian white noise models, linear inverse prob-
lems, and (possibly non-Gaussian) nonparametric regression models; see Section 3.1 ahead for
the definition of Castillo–Nickl credible bands. The literature on frequentist confidence bands
is broad. Frequentist approaches to constructing confidence bands date back to Smirnov and
Bickel–Rosenblatt [5,44]; see also [14,17,28] for more recent results. In contrast, there are rela-
tively limited results on Bayesian uncertainty quantification based on L∞-type norms. [29] study
posterior contraction rates in the Lr -norm for 1 ≤ r ≤ ∞, and [8] derive sharp posterior contrac-
tion rates in the L∞-norm. [32] derive adaptive posterior contraction rates in the L∞-norm for
Gaussian white noise models and density estimation; see also [52] for adaptive posterior con-
traction rates. Building on their new BvM theorem, [10] develop credible bands (Castillo–Nickl
bands) based on product priors that have correct frequentist coverage probabilities and at the
same time shrink at (nearly) minimax optimal rates for Gaussian white noise models. [53] study
conditions under which frequentist coverage probabilities of credible bands based on Gaussian
series priors approach one as the sample size increases for nonparametric regression models with
sub-Gaussian errors. [42] establish qualitative results on adaptive credible bands for Gaussian
white noise models. Still, quantitative results on frequentist coverage errors of nonparametric
credible bands are scarce. Our quantitative result complements the qualitative results established
by [10] and [53] and contributes to the literature on Bayesian nonparametrics by developing
deeper understanding on Bayesian uncertainty quantification in nonparametric models. More re-
cently, [50] also derive a quantitative result on coverage errors of Bayesian credible bands based
on Gaussian process priors. We will clarify the difference between their results and ours in Sec-
tion 1.1 ahead.

Notably, our results lead to an implication that supports the use of Bayesian approaches to
constructing nonparametric confidence bands. It is well known that confidence bands based on
extreme value theory (such as e.g., those of [5]) perform poorly because of the slow convergence
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of Gaussian maxima. In the kernel density estimation case, [31] shows that confidence bands
based on extreme value theory have coverage errors decaying only at the 1/ logn rate (regardless
of how we choose bandwidths) where n is the sample size, while those based on bootstrap have
coverage errors (for the surrogate function) decaying polynomially fast in the sample size; see
also [14]. Our result shows that Bayesian credible bands (for the true function in Gaussian white
noise models and linear inverse problems; for the surrogate function in nonparametric regression
models) have also coverage errors decaying polynomially fast in the sample size, implying an
advantage of Bayesian credible bands over confidence bands based on extreme value theory; see
Remarks 3.2 and 3.8 for more details. Another potentially interesting implication of our analysis
of the Castillo–Nickl band is the following. In this paper, we use a sieve prior that truncates
high frequency terms of the function. In a Gaussian white noise model, our results show that
the coverage error for the true function of the Castillo–Nickl band decays fast in the sample size
(i.e., decays at a polynomial rate in the sample size), and at the same time the L∞-diameter
converges at a minimax optimal rate as long as the cut-off level 2J is chosen in such a way that
2J ∼ (n/ logn)1/(2s+1) where s is the smoothness level. This implies that, as long as we confine
ourselves to nonadaptive credible bands, a sieve prior would not be less favorable than a prior
that models high-frequency terms of the function.

The main ingredients in the derivation of the coverage error bound in Section 2 are (i) a novel
Berry–Esseen type bound for the BvM theorem for sieve priors, that is, a finite sample bound
on the total variation distance between the quasi-posterior distribution based on a sieve prior
and the corresponding Gaussian distribution, and (ii) recent results on high dimensional CLT
on hyperrectangles [13,15]. Our Berry–Esseen type bound improves upon existing BvM-type
results for sieve priors; see the discussion in Section 1.1. The high dimensional CLT is used to
approximate the sampling distribution of the centering estimator by the Gaussian distribution that
matches with the Gaussian distribution approximating the (normalized) posterior distribution.

In addition, importantly, derivations of coverage error bounds for nonparametric models in
Section 3 are by no means trivial and require further technical arguments. Specifically, for Gaus-
sian white noise models, we will consider both credible bands based on centering estimators
with fixed cut-off dimensions and without cut-off dimensions, which require different analyses
on bounding the effect of the bias to the coverage error. For linear inverse problems, we will
cover both mildly and severely ill-posed cases. For nonparametric regression models, we will
consider random designs and so cannot directly apply the result of Section 2 since we assume
fixed designs in Section 2; hence we have to take care of the randomness of the design, and to
this end, we will employ some empirical process techniques.

1.1. Literature review and contributions

For a nonparametric regression model, [50] derive finite sample bounds on frequentist coverage
errors of Bayesian credible bands based on Gaussian process priors. They assume (i) Gaussian
process priors, (ii) that the error term follows a sub-Gaussian distribution, and (iii) that the error
variance is known. The present paper markedly differs from [50] in that (i) we work with possibly
non-Gaussian priors; (ii) we allow a more flexible error distribution; and (iii) we allow the error
variance to be unknown. More specifically, (i) to allow for non-Gaussian priors, we develop
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novel Berry–Esseen type bounds on quasi-posterior distributions in (mildly) high dimensions.
(ii) In addition, to weaken the dimensionality restriction and the moment assumption on the error
distribution, we make use of high-dimensional CLT on hyperrectangles developed in [13,15].
(iii) Finally, when the error variance is unknown, the quasi-posterior contraction for the error
variance impacts on the coverage error for the slope vector and so a careful analysis is required
to take care of the unknown variance.

The present paper also contributes to the literature on the BvM theorem in nonparametric
statistics, which is now quite broad; see [9,10,23,34,37,42] for Gaussian white noise models, [6,
25] for linear regression models with high dimensional regressors, and [50,53] for nonparametric
regression models with Gaussian process priors. See [12] for high-dimensional linear regression
under sparsity constraints. Note that [12] also discusses non-Gaussian error distributions. See
also [7,11,24,26,39,40,43] for related results. We refer the reader to [3,16,22,35] on the BvM
theorem for quasi-posterior distributions.

Importantly, our Berry–Esseen type bound improves on conditions on the critical dimension
for the BvM theorem. [6,25,46] study such critical dimensions for sieve priors. First, [6] does
not cover the case with an unknown error variance, while the results in [25,46] cover the case
with an unknown error variance. Our result is consistent with the result of [6] when the error
variance is assumed to be known. Meanwhile, our result substantially improves on the results of
[25,46] for the unknown error variance case. Namely, the results of [25,46] show that the BvM
theorem holds if p3 = o(n) under typical situations when the error variance is unknown, where
p is the number of regressors and n is the sample size; on the other hand, our result shows that
the BvM theorem holds if p2(logn)3 = o(n), thereby improving on the condition of [25,46]. See
Remark 2.2 for more details. Our BvM-type result allows us to cover wider smoothness classes
of functions when applied to the analysis of Bayesian credible bands in nonparametric models.

1.2. Organization and notation

The rest of the paper is organized as follows. In Section 2, we consider Bayesian credible rect-
angles for the slope vector in an approximately linear regression model and derive finite sample
bounds on frequentist coverage errors of the credible rectangles. In Section 3, we discuss appli-
cations of the general result established in Section 2 to nonparametric models. Specifically, we
cover Gaussian white noise models, linear inverse models, and nonparametric regression models
with possibly non-Gaussian errors. In Section 4, we give a proof of the main theorem (Theo-
rem 2.1). Proofs of the other results are given in [51].

