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We derive normal approximation bounds in the Kolmogorov distance for sums of discrete multiple integrals
and weighted U -statistics made of independent Bernoulli random variables. Such bounds are applied to
normal approximation for the renormalized subgraph counts in the Erdős–Rényi random graph. This ap-
proach completely solves a long-standing conjecture in the general setting of arbitrary graph counting, while
recovering recent results obtained for triangles and improving other bounds in the Wasserstein distance.
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1. Introduction

The Mallavin approach to the Stein method introduced in [16] for general functionals of Gaus-
sian random fields has recently been extended to functionals of discrete Bernoulli sequences.
In [17], normal approximation Stein bounds have been obtained in the Wassertein distance for
functionals of symmetric Bernoulli sequences, and such results have been extended in particular
to the Kolmogorov distance in [10].

In [20], Stein bounds in the Wasserstein distance have been obtained for functionals of not
necessarily symmetric Bernoulli sequences, and bounds in the total variation distance have been
derived for the Poisson approximation in [9]. See also [4] for recent results on the fourth moment
in the non-symmetric discrete setting.

Still in the discrete not necessarily symmetric Bernoulli setting, Kolmogorov distance bounds
have been proved in [11] using second order Poincaré inequalities for discrete Bernoulli se-
quences, with application to the normal approximation of the renormalized count of the sub-
graphs which are isomorphic to triangles in the Erdős–Rényi random graph.

In this paper, we consider sums of weighted U -statistics (or discrete multiple stochastic inte-
grals) of the form

n∑
k=1

∑
i1,...,ik∈N

ir �=is ,1≤r �=s≤k

fk(i1, . . . , ik)Yi1 · · ·Yik , (1)
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where (Yk)k∈N is a normalized sequence of Bernoulli random variables. By the Malliavin ap-
proach to the Stein and Stein–Chen methods, we derive new Kolmogorov distance bounds to the
normal distribution for the distribution of functionals of the form (1), see Theorem 3.1. Our ap-
proach is based on results of [10] and [11] for general functionals of discrete i.i.d. renormalized
Bernoulli sequences (Yn)n∈N.

Normal approximation in the Kolmogorov distance has been studied in various special cases
of (1). In Theorem 3.1 of [3], bounds were obtained for non weighted U -statistics, and in [10] the
authors dealt with weighted first order U -statistics in the symmetric case p = 1/2. See also [12,
13] for the normal approximation of U -statistics written as multiple Poisson stochastic integrals,
with applications provided to subgraph counting and boolean models.

Our second goal is to apply Theorem 3.1 to the normal approximation of the renormalized
count of the subgraphs which are isomorphic to an arbitrary graph in the Erdős–Rényi random
graph Gn(p) constructed by independently retaining any edge in the complete graph Kn on n

vertices with probability p ∈ (0,1). The random graph Gn(p) was introduced by Gilbert [7] in
1959 and popularized by Erdős and Rényi in [5], it has been intensively studied and has become
a classical model in discrete probability, see [8] and references therein.

Necessary and sufficient conditions for the asymptotic normality of the renormalization

ÑG
n := NG

n −E[NG
n ]√

Var[NG
n ] ,

where NG
n is the number of graphs in Gn(pn) that are isomorphic to a fixed graph G, have been

obtained in [23] where it is shown that

ÑG
n

D−→ N iff npβ
n → ∞ and n2(1 − pn) → ∞,

as n tends to infinity, where N denotes the standard normal distribution,

β := max{eH /vH : H ⊂ G},
and eH , vH respectively denote the numbers of edges and vertices in the graph H . Those re-
sults have been made more precise in [2] by the derivation of explicit convergence rates in the
Wasserstein distance

dW (F,G) := sup
h∈Lip(1)

∣∣E[h(F )
]− E

[
h(G)

]∣∣,
between the laws of random variables F , G, where Lip(1) denotes the class of real-valued Lip-
schitz functions with Lipschitz constant less than or equal to 1. Bounds on the total variation
distance of subgraph counts to the Poisson distribution have also been derived in Theorem 5.A
of [1].

In the particular case where the graph G is a triangle, such bounds have been recently strength-
ened in [21] using the Kolmogorov distance

dK(F,G) := sup
x∈R

∣∣P(F ≤ x) − P(G ≤ x)
∣∣,
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which satisfies the bound dK(F,N ) ≤ √
dW (F,N ). Still in the case of triangles, Kolmogorov

distance bounds had also been obtained by second order Poincaré inequalities for discrete
Bernoulli sequences in [11] when pn takes the form pn = n−α , α ∈ [0,1). Kolmogorov bounds
have also been obtained for triangles in Section 3.2.1 of [22], however such bounds apply only
in the range α ∈ [0,2/9) when pn takes the form pn = n−α .

In this paper, we refine the results of [2] by using the Kolmogorov distance instead of the
Wasserstein distance. As in [2], we are able to consider any graph G, and therefore our results
extend those of both [11] and [21] which only cover the case where G is a triangle. Instead
of using second order Poincaré inequalities [11,14], our method relies on an application of Kol-
mogorov distance bounds of Proposition 4.1 in [11], see also Theorem 3.1 in [10], to derive Stein
approximation bounds for sums of multiple stochastic integrals.

Furthermore, we note that various random functionals on the Erdős–Rényi random graph
Gn(p) admit representations as sums of multiple integrals (1). This includes the number of ver-
tices of a given degree, and the count of subgraphs that are isomorphic to an arbitrary graph.

Our second main result Theorem 4.2 is a bound for the Kolmogorov distance between the
normal distribution and the renormalized graph count ÑG

n . Namely, we show that when G is a
graph without isolated vertices it holds that

dK(ÑG,N ) ≤ CG

(
(1 − pn) min

H⊂G

eH ≥1

nvH peH
n

)−1/2
, (2)

where CG > 0 is a constant depending only on eG, which improves on the Wasserstein estimates
of [2], see Theorem 2 therein. This result relies on the representation of combined subgraph
counts as finite sums of multiple stochastic integrals, see Lemma 4.1, together with the applica-
tion of Theorem 3.1 on Kolmogorov distance bounds for sums of multiple stochastic integrals.

In the sequel, given two positive sequences (xn)n∈N and (yn)n∈N we write xn ≈ yn whenever
c1 < xn/yn < c2 for some c1, c2 > 0 and all n ∈ N, and for f and g two positive functions we
also write f � g whenever f ≤ CGg for some constant CG > 0 depending only on G. Using the
equivalence

Var
[
NG

n

]≈ (1 − pn) max
H⊂G

eH ≥1

n2vG−vH p2eG−eH
n (3)

as n tends to infinity, see Lemma 3.5 in [8], the bound (2) can be rewritten in terms of the variance
Var[NG

n ] as

dK

(
ÑG

n ,N
)
�

√
Var[NG]

(1 − pn)nvGp
eG
n

. (4)

Note that when pn is bounded away from 0, the bound (2) takes the simpler form

dK

(
ÑG

n ,N
)
� 1

n
√

1 − pn

. (5)

Next, in Corollary 4.6 we show that the bound (4) can be specialized as

dK

(
ÑG

n ,N
)
�
(
(1 − pn)min

{
n2pn,n

vGpeG
n

})−1/2
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=

⎧⎪⎪⎨⎪⎪⎩
1

n
√

pn(1 − pn)
if n−(vG−2)/(eG−1) < pn,

1

nvG/2p
eG/2
n

if 0 < pn ≤ n−(vG−2)/(eG−1),

for any graph G with at least three vertices, under the balance condition

max
H⊂G

vH ≥3

eH − 1

vH − 2
= eG − 1

vG − 2
, (6)

see also [6,24] for related conditions and their use in subgraph counting. Finally, we note that (6)
is satisfied by important examples of subgraphs such as complete graphs, cycles and trees, with
at least 3 vertices, which are dealt with in Corollaries 4.8, 4.9 and 4.10.

