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We are studying linear and log-linear models for multivariate count time series data with Poisson marginals.
For studying the properties of such processes we develop a novel conceptual framework which is based on
copulas. Earlier contributions impose the copula on the joint distribution of the vector of counts by employ-
ing a continuous extension methodology. Instead we introduce a copula function on a vector of associated
continuous random variables. This construction avoids conceptual difficulties related to the joint distribu-
tion of counts yet it keeps the properties of the Poisson process marginally. Furthermore, this construction
can be employed for modeling multivariate count time series with other marginal count distributions. We
employ Markov chain theory and the notion of weak dependence to study ergodicity and stationarity of the
models we consider. Suitable estimating equations are suggested for estimating unknown model parame-
ters. The large sample properties of the resulting estimators are studied in detail. The work concludes with
some simulations and a real data example.

Keywords: autocorrelation; copula; ergodicity; generalized linear models; perturbation; prediction;
stationarity; volatility

1. Introduction

Modeling and inference of multivariate count time series is an important research topic; see [46]
for a medical application, [48] for a financial application and more recently [50] for a marketing
application and [40] for an environmental study. The interested reader is referred to the review
paper by [34], for further details.

There are three main approaches taken towards the problem of modeling and inference for
multivariate count time series. The first approach is based on the theory of integer autoregressive
(INAR) models and was initiated by [26] and [36]. This work was further developed by [47,
48]. Estimation for INAR models is based on least squares methodology and likelihood based
methods. However, even in the context of univariate INAR models, likelihood theory is quite
cumbersome, especially for higher order models. Therefore, this class of models, which is ade-
quate to describe some simple data structures, still poses challenges in terms of estimation (and
prediction) especially when the model order is large.

The second class of models proposed for the analysis of count time series models, is that of
parameter driven models. Recall that a parameter driven model (according to the broad catego-
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rization introduced by [8]) is a model whose dynamics are driven by an unobserved process. In
this case, state space models for multivariate count time series were studied by [32] and [33]; see
also [49,50], among others, for more recent contributions.

The aim of our contribution is to study models that fall within the class of observation driven
models; that is models whose dynamics evolve according to past values of the process plus some
noise. This is the case of the usual autoregressive models. In particular, observation driven models
for count time series have been studied by [9,10,22,23], among others. There is a growing recent
literature in this topic; see [1,3,28,39] and [37], for instance. These studies are concerned with
linear count time series models. Although the linear model is adequate for several applications,
it may not always be a natural candidate for count data analysis. In our view, log-linear models
are more appropriate for general modeling of count time series. Some desirable properties of
log-linear models include the ease of including covariates, incorporation of positive/negative
correlation and avoiding parameter boundary problems; see [2,23]. In fact, the log-linear model
corresponds to the canonical link Poisson regression model for count data analysis; [42].

A major obstacle for the analysis of count time series is the choice of the joint count distribu-
tion. There are numerous proposals available in the literature generalizing the univariate Poisson
probability mass function (pmf); some of these are reviewed in the previous references. However,
the pmf of a multivariate Poisson discrete random vector is usually of quite complicated func-
tional form and therefore maximum likelihood inference can be quite challenging (theoretically
and numerically). Generally speaking, the choice of the joint distribution for multivariate count
data is quite an interesting topic. In this work we address this problem by suggesting a copula
based construction of a joint distribution. Instead of imposing a copula function on a vector of
discrete random variables, we argue, based on Poisson process properties, that it can be intro-
duced via a vector of continuous random variables. In this way, we avoid technical difficulties
and we propose a plausible data generating process which keeps intact the properties of the Pois-
son properties, marginally. This approach can be extended to include other multivariate count
distributions. Equipped with this construction and given a model, we suggest suitable estimating
functions to estimate the unknown parameters. The main goals of this work are summarized by
the following:

1. Develop a novel conceptual framework for studying multivariate count time series.
2. Give conditions for ergodicity and stationarity of both linear and log-linear models. The

preferred methodologies are those of Markov chain theory (employing a perturbation ap-
proach) and theory of weak dependence. Although the linear model was treated by [39] in
a parametric joint Poisson framework, we relax these conditions considerably when using
the perturbation approach. For the log-linear model case, these conditions are new.

3. We suggest appropriate estimating functions which deliver consistent and asymptotically
normally distributed estimators.

As a final remark we discuss the problem of proving stationarity and ergodicity of count time
series. Following the discussions of [44] and [54,55], the main difficulty is that the process it-
self consists of integer valued random variables; however the mean process takes values on the
positive real line and therefore it is quite challenging to prove ergodicity of the joint process (see
also [4]). The study of theoretical properties of these models was initiated by the perturbation
method suggested in [22] and was further developed in [44] (using the notion of β-mixing), [15]
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(weak dependence approach, see [16]), [57] and [13] (Markov chain theory without irreducibility
assumptions) and [56] (based on the theory of e-chains; see [43]).

The paper is organized as follows: Section 2 discusses the basic modeling approach that we
take towards modeling multivariate count time series. The copula structure which is imposed
introduces dependence but without affecting the properties of the marginal Poisson processes.
We will consider both a linear and a log-linear model. Section 3 gives the results about ergodic
and stationary properties of the linear and log-linear models. Section 4 discusses Quasi Maxi-
mum Likelihood Estimation (QMLE) and shows that the resulting estimators are consistent and
asymptotically normal. Section 5 presents a limited simulation study and a real data examples.
The paper concludes with an Appendix which contains the proofs of main results. Some further
results are included in the supplementary material [24].

2. Model assumptions

In what follows, we assume that {Yt = (Yi,t ), i = 1,2, . . . , p, t = 1,2, . . .} denotes a p-
dimensional count time series. Let {λt = (λi,t ), i = 1,2, . . . , p, t = 0,1, . . .} be the correspond-
ing p-dimensional intensity process and FY,λ

t the σ -field generated by {Y0, . . . ,Yt ,λ0} with
λ0 being a p-dimensional vector denoting the starting value of {λt }. With this notation, the in-
tensity process is given by λt = E[Yt | FY,λ

t ]. We will be studying two autoregressive models
for multivariate count time series analysis; the linear and log-linear models which are direct ex-
tensions of their univariate counterparts. The linear model is defined by assuming that for each
i = 1,2, . . . , p,