Throughout the paper, we will obey the following notation. Let ‖ · ‖ denote the Euclidean
norm, and let ‖ · ‖∞ denote the max or supremum norm for vectors or functions. Let N (μ,�)

denote the Gaussian distribution with mean vector μ and covariance matrix �. For x ∈ R, let
x+ = max{x,0}. For two sequences {an} and {bn} depending on n, we use the notation an �
bn if an ≤ cbn for some universal constant c > 0, and an ∼ bn if an � bn and bn � an. For
any symmetric positive semidefinite matrices A and B , the notation A � B means that B −
A is positive semidefinite. Constants c1, c2, . . . , c, and c̃1, c̃2, . . . do not depend on the sample
size n and the dimension p. The values of c, c1, c2, . . . and c̃1, c̃2, . . . may be different at each
appearance.
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2. Bayesian credible rectangles

Consider an approximately linear regression model

Y = Xβ0 + r + ε, (1)

where Y = (Y1, . . . , Yn)
� ∈ R

n is a vector of outcome variables, X is an n × p design matrix,
β0 ∈ R

p is an unknown coefficient vector, r = (r1, . . . , rn)
� ∈ R

n is a deterministic (i.e., non-
random) bias term, and ε = (ε1, . . . , εn)

� ∈ R
n is a vector of i.i.d. error terms with mean zero

and variance 0 < σ 2
0 < ∞. We are primarily interested in the situation where the number of

regressors p increases with the sample size n, that is, p = pn → ∞ as n → ∞, but we often
suppress the dependence on n for the sake of notational simplicity. In addition, we allow the
error variance σ 2

0 to depend on n, i.e., σ 2
0 = σ 2

0,n, which allows us to include Gaussian white
noise models in the subsequent analysis as a special case. In the general setting, the error variance
σ 2

0 is also unknown. In the present paper, we work with the dense model with moderately high-
dimensional regressors where β0 need not be sparse and p = pn may increase with the sample
size n but p ≤ n. To be precise, we will maintain the assumption that the design matrix X is of full
column rank, i.e., rankX = p. The approximately linear model (1) is flexible enough to cover
various nonparametric models such as Gaussian white noise models, linear inverse problems,
and nonparametric regression models, via series expansions of functions of interest in those
nonparametric models; see Section 3.

We consider Bayesian inference on the slope vector β0. To this end, we work under the quasi-
likelihood with a Gaussian distribution on the error ε. Namely, we work with the quasi-likelihood
of the form (

β,σ 2) 
→ (
2πσ 2)−n/2e−‖Y−Xβ‖2/(2σ 2).

We assume independent priors on β and σ 2, i.e.,

β ∼ �β, σ 2 ∼ �σ 2 , β ⊥⊥σ 2, (2)

where we assume that �β is absolutely continuous with density π , that is, �β(dβ) = π(β)dβ ,
and �σ 2 is supported in (0,∞). Then the resulting quasi-posterior distribution for (β,σ 2) is

�
(
d
(
β,σ 2) | Y )∝ (

2πσ 2)−n/2e−‖Y−Xβ‖2/(2σ 2)π(β)dβ�σ 2

(
dσ 2),

and the marginal quasi-posterior distribution for β is �β(dβ | Y) = π(β | Y)dβ , where

π(β | Y) = π(β)

∫
e−‖Y−Xβ‖2/(2σ 2)∫

e−‖Y−Xβ̃‖2/(2σ 2)π(β̃) dβ̃
�σ 2

(
dσ 2 | Y ).

Here �σ 2(dσ 2 | Y) denotes the marginal quasi-posterior distribution for σ 2:

�σ 2

(
dσ 2 | Y )=

∫
(2πσ 2)−n/2e−‖Y−Xβ‖2/(2σ 2)π(β)dβ�σ 2(dσ 2)∫ ∫
(2πσ̃ 2)−n/2e−‖Y−Xβ‖2/(2σ̃ 2)π(β)dβ�σ 2(dσ̃ 2)

.
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We will assume that �σ 2 may be data-dependent, e.g., �σ 2 = δσ̂ 2 for some estimator σ̂ 2 of σ 2

(in that case, �σ 2(· | Y) = δσ̂ 2 ), but �β is data-independent.
We will derive finite sample bounds on frequentist coverage errors of Bayesian credible

rectangles for the approximately linear model (1) under a prior of the form (2). For a vector
c = (c1, . . . , cp)� ∈ R

p , a positive number R > 0, and a positive sequence {wj }pj=1, let I (c,R)

denote the hyperrectangle of the form

I (c,R) :=
{
β = (β1, . . . , βp)� ∈R

p : |βj − cj |
wj

≤ R,1 ≤ ∀j ≤ p

}
.

Let β̂ denote the OLS estimator for β0 with r = 0, that is, β̂ = β̂(Y ) = (X�X)−1X�Y . For
given α ∈ (0,1), we consider a (1−α)-credible rectangle of the form I (β̂, R̂α), where the radius
R̂α is chosen in such a way that the posterior probability of the set I (β̂, R̂α) is 1 − α, that is,
�β{I (β̂, R̂α) | Y } = 1 − α.

We assume the following conditions on the priors �β and �σ 2 . For R > 0, let

B(R) := {
β ∈ R

p : ∥∥X(β − β0)
∥∥≤ Rσ0

}
and φ�β (R) := 1 − inf

β,β̃∈B(R)

{
π(β̃)

π(β)

}
, (3)

where φ�β quantifies “lack of flatness” of the prior density π(β) around the true value β0.

Condition 2.1. There exists a positive constant C1 such that

π(β0) ≥ σ
−p

0

√
det

(
X�X

)
n−C1p.

Condition 2.2. There exist nonnegative constants δ1, δ2, δ3 ∈ [0,1) such that with probability at
least 1 − δ3, �σ 2({σ 2 : |σ 2/σ 2

0 − 1| > δ1} | Y) ≤ δ2.

Condition 2.3. The inequality φ�β (1/
√

n) ≤ 1/2 holds.

Condition 2.1 assumes that the prior �β on β has a sufficient mass around its true value β0.
Condition 2.2 is an assumption on the marginal posterior contraction for the error variance σ 2.
Condition 2.2 includes the known error variance case as a special case; if the error variance is
known, then we may take �σ 2 = δσ 2

0
(Dirac delta at σ 2

0 ) and δ1 = δ2 = δ3 = 0. Condition 2.3 is a
preliminary flatness condition on �β . More detailed discussions on these conditions are provided
after the main theorem (Theorem 2.1).

We also assume the following conditions on the model.

Condition 2.4. There exists a positive constant C2 such that ‖X(X�X)−1X�r‖ ≤
C2σ0

√
p logn.

Condition 2.5. There exists a positive constant C3 such that one of the following conditions
holds:

(a) E[|ε1/(σ0C3)|q ] ≤ 1 for some integer 4 ≤ q < ∞;
(b) E[exp{ε2

1/(σ0C3)
2}] ≤ 2.
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Condition 2.4 controls the norm of the bias term. Condition 2.5 is a moment condition on
the error distribution. These conditions are sufficiently weak and in particular covers all the
applications we will cover.

The following theorem, which is the main result of this section, provides bounds on frequentist
coverage errors of the Bayesian credible rectangle I (β̂, R̂α) together with bounds on the “radius”
R̂α of I (β̂, R̂α). In what follows, let λ and λ denote the maximum and minimum eigenvalues of
the matrix (X�X)−1, respectively, and let w := max{w1, . . . ,wp} and w := min{w1, . . . ,wp}
denote the maximal and minimal weights, respectively.

Theorem 2.1 (Coverage errors of credible rectangles). Suppose that Conditions 2.1–2.4 and
either of Condition 2.5(a) or (b) hold. Then there exist positive constants c1 and c2 depending
only on C1,C2,C3 and q such that the following hold. For every n ≥ 2, we have∣∣P(β0 ∈ I (β̂, R̂α)

)− (1 − α)
∣∣

≤ φ�β (c1
√

p logn) + c1

(
δ1p logn + δ2 + δ3 + τ

σ0λ
1/2

√
logp + ζn

)
, (4)

where τ := ‖(X�X)−1X�r‖∞ and

ζn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p1−q/2(logn)−q/2 +
(

λ

λ

p log7(pn)

n

)1/6

+
(

λ

λ

p log3(pn)

n1−2/q

)1/3

under Condition 2.5(a),

n−c2p +
(

λ

λ

p log7(pn)

n

)1/6

under Condition 2.5(b),

n−c2p if εi’s are Gaussian.

In addition, there exist positive constants c3 and c4 depending only on α and w such that the
following two bounds (5) and (6) hold with probability at least{

1 − c1p
1−q/2(logn)−q/2 − δ3 under Condition 2.5(a),

1 − c1n
−c2p − δ3 under Condition 2.5(b).

Provided that the right-hand side on (4) is smaller than min{α/2, (1 − α)/2}, the diameter R̂α is
bounded from above as

R̂α ≤ c3σ0λ
1/2

E

[
max

1≤i≤p
|Ni/wi |

]
(5)

for N1, . . . ,Np ∼ N (0,1) i.i.d., and for sufficiently large p depending only on α, the diameter
R̂α is bounded from below as

c4σ0λ
1/2w−1

√
logp ≤ R̂α. (6)
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Theorem 2.1 shows that that the frequentist coverage error of the Bayesian credible rectangle
depends on the prior �β on β only through the lack-of-flatness function φ�β . The discussions
below provide a typical bound on φ�β . We note that the requirement that the right-hand side on
(4) is smaller than α/2 is used to derive the upper bound on R̂α , while the requirement that the
same quantity is smaller than (1 − α)/2 is used to derive the lower bound on R̂α .