In the particular case where the graph G is a triangle, the next consequence of (2) and (5)
recovers the main result of [21], see Theorem 1.1 therein.

Corollary 1.1. For any c ∈ (0,1), the normalized number ÑG
n of the subgraphs in Gn(pn) that

are isomorphic to a triangle satisfies

dK

(
ÑG

n ,N
)
�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

n
√

1 − pn

if c < pn < 1,

1

n
√

pn

if n−1/2 < pn ≤ c,

1

(npn)3/2
if 0 < pn ≤ n−1/2.

When pn takes the form pn = n−α , α ∈ [0,1), Corollary 1.1 similarly improves on the con-
vergence rates obtained in Theorem 1.1 of [11] using second order Poincaré inequalities.

This paper is organized as follows. In Section 2, we recall the construction of random func-
tionals of Bernoulli variables, together with the construction of the associated finite difference
operator and their application to Kolmogorov distance bounds obtained in [10]. In Section 3, we
derive general Kolmogorov distance bounds for sums of multiple stochastic integrals. In Sec-
tion 4, we show that graph counts can be represented as sums of multiple stochastic integrals,
and we derive Kolmogorov distance bounds for the renormalized count of subgraphs in Gn(pn)

that are isomorphic to a fixed graph.

2. Notation and preliminaries

In this section, we recall some background notation and results on the stochastic analysis of
Bernoulli processes, see [18] for details. Consider a sequence (Xn)n∈N of independent identically
distributed Bernoulli random variables with P(Xn = 1) = p and P(Xn = −1) = q , n ∈ N, built
as the sequence of canonical projections on � := {−1,1}N. For any F : � → R, we consider the
L2(� ×N)-valued finite difference operator D defined for any ω = (ω0,ω1, . . .) ∈ � by

DkF(ω) = √
pq
(
F
(
ωk+
)− F

(
ωk−
))

, k ∈N, (7)
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where we let

ωk+ := (ω0, . . . ,ωk−1,+1,ωk+1, . . .)

and

ωk− := (ω0, . . . ,ωk−1,−1,ωk+1, . . .),

k ∈N, and DF := (DkF )k∈N. The L2 domain of D is given by

Dom(D) = {F ∈ L2(�) : E
[‖DF‖2

�2(N)

]
< ∞}.

We let (Yn)n≥0 denote the sequence of centered and normalized random variables defined by

Yn := q − p + Xn

2
√

pq
, n ∈N.

Given n ≥ 1, we denote by �2(N)⊗n = �2(Nn) the class of square-summable functions on Nn,
we denote by �2(N)◦n the subspace of �2(N)⊗n formed by functions that are symmetric in n

variables. We let

In(fn) =
∑

(i1,...,in)∈�n

fn(i1, . . . , in)Yi1 · · ·Yin

denote the discrete multiple stochastic integral of order n of fn in the subspace �2
s(�n) of �2(N)◦n

composed of symmetric kernels that vanish on diagonals, that is, on the complement of

�n = {(k1, . . . , kn) ∈ Nn : ki �= kj ,1 ≤ i < j ≤ n
}
, n ≥ 1.

The multiple stochastic integrals satisfy the isometry and orthogonality relation

E
[
In(fn)Im(gm)

]= 1{n=m}n!〈fn, gm〉�2
s(�n), (8)

fn ∈ �2
s(�n), gm ∈ �2

s(�m), cf. e.g. Proposition 1.3.2 of [19]. The finite difference operator D

acts on multiple stochastic integrals as follows:

DkIn(fn) = nIn−1
(
fn(∗, k)1�n(∗, k)

)= nIn−1
(
fn(∗, k)

)
,

k ∈N, fn ∈ �2
s(�n), and it satisfies the finite difference product rule

Dk(FG) = FDkG + GDkF − Xk√
pq

DkFDkG, k ∈N (9)

for F,G : � →R, see Propositions 7.3 and 7.8 of [18].
Due to the chaos representation property of Bernoulli random walks, any square integrable F

may be represented as F =∑n≥0 In(fn), fn ∈ �2
s(�n), and the L2 domain of D can be rewritten

as

Dom(D) =
{
F =
∑
n≥0

In(fn) :
∑
n≥1

nn!‖fn‖2
�2(N)⊗n < ∞

}
.
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The Ornstein–Uhlenbeck operator L is defined on the domain

Dom(L) :=
{
F =
∑
n≥0

In(fn) :
∑
n≥1

n2n!‖fn‖2
�2(N)⊗n < ∞

}

by

LF = −
∞∑

n=1

nIn(fn).

The inverse of L, denoted by L−1, is defined on the subspace of L2(�) composed of centered
random variables by

L−1F = −
∞∑

n=1

1

n
In(fn),

with the convention L−1F = L−1(F − E[F ]) in case F is not centered. Using this convention,
the duality relation (11) shows that for any F,G ∈ Dom(D) we have the covariance identity

Cov(F,G) = E
[
G
(
F − E[F ])]= E

[〈
DG,−DL−1F

〉
�2(N)

]
. (10)

The divergence operator δ is the linear mapping defined as

δ(u) = δ
(
In

(
fn+1(∗, ·)))= In+1(f̃n+1), fn+1 ∈ �2

s(�n) ⊗ �2(N),

for (uk)k∈N of the form

uk = In

(
fn+1(∗, k)

)
, k ∈ N,

in the space

U =
{

n∑
k=0

Ik

(
fk+1(∗, ·)), fk+1 ∈ �2

s(�k) ⊗ �2(N),0 ≤ k ≤ n ∈N

}
⊂ L2(� ×N)

of finite sums of multiple integral processes, where f̃n+1 denotes the symmetrization of fn+1 in
n + 1 variables, i.e.

f̃n+1(k1, . . . , kn+1) = 1

n + 1

n+1∑
i=1

fn+1(k1, . . . , kk−1, kk+1, . . . , kn+1, ki).

The operators D and δ are closable with respective domains Dom(D) and Dom(δ), built as the
completions of S and U , and they satisfy the duality relation

E
[〈DF,u〉�2(N)

]= E
[
Fδ(u)

]
, F ∈ Dom(D),u ∈ Dom(δ), (11)
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see, for example, Proposition 9.2 in [18], and the isometry property

E
[∣∣δ(u)

∣∣2] = E
[‖u‖2

�2(N)

]+E

[ ∞∑
k,l=0
k �=l

DkulDluk −
∞∑

k=0

(Dkuk)
2

]

≤ E
[‖u‖2

�2(N)

]+E

[ ∞∑
k,l=0
k �=l

DkulDluk

]
, u ∈ U , (12)

cf. Proposition 9.3 of [18] and Satz 6.7 in [15]. Letting (Pt )t∈R+ = (etL)t∈R+ denote the
Orsntein–Uhlenbeck semi-group defined as

PtF =
∞∑

n=0

e−nt In(fn), t ∈ R+,

on random variables F ∈ L2(�) of the form F =∑∞
n=0 In(fn), the Mehler’s formula states that

PtF = E
[
F
(
X(t)
) | X(0)

]
, t ∈R+, (13)

where (X(t))t∈R+ is the Ornstein–Uhlenbeck process associated to the semi-group (Pt )t∈R+ , cf.
Proposition 10.8 of [18]. As a consequence of the representation (13) of Pt , we can deduce the
bound

E
[∣∣DkL

−1F
∣∣α]≤ E

[|DkF |α], (14)

for every F ∈ Dom(D) and α ≥ 1, see Proposition 3.3 of [11]. The following Proposition 2.1 is
a consequence of Proposition 4.1 in [11], see also Theorem 3.1 in [10].