Yi,t |FY,λ
t−1 is marginally Poisson(λi,t ), λt = d + Aλt−1 + BYt−1, (1)

where d is a p-dimensional vector and A, B are p × p unknown matrices. The elements of d,
A and B are assumed to be positive such that λi,t > 0 for all i and t . Model (1) generalizes
naturally the linear autoregressive model discussed by [19,51] and [22], among others. The log-
linear model that we consider is the multivariate analogue of the univariate log-linear model
proposed by [23]. More precisely assume that for each i = 1,2, . . . , p,

Yi,t |FY,λ
t is marginally Poisson(λi,t ), νt = d + Aνt−1 + B log(Yt−1 + 1p), (2)

where νt ≡ logλt is defined componentwise (i.e. νi,t = logλi,t ) and 1p denotes the p-
dimensional vector which consists of ones. In the case of (2), we do not impose any positivity
constraints on the parameters d, A and B; this is an important argument favoring the log-linear
model. The log-linear model (2) is expected to be a better candidate for count data observed
jointly with some other covariate time series or where negative correlation is observed. Indeed,
if Xt is a covariate vector of dimension p, then the second equation of (2) can be rewritten
as νt = d + Aνt−1 + B log(Yt−1 + 1p) + CXt for a p × p matrix C. In addition, we show in
Section S-1 of the supplement that the model induces both positive and negative correlation.

A fundamental problem in the analysis of multivariate count data is the specification of a
joint distribution for the counts. There are numerous proposals made in the literature aiming at
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generalizing the univariate Poisson assumption to the multivariate case but the resulting joint
distributions are quite complex for likelihood based inference. A possible construction can be
based on independent Poisson random variables or on copulas and mixture models (see [31],
Ch. 37, [30], Section 7.2). However, the resulting joint pmf is complicated and therefore the
log-likelihood function cannot be calculated analytically (or, sometimes, even approximated).
We propose a different approach. Consider the first equation of (1) but the same discussion ap-
plies to (2) subject to minor modifications. It implies that each component Yi,t is marginally a
Poisson process. But the joint distribution of the vector {Yt } is not necessarily distributed as a
multivariate Poisson random variable. Our general construction, as outlined below, allows for
arbitrary dependence among the marginal Poisson components by utilizing fundamental proper-
ties of the Poisson process. We give a detailed account of the data generating process. Suppose
that λ0 = (λ1,0, . . . , λp,0) is some starting value. Then consider the following data generating
mechanism:

1. Let Ul = (U1,l , . . . ,Up,l) for l = 1,2, . . . ,K , be a sample from a p-dimensional copula
C(u1, . . . , up). Then Ui,l , l = 1,2, . . . ,K follow marginally the uniform distribution on
(0,1), for i = 1,2, . . . , p.

2. Consider the transformation Xi,l = −logUi,l/λi,0, i = 1,2, . . . , p. Then, the marginal dis-
tribution of Xi,l , l = 1,2, . . . ,K is exponential with parameter λi,0, i = 1,2, . . . , p.

3. Define now (taking K large enough) Yi,0 = max1≤k≤K {∑k
l=1 Xi,l ≤ 1}, i = 1,2, . . . , p.

Then Y0 = (Y1,0, . . . , Yp,0) is marginally a set of first values of a Poisson process with
parameter λ0.

4. Use model (1) (respectively (2)) to obtain λ1.
5. Return back to step 1 to obtain Y1, and so on.

The aforementioned construction of the joint distribution of the counts imposes the dependence
among the components of the vector process {Yt } by taking advantage of a copula structure on
the waiting times of the Poisson process. Equivalently, the copula is imposed on the uniform
random variables generating the exponential waiting times. Such an approach does not pose any
problems on obtaining the joint distribution of the random vector {Yt } which is composed of
discrete valued random variables. This can be extended to other marginal count processes if they
can be generated by continuous inter arrival times. For instance, suppose that Yi,t is marginally
mixed Poisson with mean Zi,tλi,t where Zi,t is an i.i.d. sequence for all i = 1,2, . . . , p, it is
independent of Yt for all t and satisfies E[Zi,t ] = 1 (see [7]). Many families of count distribu-
tions, including the negative binomial, can be generated by this construction. Then steps 1–5 of
the above algorithm still can be used to generate data from a count time series models whose
marginals are not necessarily Poisson. Indeed, generating at the first step an additional vector
Zi,0, say zi,0 define again at step 2 the waiting times by Xi,l = −logUi,l/zi,0λi,0, i = 1,2, . . . , p.
Then, the distribution of Xi,0 is mixed exponential and therefore steps 3–5 deliver a realization
of a count vector whose marginal distribution is mixed Poisson.

An added advantage of this approach is that copula is defined uniquely for continuous mul-
tivariate random variables. For a lucid discussion about copula for discrete multivariate distri-
butions, see [27], in particular pp. 507–508. Our approach is different from the approach taken
by [28]. These authors replace the original counts by employing the continued extension method
of [12]. Accordingly, they add some noise of the form U − 1, where U is uniform, to counts to
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transform them to continuous random variables such that the problem of copula identifiability is
bypassed. This is an interesting idea. Under an assumption of small dispersion asymptotics a co-
variance structure is obtained which is similar to that obtained for the linear model in Section S-1
of the supplement. Note that the continued extension method of [28] has been investigated in a
simulation study by [45]. In our approach, there is need to distinguish between the copula on the
counts themselves and the copula on the waiting times. The transformation from waiting times
to counts is stochastic, and while the copula as such is invariant to one-to-one deterministic
transformations, we do not have such a transformation in our case. Hence, the instantaneous cor-
relation among the components of vector of counts is not equal to the correlation induced by the
copula imposed to the vector of waiting times. Therefore, the interpretation of the instantaneous
correlation for both linear and log-linear models is associated with the correlation of the vector
of waiting times and should be done with care. An initial approach of estimating the correlation
among waiting times is discussed immediately after Thm. 4.2.

Hence, the first equation of model (1) can be restated as

Yt = Nt (λt ), λt = d + Aλt−1 + BYt−1, (3)

where {Nt } is a sequence of independent p-variate copula–Poisson processes which counts the
number of events in [0, λ1,t ] × · · · × [0, λp,t ]. We also define the multivariate log-linear model
(2) by

Yt = Nt (νt ), νt = d + Aνt−1 + B log(Yt−1 + 1p) (4)

Now, the process {Nt } denotes as before a sequence of independent p-variate copula–Poisson
processes which counts the number of events in [0, exp(ν1,t )] × · · · × [0, exp(νp,t )]. In the sup-
plement (Section S-1), we derive the theoretical autocovariance matrices of models (3) (see also
[28]) and we show that all their elements are positive and depend on the joint distribution of the
count vector which in turn depends on the copula structure. The positivity of all elements shows
that linear models can be applied to time series like the one we consider in Section 5; see Fig-
ure 2. In addition, we derive, approximately, the autocovariance function of Wt ≡ log(Yt + 1p)

for model (4). Its form shows that we can have both positive and negative correlation. Explicit
calculation of the autocovariance function of Yt for (4) is a challenging problem which can be
studied by simulation.