2.1. Discussions on conditions

We first verify that a locally log-Lipschitz prior satisfies Conditions 2.1 and 2.3, providing an
upper bound of φ�β .

Definition 2.1. A locally log-Lipschitz prior is defined as a prior distribution on β such there
exists L = Ln > 0 with∣∣logπ(β) − logπ(β0)

∣∣≤ L‖β − β0‖ for all β with ‖β − β0‖ ≤ σ0λ
1/2√

p logn.

Proposition 2.1. For a locally log-Lipschitz prior �β with log-Lipschitz constant L, we have

φ�β (c
√

p logn) ≤ cLσ0λ
1/2√

p logn for any c > 0. Hence the prior �β satisfies Condition 2.3

if σ0Lλ
1/2

/
√

n ≤ 1/2.

To provide examples of prior distributions on β that satisfy Condition 2.1, we focus on the
following two subclasses of locally log-Lipschitz priors. Let B := ‖β0‖ denote the Euclidean
norm of β0.

(Isotropic prior) An isotropic prior is of the form π(β) = ρ(‖β‖)/ ∫ ρ(‖β‖) dβ where ρ is a
probability density function on R+ such that ρ is strictly positive and continuously differentiable

on [0,B + σ0λ
1/2√

p logn], and such that
∫∞

0 xkρ(x) dx ≤ exp(mk logk) for all k ∈N for some
positive constant m.

(Product prior) A product prior of log-Lipschitz priors is of the form π(β) = ∏p

i=1 πi(βi)

where each logπi is strictly positive on [0,B +σ0λ
1/2√

p logn] and L̃-Lipschitz for some L̃ > 0.

For the sake of exposition, we make the following additional condition to verify that isotropic
or product priors satisfy Condition 2.1.

Condition 2.6. There exists a positive constant c such that log{√det(X�X)/σ
p

0 } ≤ cp logn.

This condition is satisfied in all the applications we will cover in Section 3. The following
proposition shows that isotropic or product priors are locally log-Lipschitz priors satisfying Con-
dition 2.1.

Proposition 2.2. Under Condition 2.6, an isotropic prior and a product prior of log-Lipschitz
priors satisfy Condition 2.1. An isotropic prior is a locally log-Lipschitz prior with locally log-
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Lipschitz constant L such that

L ≤ c1B max
x:0≤x≤B+σ0λ

1/2√
p logn

∣∣(logρ)′(x)
∣∣

for some positive constant c1 depending only on m and c that appear in the definition of ρ

and Condition 2.6. In particular, if π(β) is the standard Gaussian density, then L ≤ c1B
2. A

product prior of log-Lipschitz priors with log-Lipschitz constant L̃ is locally log-Lipschitz with
L = L̃p1/2.

Next, we will discuss Condition 2.2. We consider following two cases:

(Plug-in) �σ 2 = �σ̂ 2
u

with σ̂ 2
u (Y ) := ‖Y − X(X�X)−1X�Y‖2/(n − p);

(Full-Bayes) �β is the standard Gaussian distribution and �σ 2 is the inverse Gamma distri-
bution IG(μ1,μ2) with shape parameter μ1 > 1/2 and scale parameter μ2 > 1/2.

The following two propositions yield possible choices of δ1, δ2, and δ3.

Proposition 2.3 (Plug-in). Suppose that Condition 2.5 holds and also that n ≥ cp for some c >

1. In addition, suppose that δ1 > 0 satisfies that δ̃1 := [δ1 −2‖r‖2/{σ 2
0 (n−p)}−1/(n−p)] > 0.

Then there exist positive constants c1 and c2 depending only on c, C3 and q such that

P
(∣∣̂σ 2

u /σ 2
0 − 1

∣∣≥ δ1
)≤

{
c1 max

{
n−4/qδ

−q/2
1 , n1−q/2δ̃

−q

1

}
under Condition 2.5(a),

c1 exp
(−c2nmax

{
δ2

1, δ̃2
1

})
under Condition 2.5(b).

Proposition 2.4 (Full-Bayes). Suppose that Condition 2.5 holds and also n ≥ cp for some c > 1.
In addition, suppose that δ1 > 0 satisfies that δ̃1 := [δ1 − 2‖r‖2/{σ 2

0 (n − p)} − 1/(n − p)] > 0.
Then there exist positive constants c1 and c2 depending only on c, μ1, μ2, C3 and q such that

�σ 2

(
σ 2 : ∣∣σ 2/σ 2

0 − 1
∣∣> δ1 | Y )≤ c1(ñδ1)

−1

with probability at least{
1 − c1 max

{
n−4/qδ

−q/2
1 , n1−q/2δ̃

−q

1

}
under Condition 2.5(a),

1 − c1 exp
(−c2nmax

{
δ2

1, δ̃2
1

})
under Condition 2.5(b).

To better understand implications of these propositions, Table 1 summarizes possible rates of
δ1, δ2, δ3 when n ≥ cp for some c > 0, ‖r‖2/n = o(n−1/2), and σ 2

0 is independent of n.

Remark 2.1 (Comparison with [53]). Proposition 4.1 in [53] studies possible rates for δ1 when
a prior for β is Gaussian and the error distribution is sub-Gaussian. Our results in Propositions
2.3 and 2.4 are compatible with their result up to logarithmic factors under their setup.
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Table 1. Possible rates of δ1, δ2, δ3 with respect to n: κ is arbitrary

Condition 2.5 and prior δ1 δ2 δ3

(a) and plug-in n−1/2+κ/q 0 max{n−κ/2, n1−κ }
(a) and full Bayes n−1/2+κ/q n−1/2−κ/q max{n−κ/2, n1−κ }
(b) and plug-in n−1/2√

logn 0 n−1

(b) and full Bayes n−1/2√
logn n−1/2(logn)−1/2 n−1

2.2. Berry–Esseen type bounds on posterior distributions

Before presenting applications of the main theorem, we derive an important ingredient of the
proof of Theorem 2.1, namely, the Berry–Esseen type bound on posterior distributions. For R >

0, let H(R) be the intersection of the sets {Y ∈ R
n : ‖X(β̂(Y ) − β0)‖ ≤ R

√
p lognσ0/4} and

{Y ∈R
n : �σ 2(|σ 2/σ 2

0 − 1| ≥ δ1 | Y) ≤ δ2}. For two probability measures P and Q, ‖P −Q‖TV
denotes the total variation between P and Q.

Proposition 2.5 (Berry–Esseen type bounds on posterior distributions). Under Conditions
2.1–2.3, there exist positive constants c1 and c2 depending only on C1,C2,C3 such that for
every n ≥ 2,∥∥�β(· | Y) −N

(
β̂, σ 2

0

(
X�X

)−1)∥∥
TV ≤ φ�β (c1

√
p logn) + c1

(
δ1p logn + δ2 + n−c2p

)
whenever Y ∈ H(c1).

Proposition 2.6. Under Conditions 2.4 and 2.5, there exist positive constants c1 and c2 depend-
ing only on C2, C3, and q such that

P
(
Y /∈ H(c1)

)≤
{

c1p
1−q/2(logn)−q/2 + δ3 under Condition 2.5(a),

c1n
−c2p + δ3 under Condition 2.5(b).

Remark 2.2 (Critical dimension for the Bernstein–von Mises theorem). The previous propo-
sitions immediately lead to the critical dimension for the BvM theorem. We will compare our
result with the results on the critical dimension by [6,26,46]. In this comparison, we assume a lo-
cally log-Lipschitz prior with locally log-Lipschitz constant L; that ‖β0‖ and L are independent

of n; and that σ0λ
1/2 ∼ n−1/2. The following are a summary of the existing results:

• [26] shows that when the error distribution has a smooth density with known scale parame-
ter, the BvM theorem holds if p4 logp = o(n) and some additional assumptions are verified;

• [46] shows that when the high-dimensional local asymptotic normality holds, the BvM the-
orem holds if p3 = o(n); see also [41];

• [6] shows that when the error distribution is Gaussian with known variance, the BvM theo-
rem holds if p logn = o(n).
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Our result (Propositions 2.1, 2.3, 2.5, and 2.6) improves on [26,46] in that

• when the error variance is assumed to be known (i.e., δ1 = δ2 = δ3 = 0), our result implies
that the BvM theorem (for the quasi-posterior distribution) holds if p logn = o(n) and if
the error distribution has finite fourth moment. Compared to [26], our result substantially
improves on the critical dimension by employing the Gaussian likelihood even when the
Gaussian specification is incorrect;

• when the error variance is unknown, our result shows that the BvM theorem holds for β if
p2(logn)3 = o(n) for sub-Gaussian error distributions, thereby improving on the condition
of [46].