Proposition 2.1. For F ∈ Dom(D) with E[F ] = 0 we have

dK(F,N ) ≤ ∣∣1 −E
[
F 2]∣∣+√Var

[〈
DF,−DL−1F

〉
�2(N)

]
+ 1

2
√

pq

√√√√ ∞∑
k=0

E
[
(DkF )4

](√
E
[
F 2
]+
√√√√ ∞∑

k=0

E
[(

FDkL−1F
)2])

+ 1√
pq

sup
x∈R

E
[〈
D1{F>x},DF

∣∣DL−1F
∣∣〉

�2(N)

]
.

Proof. By Proposition 4.1 in [11], we have

dK(F,N ) ≤ E
[∣∣1 − 〈DF,−DL−1F

〉
�2(N)

∣∣]
+

√
2π

8
(pq)−1/2E

[〈|DF |2, ∣∣DL−1F
∣∣〉

�2(N)

]
(15)
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+ 1

2
(pq)−1/2E

[〈|DF |2, ∣∣FDL−1F
∣∣〉

�2(N)

]
(16)

+ (pq)−1/2 sup
x∈R

E
[〈
D1{F>x},DF

∣∣DL−1F
∣∣〉

�2(N)

]
.

On the other hand, it follows from the covariance identity (10) that it holds VarF = E[|〈DF,

−DL−1F 〉l2(N)|], hence by the Cauchy–Schwarz and triangular inequalities we get

E
[∣∣1 − 〈DF,−DL−1F

〉
�2(N)

∣∣]
≤ ∥∥1 − 〈DF,−DL−1F

〉
�2(N)

∥∥
L2(�)

≤ ∣∣1 − ‖F‖2
L2(�)

∣∣+ ∥∥〈DF,−DL−1F
〉
�2(N)

− ‖F‖2
L2(�)

∥∥
L2(�)

= ∣∣1 − Var[F ]∣∣+√Var
[〈
DF,−DL−1F

〉
�2(N)

]
.

Next, we have

E
[∥∥DL−1In(fn)

∥∥2
�2(N)

]= ∞∑
k=0

E
[(

In−1
(
fn(k, ·)))2]

= (n − 1)!
∞∑

k=0

∥∥fn(k, ·)∥∥2
�2(N)⊗(n−1)

= (n − 1)!‖fn‖2
�2(N)⊗n

≤ n!‖fn‖2
�2(N)⊗n

= E
[∣∣In(fn)

∣∣2],
and consequently, by the orthogonality relation (8) we have

E
[∥∥DL−1F

∥∥2
�2(N)

]≤ E
[
F 2]

for every F ∈ L2(�), hence (15) is bounded by

E
[〈∣∣DL−1F

∣∣, |DF |2〉
�2(N)

]≤ E

[√√√√ ∞∑
k=0

∣∣DkL−1F
∣∣2 ∞∑

k=0

|DkF |4
]

≤
√√√√E

[ ∞∑
k=0

∣∣DkL−1F
∣∣2]√√√√E

[ ∞∑
k=0

(DkF )4

]

=
√
E
[∥∥DL−1F

∥∥2
�2(N)

]√√√√E

[ ∞∑
k=0

(DkF )4

]
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≤
√
E
[
F 2
]√√√√E

[ ∞∑
k=0

(DkF )4

]
.

Eventually, regarding the third term (16), by the Cauchy–Schwarz inequality we find

E
[〈
(DF)2,

∣∣FDL−1F
∣∣〉

�2(N)

]≤
√√√√ ∞∑

k=0

E
[
(DkF )4

]√√√√ ∞∑
k=0

E
[(

FDkL−1F
)2]

.
�

Finally, given fn ∈ �2
s(�n) and gm ∈ �2

s(�m) we have the multiplication formula

In(fn)Im(gm) =
2 min(n,m)∑

s=0

In+m−s(hn,m,s), (17)

see Proposition 5.1 of [20], provided that the functions

hn,m,s :=
∑

s≤2i≤2 min(s,n,m)

i!
(

n

i

)(
m

i

)(
i

s − i

)(
q − p√

pq

)2i−s

fn 
̃s−i
i gm

belong to �2
s(�n+m−s), 0 ≤ s ≤ 2 min(n,m), where fn 
̃l

k gm is defined as the symmetrization in
n + m − k − l variables of the contraction fn 
l

k gm defined as

fn 
l
k gm(al+1, . . . , an, bk+1, . . . , bm)

= 1�n+m−k−l
(al+1, . . . , an, bk+1, . . . , bm)

×
∑

a1,...,al∈N
fn(a1, . . . , an)gm(a1, . . . , ak, bk+1, . . . , bm),

0 ≤ l ≤ k, and the symbol
∑

s≤2i≤2 min(s,n,m) means that the sum is taken over all the integers i

in the interval [s/2,min(s, n,m)]. We close this section with the following Proposition 2.2.

Proposition 2.2. Let fn ∈ �2
s(�n) and gm ∈ �2

s(�m) be symmetric functions. For 0 ≤ l < k ≤
min(n,m) we have∥∥fn 
l

k gm

∥∥2
�2(N)⊗(m+n−k−l)

≤ 1

2

∥∥fn 
l+n−k
n fn

∥∥2
�2(N)⊗(k−l) + 1

2

∥∥gm 
l+m−k
m gm

∥∥2
�2(N)⊗(k−l) , (18)

and∥∥fn 
k
k gm

∥∥2
�2(N)⊗(m+n−2k) ≤ 1

2

∥∥fn 
n−k
n−k fn

∥∥2
�2(N)⊗2k + 1

2

∥∥gm 
m−k
m−k fm

∥∥2
�2(N)⊗2k (19)
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+ 1

2

k∑
i=1

(
k

i

)2 (∥∥fn 
n−i
n fn

∥∥
�2(N)⊗i + ∥∥gm 
m−i

m fm

∥∥
�2(N)⊗i

)
.

Proof. Hölder’s inequality applied twice gives us

∥∥fn 
l
k gm

∥∥2
�2(N)⊗(m+n−k−l)

=
∑

z1∈Nn−k

∑
z2∈Nm−k

∑
y∈Nk−l

1�n+m−k−l
(y, z1, z2)

(∑
x∈Nl

fn(x, y, z1)gm(x, y, z2)

)2

≤
∑

y∈Nk−l

1�k−l
(y)

∑
z1∈Nn−k

∑
z2∈Nm−k

(∑
x∈Nl

f 2
n (x, y, z1)

∑
x∈Nl

g2
m(x, y, z2)

)

≤
[ ∑

y∈Nk−l

1�k−l
(y)

( ∑
z1∈Nn−k

∑
x∈Nl

f 2
n (x, y, z1)

)2

×
∑

y∈Nk−l

1�k−l
(y)

( ∑
z1∈Nm−k

∑
x∈Nl

g2
m(x, y, z2)

)2]1/2

= ∥∥fn 
l+n−k
n fn

∥∥
�2(N)⊗(k−l)

∥∥gm 
l+m−k
m gm

∥∥
�2(N)⊗(k−l)

≤ 1

2

∥∥fn 
l+n−k
n fn

∥∥2
�2(N)⊗(k−l) + 1

2

∥∥gm 
l+m−k
m gm

∥∥2
�2(N)⊗(k−l) .