It is instructive to consider model (3) in more detail because its structure is closely related to
the theory of GARCH models, [6]. Observe that each component of the vector-process {Yt } is
distributed as a Poisson random variable. But the mean of a Poisson random variable equals its
variance; therefore model (3) resembles some structure of multivariate GARCH model, see [41]
and [25]. For p = 2, for example, the second equation of (3) becomes

λ1,t = d1 + a11λ1,t−1 + a12λ2,t−1 + b11Y1,t−1 + b12Y2,t−1,

λ2,t = d2 + a21λ1,t−1 + a22λ2,t−1 + b21Y1,t−1 + b22Y2,t−1,

where di is the ith element of d and aij (bij , respectively) is the (i, j)th element of A (B,
respectively). We can give the following interpretation to model parameters. When a12 = b12 =
0, then λ1t depends only on its own past. If this is not true, then the parameters denote the linear
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dependence of λ1t on λ2,t−1 and Y2,t−1 in the presence of λ1,t−1 and Y1,t−1. Similar results hold
when a21 = b21 = 0 and the previous discussion applies to the case of (4).

3. Ergodicity and stationarity

Towards the analysis of models (3) and (4), we employ the perturbation techniques as devel-
oped by [22] and [23]. In addition, we include a study which is based on the notion of weak
dependence (for more, see [16] and [11]). Both approaches are employed and compared for ob-
taining ergodicity and stationarity of (3) and (4). In fact, the main goal is to obtain stationarity
and ergodicity of the joint process (Yt ,λt ). For the specific examples of processes given by (3)
and (4) the sufficient conditions obtained by the perturbation and weak dependence approach are
different; however all proofs are based on a contraction property of the process {λt } (in the case
of (3)) and {νt } (in the case of (4)). Note that the copula construction is not used in the proof of
ergodicity by neither of the approaches we take nor it is used in the estimation of the parame-
ters. It is only used in the proofs of Lemmas 3.1–3.2 (with no additional conditions, however) to
show that the perturbed models is close to non-perturbed models via the Markov chain approach
we take. In this respect, the situation may be similar to a multivariate ARMA model where the
stability conditions are independent of the correlations in the innovations. Similar comments can
be made about the multivariate GARCH. The correlation structure may not necessarily be used
in the estimation of the parameter matrices for these processes either, but this may lead to esti-
mators that are not efficient. Whereas use of correlation in the innovations does not lead to an
extension of ARMA or GARCH, staying within the multivariate Poisson is troublesome because
of the very complicated and restricting nature of this model. It is then natural to allow for a more
general dependence structure between Poisson components, and the copula seems to be a natural
instrument for describing such dependence, which leads to a quite flexible model. The copula
modeling of dependence is explicitly used in Section 5 of the paper just to produce such flexible
models.

We denote by ‖x‖d = (
∑p

i=1 |xi |d)1/d the ld -norm of a p-dimensional vector x. For a q × p

matrix A = (aij ), i = 1, . . . , q, j = 1, . . . , p, we let |||A|||d denote the generalized matrix norm
|||A|||d = max‖x‖d=1 ‖Ax‖d . If d = 1, then |||A|||1 = max1≤j≤p

∑q

i=1 |aij |, and when d = 2,
|||A|||2 = ρ1/2(AT A) where ρ(·) denotes the spectral radius The Frobenius norm is denoted by
|||A|||F = (

∑
i,j |aij |2)1/2. If q = p, then these norms are matrix norms.

3.1. Linear model

Following [22], we introduce the perturbed model

Ym
t = Nt

(
λm

t

)
, λm

t = d + Aλm
t−1 + BYm

t−1 + εm
t , (5)

where εm
t = cmVt . Here the sequence cm is strictly positive and tends to zero, as m → ∞, and

Vt is a p-dimensional vector which consists of independent positive random variables each of
which having a bounded support of the form [0,M], for some M > 0. The introduction of the
perturbed process allows to prove ergodicity and stationarity of the joint process {(Ym

t ,λm
t , εm

t )}.
The first result is given by the following proposition.
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Proposition 3.1. Consider model (5) and suppose that |||A+B|||2 < 1. Then the process {λm
t , t >

0} is a geometrically ergodic Markov chain with finite r th moments, for any r > 0. Moreover,
the process {(Ym

t ,λm
t , εt ), t > 0} is VY,λ,ε geometrically ergodic Markov chain with VY,λ,ε =

1 + ‖Y‖r
2 + ‖λ‖r

2 + ‖ε‖r
2, r > 0.

The following results show that as cm → 0 as m → ∞, then the difference between (3) and
(5) can be made arbitrary small.

Lemma 3.1. Consider models (3) and (5). If |||A + B|||2 < 1, then the following hold true:

1. ‖E(λm
t − λt )‖2 = ‖E(Ym

t − Yt )‖2 ≤ δ1,m.
2. E‖(λm

t − λt )‖2
2 ≤ δ2,m.

3. E‖(Ym
t − Yt )‖2

2 ≤ δ3,m.

In the above δi,m → 0, as m → ∞. In addition, for sufficiently large m, ‖λm
t − λt‖2 ≤

δ and ‖Ym
t − Yt‖2 ≤ δ, almost surely, for any δ > 0.

The above results show that the condition |||A + B|||2 < 1 is sufficient to guarantee the required
contraction (cf. Lemma 3.1) and existence of all moments of the joint process {(Yt ,λt )} (see
Proposition 3.1). In the simple case of a vector autoregressive model with A = 0 in (3), the con-
dition |||B|||2 < 1 guarantees stationarity and ergodicity of the process {Yt}. This fact is proved
by iterating the recursions of the autoregressive model yielding powers of B. However, this tech-
nique cannot be applied to the general multivariate case but it is deduced by Proposition 3.1. We
conjecture that for the general linear multivariate model of order (q, �)

λt = d +
�∑

i=1

Aiλt−i +
q∑

j=1

Bj Yt−j ,

the condition
∑max(�,q)

i=1 |||Ai + Bi |||2 < 1 is sufficient for proving Proposition 3.1.
We turn now to an alternative method; namely we will use the concept of weak dependence

to study the properties of the linear model (3). This approach does not require a perturbation
argument but the sufficient conditions obtained are weaker. The proof of this result parallels the
proof of [15]; we outline some aspects of it in the Appendix.