Importantly, our result covers the unknown error variance case, which makes our analysis
different from [6]. In nonparametric regression, it is usually the case that the error variance is
unknown, and hence it is important to consider unknown variance cases in such an application.
If the error distribution is Gaussian with a known error variance, our result is consistent with [6].

3. Applications

In this section, we consider applications of the general results developed in the previous sections
to quantifying coverage errors of Bayesian credible sets in Gaussian white noise models, linear
inverse problems, and (possibly non-Gaussian) nonparametric regression models.

3.1. Gaussian white noise model

We first consider a Gaussian white noise model and analyze coverage errors of Castillo–Nickl
credible bands. Consider a Gaussian white noise model

dY (t) = f0(t) dt + 1√
n

dW(t), t ∈ [0,1],

where dW is a canonical white noise and f0 is an unknown function. We assume that f0 is in
the Hölder–Zygmund space Bs∞,∞ with smoothness level s > 0. It will be convenient to define
the Hölder–Zygmund space Bs∞,∞ by using a wavelet basis. Let S > s be an integer and fix
sufficiently large J0 = J0(S). Let {φJ0,k : 0 ≤ k ≤ 2J0 − 1} ∪ {ψl,k : J0 ≤ l,0 ≤ k ≤ 2l − 1} be an
S-regular Cohen–Daubechies–Vial (CDV) wavelet basis of L2[0,1]. Then the Hölder–Zygmund
space Bs∞,∞ is defined by Bs∞,∞ = {f : ‖f ‖Bs∞,∞ < ∞} with

‖f ‖Bs∞,∞ := max
0≤k≤2J0 −1

∣∣〈φJ0,k, f 〉∣∣+ sup
J0≤l<∞,0≤k≤2l−1

2l(s+1/2)
∣∣〈ψl,k, f 〉∣∣,

where 〈·, ·〉 denotes the L2[0,1] inner product, i.e., 〈f,g〉 := ∫
[0,1] f (t)g(t) dt . In what follows,

for the notational convention, let ψJ0−1,k := φJ0,k for 0 ≤ k ≤ 2J0 − 1.

Consider a sieve prior for f , that is, a prior deduced from a prior �β on R
2J

with J ≥ J0 via
the map (βJ0−1,0, βJ0−1,1, . . . , βJ−1,2J−1−1) 
→ ∑

(l,k)∈I(J ) ψl,k(·)βl,k , where I(J ) := {(l, k) :
J0 ≤ l ≤ J − 1,0 ≤ k ≤ 2l − 1} ∪ {(l, k) : l = J0 − 1,0 ≤ k ≤ 2J0 − 1}.
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For given α ∈ (0,1), the (1 − α)-Castillo–Nickl credible band based on an efficient estimator
f̂ , an admissible sequence w = (w1,w2, . . .), and a sieve prior �β is defined as

Cw(f̂ , R̂α) :=
{
f : sup

(l,k)∈I∞

|〈f − f̂ ,ψl,k〉|
wl

≤ R̂α

}
,

where I∞ := {(l, k) : J0 ≤ l < ∞,0 ≤ k ≤ 2l − 1} ∪ {(l, k) : l = J0 − 1,0 ≤ k ≤ 2J0 − 1}, and an
admissible sequence w is defined as a positive sequence such that wl/

√
l ↑ ∞ as l → ∞. The

radius R̂α of the band is taken in such a way that �β{Cw(
∑

(l,k)∈I(J )〈f̂ ,ψl,k〉ψl,k, R̂α) | Y } =
1 − α. Truncating a centering estimator ensures that such radius indeed exists for a sieve prior.

The following proposition derives bounds on the coverage error and the L∞-diameter of the
Castillo–Nickl credible band based on a sieve prior. In the following proposition, we use f̂∞ :=∑

(l,k)∈I∞ ψl,k

∫
ψl,k dY (which converges almost surely in M0(w)) as a centering estimator.

See p. 1946 of [10] for the definition of M0(w) and well-definedness of f̂∞. Let

uJ := inf
J≤l<∞wl/

√
l, vJ := max

J0−1≤l≤J−1
wl/

√
l and wJ := max

J0−1≤l≤J−1
wl.

In addition, let H̃ := {Y : supJ≤l<∞,0≤k≤2l−1 |〈f0 − f̂∞,ψl,k〉|/wl ≤ R̂α}. For simplicity, we
assume that

√
l ≤ wl for J0 − 1 ≤ l < ∞ and 1 ≤ (J/w2

J )u2
J ↑ ∞ as J → ∞.

Proposition 3.1. Under Conditions 2.1 and 2.3 for �β with p = 2J , X = Ip , and σ0 = 1/
√

n,
there exist positive constants c1, c2 depending only on C1 appearing in Condition 2.1 such that
the following hold. For n ≥ 2, we have∣∣P(f0 ∈ Cw(f̂∞, R̂α)

)− (1 − α)
∣∣≤ φ�β

(
c1

√
2J logn

)+ c1n
−c22J + P(Y /∈ H̃ ).

In addition, there exist positive constants c3, c4 depending only on α such that the following hold.
Assume that the right-hand side above except P(Y /∈ H̃ ) is smaller than min{α/2, (1 − α)/2}.
Then

P(Y /∈ H̃ ) ≤ c3
(
e−c4J (J/w2

J )u2
J + n−c22J )

for sufficiently large J depending only on α and {wl}; and the L∞-diameter of the intersection
CB

w(f̂∞, R̂α) := Cw(f̂∞, R̂α) ∩ {f : ‖f ‖Bs∞,∞ ≤ B} for any B > 0 is bounded from above as

sup
f,g∈CB

w(f̂∞,R̂α)

‖f − g‖∞ ≤ c3

(
vJ

√
2J J

n
+ 2−J sB

)

with probability at least 1 − c1n
−c22J

.

Proof sketch of Proposition 3.1. First, we transform the Gaussian white noise model into a
Gaussian infinite sequence model Yl,k = β0,l,k + εl,k, (l, k) ∈ I∞, where β0,l,k := 〈f0,ψl,k〉
for (l, k) ∈ I∞, and εl,k are i.i.d. N (0,1/n) variables. Second, we apply Theorem 2.1.
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Let Y∞ = {Yl,k : (l, k) ∈ I∞} and observe that P(Y /∈ H̃ ) = P(Y∞ /∈ H̃ ′) with H̃ ′ = {Y∞ :
supJ<l,0≤k≤2l−1 |Yl,k − β0,l,k|/wl ≤ R̂α}. Since

P
(
f0 ∈ Cw(f̂∞, R̂α)

)= P

(
max

(l,k)∈I(J )
|εl,k/wl | ∨ sup

J≤l<∞,0≤k≤2l−1
|εl,k/wl | ≤ R̂α

)
,

we have ∣∣∣P(f0 ∈ Cw(f̂∞, R̂α)
)− P

(
max

(l,k)∈I(J )
|εl,k/wl | ≤ R̂α

)∣∣∣≤ P
(
Y∞ /∈ H̃ ′).