To derive the second assertion, we proceed as follows:

∥∥fn 
k
k gm

∥∥2
�2(N)⊗(m+n−2k)

=
∑

y∈Nn−k

∑
z∈Nm−k

1�m+n−2k
(y, z)

∑
x1∈�k

∑
x2∈�k

fn(x1, y)gm(x1, z)fn(x2, y)gm(x2, z)

≤
∑

x1∈�k

∑
x2∈�k

( ∑
y∈Nn−k

fn(x1, y)fn(x2, y)

)( ∑
z∈Nm−k

gm(x1, z)gm(x2, z)

)

≤ 1

2

∑
x1,x2∈�k

( ∑
y∈Nn−k

fn(x1, y)fn(x2, y)

)2

+ 1

2

∑
x1,x2∈�k

( ∑
z∈Nm−k

gm(x1, z)gm(x2, z)

)2

,
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where we have used the inequality ab ≤ a2 + b2. Finally, we get

∑
x1∈�k

∑
x2∈�k

( ∑
y∈Nn−k

fn(x1, y)fn(x2, y)

)2

=
k∑

i=0

(
k

i

)2 ∑
x∈�i

∑
x′,x′′∈�k−i

1�2k−i

(
x, x′, x′′)( ∑

y∈Nn−k

fn

(
x, x′, y

)
fn

(
x, x′′, y

))2

=
k∑

i=0

(
k

i

)2 ∥∥fn 
n−k
n−k+i fn

∥∥
�2(N)⊗(2k−i)

≤ ∥∥fn 
n−k
n−k fn

∥∥
�2(N)⊗(2k) +

k∑
i=1

(
k

i

)2 ∥∥fn 
n−i
n fn

∥∥
�2(N)⊗i

by (18), which ends the proof. �

3. Kolmogorov bounds for sums of multiple stochastic integrals

Wasserstein bounds have been obtained for discrete multiple stochastic integrals in Theorem 4.1
of [17] in the symmetric case p = q and in Theorems 5.3–5.5 of [20] in the possibly nonsym-
metric case, and have been extended to the Kolmogorov distance in the symmetric case p = q

in Theorem 4.2 of [10]. The following consequence of Proposition 2.1 provides a Kolmogorov
distance bound which further extends Theorem 4.2 of [10] from multiple stochastic integrals to
sums of multiple stochastic integrals in the nonsymmetric case.

Theorem 3.1. For any finite sum

F =
m∑

k=1

Ik(fk)

of discrete multiple stochastic integrals with fk ∈ �2
s(�k), k = 1, . . . ,m, we have

dK(F,N ) ≤Cm

(∣∣1 − Var[F ]∣∣+√RF

)
,

for some constant Cm > 0 depending only on m, where

RF :=
∑

0≤l<i≤m

(pq)l−i
∥∥fi 
l

i fi

∥∥2
�2(N)⊗(i−l)

+
∑

1≤l<i≤m

(∥∥fl 
l
l fi

∥∥2
�2(N)⊗(i−l) + ∥∥fi 
l

l fi

∥∥2
�2(N)⊗2(i−l)

)
. (20)
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Proof. We introduce

R′
F :=

∑
1≤i≤j≤m

i∑
k=1

k∑
l=0

1{i=j=k=l}c (pq)l−k
∥∥fi 
l

k fj

∥∥2
�2(N)⊗(i+j−k−l) .

Since it holds that R′
F � RF , it is enough to prove the required inequality with R′

F instead of RF .
Indeed, by the inequality (18), all the components of R′

F for 0 ≤ l < k ≤ i, j , are dominated by
those for 0 ≤ l < k = i = j , and also, by the inequality (19), the ones where 1 ≤ k = l < i ≤ j ,
are dominated by the components where 1 ≤ l = k < i = j or 1 ≤ l < k = i = j . Finally, the
components for 1 ≤ k = l = i < j remain unchanged.

We will estimate components in the inequality from Proposition 2.1. We have

DrF =
m−1∑
i=0

(i + 1)Ii

(
fi+1(r, ·)

)
and DrL

−1F =
m−1∑
i=0

Ii

(
fi+1(r, ·)

)
, r ∈ N,

hence by the multiplication formula (17) we find

(DrF )2 =
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

ci,j,l,k

(
q − p√

pq

)k−l

Ii+j−k−l

(
fi+1(r, ·) 
̃l

k fj+1(r, ·)
)

(21)

and

DrFDrL
−1F (22)

=
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

di,j,l,k

(
q − p√

pq

)k−l

Ii+j−k−l

(
fi+1(r, ·) 
̃l

k fj+1(r, ·)
)
,

for some ci,j,l,k , di,j,l,k ≥ 0. Applying the isometry relation (8) to (21) and using the bound
‖f̃m‖�2(N)⊗n ≤ ‖fm‖�2(N)⊗m , fm ∈ �2(N)⊗m, we get, writing f � g whenever f < Cmg for some
constant Cm > 0 depending only on m,

∞∑
r=0

E
[|DrF |4]

�
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

∞∑
r=0

(
q − p√

pq

)2k−2l∥∥fi+1(r, ·) 
l
k fj+1(r, ·)

∥∥2
�2(N)⊗(i+j−k−l)

=
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

(
q − p√

pq

)2k−2l∥∥fi+1 
l
k+1 fj+1

∥∥2
�2(N)⊗(i+j−k−l+1)

=
∑

1≤i≤j≤m

i∑
k=1

k−1∑
l=0

(
q − p√

pq

)2k−2l−2∥∥fi 
l
k fj

∥∥2
�2(N)⊗(i+j−k−l)
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≤ pqR′
F . (23)

Furthermore, by (22) it follows that

〈
DF,DL−1F

〉−E
[〈
DF,DL−1F

〉]
=

∞∑
r=0

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

ci,j,l,k1{i=j=k=l}c
(

q − p√
pq

)k−l

× Ii+j−k−l

(
fi+1(r, ·) 
̃l

k fj+1(r, ·)
)

=
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

ci,j,l,k1{i=j=k=l}c
(

q − p√
pq

)k−l

× Ii+j−k−l

( ∞∑
r=0

fi+1(r, ·) 
̃l
k fj+1(r, ·)

)

=
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

ci,j,l,k1{i=j=k=l}c
(

q − p√
pq

)k−l

Ii+j−k−l

(
fi+1 
̃l+1

k+1 fj+1
)
,

thus we get

Var
[〈
DF,−DL−1F

〉]
�

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

1{i=j=k=l}c
(pq)k−l

∥∥fi+1 
l+1
k+1 fj+1

∥∥2
�2(N)⊗(i+j−k−l)

=
∑

1≤i≤j≤m

i∑
k=1

k∑
l=1

1{i=j=k=l}c
1

(pq)k−l

∥∥fi 
l
k fj

∥∥2
�2(N)⊗(i+j−k−l)

≤ R′
F .