Proposition 3.2. Consider model (3) and suppose that |||A|||1 + |||B|||1 < 1. Then there exists a
unique causal solution {(Yt ,λt )} to model (3) which is stationary, ergodic and satisfies E‖Yt‖r

r <

∞ and E‖λt‖r
r < ∞, for any r ∈N.

The closest result reported in the literature analogous to those obtained by Propositions 3.1
and 3.2 can be found in [39], Prop. 4.2.1, which is, in fact, based on the assumption of a joint
multivariate Poisson distribution for the vector of counts. The author shows that if there exists
a p ≥ 1 such that |||A|||p + 21−(1/p)|||B|||p < 1 then the process {λt } is geometrically moment
contracting, see [58] for definition. In the case that p = 2, then the condition of Proposition 3.1
improves this result for the perturbed process {λm

t }. When p = 1 we see that the aforementioned
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condition is reduced to that proved in Proposition 3.2. As a closing remark, note that (3) can be
iterated to obtain

λt =
k−1∑
j=0

Aj d + Akλt−k +
k−1∑
j=0

Aj BYt−j−1 (6)

for k ∈ N. Assume that |||A|||2 < 1. Then an alternative representation of model (1) holds, from a
passage to the limit, as k ↑ ∞, from the above equation:

Yt = Nt (λt ), λt = (Ip − A)−1d +
∞∑

j=0

Aj BYt−j−1, (7)

where Ip is the identity matrix of order p. In this case, the stationarity condition obtained from
[17], as a multivariate variant of [15], is given by

∞∑
j=0

∣∣∣∣∣∣Aj B
∣∣∣∣∣∣

2 < 1. (8)

This condition is implied from |||A|||2 +|||B|||2 < 1. Indeed, |||Aj B|||2 ≤ |||A|||j2 · |||B|||2 and therefore

∞∑
j=0

∣∣∣∣∣∣Aj B
∣∣∣∣∣∣

2 ≤
∞∑

j=0

|||A|||j · |||B|||2 = |||B|||2
1 − |||A2||| < 1.

In other words, (8) improves Proposition 3.2. However, if AB = BA and if they are non-negative
definite, then we obtain that |||A+B|||2 = |||A|||2 +|||B|||2 and then all obtained conditions coincide.
To see that holds true, note that when AB = BA then A,B can be simultaneously reduced in
triangular blocks with the same eigenvalue on each block.

3.2. Log-linear model

We turn to the study of the log-linear model (4). We introduce again its perturbed version by

Ym
t = Nt

(
νm

t

)
, νm

t = d + Aνm
t−1 + B log

(
Ym

t−1 + 1p

) + εm
t , (9)

where the perturbation has the same structure as in (5). Then, [23], Lemma A.2, show that
E[(log(Ym

j,t−1 + 1))r |νj ;t−1 = νj ] ∼ νr
j , j = 1,2, . . . , p and r > 0. Therefore, we can employ

similar arguments as those employed in [23] to prove the following results.

Proposition 3.3. Consider (9) and suppose that |||A|||2 +|||B|||2 < 1. Then the process {νm
t , t > 0}

is geometrically ergodic Markov chain with finite r th moments, for any r > 0. Moreover, the
process {(Ym

t ,νm
t , εt ), t > 0} is VY,ν,ε geometrically ergodic Markov chain with VY,λ,ε = 1 +

‖ log(Y + 1p)‖2r
2 + ‖ν‖2r

2 + ‖ε‖2r
2 , r > 0.
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The proof of the above result is omitted. However, we give in the Appendix some details about
the following approximation lemma.

Lemma 3.2. Consider models (4) and (9). If |||A|||2 + |||B|||2 < 1, then the following hold true:

1. ‖E(νm
t − νt‖2 → 0, as m → ∞ and ‖E(Ym

t − Yt )‖2 ≤ δ1,m.
2. E‖(νm

t − νt )‖2
2 ≤ δ2,m.

3. E‖(Ym
t − Yt )‖2

2 ≤ δ3,m.
4. E‖(λm

t − λt )‖2
2 ≤ δ4,m.

In the above δi,m → 0, as m → ∞. In addition, for sufficiently large m, ‖νm
t − νt‖2 ≤

δ and ‖Ym
t − Yt‖2 ≤ δ, almost surely, for any δ > 0.

We see that the condition |||A+B|||2 < 1 obtained for the linear model (3) is not implied by the
condition |||A|||2 + |||B|||2 < 1 which was found for the log-linear model. Recall that in the case of
the linear model (3) all parameters are assumed to be positive for ensuring that the components
of λt are positive. This is not necessary for the log-linear model case. Closing this section, we
note that the weak dependence approach delivers a similar condition.

Proposition 3.4. Consider model (4) and suppose that |||A|||1 + |||B|||1 < 1. Then there ex-
ists a unique causal solution {(Yt ,νt )} to model (2) which is stationary, ergodic and satisfies
E‖ log(Yt + 1p)‖r

r < ∞ and E‖νt‖r
r < ∞ and E[exp(r‖νt‖1)] < ∞ for any r ∈N.

The same remarks made for the linear model (3) in page 478 hold true for the case of the log-
linear model (4). Indeed, note that the infinite representation is still valid by replacing λt by νt

and Yt by log(Yt + 1p). Hence, (8) asserts stationarity and weak dependence for the log-linear
model. In both cases we were not able to prove the conjecture that |||A + B|||2 < 1 implies weak
dependence. However, (8) improves on the results of Lemmas 3.2 and 3.4.

4. Quasi-likelihood inference

Suppose that {Yt , t = 1,2, . . . , n} is an available sample from a count time series and denote the
vector of unknown parameters by θ ; that is θT = (dT ,vecT (A),vecT (B)), where vec(·) denote
the vec operator and dim(θ) ≡ d = p(1 + 2p). The general approach that we take towards the
estimation problem is based on the theory of estimating functions as outlined by [38] for longi-
tudinal data analysis and [5,29], among others, for stochastic processes. We will be considering
the following conditional quasi-likelihood function, given λ0, for the parameter vector θ ,

L(θ) =
n∏

t=1

p∏
i=1

{
exp(−λi,t (θ))λ

yi,t

i,t (θ)

yi,t !
}
.