Then we apply Theorem 2.1 with p = 2J , Y = {Yl,k : (l, k) ∈ I(J )}, X = Ip , σ0 = 1/
√

n, and
r = 0 to obtain bounds on P(max(l,k)∈I(J ) |εl,k/wl | ≤ R̂α) and R̂α . It remains to bound P(Y∞ /∈
H̃ ′). To this end, we use the concentration inequality for the Gaussian maximum together with a
high-probability lower bound on R̂α . The detail can be found in Appendix C.1 of [51]. �

Remark 3.1 (Coverage error rates). The finite sample bound in Proposition 3.1 leads to the
following asymptotic results as n → ∞. In this discussion, we assume a locally log-Lipschitz
prior with locally log-Lipschitz constant L = Ln and a true function f0 with ‖f0‖Bs∞,∞ ≤ B for

some B = Bn. Set 2J = (n/ logn)1/(2s+1) and set wl = √
l for l ≤ J −1 and wl = ul

√
l for l ≥ J

with ul ↑ ∞ as l → ∞. Then we have∣∣P(f0 ∈ CB
w(f̂ , R̂α)

)− (1 − α)
∣∣≤ O

(
Ln(n/ logn)−s/(2s+1)

)
and (7)

sup
f,g∈CB

w(f̂∞,R̂α)

‖f − g‖∞ ≤ O
(
Bn(n/ logn)−s/(2s+1)

)
, (8)

where the latter holds with probability at least 1 − c1n
−c22J

(the sequence {wl} here depends
on n, but we can apply Proposition 3.1; see Remark C.1 in [51] for the detail). In particular,
for the standard Gaussian prior, the coverage error is O(B2

n(n/ logn)−s/(2s+1)). We note that the
above asymptotic results are derived from the non-asymptotic result in Proposition 3.1 where the
constants do no depend on f0; hence the above asymptotic results hold uniformly in f0 as long
as ‖f0‖Bs∞,∞ ≤ B . The same comments apply to the subsequent results.

Remark 3.2 (Comparison of coverage errors). The previous remark shows that Bayesian cred-
ible bands have coverage errors (for the true function) decaying polynomially fast in the sample
size n. This rate is much faster than that of confidence bands based on Gumbel approximations
(see Proposition 6.4.3 in [30]); confidence bands based on Gumbel approximations have cover-
age errors decaying only at the 1/ logn rate. In the kernel density estimation case, [31] shows
that confidence bands based on Gumbel approximations have coverage errors decaying only at
the 1/ logn rate, while bootstrap confidence bands have coverage errors decaying polynomially
fast in n for the surrogate function.

Remark 3.3 (Undersmothing). In most cases, a priori bound on ‖f0‖Bs∞,∞ is unknown, and
so B = Bn should be chosen as a slowly divergent sequence, which can be thought of as a
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“undersmoothing” penalty (cf. [10] Remark 5). Interestingly, however, our result shows that this
undersmoothing penalty only affects the L∞-diameter and not affect the coverage error of the
band, which is a sharp contrast with standard L∞-confidence bands for densities or regression
functions.

Consider another centering estimator: f̂J :=∑
(l,k)∈I(J ) ψl,k

∫
ψl,k dY . The following propo-

sition derives bounds on the coverage error and the L∞-diameter of the Castillo–Nickl credible
band based on a sieve prior and the centering estimator f̂J . We use the same notation uJ , vJ ,wJ

as in the previous proposition. Let

H̃2 :=
{
Y : sup

J≤l<∞,0≤k≤2l−1

∣∣〈f0,ψl,k〉
∣∣/wl ≤ R̂α

}
.

For simplicity, we assume
√

l ≤ wl for J0 − 1 ≤ l < ∞.

Proposition 3.2. Under Conditions 2.1 and 2.3 for �β with p = 2J , X = I , and σ0 = 1/
√

n,
there exist positive constants c1, c2, c3 depending only on C1 appearing in Condition 2.1 and α

such that the following hold. For n ≥ 2 and for B > 0 satisfying ‖f0‖Bs∞,∞ ≤ B , we have∣∣P(f0 ∈ Cw(f̂J , R̂α)
)− (1 − α)

∣∣≤ φ�β

(
c1

√
2J logn

)+ c1n
−c22J + P(Y /∈ H̃2).

In addition, assume that the right hand side above except P(Y /∈ H̃2) is smaller than
min{α/2, (1−α)/2}. Then the L∞-diameter of the intersection CB

w(f̂J , R̂α) := Cw(f̂J , R̂α)∩{f :
‖f ‖Bs∞,∞ ≤ B} is bounded from above as

sup
f,g∈CB

w(f̂J ,R̂α)

‖f − g‖∞ ≤ c3

(
vJ

√
2J J

n
+ 2−J sB

)

with probability at least 1 − c1n
−c22J

. If in addition (
√

nwJ B)/(uJ J2J (s+1/2)) ↓ 0 as J → ∞,
then P(Y /∈ H̃2) ≤ c1n

−c22J
for sufficiently large J depending only on α, {wl}, and B .

A proof of the proposition is given in Appendix C.2 of [51].

Remark 3.4 (Choice of the sequence w). Consider the same setting as in Remark 3.1. Then we
have (

√
nwJ B)/(uJ J2J (s+1/2)) = O(B/uJ ) and so the sequence ul must satisfy uJ /Bn → ∞

as n → ∞ to ensure that (
√

nwJ B)/(uJ J2J (s+1/2)) ↓ 0 as J → ∞. Without this exception, the
same asymptotic results hold as in Remark 3.1.

3.2. Linear inverse problem

In this section, we extend the previous analysis to a linear inverse problem

dY (t) = K(f0)(t) dt + 1√
n

dW(t), t ∈ [0,1],
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where K is a known linear operator and f0 is included in the Hölder–Zygmund space Bs∞,∞ for
some s > 0 as described in the previous section. To describe the degree of ill-posedness, we use
the wavelet-vaguelette decomposition {ψl,k, v

(1)
l,k , v

(2)
l,k , κl,k : (l, k) ∈ I∞} of K , where {ψl,k} is a

wavelet basis (with the same notational convention used in the previous subsection), {v(1)
l,k } and

{v(2)
l,k } are near-orthogonal functions, and {κl,k} are quasi-singular values such that K(ψl,k) =

κl,kv
(2)
l,k for (l, k) ∈ I∞. For details, see [1,21,33,35] and references therein. Our results cover

both mildly ill-posed and severely ill-posed cases for {κl,k}. Say that the problem of recovering

f0 is mildly ill-posed if κl,k ∼ 2−rl for some r > 0, and severely ill-posed if κl,k ∼ e−r2l
for

some r > 0.
We consider a sieve prior induced from a prior �β on R

2J
with J ≥ J0 via expanding the

function f using the wavelet basis {ψl,k}. For given α ∈ (0,1), consider the (1 − α)-Castillo–
Nickl credible band for f based on a sieve prior �β and a sequence w = (w1,w2, . . .) such that
min0≤k≤2l−1 κl,kwl/

√
l ↑ ∞ as l → ∞:

Cw(f̂∞, R̂α) :=
{
f : max

(l,k)∈I∞

|〈f − f̂∞,ψl,k〉|
wl

≤ R̂α

}
,

where the centering estimator is f̂∞ := ∑
(l,k)∈I∞ ψl,kκ

−1
l,k

∫
v

(1)
l,k dY , which converges almost

surely in M0(w). See p. 13 of the supplement for well-definedness of f̂∞. In linear inverse
problems, the radius R̂α is chosen in such a way as �β(Cw(

∑
(l,k)∈I(J )〈f̂∞,ψl,k〉ψl,k, R̂α) |

Y) = 1 − α, where �β(· | Y) is the quasi-posterior under the likelihood of the truncated indirect

Gaussian sequence model:
∫

v
(1)
l,k dY = κl,kβl,k + 1√

n

∫
v

(1)
l,k dW for (l, k) ∈ I(J ). This slight

modification using the quasi-posterior as well as truncating the centering estimator is required to
apply the main theorem; see the proof sketch below.

The following theorem derives bounds on the coverage error of the Castillo–Nickl credi-
ble band in the linear inverse problem. We use the same notation wJ as in the previous sec-
tion. Let uJ := infJ≤l,0≤k≤2l−1 κl,kwl/

√
l and vJ := supJ0≤l≤J−1,0≤k≤2l−1 κl,kwl/

√
l. In addi-

tion, let κJ := max(l,k)∈I(J ) κl,k and let κJ := min(l,k)∈I(J ) κl,k . Let � be denote the 2J × 2J

covariance matrix of {∫ v
(1)
l,k dY : (l, k) ∈ I(J )}. Finally, let H̃3 = {Y : supJ≤l,0≤k≤2l−1 |〈f −

f̂∞,ψl,k〉|/wl ≤ R̂α}. For simplicity, we assume that 1 ≤ {J 1/2/(κJ wJ )}uJ ↑ ∞ as J → ∞.

Proposition 3.3. Under Conditions 2.1 and 2.3 for �β with p = 2J , X = �−1/2 diag{κl,k :
(l, k) ∈ I(J )}, and σ0 = 1, there exist positive constants c1, c2 depending only on C1 appearing
in Condition 2.1, K , and {ψl,k : (l, k) ∈ I∞} such that the following hold. For n ≥ 2, we have∣∣P(f0 ∈ Cw(f̂∞, R̂α)

)− (1 − α)
∣∣≤ φ�β

(
c1

√
2J logn

)+ c1n
−c22J + P(Y /∈ H̃3).