Next, we have

∞∑
k=0

E
[(

FDkL
−1F
)2]= E

[
F 2

∞∑
k=0

(
DkL

−1F
)2]

≤
√
E
[
F 4
]√√√√√E

[( ∞∑
k=0

(
DkL−1F

)2)2]
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and (17) and (8) show that

E
[
F 4]� E

[( ∑
1≤i≤j≤m

i∑
k=0

k∑
l=0

∣∣∣∣q − p√
pq

∣∣∣∣k−l

Ii+j−k−l

(
fi 
̃l

k fj

))2]

�
∑

1≤i≤j≤m

i∑
k=0

k∑
l=0

(pq)l−k
∥∥fi 
l

k fj

∥∥2
�2(N)⊗(i+j−k−l)

� R′
F +

m∑
i=1

∥∥fi 
i
i fi

∥∥2
�2(N)⊗0 +

∑
1≤i<j≤m

∥∥fi 
0
0 fj

∥∥2
�2(N)⊗(i+j)

= R′
F +

m∑
i=1

‖fi‖4
�2(N)⊗i +

∑
1≤i<j≤m

‖fi‖2
�2(N)⊗i ‖fj‖2

�2(N)⊗j

� R′
F + (Var[F ])2,

while as in (21) and (22) we have

E

[( ∞∑
k=0

(
DkL

−1F
)2)2]

= E

[( ∞∑
k=0

∑
0≤i≤j≤m−1

i∑
k=0

k∑
l=0

d̃i,j,l,k

(
q − p√

pq

)k−l

× Ii+j−k−l

(
fi+1(k, ·) 
̃l

k fj+1(k, ·)))2]

�
∑

0≤i≤j≤m−1

i∑
k=0

k∑
l=0

(pq)l−k
∥∥fi+1 
l+1

k+1 fj+1
∥∥2

�2(N)⊗(i+j−k−l)

=
∑

1≤i≤j≤m

i∑
k=1

k∑
l=1

(pq)l−k
∥∥fi 
l

k fj

∥∥2
�2(N)⊗(i+j−k−l)

�R′
F +

m∑
i=1

∥∥fi 
i
i fi

∥∥2
�2(N)⊗0 +

∑
1≤i<j≤m

∥∥fi 
0
0 fj

∥∥2
�2(N)⊗(i+j)

= R′
F +

m∑
i=1

‖fi‖4
�2(N)⊗i +

∑
1≤i<j≤m

‖fi‖2
�2(N)⊗i ‖fj‖2

�2(N)⊗j

�R′
F + (Var[F ])2,
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hence we get

∞∑
k=0

E
[(

FDkL
−1F
)2]� R′

F + (Var[F ])2. (24)

We now deal with the last component in Proposition 2.1 similarly as it is done in proof of The-
orem 4.2 in [10]. Precisely, by the integration by parts formula (11) and the Cauchy–Schwarz
inequality we have

sup
x∈R

E
[〈
D1{F>x},DF

∣∣DL−1F
∣∣〉

�2(N)

]= sup
x∈R

E
[
1{F>x}δ

(
DF
∣∣DL−1F

∣∣)]
≤
√
E
[(

δ
(
DF
∣∣DL−1F

∣∣))2]. (25)

Then, by the bound (12), the Cauchy–Schwarz inequality and the consequence (14) of Mehler’s
formula (13), we have

E
[(

δ
(
DF
∣∣DL−1F

∣∣))2]
≤ E
[∥∥DF

∣∣DL−1F
∣∣∥∥2

�2(N)

]+E

[ ∞∑
k,l=0

∣∣Dk

(
DlF
∣∣DlL

−1F
∣∣)Dl

(
DkF

∣∣DkL
−1F
∣∣)∣∣]

≤
√
E
[‖DF‖4

�4(N)

]
E
[∥∥DL−1F

∥∥4
�4(N)

]+E

[ ∞∑
k,l=0

(
Dk

(
DlF
∣∣DlL

−1F
∣∣))2]

≤ E
[‖DF‖4

�4(N)

]+ ∞∑
k,l=0

E
[(

Dk

(
DlF
∣∣DlL

−1F
∣∣))2].

The first term in the last expression in bounded by pqR′
F as shown in (23), and it remains to

estimate the last expectation. By the product rule (9) and the bound |Dk|F || ≤ |DkF | obtained
from the definition (7) of D and the triangle inequality, we get

E
[(

Dr

(
DsF
∣∣DsL

−1F
∣∣))2]

= E

[((
DrDsF

∣∣DsL
−1F
∣∣)+ (DsFDr

∣∣DsL
−1F
∣∣)

− Xr√
pq

(
DrDsFDr

∣∣DsL
−1F
∣∣))2]

� E

[
(DrDsF )2(DsL

−1F
)2 + (DsF )

(
DrDsL

−1F
)2

+ 1

pq
(DrDsF )2(DrDsL

−1F
)2]

, (26)
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r, s ∈ N. By the Cauchy–Schwarz inequality, we get

∞∑
r,s=0

E
[
(DrDsF )2(DsL

−1F
)2]= E

[ ∞∑
s=0

(
DsL

−1F
)2 ∞∑

r=0

(DrDsF )2

]

≤

√√√√√E

[ ∞∑
s=0

(
DsL−1F

)4]
E

[ ∞∑
s=0

( ∞∑
r=0

(DrDsF )2

)2]
.

The term E[∑∞
s=0(DsL

−1F)4] can be bounded by pqR′
F as in (23). To estimate the other term,

we use the multiplication formula (17) as in (21) to obtain

E

[ ∞∑
s=0

( ∞∑
r=0

(DrDsF )2

)2]

�
∞∑

s=0

E

[( ∞∑
r=0

∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

∣∣∣∣q − p√
pq

∣∣∣∣k−l

Ii+j−k−l

(
fi+2(s, r, ·) 
̃l

k fj+2(s, r, ·)
))2]

= c

∞∑
s=0

E

[( ∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

∣∣∣∣q − p√
pq

∣∣∣∣k−l

Ii+j−k−l

(
fi+2(s, ·) 
̃l+1

k+1 fj+2(s, ·)
))2]

�
∞∑

s=0

∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

(pq)l−k
∥∥fi+2(s, ·) 
l+1

k+1 fj+2(s, ·)
∥∥2

�2(N)⊗(i+j−k−l)

=
∑

0≤i≤j≤m−2

i∑
k=0

k∑
l=0

(pq)l−k
∥∥fi+2 
l+1

k+2 fj+2
∥∥2

�2(N)⊗(i+j−k−l+1)

=
∑

2≤i≤j≤m

i∑
k=2

k−1∑
l=1

(pq)l+1−k
∥∥fi 
l

k fj

∥∥2
�2(N)⊗(i+j−k−l)

≤ pqR′
F .

The term
∑∞

r,s=0 E[(DsF )2(DrDsL
−1F)2] from (26) is similarly bounded by pqR′

F . Regarding
the last term, we have

∞∑
r,s=0

E
[
(DrDsF )2(DrDsL

−1F
)2]≤

√√√√ ∞∑
r,s=0

E
[
(DrDsF )4

] ∞∑
r,s=0

E
[(

DrDsL−1F
)4]

.
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Using the multiplication formula (17), both sums inside the above square root can be estimated
as

∞∑
r,s=0

E

[( ∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

∣∣∣∣q − p√
pq

∣∣∣∣k−l

Ii+j−k−l

(
fi+2(s, r, ·) 
̃l

k fj+2(s, r, ·)
))2]

�
∞∑

r,s=0

∑
0≤i≤j≤m−2

i∑
k=0

k∑
l=0

(pq)l−k
∥∥fi+2(s, r, ·) 
l

k fj+2(s, r, ·)
∥∥2

�2(N)⊗(i+j−k−l)

=
∑

0≤i≤j≤m−2

i∑
k=0

k∑
l=0

(pq)l−k
∥∥fi+2 
l

k+2 fj+2
∥∥2

�2(N)⊗(i+j−k−l+2)

=
∑

2≤i≤j≤m

i∑
k=2

k−2∑
l=0

(pq)l+2−k
∥∥fi 
l

k fj

∥∥2
�2(N)⊗(i+j−k−l)

� (pq)2R′
F .