This is equivalent to considering model (1) (and (2)) under the assumption of contemporaneous
independence among time series. This assumption simplifies computation of estimators and their
respective standard errors. At the same time, it guarantees consistency and asymptotic normality
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of the resulting estimator (see [2,7] and [14] for recent contributions in the context of count
time series). The main idea is bsed on the correct mean model specification. In other words, if
we assume that for a given count time series and regardless of the true data generating process,
there exists a “true” vector of parameters, say θ0, such that (1) holds (respectively, (2)), then we
obtain consistent and asymptotically normally distributed estimators by maximizing the quasi
log-likelihood function (10). This result carries over to the Double Exponential model considered
by [28] but is should be applied with some care because [18] has shown that the conditional
expectation of this distribution is approximately λt . We are not aware of any results relating the
Double Poisson distribution to properties of Poisson type processes, so Prop. 3.1 and 3.3 are not
applicable to this class of models. We point out that [1], independent of us, considered the same
approach but his work neither gives conditions for ergodicity for the models we examine nor
does it consider log-linear multivariate models. In the following, we give some details for the
linear model case but inference can be easily developed for the log-linear model (2) following
the same arguments; we will only highlight some different aspects of each model.

The quasi log-likelihood function is equal to

l(θ) =
n∑

t=1

p∑
i=1

(
yi,t logλi,t (θ) − λi,t (θ)

)
. (10)

We denote by θ̂ ≡ arg maxθ l(θ), the QMLE of θ . The score function is given by

Sn(θ) =
n∑

t=1

p∑
i=1

(
yi,t

λi,t (θ)
− 1

)
∂λi,t (θ)

∂θ
=

n∑
t=1

∂λT
t (θ)

∂θ
D−1

t (θ)
(
Yt − λt (θ)

) ≡
n∑

t=1

st (θ), (11)

where ∂λt /∂θT is a p × d matrix and Dt is the p × p diagonal matrix with the ith diagonal
element equal to λi,t (θ), i = 1,2, . . . , p. Straightforward differentiation shows that under model
(1), we obtain the following recursions:

∂λt

∂dT
= Ip + A

∂λt−1

∂dT
,

∂λt

∂ vecT (A)
= (λt−1 ⊗ Ip)T + A

∂λt−1

∂ vecT (A)
, (12)

∂λt

∂ vecT (B)
= (Yt−1 ⊗ Ip)T + A

∂λt−1

∂ vecT (B)
,

where ⊗ denotes Kronecker’s product. The Hessian matrix is given by

Hn(θ) =
n∑

t=1

p∑
i=1

yi;t
λ2

i,t (θ)

∂λi,t (θ)

∂θ

∂λi,t (θ)

∂θT
−

n∑
t=1

p∑
i=1

(
yi,t

λi,t (θ)
− 1

)
∂2λi,t (θ)

∂θ∂θT
. (13)

Therefore, the conditional information matrix is equal to

Gn(θ) =
n∑

t=1

∂λT
t (θ)

∂θ
D−1

t (θ)�t (θ)D−1
t (θ)

∂λt (θ)

∂θT
, (14)
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where the matrix �t (·) denotes the true covariance matrix of the vector Yt . In case that the pro-
cess {Yt } consists of uncorrelated components then �t (θ) = Dt (θ). We will study the asymptotic
properties of the QMLE θ̂ . By using [53], Thm 3.2.23, which is based on the work by [35], we
can prove existence, consistency and asymptotic normality of θ̂ . Continuous differentiability
of the log-likelihood function, which is guaranteed by the Poisson assumption, is instrumental
for obtaining these results. The main problem that we are faced with is that we cannot use di-
rectly the sufficient ergodicity and stationarity conditions for the unperturbed model to obtain
the asymptotic theory (see also [22,23] and [54,55] for detailed discussion about the issues in-
volved). Therefore we use the corresponding conditions for the perturbed model and then show
that the perturbed and unperturbed versions are “close”. Towards this goal define analogously
Sm

n to be the MQLE score function for the perturbed model with (Yt ,λt ) replaced by (Ym
t ,λm

t ).
Then, Theorem 4.1 follows immediately after proving Lemmas 4.1–4.3 and taking into account
Remark 4.1 concerning the third derivative of the log-likelihood function. Together these results
verify the conditions of [53], Thm 3.2.23. Lemma 4.1 is proved in the Appendix while Lemmas
4.2 and 4.3 are proved in the supplement.

Lemma 4.1. Define the matrices (see (15))

Gm(θ) = E
(
sm
t (θ)sm

t (θ)T
)

and G(θ) = E
(
st (θ)st (θ)T

)
.

Under the assumptions of Theorem 4.1 the above matrices evaluated at the true value θ = θ0,
satisfy Gm → G, as m → ∞.

Lemma 4.2. Under the assumptions of Theorem 4.1 the score functions for the perturbed (5)
and unperturbed model (4) evaluated at the true value θ = θ0 satisfy the following:

1. Sm
n /n

a.s.−→ 0,

2. Sm
n /

√
n

d−→ Sm := N(0,Gm),

3. Sm d−→ N(0,G), as m → ∞,
4. limm→∞ lim supn→∞ P(||Sm

n − Sn||2 > ε
√

n) = 0,∀ε > 0.

Lemma 4.3. Recall the Hessian matrix defined by (13), Hn, and let Hm
n be the Hessian matrix

which corresponds to the perturbed model (5) evaluated at the true value θ = θ0. Then, under the
assumptions of Theorem 4.1

1. Hm
n

p−→ Hm as n → ∞
2. limm→∞ lim supn→∞ P(|||Hm

n − Hn|||2 > εn) = 0,∀ε > 0,

where H is given by (16) (and analogously for Hm). In addition, the matrix H is positive definite.

Theorem 4.1. Consider model (3). Let θ ∈ � ⊂R
d . Suppose that � is compact and assume that

the true value θ0 belongs to the interior of �. Suppose that at the true value θ0, the condition
of Proposition 3.1 holds true. Then there exists a fixed open neighborhood, say O(θ0) = {θ :
‖θ − θ0‖2 < δ}, of θ0 such that with probability tending to 1 as n → ∞, the equation Sn(θ) = 0
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has a unique solution, say θ̂ . Furthermore, θ̂ is strongly consistent and asymptotically normal,

√
n(̂θ − θ0)

d−→ N
(
0,H−1GH−1),

where the matrices G(θ) and H(θ) are defined by

G(θ) = E

[
∂λT

t (θ)

∂θ
D−1

t (θ)�t (θ)D−1
t (θ)

∂λt (θ)

∂θT

]
, (15)

H(θ) = E

[
∂λT

t (θ)

∂θ
D−1

t (θ)
∂λt (θ)

∂θT

]
(16)

and expectation is taken with respect to the stationary distribution of {Yt }.
When the components of the time series {Yt } are uncorrelated, then �t = Dt and therefore

the matrices G and H coincide. Hence, we obtain a standard result for the ordinary MLE in this
case. All the above quantities can be calculated by their respective sample counterparts.