In addition, there exist positive constants c3, c4 > 0 depending only on α, K , and {ψl,k : (l, k) ∈
I∞} such that the following hold. Assume that the right hand side above except P(Y /∈ H̃3) is
smaller than min{α/2, (1 − α)/2}. Then,

P(Y /∈ H̃3) ≤ c3
(
e−c4J {J/(κJ wJ )2}u2

J + n−c22J )
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for sufficiently large J depending only on α, {wl}, K , and {ψl,k : (l, k) ∈ I∞}; and the L∞-
diameter of CB

w(f̂∞, R̂α) := Cw(f̂∞, R̂α) ∩ {f : ‖f ‖Bs∞,∞ ≤ B} for any B > 0 is bounded from
above as

sup
f,g∈CB

w(f̂∞,R̂α)

‖f − g‖∞ ≤ c3

(
vJ

√
2J J

κ2
J n

+ 2−J sB

)
with probability at least 1 − c1n

−c22J
.

Proof sketch of Proposition 3.3. The proof is almost the same as that of Proposition 3.1, but
it requires an additional analysis due to the non-orthogonality of {v(1)

l,k : (l, k) ∈ I∞}. First, we
transform the indirect Gaussian white noise model into an indirect Gaussian sequence model via
{v(1)

l,k : (l, k) ∈ I∞}: Ỹl,k = κl,kβ0,l,k + ε̃l,k, (l, k) ∈ I∞, where β0,l,k := 〈f0,ψl,k〉 for (l, k) ∈ I∞
and ε̃l,k are (dependent) jointly Gaussian variables. Then

P
(
f0 ∈ Cw(f̂∞, R̂α)

)= P

(
sup

(l,k)∈I∞

∣∣κ−1
l,k Ỹl,k − β0,l,k

∣∣/wl ≤ R̂α

)
.

Second, we apply Theorem 2.1. Let Ỹ∞ = {Ỹl,k : (l, k) ∈ I∞} and observe that P(Y /∈ H̃3) =
P(Ỹ∞ /∈ H̃ ′

3) with H̃ ′
3 = {Ỹ∞ : supJ≤l,0≤k≤2l−1 |κ−1

l,k Ỹl,k − β0,l,k|/wl ≤ R̂α}. Then∣∣∣P(f0 ∈ Cw(f̂∞, R̂α)
)− P

(
max

(l,k)∈I(J )

∣∣κ−1
l,k Ỹl,k − β0,l,k

∣∣/wl ≤ R̂α

)∣∣∣≤ P
(
Ỹ∞ /∈ H̃ ′

3

)
.

Consider the linear regression model with p = 2J , Y = �−1/2(ỸJ0−1,0, . . . , ỸJ−1,2J−1−1)
�,

X = �−1/2 diag{κl,k : (l, k) ∈ I(J )}, β0 = (β0,J0−1,0, . . . , β0,J−1,2J−1−1)
�, r = 0, σ0 = 1,

and ε = �−1/2(̃εJ0−1,0, . . . , ε̃J−1,2J−1−1)
� ∼ N (0, Ip). For this model, the OLS estimator is

β̂ = (X�X)−1X�Y = (κ−1
l,k Ỹl,k)(l,k)∈I(J ), and so

P

(
max

(l,k)∈I(J )

∣∣κ−1
l,k Ỹl,k − β0,l,k

∣∣/wl ≤ R̂α

)
= P

(
β0 ∈ I (β̂, R̂α)

)
with weights wl,k = wl for (l, k) ∈ I(J ). Thus we can apply Theorem 2.1 to obtain bounds on
P(max(l,k)∈I(J ) |κ−1

l,k Ỹl,k − β0,l,k|/wl ≤ R̂α) and R̂α . It remains to bound P(Ỹ∞ /∈ H̃ ′
3), which is

similar to the final step of the proof of Proposition 3.3. The detail can be found in Appendix C.3
of [51]. �

Remark 3.5 (Coverage error rates in linear inverse problems). Consider a locally log-
Lipschitz prior with locally log-Lipschitz constant L = Ln. We assume a true function f0 with
‖f0‖Bs∞,∞ ≤ B for some B = Bn. Set J as follows: for a (positive) constant c with c < 1/(2r),

2J =
{

(n/ logn)1/(2s+2r+1) in mildly ill-posed cases (Case M);
c logn in severely ill-posed cases (Case S).
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Set wl = (max0≤k≤2l−1 κl,k)
−1

√
l for l ≤ J − 1 and wl = ul(min0≤k≤2l−1 κl,k)

−1
√

l for l ≥ J

with ul ↑ ∞ as l → ∞. Then we have

∣∣P(f0 ∈ Cw(f̂ , R̂α)
)− (1 − α)

∣∣≤ {
O
(
Ln(n/ logn)−s/(2s+2r+1)

)
in Case M,

O
(
Ln(logn)−s

)
in Case S,

and

sup
f,g∈CBn

w (f̂∞,R̂α)

‖f − g‖∞ ≤
{

O
(
Bn(n/ logn)−s/(2s+2r+1)

)
in Case M,

O
(
Bn(logn)−s

)
in Case S,

where the latter holds with probability at least 1 − c1n
−c22J

(again the sequence {wl} here de-
pends on n but we can apply Proposition 3.3; see Remark C.2 in [51] for the detail).

3.3. Nonparametric regression model

Finally, we consider a nonparametric regression model

Yi = f0(Ti) + εi, i = 1, . . . , n,

where ε = (ε1, . . . , εn)
� is the vector of i.i.d. error terms with mean zero and variance σ 2

0 and
T1, . . . , Tn are an i.i.d. sample with values in [0,1]. For simplicity, we assume that ε and {Ti :
i = 1, . . . , n} are independent, and σ0 does not depend on n.

We consider a sieve prior for f0. To this end, we use p basis functions {ψp
j (·) : 1 ≤ j ≤ p},

and constrict a credible band for f of the form

C(f̂ , R̂α) =
{
f :

∥∥∥∥f (·) − f̂ (·)
‖ψp(·)‖

∥∥∥∥∞
≤ R̂α

}
,

where f̂ (·) :=∑p

j=1 ψ
p
j (·)β̂j with β̂ := argminβ

∑n
i=1(Yi −∑p

j=1 ψ
p
j (Ti)βj )

2, R̂α is chosen in

such a way that �f {C(f̂ , R̂α) | Y } = 1 − α, and ψp(·) := (ψ
p

1 (·), . . . ,ψp
p (·))�. We consider a

prior �f of f induced from a sieve prior �β on R
p via the map (β1, . . . , βp) 
→∑p

j=1 βjψ
p
j (·).

The setting of the nonparametric regression is different from that of Section 2 in that the regres-
sors T1, . . . , Tn are stochastic. Due to this additional randomness, we need an additional analysis
to develop bounds on the coverage error and the L∞-diameter of the band. To this end, we modify
Conditions 2.1 and 2.3, and add conditions on the basis functions Let ψ̃p(·) := ψp(·)/‖ψp(·)‖,
ξp := supt∈[0,1] ‖ψp(t)‖, and β0 := argminβ E[(f0(T1) − ψp(T1)

�β)2]. For R > 0, let

B̃(R) := {
β : ‖β − β0‖ ≤ n−1/2R

}
and φ̃�β (R) := 1 − inf

β,β̃∈B̃(R)

π(β)

π(β̃)
.

Condition 3.1. There exists a positive constant C1 such that π(β0) ≥ n−C1p .

Condition 3.2. The inequality φ̃�β (1/
√

n) ≤ 1/2 holds.
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Condition 3.3. There exist strictly positive constants b and b such that the eigenvalues of the

p × p matrix (E[ψp
i (T1)ψ

p
j (T1)])1≤i,j≤p are included in [b2, b

2].

Condition 3.4. There exist positive constants C4 and C5 such that

log ξp ≤ C4 logp and log sup
t �=t ′∈[0,1]

‖ψ̃p(t) − ψ̃p(t ′)‖
|t − t ′| ≤ C5 logp.

Conditions 3.1 and 3.2 are versions of Conditions 2.1 and 2.3 under stochastic regressors.
Condition 3.3 is standard. Condition 3.4 is not restrictive; for example, this condition holds for
Fourier series, Spline series, CDV wavelets, and local polynomial partition series; see [4] for
details.