Combining this together, we get

∞∑
r,s=0

E
[(

Dr

(
DsF
∣∣DsL

−1F
∣∣))2]� pqR′

F

and consequently, by (25) we find

sup
x∈R

E
[〈
D1{F>x},DF

∣∣DL−1F
∣∣〉

�2(N)

]
� pqR′

F . (27)

Applying (23)–(24) and (27) to Proposition 2.1, we get

dK(F,N ) �
∣∣1 − Var[F ]∣∣+√R′

F

(
1 + Var[F ] +√Var[F ] +

√
R′

F

)
.

If R′
F ≥ 1, or if R′

F ≤ 1 and Var[F ] ≥ 2, it is clear that dK(F,N ) � |1 − Var[F ]| +
√

R′
F since

dK(F,N ) ≤ 1 by definition. If R′
F ≤ 1 and Var[F ] ≤ 2, we estimate Var[F ] + √

Var[F ] +
√

R′
F

by a constant and also get the required bound. �

4. Application to random graphs

4.1. General result

In the sequel fix a numbering (1, . . . , eG) of the edges in G and we denote by EG
n ⊂ {1, . . . ,

(
n
2

)}eG

the set of sequences of (distinct) edges of a complete graph Kn that create a graph isomorphic
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to G, that is, a sequence (ek1 , . . . , ekeG
) belongs to EG

n if and only if the graph created by edges
ek1 , . . . , ekeG

is isomorphic to G. The next lemma allows us to represent the number of subgraphs
as a sum of multiple stochastic integrals, using the notation P(Xk = 1) = p, P(Xk = −1) =
1 − p = q , k ∈ N.

Lemma 4.1. We have the identity

ÑG
n = NG

n −E[NG
n ]√

Var[NG
n ] =

eG∑
k=1

Ik(fk), (28)

where

fk(b1, . . . , bk)

:= qk/2peG−k/2

(eG − k)!k!√Var[NG]
∑

(a1,...,aeG−k)∈NeG−k

1(a1,...,aeG−k,b1,...,bk)∈EG
n
.

Proof. We have

NG = 1

eG!2eG

∑
b1,...,beG

∈N
1(b1,...,beG

)∈EG
(Xb1 + 1) · · · (XbeG

+ 1)

= 1

eG!2eG

eG∑
m=0

(
eG

m

) ∑
b1,...,bm∈N

gm(b1, . . . , bm)Xb1 · · ·Xbm

= 1

eG!2eG

eG∑
m=0

(
eG

m

) m∑
k=0

(
m

k

)
(p − q)m−k

×
∑

b1,...,bk∈N
gk(b1, . . . , bk)(Xb1 + q − p) · · · (Xbk

+ q − p)

= 1

eG!2eG

eG∑
m=0

(
eG

m

) m∑
k=0

(
m

k

)
Ik(gk)(2

√
pq)k(p − q)m−k

= 1

eG!2eG

eG∑
k=0

(
eG

k

)
(2

√
pq)kIk(gk)

eG∑
m=k

(
eG − k

m − k

)
(p − q)m−k

= 1

2eG

eG∑
k=0

(2
√

pq)k

(eG − k)!k!Ik(gk)(1 + p − q)eG−k

=
eG∑
k=0

qk/2peG−k/2

(eG − k)!k! Ik(gk),
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where gk is the function defined as

gk(b1, . . . , bk) :=
∑

(a1,...,aeG−k)∈NeG−k

1EG
n
(a1, . . . , aeG−k, b1, . . . , bk), (b1, . . . , bk) ∈ Nk, (29)

which shows (28) with

fk(b1, . . . , bk) := qk/2peG−k/2

(eG − k)!k!√Var[NG
n ]gk(b1, . . . , bk). �

Next, is the second main result of this paper.

Theorem 4.2. Let G be a graph without isolated vertices. Then we have

dK

(
ÑG

n ,N
)
�
(
(1 − p) min

H⊂G

eH ≥1

nvH peH

)−1/2 ≈
√

Var[NG]
(1 − p)nvGpeG

.

Proof. By (28) and Theorem 3.1, we have

dK

(
ÑG

n ,N
)
�

√
RG

Var[NG
n ] , (30)

where, taking gk as in (29), by (20) we have

RG =
∑

0≤l<k≤eG

p4eG−3k+lql+k
∥∥gk 
l

k gk

∥∥2
�2(N)⊗(k−l)

+
∑

1≤l<k≤eG

p4eG−2kq2k
∥∥gk 
l

l gk

∥∥2
�2(N)⊗2(k−l)

+
∑

1≤l<k≤eG

p4eG−l−kqk+l
∥∥gl 
l

l gk

∥∥2
�2(N)⊗(k−l)

≤ q

( ∑
0≤l<k≤eG

p4eG−3k+l
∥∥gk 
l

k gk

∥∥2
�2(N)⊗(k−l)

+
∑

1≤l<k≤eG

p4eG−l−k
∥∥gl 
l

l gk

∥∥2
�2(N)⊗(k−l)

+
∑

1≤l<k≤eG

p4eG−2k
∥∥gk 
l

l gk

∥∥2
�2(N)⊗2(k−l)

)
= (1 − p)(S1 + S2 + S3).
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It is now sufficient to show that

S1 + S2 + S3 � max
H⊂G

eH ≥1

n4vG−3vH p4eG−3eH . (31)

Indeed, applying (3) and (31) to (30) we get

√
RG

Var[NG
n ] �

√
1 − p

√
maxH⊂GeH ≥1 n4vG−3vH p4eG−3eH

(1 − p)maxH⊂GeH ≥1 n2vG−vH p2eG−eH

= (minH⊂GeH ≥1 nvH peH )−3/2

√
1 − p(minH⊂GeH ≥1 nvH peH )−1

=
(
(1 − p) min

H⊂G

eH ≥1

nvH peH

)−1/2
.

Thus

dK

(
ÑG

n ,N
)
�

√
RG

Var[NG
n ] �

(
(1 − p) min

H⊂G

eH ≥1

nvH peH

)−1/2
.

In order to estimate S1, let us observe that

∥∥gk 
l
k gk

∥∥2
�2(N)⊗(k−l) =

∑
a′′∈Nk−l

(∑
a′∈Nl

( ∑
a∈NeG−k

1EG
n

(
a, a′, a′′))2)2

≈
∑

A⊂Kn

eK=k−l

( ∑
A⊂B⊂Kn

eB=k

( ∑
B⊂G′⊂Kn

G′∼G

1

)2)2

≈
∑
K⊂G

eK=k−l

nvK

( ∑
K⊂H⊂G

eH =k

nvH −vK
(
nvG−vH

)2)2

≈ max
K⊂H⊂G

eK=k−l,eH =k

n4vG−2vH −vK .

Hence, we have

S1 �
∑

0≤l<k≤eG

p4eG−3k+l max
K⊂H⊂G

eK=k−l,eH =k

n4vG−2vH −vK

=
∑

0≤l<k≤eG

max
K⊂H⊂G

eK=k−l,eH =k

n4vG−2vH −vK p4eG−2eH −eK
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� max
K⊂H⊂G

eK≥1

n4vG−2vH −vK p4eG−2eH −eK .