Remark 4.1. To conclude the proof of Theorem 4.1, we need to show that the expected value
of all third derivatives of the log-likelihood function (10) of the perturbed model (5) within the
neighborhood of the true parameter O(θ0) are uniformly bounded. Additionally, we need to show
that all third derivatives of the unperturbed model (3) are “close” to the third derivatives of (5).
This point was documented in several publications including [22] (for the case of linear model)
and [23] (for the case of the log-linear model). In the supplement, we outline the methodology
of obtaining this result.

We consider briefly QMLE inference for the case of the log-linear model (4). Given the log-
likelihood function (10) we obtain the score, Hessian matrix and conditional information matrix
by

Sn(θ) =
n∑

t=1

p∑
i=1

(
yi,t − exp

(
νi,t (θ)

))∂νi,t (θ)

∂θ
=

n∑
t=1

∂νT
t (θ)

∂θ
(Yt − exp

(
νt (θ)

)
,

Hn(θ) =
n∑

t=1

p∑
i=1

exp
(
νi,t (θ)

)∂νi,t (θ)

∂θ

∂νi,t (θ)

∂θT
−

n∑
t=1

p∑
i=1

(
yi,t − exp

(
νi,t (θ)

))∂2νi,t (θ)

∂θ∂θT
, (17)

Gn(θ) =
n∑

t=1

p∑
i=1

exp
(
νi,t (θ)

)∂νi,t (θ)

∂θ

∂νi,t (θ)

∂θT
,

respectively. The recursions for ∂νt (θ)/∂θT required for computing the QMLE are obtained as in
(12) but with λt replaced by νt and Yt−1 by log(Yt−1 + 1p). In summary, we have the following
result; its proof is omitted since it uses identical arguments as those in the proof of Theorem 4.1.
Note however that one of the main ingredients of the proof is to show that the score function
(17) is a square integrable martingale; this fact is guaranteed by the conclusions of Lemma 3.2;
in particular the fourth result.
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Theorem 4.2. Consider model (4). Let θ ∈ � ⊂R
d . Suppose that � is compact and assume that

the true value θ0 belongs to the interior of �. Suppose that at the true value θ0, the conditions
of Proposition 3.3 hold true. Then there exists a fixed open neighborhood, say O(θ0), of θ0 such
that with probability tending to 1 as n → ∞, the equation Sn(θ) = 0, where Sn(·) is defined
by (17), has a unique solution, say θ̂ . Furthermore, θ̂ is strongly consistent and asymptotically
normal, as in Theorem 4.1, where the matrices G(θ) and H(θ) are defined by

G(θ) = E

[
∂νT

t (θ)

∂θ
�t (θ)

∂ν t (θ)

∂θT

]
, H(θ) = E

[
∂νT

t (θ)

∂θ
Dt (θ)

∂ν t (θ)

∂θT

]
and expectation is taken with respect to the stationary distribution of {Yt }.

Although the product form of (10) indicates independence, the dependence structure in (3) and
(4) will be picked up explicitly through the dependence of (10) on the matrices A and B. The cop-
ula structure, however, does not explicitly appear in (10), even though indirectly it does because
of the conditional innovation Yt | λt . (One could, of course, have chosen a more specific depen-
dence model for these quantities. The copula was chosen because of its general way of describing
dependence.) To recover the copula dependence one has to look at the conditional distribution of
Yt | λt and compare it with the conditional distribution of Y∗

t | λt , say, generated by a suitable
copula model conditional on λt . There are several ways of comparing such distributions, e.g. the
Kullback–Leibler or Hellinger distances. A thorough study of this problem requires a separate
publication. In the supplement, we have opted for a preliminary and heuristic approach based on
the newly developed concept of local Gaussian correlation; for more, including some simulation
and real data evidence, see Section S-6–S-9 in the supplement.

5. Simulation and data analysis

In this section, we illustrate the theory by presenting a limited simulation study for the linear
model. In addition, we include a real data example. Further supporting material is given in the
supplement in Section S-5.

5.1. Simulations for the multivariate linear model

For the simulation study, we only consider a two-dimensional process, that is p = 2. To
initiate the maximization algorithm, we obtain starting values for the parameter vector θ =
(d,vecT (A),vecT (B)) as follows. We first fit a univariate model to each series by using the meth-
ods of [22] and [20]. Then, employing the univariate predictions obtained from each of the hidden
process, we run a multivariate linear regression model by regressing the response to its lagged
value and the vector of estimated hidden process. This method seems to work well in practice but
further experiments are needed. Throughout the simulations, we generate 1000 realizations with
sample sizes of 500 and 1000 by employing the Clayton copula. We report the estimates of the
parameters by averaging out the results from all simulations, and similarly, the standard errors
correspond to the sampling standard errors of the estimates obtained by the simulation. Table 1
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Table 1. Simulation results for the multivariate linear model (1) by employing the Clayton copula with
parameter φ. True parameter values are given by (18). Standard errors of the estimators are given in paren-
theses. Results are based on 1000 runs

Sample size φ d̂1 d̂2 â11 â22 b̂11 b̂22 â12 â21 b̂12 b̂21

500
0

0.871 1.421 0.289 0.222 0.493 0.396 0.087 0.167 0.051 0.098
(0.205) (0.349) (0.071) (0.084) (0.049) (0.050) (0.082) (0.077) (0.045) (0.049)

0.5
0.772 1.116 0.279 0.200 0.494 0.395 0.083 0.161 0.051 0.099

(0.170) (0.264) (0.074) (0.087) (0.051) (0.051) (0.085) (0.081) (0.050) (0.052)

1000
0

0.803 1.316 0.295 0.222 0.498 0.400 0.083 0.166 0.052 0.099
(0.134) (0.236) (0.052) (0.057) (0.036) (0.032) (0.054) (0.054) (0.030) (0.036)

0.5
0.733 1.056 0.286 0.207 0.497 0.396 0.082 0.157 0.048 0.100

(0.118) (0.181) (0.055) (0.061) (0.037) (0.037) (0.057) (0.054) (0.035) (0.037)

illustrates simulation results obtained from the linear model where the off-diagonal elements of
the matrices A and B are non-zero, i.e. following parameters

A =
(

0.3 0.05
0.1 0.25

)
, B =

(
0.5 0.05
0.1 0.4

)
and d = (0.5,1). (18)

Note that these parameter values yield |||A + B|||2 = 0.89 < 1 but |||A|||1 + |||B|||1 = 1 (compare
Propositions 3.1 and 3.2). The empirical results largely agree with the theoretical properties of
the estimators for both values of the copula parameter φ with the exception of d̂ which does
not approach normality satisfactorily, but the approximation improves for larger sample sizes.
Further simulation results are given in the supplement.