The following proposition derives bounds on the coverage error and the L∞-diameter of
C(f̂ , R̂α). Let τ2 := √

E[(f0(T1) − ψp(T1)�β0)2], τ∞ := ‖f0(·) − ψp(·)�β0‖∞, and τ :=
‖|f0(·) − ψp(·)�β0|/‖ψp(·)‖‖∞. These parameters quantify the approximation errors by the
basis functions.

Proposition 3.4. Under Conditions 3.1–3.4 together with Conditions 2.2 and 2.5, there exist
positive constants c1, c2 depending only on C1, . . . ,C5, b, b, and q appearing in these conditions
such that the following hold. For n ≥ 2 and any sufficiently small δ > 0, we have∣∣P(f0 ∈ C(f̂ , R̂α)

)− (1 − α)
∣∣

≤ φ̃�β (c1
√

p logn) + δ2 + δ3 + c1
(
n−2δ + δ1p logn + ζn + γn

)
, (9)

where

γn := n

logn

τ 2
2

p
+ max

{
1,
(
pξ2

p/n
)1/2}

τ∞nδ logp + √
nτ

√
logp and

ζn :=

⎧⎪⎨⎪⎩nδ(logn)7/6 max

{(
ξ2
p

n

)1/2

n1/q(logn)1/3,

(
ξ2
p

n

)1/6}
under Condition 2.5(a),

nδ(logn)7/6(ξ2
p/n

)1/6
under Condition 2.5(b).

In addition, there exists a positive constant c3 depending only on α and b such that the following
holds: provided that the right-hand side on (9) is smaller than α/2, we have

sup
f,g∈C(f̂ ,R̂α)

‖f − g‖∞ ≤ c3

√
ξ2
p(logp)/n

with probability at least 1 − δ3 − c1{√nτ
√

logp + n−c2p}.

We note that the proof of Proposition 3.4 does not use a lower bound on R̂α in Theorem 2.1
(more precisely, its version for random designs). Hence, we do not have to assume that the right-
hand side on (9) is smaller than (1 − α)/2; see the discussion after Theorem 2.1.
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Remark 3.6 (Magnitudes of ξp , τ2, τ∞, and τ ). For typical basis functions including Fourier
series, spline series, and CDV wavelets, we have ξp � √

p; see Section 3 in [4]. If f0 is in the
Hölder–Zygmund space with smoothness level s > 0, then τ2 ∼ τ∞ ∼ p−s for an S-regular CDV
wavelet basis with S > s. For other bases and other function classes, bounds on τ2 and τ∞ can be
found in approximation theory; see, for example, [20] and Section 3 in [4]. Finally, for the Haar
wavelet basis, we have τ ∼ τ∞/

√
p, since τ ≤ τ∞/ inft∈[0,1] ‖ψp(t)‖; for periodic S-regular

wavelets, we also have τ ∼ τ∞/
√

p as shown in Appendix C.4.3 of [51].

Remark 3.7 (Coverage error rates for the true function). Consider the unknown variance
case. Assume that there exists a constant s > 1/2 such that τ2 ∼ τ∞ ∼ p−s , τ ∼ p−s−1/2, and
ξp � √

p. Assume also that the error distribution is Gaussian (for the non-Gaussian case, add
ζn to the bound on the coverage error). We use a locally log-Lipschitz prior with locally log-
Lipschitz constant L = Ln on β and use the estimator σ̂ 2 = σ̂ 2

u as in Proposition 2.3. Take
p ∼ (n/ logn)1/(2s+1)bn with a positive nondecreasing sequence bn = O(logn). In this case, we
have

∣∣P (
f0 ∈ C(f̂ , R̂α)

)− (1 − α)
∣∣

≤ C

[
Ln

(
n

logn

)−s/(2s+1)

b
1/2
n +

(
n

logn

)−(s−1/2)/(2s+1)

bn logn + logn

b
s+1/2
n

]
and

sup
f,g∈C(f̂ ,R̂α)

‖f − g‖∞ ≤ C

(
n

logn

)−s/(2s+1)

b
1/2
n ,

where the latter holds with probability at least 1 − c1(logn)/b
s+1/2
n , and the constant C is inde-

pendent of n.

Remark 3.8 (Coverage error rates for the surrogate function). Consider coverage errors for
the surrogate function f0,p := ψp(·)�β0 when the error distribution is Gaussian. In this case,
since τ∞ = τ2 = τ = 0, we have

∣∣P(f0,p ∈ C(f̂ , R̂α) − (1 − α)
∣∣≤ O

(
(n/ logn)−(s−1/2)/(2s+1)bn logn

)
and

sup
f,g∈C(f̂ ,R̂α)

‖f − g‖∞ ≤ O
(
(n/ logn)−s/(2s+1)b

1/2
n

)
,

where the latter holds with probability at least 1 − c1 exp{−c2(n/ logn)1/(2s+1)}. This shows that
Bayesian credible bands have coverage errors (for the surrogate function) decaying polynomially
fast in the sample size n in nonparametric regression models.
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4. Proof of Theorem 2.1

4.1. Supporting lemmas

We begin with stating some supporting lemmas that will be used in the proof of Theorem 2.1.
They include the high-dimensional CLT on hyperrectangles, the anti-concentration inequality for
the Gaussian distribution, Anderson’s lemma, and the concentration inequality for the Gaussian
maximum.

The high-dimensional CLT on hyperrectangles is stated as follows: in the following lemma, let
Z1, . . . ,Zn be independent p-dimensional random vectors with mean zero. Let Zij (i = 1, . . . , n,
j = 1, . . . , p) denote the j th coordinate of Zi . Let Z̃1, . . . , Z̃n be independent centered p-
dimensional Gaussian vectors such that each Z̃i has the same covariance matrix as Zi . Let
Are be the class of all closed hyperrectangles in R

p: for any A ∈ Are, A is of the form
A = {β ∈ R

p : ai ≤ βi ≤ ai,1 ≤ ∀i ≤ p} with (a1, . . . , ap)� ∈ R
p and (a1, . . . , ap)� ∈ R

p .
We assume the following three conditions:

H1. There exists b > 0 such that n−1 ∑n
i=1 E[Z2

ij ] ≥ b for all 1 ≤ j ≤ p;

H2. There exists a sequence Bn ≥ 1 such that n−1 ∑n
i=1 E[|Zij |2+k] ≤ B4

n for all 1 ≤ j ≤ p

and for k = 1,2;
H3. Either one of the following two conditions holds:

(a) There exists an integer 4 ≤ q < ∞ such that E[(max1≤j≤p |Zij |/Bn)
q ] ≤ 1 for all

1 ≤ i ≤ n;
(b) E[exp(|Zij |/Bn)] ≤ 2 for all 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Lemma 4.1 (High dimensional CLT on hyperrectangles; Proposition 2.1 in [15]). Let

ρ = ρn := sup
A∈Are

∣∣∣∣∣P
(

n∑
i=1

Zi/
√

n ∈ A

)
− P

(
n∑

i=1

Z̃i/
√

n ∈ A

)∣∣∣∣∣.
Under Conditions H1–H3, there exists a positive constant c̃1 such that

ρ ≤

⎧⎪⎪⎨⎪⎪⎩
c̃1

(
B2

n log7(pn)

n

)1/6

+ c̃1

(
B2

n log3(pn)

n1−2/q

)1/3

under Condition H3(a),

c̃1

(
B2

n log7(pn)

n

)1/6

under Condition H3(b).

The constant c̃1 depends only on b appearing in Condition H1 and q appearing in Condition H3.

Next, we state the anti-concentration inequality for the Gaussian distribution, Anderson’s
lemma, and the concentration inequality for the Gaussian maximum.

Lemma 4.2 (Anti-concentration inequality for the Gaussian distribution; [38]). Let Z =
(Z1, . . . ,Zp)� be a centered Gaussian random vector in R

p with σ 2
j := E[Zj ]2 > 0 for all
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1 ≤ j ≤ p. Let σ := min{σj }. There exists a universal positive constant c̃2 such that for every
z = (z1, . . . , zp)� ∈R

p and R > 0,

γ := γ (R) :=P(Zj ≤ zj + R 1 ≤ ∀j ≤ p) − P(Zj ≤ zj 1 ≤ ∀j ≤ p) ≤ c̃2
R

σ

√
logp.