For a fixed p, let H0 ⊂ G, eH0 ≥ 1, be the subgraph of G such that

nvH0 peH0 = min
H⊂G,eH ≥1

nvH peH . (32)

Then it is clear that

S1 � max
K⊂H⊂G

eK≥1

n4vG−2vH −vK p4eG−2eH −eK

= n4vG−3vH0 p4eG−3eH0

= max
H⊂G

eH ≥1

n4vG−3vH p4eG−3eH ,

as required. We proceed similarly with the sum S2. For 1 ≤ l < k ≤ n we have∥∥gl 
l
l gk

∥∥2
�2(N)⊗2(k−l)

≈
∑

c∈Nk−l

(∑
b∈Nl

( ∑
a∈NeG−l

1EG
n
(a, b)

∑
a′∈NeG−k

1EG
n

(
a′, b, c

)))2

≈
∑

A⊂Kn

eA=k−l

( ∑
A⊂B⊂Kn

eB=k

( ∑
B\A⊂G′′⊂Kn

G′′∼G

1
∑

B⊂G′⊂Kn

G′∼G

1

))2

(33)

�
∑
K⊂G

eK=k−l

nvK

( ∑
K⊂H⊂G,H ′⊂G

eH =k,eH ′=l

nvH −vK
(
nvG−vH ′ nvG−vH

))2

(34)

� max
K,H ′⊂G

eK=k−l,eH ′=l

n4vG−2vH ′−vK , (35)

where H ′ in (34) stands for B \A in (33), whereas in (35) the sum over H ′ extends to all H ′ ⊂ G

such that eH ′ = l. It follows that

S2 �
∑

1≤l<k≤eG

p4eG−k−l max
K,H ′⊂G

eK=k−l,eH ′=l

n4vG−2vH ′−vK

=
∑

1≤l<k≤eG

max
K,H ′⊂G

eK=k−l,eH ′=l

n4vG−2vH ′−vK p4eG−2vH ′−eK
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� max
K ′,H ′⊂G

eK ′ ,eH ′≥1

n4vG−2vH ′−vK ′ p4eG−2vH ′−eK ′

= n4vG−3vH0 p4eG−3eH0

= max
H⊂G

eH ≥1

n4vG−3vH p4eG−3eH ,

where H0 is defined in (32). Finally, we pass to estimates of S3. For 1 ≤ l < k ≤ n, we have∥∥gk 
l
l gk

∥∥2
�2(N)⊗(k−l)

�
∑

c,c′∈Nk−l

(∑
b∈Nl

( ∑
a∈NeG−k

1EG
n
(a, b, c)

)( ∑
a′∈NeG−k

1EG
n

(
a′, b, c′)))2

≈
∑

A,A′⊂Kn

eA=eA′=k−l

( ∑
B⊂Kn

eB=l,eA∩B=eA′∩B=0

( ∑
A∪B⊂G′⊂Kn

G′∼G

1

)( ∑
A′∪B⊂G′′⊂Kn

G′′∼G

1

))2

≈
∑

K,K ′,H⊂G

eK=eK ′=k−l,eH =l

eK∩H =eK ′∩H =0

∑
A,A′⊂Kn

A∼K
A′∼K ′

( ∑
B⊂Kn

B∼H
A∩B∼K∩H
A′∩B∼K ′∩H

( ∑
A∪B⊂G′⊂Kn

G′∼G

1

)( ∑
A′∪B⊂G′′⊂Kn

G′′∼G

1

))2

≈
∑

K,K ′,H⊂G

eK=eK ′=k−l,eH =l

eK∩H =eK ′∩H =0

∑
A,A′⊂Kn

A∼K
A′∼K ′

( ∑
B⊂Kn

B∼H
A∩B∼K∩H
A′∩B∼K ′∩H

(
nvG−vA∪B

)(
nvG−vA′∪B

))2

.

Next, we note that given A,A′ ⊂ Kn it takes

vB − vA∩B − vA′∩B + vA∩A′∩B = vH − vK∩H − vK ′∩H + vA∩A′∩B

vertices to create any subgraph B ∼ H such that A∩B ∼ K ∩H and A′ ∩B ∼ K ′ ∩H , with the
bound

vA∩A′∩B ≤ 1

2
vA∩A′ + 1

2
vA′∩B = 1

2
(vA∩A′ + vK ′∩H ).

Hence, we have∥∥gk 
l
l gk

∥∥2
�2(N)⊗(k−l)

�
∑

K,K ′,H⊂G

eK=eK ′=k−l,eH =l

eK∩H =eK ′∩H =0

∑
A,A′⊂Kn

A∼K
A′∼K ′

(
nvH −vK∩H −vK ′∩H +(vA∩A′+vK ′∩H )/2(nvG−vK∪H

)(
nvG−vK ′∪H

))2
.
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In order to estimate the above sum using powers of n, we need to consider the possible intersec-
tions A ∩ A′ for A,A′ ⊂ Kn, as follows:∑

K,K ′,H⊂G

eK=eK ′=k−l,eH =l

eK∩H =eK ′∩H =0

∑
A,A′⊂Kn

A∼K
A′∼K ′

n4vG+2vH −2vK∩H −vK ′∩H +vA∩A′−2vK∪H −2vK ′∪H

�
∑

K,K ′,H⊂G

eK=eK ′=k−l,eH =l

eK∩H =eK ′∩H =0

vK∑
i=0

nvK+vK ′−in4vG+2vH −2vK∩H −vK ′∩H +i−2vK∪H −2vK ′∪H

�
∑

K,K ′,H⊂G

eK=eK ′=k−l,eH =l

eK∩H =eK ′∩H =0

nvK+vK ′+4vG+2vH −2vK∩H −vK ′∩H −2vK∪H −2vK ′∪H . (36)

Furthermore, we have

vK + vK ′ + 4vG + 2vH − 2vK∩H − vK ′∩H − 2vK∪H − 2vK ′∪H

= 4vG − vK − vH − vK ′∪H ,

so the sum (36) can be estimated as∑
K,K ′,H⊂G

eK=eK ′=k−l,eH =l

eK∩H =eK ′∩H =0

n4vG−vK−vH −vK ′∪H � max
K,H,L⊂G

eK=k−l,eH =l,eL=k

n4vG−vK−vH −vL,

from which it follows

S3 �
∑

1≤l<k≤eG

p4eG−2k max
K,H,L⊂G

eK=k−l,eH =l,eL=k

n4vG−vK−vH −vL

=
∑

1≤l<k≤eG

max
K,H,L⊂G

eK=k−l,eH =l,eL=k

n4vG−vK−vH −vLp4eG−eK−eH −eL

� max
K,H,L⊂G

eK,eH ,eL≥1

n4vG−vK−vH −vLp4eG−eK−eH −eL

≤ n4vG−3vH0 p4eG−3eH0

= max
H⊂G

eH ≥1

n4vG−3vH p4eG−3eH ,

which ends the proof. �
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4.2. Special cases

In the next corollary, we note that Theorem 4.2 simplifies if we narrow our attention to pn de-
pending of the complete graph size n and close to 0 or to 1.

Corollary 4.3. Let G be a graph without separated vertices. For pn < c < 1, n ≥ 1, we have

dK

(
ÑG

n ,N
)
�
(

min
H⊂G

eH ≥1

nvH peH
n

)−1/2
.

On the other hand, for pn > c > 0, n ≥ 1, it holds

dK

(
ÑG

n ,N
)
� 1

n
√

1 − pn

.

As a consequence of Corollary 4.3 it follows that if

npβ
n → ∞ and n2(1 − pn) → ∞,

where β := max{eH /vH : H ⊂ G}, then we have the convergence of the renormalized subgraph
count (ÑG

n )n≥1 to N in distribution as n tends to infinity, which recovers the sufficient condition
in [23]. When p ≈ n−α , α > 0, Corollary 4.3 also shows that

dK

(
ÑG

n ,N
)
�
(

min
H⊂G

eH ≥1

nvH −αeH

)−1/2
, (37)

and in order for the above bound (37) to tend to zero as n goes to infinity, we should have

α < min
H⊂G

vH

eH

=: 1

β
. (38)

Next, we specialize our results to the following class of graphs.