5.2. Real data analysis

As an illustration of this methodology, we fit the linear and log-linear models to a bivariate count
time series which consists of the number of transactions per 15 seconds for the stocks Coca-
Cola Company (KO) and IBM on September 19th 2005. The data are from the NYSE Trade
and Quote (TAQ) database, that contains intraday transactions data for all securities listed on
the New York Stock Exchange (NYSE). It is of interest to study how two heavily traded stocks
in different sectors, influence each others trading activity. There are 1440 observations in each
of the two series, covering trades from 09:30 to 16:30, excluding the first 15 minutes and last
15 minutes of transactions. We remove these data, because transaction counts (and all other
measures of intraday activity such as, e.g., volume) are typically characterized by a U-shaped
diurnal seasonality (more transactions at the open and close and less at midday), which can
interfere with the measurement of auto- and cross-correlations, see, e.g., [33].

Figure 1 shows a time series plot of the data and Figure 2 depicts the autocorrelation function
and cross- autocorrelation functions. Clearly, the plot of the autocorrelation functions reveals
high correlation within and between the individual transaction series. Note further that mean
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Figure 1. Number of transactions per 15 seconds for IBM (top) and Coca-Cola (bottom) and the respective
predicted number of transactions from the linear model (red lines) and log-linear model (green lines).

number of transactions is 4.854 and 4.276, for IBM and KO stocks, respectively. The sample
variances are 13.809 (IBM) and 10.707 (KO), that is the data clearly shows marginal overdisper-
sion.

Figure 2. Auto- and cross-correlation function of the transaction data.
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Table 2. Fit of the linear and log-linear model. Standard errors given in parentheses

Fitted model d̂1 d̂2 â11 â22 b̂11 b̂22 â12 â21 b̂12 b̂21

Linear
0.388 0.348 0.625 0.611 0.126 0.145 0.015 0.103 0.062 0.035

(1.110) (0.713) (0.173) (0.001) (0.001) (0.148) (0.005) (0.001) (0.004) (0.005)

Log-linear
0.110 0.149 0.830 0.720 0.104 0.141 −0.008 −0.032 0.035 0.026

(0.001) (0.152) (0.085) (0.035) (0.143) (0.056) (0.003) (0.001) (0.012) (0.0005)

Table 2 shows estimated parameters after fitting the linear and log-linear models to these
data. In both cases, the standard errors given in parentheses under the estimated parame-
ters in Table 2 were computed using the robust estimator of the covariance matrix given by
Hn(θ̂)−1Gn(θ̂)Hn(θ̂)−1 where Hn and Gn are given in equation (13) and (14), respectively. The
magnitude of the standard errors shows that the feedback process should be considered in both
models.

The predictions from both models are denoted by Ŷi,t = λi,t (θ̂) for i = 1 and 2, and are shown
in Figure 1. We see that the predictions approximate the observed processes reasonably well. We
compare the two models by calculating the RMSE using the predictions Ŷi,t for i = 1 and 2 for
both models. This gives an RMSE of 190.06 for the linear model and 193.25 for the log-linear
model, indicating in total a better fit using the linear model. To examine the model fit, we consider
the Pearson residuals, defined by ei,t = (Yi,t − λi,t )/

√
λi,t for i = 1,2. Under the correct model,

the sequence ei,t is a white noise sequence with constant variance. We substitute λi,t by λi,t (θ̂)

to obtain êi,t . We compute the Pearson residuals for both models, and examine their cumulative
periodograms. Figure 3 supports the marginal whiteness of the residual process. A log-linear
model that includes log(Yt−1 + c1p) for some constant c > 1 could had been entertained for
modelling these data. However, predictions obtained after fitting such model for various values
of c did not alter our results considerably (see also [23], p. 571, for the univariate case). Finally,
the results of the copula estimation, for this data example, are reported in the supplement.

Appendix

It is easy to see that λ� = (I − A)−1d is a fixed point of the skeleton (3). The proof of the
following lemma is quite analogous to the proof of [22], Lemma A.1, and it is omitted.

Lemma A.1. Let {λt } be a Markov chain defined by (4) or (5). If |||A|||2 < 1, then every point in
[λ�

1,∞) × · · · × [λ�
p,∞) is reachable, where λ�

i denotes the ith component of the vector λ�.

A.1. Proof of Proposition 3.1

The conditions of φ-irreducibility and the existence of small sets can be proved along the lines
of the proof of [22], Prop. 2.1, provided that |||A|||2 < 1. As in the proof of that Proposition we



Multivariate count autoregression 487

Figure 3. Left: Cumulative periodogram plots of the Pearson residuals from the linear fit of IBM (top) and
Coca-Cola (bottom). Right: Cumulative periodogram plots of the Pearson residuals from the log-linear fit
of IBM (top) and Coca-Cola (bottom).

use the Tweedie criterion to prove geometric ergodicity. Define now the test function V (x) =
1 + ‖x‖r

2. Then, we obtain as λi → ∞, i = 1,2, . . . , p,

E
[
V

(
λm

t

)|λm
t−1 = λ

] = 1 + E
[∥∥d + Aλ + BYm

t−1 + εt;m
∥∥r

2

]
∼ E

[∥∥Aλ + BYm
t−1

∥∥2
2

]μ
,

where we assume, without loss of generality, that μ = r/2, r a positive integer. Next,

E
[∥∥Aλ + BYm

t−1

∥∥r

2

] = E

[[
p∑

i=1

(
(Aλ)i + (

BYm
t−1

)
i

)2

]]μ

:= E

(
p∑

i=1

Ci

)μ

,
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where (Aλ)i and (BYm
t−1)i are the ith components of the vectors Aλ and BYm

t−1, respectively.
But (

p∑
i=1

Ci

)μ

=
∑
i1

· · ·
∑
ip

μ!
i1! · · · ip!C

i1
1 · · ·Cip

p ,

where the sum extends over all indices ij , j = 1,2, . . . , p such that
∑p

j=1 ij = μ. Successive use
of the Cauchy–Schwarz inequality yields

E
(
C

i1
1 · · ·Cip

p

) ≤ E1/2l1
(
C

2i1l1
1

) · · ·E1/2lp
(
C

2iplp
p

)
,

where 1 ≤ lp ≤ 2p−2, and

E
(
C

2ik lk
k

) = E
[
(Aλ)k + (

BYm
t−1

)
k

]4ik lk = E

⎡⎣4ik lk∑
j=0

(
4iklk

j

)
(Aλ)

j
k

(
BYt−1

)4ik lk−j

k

⎤⎦ .