Lemma 4.3 (Anderson’s lemma; Corollary 3 in [2]). Let � and �̃ be symmetric positive
semidefinite p × p matrices, and let C be a symmetric convex set in R

p . If � − �̃ is positive
semidefinite, then P(Z ∈ C) ≤ P(Z̃ ∈ C) for Z ∼N (0,�) and Z̃ ∼N (0, �̃),

Lemma 4.4 (Concentration inequality for the Gaussian maximum; Theorem 2.5.8. in [30]).
Let N1, . . . ,Np ∼ N (0,1) i.i.d. and let {wi}pi=1 be a positive sequence with w = min1≤i≤p wi .
Then for every R > 0,

P

(∣∣∣ max
1≤i≤p

∣∣∣Ni/wi

∣∣∣−E

[
max

1≤i≤p
|Ni/wi |

]∣∣∣≥ R
)

≤ 2 exp
(−w2R2/2

)
.

4.2. Proof of Theorem 2.1

We only prove the theorem under Condition 2.5(a). The proof under Condition 2.5(b) is done by
replacing Lemma 4.1(a) by Lemma 4.1(b).

The proof is divided into two parts. We first derive an upper bound on the coverage error
|P(β0 ∈ I (β̂(Y ), R̂α)) − (1 − α)| and then bound the radius R̂α of I (β̂(Y ), R̂α).

Step 1: Upper bound on the coverage error

We start with proving that R̂α concentrates on the (1−α)-quantile of some distribution with high
probability. Let ζ be the upper bound in Proposition 2.5. From Proposition 2.5, we have∣∣�β

(
I
(
β̂(Y ), R̂α

) | Y )︸ ︷︷ ︸
=1−α

−N
(
I
(
β̂(Y ), R̂α

) | β̂(Y ), σ 2
0

(
X�X

)−1)∣∣≤ ζ for Y ∈ H,

where recall that H = {Y : ‖X(β̂(Y ) − β0)‖ ≤ c1
√

p lognσ0/4} ∩ {Y : �σ 2(|σ 2/σ 2
0 − 1| ≥ δ1 |

Y) ≤ δ2}. Let S̃ ∼N (0, (X�X)−1) and let G be the distribution function of σ0 max{|e�
(p),i S̃|/wi},

where e(p),i is the p-dimensional unit vector whose ith component is 1. Now since N (I (β̂(Y ),

R̂α) | β̂(Y ), σ 2
0 (X�X)−1) = G(R̂α), we have |(1 − α) − G(R̂α)| ≤ ζ for Y ∈ H . This implies

G−1(1 − α − ζ ) ≤ R̂α ≤ G−1(1 − α + ζ ) for Y ∈ H, (10)

where G−1 denotes the quantile function of G.
Next, we will derive an upper bound on P(β0 ∈ I (β̂(Y ), R̂α)) − (1 − α) (the lower bound

follows similarly). Let ρ be the constant in Lemma 4.1 when Zj = n(X�X)−1Xj ·εj for j =
1, . . . , n, where Xj · = (Xj1, . . . ,Xjp)� for j = 1, . . . , n. For R > 0, let γ (R) be the constant
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in Lemma 4.2 when Z = σ0S̃. Finally, let r̃ := (X�X)−1X�r . From inequality (10) and by the
definitions of ρ, G, and γ , we have

P
(
β0 ∈ I

(
β̂(Y ), R̂α

))− (1 − α)

≤ P

(
max

1≤i≤p

{∣∣e�
(p),i

(
X�X

)−1
X�(ε + r)

∣∣/wi

}≤ G−1(1 − α + ζ )
)

− (1 − α) + P(Y /∈ H)

≤ P

(
max

1≤i≤p

{∣∣e�
(p),i(σ0S̃ + r̃)

∣∣/wi

}≤ G−1(1 − α + ζ )
)

− (1 − α) + ρ + P(Y /∈ H)

≤ γ
(‖̃r‖∞

)+ ζ + ρ + P(Y /∈ H).

Proposition 2.6 gives an upper bound on P(Y /∈ H). From Lemmas 4.1 and 4.2, we obtain the
following bounds on ρ and γ : For some c̃1 > 0 depending only on q ,

ρ ≤ c̃1

{(
p log7(pn)

n

λ

λ

)1/6

+
(

p log3(pn)

n1−2/q

λ

λ

)1/3}
and γ ≤ c̃1

‖̃r‖∞
σ0λ

1/2

√
logp,

which completes Step 1.

Step 2: Upper bound on the max-diameter

We start with deriving a high-probability upper bound on R̂α using the quantile function F−1

of max1≤i≤p |Ni/wi | for independent standard Gaussian random variables {Ni : i = 1, . . . , p}.
From Lemma 4.3, we have

P

(
max

1≤i≤p
|Ni/wi | ≤ R/

(
σ0λ

1/2))≤ P

(
max

1≤i≤p
|σ0S̃i/wi | ≤ R

)
for R > 0.

Together with inequality (10), we have

R̂α ≤ σ0λ
1/2

F−1(1 − α + ζ ) for Y ∈ H. (11)

Next, we will bound F−1(1 − α + ζ )/E[max1≤i≤p |Ni/wi |]. From Lemma 4.4, there exists
c̃2 > 1 depending only on α and w such that

P

(
max

1≤i≤p
|Ni/wi | −E

[
max

1≤i≤p
|Ni/wi |

]
≥ c̃2E

[
max

1≤i≤p
|Ni/wi |

])
< α − α/2 < α − ζ .

Therefore, by the definition of F−1, we have

F−1(1 − α + ζ ) = inf
{
R : P

(
max

1≤i≤p
|Ni/wi | ≥ R

)
≤ α − ζ

}
≤ (1 + c̃2)E

[
max

1≤i≤p
|Ni/wi |

]
.

Together with (11), we obtain the desired upper bound on R̂α .
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Step 3: Lower bound on the max-diameter

As in Step 2, we have

σ0λ
1/2

w−1F̃−1(1 − α − ζ ) ≤ R̂α for Y ∈ H (12)

Next, we will show that F̃−1(1 − α − ζ ) ≥ c̃3
√

logp for some constant c̃3 depending only on α.
From the Paley–Zygmund inequality, we have for θ ∈ [0,1],

P

(
max

1≤i≤p
|Ni | ≥ θE

[
max

1≤i≤p
|Ni |

])
≥ (1 − θ)2 (E[max1≤i≤p |Ni |])2

E[(max1≤i≤p |Ni |)2] . (13)

From Lemma 4.4 together with the inequality E[max1≤i≤p |Ni |] ≥ √
logp/12, there exists a

universal positive constant c̃4 such that

E

[(
max

1≤i≤p
|Ni |

)2]≤
(
E

[
max

1≤i≤p
|Ni |

])2
(1 + c̃4/

√
logp), (14)

where we have used use Lemma 4.4 to deduce that

E

[(
max

1≤i≤p
|Ni |

)2]≤
(
E

[
max

1≤i≤p
|Ni |

])2 + 4
∫ ∞

E[max1≤i≤p |Ni |]
te−(t−E[max1≤i≤p |Ni |])2/2 dt

≤
(
E

[
max

1≤i≤p
|Ni |

])2 + c̃5

(
E

[
max

1≤i≤p
|Ni |

]
+ 1

)
for some universal positive constant c̃5. Let η := (1 + α)/2. Take p such that 1/{1 +
c̃4/

√
logp} ≥ (η + 1)/2, and take θ∗

α = 1 − √
(2η)/(η + 1). Then, from inequalities (13) and

(14), we have

P

(
max

1≤i≤p
|Ni | ≥ θ∗

αE

[
max

1≤i≤p
|Ni |

])
≥ (

1 − θ∗
α

)2 (E[max1≤i≤p |Ni |])2

E[(max1≤i≤p |Ni |)2] ≥ η ≥ α + ζ .

Thus we have

F̃−1(1 − α − ζ ) ≥ θ∗
αE

[
max

1≤i≤p
|Ni |

]
≥ (

θ∗
α/12

)√
logp. (15)

Together with (12), we obtain the desired lower bound on R̂α . �

5. Conclusion

We have studied finite sample bounds on frequentist coverage errors of Bayesian credible rect-
angles to approximately linear regression models with moderately high dimensional regressors.
As an application, we have shown that Bayesian credible bands have coverage errors (for the
true function) decaying polynomially fast in the sample size in Gaussian white noise models
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and linear inverse problems; the similar results hold for the surrogate function in nonparametric
regression models. This supports the use of Bayesian approaches to constructing nonparametric
confidence bands.
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