Definition 4.4. Let B denote the set of graphs G with at least three vertices, and such that

max
H⊂G

vH ≥3

eH − 1

vH − 2
= eG − 1

vG − 2
.

We note that the set B is contained in the class of balanced graphs which satisfy

max
H⊂G

eH

vH

= eG

vG

,

as well as in the class of strongly balanced graphs which satisfy

max
H⊂G

eH

vH − 1
= eG

vG − 1
.
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Both classes have been used in the framework of subraph counting, see, for example, [6,24],
however the authors have not found the class B in the literature.

Lemma 4.5. Let G be a graph with vH ≥ 3 and eH ≥ 1. Then G belongs to the class B if and
only if for any p ∈ (0,1) and n ≥ vG we have

min
H⊂G

eH ≥1

nvH peH = min
{
n2p,nvGpeG

}
.

Proof. (⇒) If G ∈ B, then for any H ⊂ G such that vH ≥ 3 we have

nvH peH = n2p
(
np

eH −1
vH −2
)vH −2 ≥ n2p

(
np

eG−1
vG−2
)vH −2

. (39)

If n2p ≤ nvGpeG , then it holds np
eG−1
vG−2 ≥ 1 and we get

nvH peH ≥ n2p,

as required. If n2p > nvGpeG , then (np
eG−1
vG−2 )vH −2 < 1, and consequently, using vH ≤ vG, we

obtain

nvH peH ≥ n2p
(
np

eG−1
vG−2
)vG−2 = nvGpeG

from (39), which ends this part the proof.
(⇐) Proof by contradiction. Assume that the right-hand side of the equivalence in the thesis is

true and that there exists H0 � G, vH0 ≥ 3, such that
eH0−1
vH0−2 >

eG−1
vG−2 . Then, for pn := n−α where

α is such that
vH0−2
eH0−1 < α <

vG−2
eG−1 , we get

nvH0 p
eH0
n = n2pn

(
n

1−α
eH0

−1

vH0
−2 )vH0−2

< n2p.

Furthermore, since np

eG−1
vG−2
n > 1 and vH0 < vG, we obtain

nvH0 p
eH0
n = n2pn

(
np

eH0
−1

vH0
−2

n

)vH0−2
< n2pn

(
np

eG−1
vG−2
n

)vH0−2

< n2pn

(
np

eG−1
vG−2
n

)vG−2 = nvGpeG
n .

This means that

min
H⊂G

eH ≥1

nvH peH
n ≤ nvH0 p

eH0
n < min

{
n2pn,n

vGpeG
n

}
,

which contradicts the main assumption. The proof is complete. �
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By virtue of Lemma 4.5, the bound in Theorem 4.2 simplifies significantly for graphs G in the
class B.

Corollary 4.6. For any G in the class B we have

dK

(
ÑG

n ,N
)
�
(
(1 − pn)min

{
n2pn,n

vGpeG
n

})−1/2

=

⎧⎪⎪⎨⎪⎪⎩
1

n
√

pn(1 − pn)
if n−(vG−2)/(eG−1) < pn,

1

nvG/2p
eG/2
n

if 0 < pn ≤ n−(vG−2)/(eG−1).

Next, we note that B is quite a rich class as it contains other important classes of graphs.

Proposition 4.7. All complete graphs, cycles, and trees with at least 3 vertices belong to the
class B.

Proof. First, consider a complete graph Kr with r = vKr ≥ 3. For a subgraph H ⊂ Kr with
vH < r the maximal number of edges is

(
vH

2

)
in the case of a clique, thus we have

eH − 1

vH − 2
≤
(
vH

2

)− 1

r − 2
= vH + 1

2
<

r + 1

2
= eKr − 1

vKr − 2
.

In case of a cycle graph Cr , r = vCr ≥ 3 the maximal number of edges of a subgraph H ⊂ Cr

with vH < r vertices is realized for a linear subgraph having vH − 1 edges, which yields

eH − 1

vH − 2
≤ (vH − 1) − 1

vH − 2
= 1 <

r − 1

r − 2
= eCr − 1

vCr − 2
.

Finally, for a tree T with r ≥ 3 vertices, the maximal number of edges of a subgraph H ⊂ T ,
vH < vT is realized for a subtree with vH − 1 edges, which gives

eH − 1

vH − 2
= 1 = eT − 1

vT − 2
.

This ends the proof. �

Corollaries 4.8–4.10 follow directly form Corollary 4.6 and Proposition 4.7. Since the triangle
is a cycle as well as a complete graph, both of Corollaries 4.8 and 4.9 recover the Kolmogorov
bounds of [21] as in Corollary 1.1 above.

Corollary 4.8. Let Cr be a cycle graph with r vertices, r ≥ 3. We have

dK

(
ÑCr

n ,N
)
�

⎧⎪⎨⎪⎩
1

n
√

pn(1 − pn)
if n−(r−2)/(r−1) < pn,

1

(npn)r/2
if 0 < pn ≤ n−(r−2)/(r−1).
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In case pn ≈ n−α we should have α ∈ (0,1) by (38), and Corollary 4.8 also shows that

dK

(
ÑCr

n ,N
)
�

⎧⎪⎪⎨⎪⎪⎩
n−1+α/2 ≈ 1

n
√

pn

if 0 < α ≤ r − 2

r − 1
,

n−r(1−α)/2 ≈ 1

(npn)r/2
if

r − 2

r − 1
≤ α < 1

when Cr is a cycle graph with r vertices, r ≥ 3. In the particular case r = 3 where C3 is a triangle,
this improves on the Kolmogorov bounds in Theorem 1.1 of [11].

Corollary 4.9. Let Kr be a complete graph with r ≥ 3 vertices, r ≥ 3. We have

dK

(
ÑG

n ,N
)
�

⎧⎪⎪⎨⎪⎪⎩
1

n
√

pn(1 − pn)
if n−2/(r+1) < pn,

1

nr/2p
r(r−1)/4
n

if 0 < pn ≤ n−2/(r+1).

When pn ≈ n−α with α ∈ (0,2/(r − 1)) by (38), Corollary 4.9 shows that

dK

(
ÑG

n ,N
)
�

⎧⎪⎪⎨⎪⎪⎩
n−1+α/2 ≈ 1

n
√

pn

if 0 < α ≤ 2

r + 1
,

n−r/2+r(r−1)α/4 ≈ 1

nr/2p
r(r−1)/4
n

if
2

r + 1
≤ α <

2

r − 1
.

Finally, the next corollary deals with the important class of graphs which have a tree structure.

Corollary 4.10. Let T be any tree (a connected graph without cycles) with r edges, and c ∈
(0,1). We have

dK

(
ÑT

n ,N
)
�

⎧⎪⎪⎨⎪⎪⎩
1

n
√

pn(1 − pn)
if

1

n
< pn,

1

n(r+1)/2p
r/2
n

if 0 < pn ≤ 1

n
.

In case pn ≈ n−α with α ∈ (0,1 + 1/r), we get

dK

(
ÑG

n ,N
)
�

⎧⎪⎪⎨⎪⎪⎩
n−1+α/2 ≈ 1

n
√

pn

if 0 < α ≤ 1,

n−(r+1−rα)/2 ≈ 1

n(r+1)/2p
r/2
n

if 1 ≤ α < 1 + 1

r
.
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