But using the reasoning on page 26 of [21], as λk → ∞, k = 1, . . . , p,

E
[(

BYt−1

)4ik lk−j

k
|λt−1 = λ

] ∼ (Bλ)
4ik lk−j
k .

Hence, E1/2lk (C
2ik lk
k ) ∼ ((A + B)λ)

2ik
k , and asymptotically E(C

i1
1 · · ·Cip

p ) ≤ ((A + B)λ)
2i1
1 · · ·

((A + B)λ)
2ip
p . Therefore, we obtain that

E

(
p∑

i=1

Ci

)μ

≤
∑
i1

· · ·
∑
ip

μ!
i1! · · · ip!

[(
(A + B)λ

)2
1

]i1 · · · [((A + B)λ
)2
p

]ip
=

[
p∑

j=1

(
(A + B)λ

)2
j

]μ

= (∣∣∣∣∣∣(A + B)λ
∣∣∣∣∣∣2

2

)μ ≤ (∣∣∣∣∣∣(A + B)
∣∣∣∣∣∣2

2‖λ‖2
2

)μ
,

which, using the Tweedie criterion as in [22], Prop. 2.1, implies that |||A + B|||2 < 1 is a sufficient
condition, and the proposition thus holds.

A.2. Proof of Lemma 3.1

To prove the first item of the lemma, note that∥∥E
(
λm

t − λt

)∥∥
2 = ∥∥AE

(
λm

t−1 − λt−1
) + BE

(
Ym

t−1 − Yt−1
) + E

(
εm
t

)∥∥
2

= ∥∥AE
(
λm

t−1 − λt−1
) + B

[
E
[
E
((

Ym
t−1|FY,λ

t−1;m
))]

− E
[
E
(
Yt−1|FY,λ

t−1

)]] + E
(
εm
t

)∥∥
2

≤ |||A + B|||2
∥∥E

(
λm

t−1 − λt−1
)∥∥

2 + ∥∥E
(
εm
t

)∥∥
2,
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where FY,λ
t−1 and FY,λ

t−1;m are the σ -algebras generated by {λs , s ≤ t} and {λm
s , s ≤ t}, respectively.

By recursion and the fact that ‖E(εm
t )‖2 ≤ cm which tends to zero as m → ∞ we obtain the

desired result. To prove the second statement, note that as m → ∞,

E
∥∥(

λm
t − λt

)∥∥2
2 ∼ E

∥∥A
(
λm

t−1 − λt−1
) + B

(
Ym

t−1 − Yt−1
)∥∥2

2.

Let 
t−1λ = λm
t−1 − λt−1 and 
t−1Y = Ym

t−1 − Yt−1, then

E
∥∥(

λm
t − λt

)∥∥2
2 ∼ E

[

t−1λ

T AT A
t−1λ + 
t−1λ
T AT B
t−1Y

+ 
t−1YT BT A
t−1λ + 
t−1YT BT B
t−1Y
]

= E
[

t−1λ

T C
t−1λ + 
t−1λ
T D
t−1Y

+ 
t−1YT DT 
t−1λ + 
t−1YT E
t−1Y
]

:=
p∑

i=1

p∑
j=1

E[cij
t−1λi
t−1λj + dij
t−1λi
t−1Yj

+ dji
t−1λi
t−1Yj + eij
t−1Yi
t−1Yj ],
where C = AT A, D = AT B and E = BT B. By using properties of conditional expectation as
before, we obtain

E[dij
t−1λi
t−1Yj + dji
t−1λi
t−1Yj ] = E[dij
t−1λi
t−1λj + dji
t−1λi
t−1λj ]
In addition, following the proof in [22], Lemma 2.1, and using the above conditioning argument,
E(
t−1Y

2
i ) = E(
t−1λi)

2 + 2δi,m, where δi,m → 0, as m → ∞. For the cross-terms we have to

condition on the copula structure, FY,λ
t−1;m, as well i.e.

E(
t−1Yi
t−1Yj ) = E
[
E
[

t−1Yi
t−1Yj |FY,λ

t−1;m,FY,λ
t−1

]] = E(
t−1λi
t−1λj ).

Collecting all previous results, we obtain

E
∥∥(

λm
t − λt

)
)
∥∥2

2 = E
∥∥(A + B)

(
λm

t−1 − λt−1
)∥∥2

2 + Dm ≤ |||A + B|||22E
∥∥(

λm
t−1 − λt−1

)∥∥2
2 + Dm,

where Dm → 0 as m → ∞. The last two statements are proved using straightforward adaptation
of the proof of [22], Lemma 2.1.

A.3. Proof of Proposition 3.2

The proof is based on [17], Thm. 3.1, and parallels the proof given by [15]. In proving weak
dependence, we define the Xt = (YT

t ,λT
t )T and we employ the norm ‖x‖ε = ‖y‖1 + ε‖λ‖1,

where ε is not necessarily small. Then, the contraction property is verified by noting that Xt =
F(XT

t−1,NT
t ) where Nt is an i.i.d. sequence of p-variate copula Poisson processes and choosing

ε = |||A|||1/|||B|||1. This proves that E[‖Yt‖1] < ∞ and E[‖λt‖1] < ∞.
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To show finiteness of moments, we will be using induction and a different technique than the
method used in [15]. More precisely, suppose that E[‖Yt‖r−1

r−1] < ∞ and E[‖λt‖r−1
r−1] < ∞ for

r ∈ N and r > 1. Then consider the ith component of Yt . But

E
[
Y r

i,t | FY,λ
t−1

] ≤ E
[
(Yi,t )r |FY,λ

t−1

] +
r−1∑
k=1

∣∣δik(r)
∣∣E[

Y k
i,t | FY,λ

t−1

]

= λr
i,t +

r−1∑
k=1

∣∣δik(r)
∣∣E[

Y k
i,t |FY,λ

t−1

]
,

where (x)r = x(x − 1) · · · (x − r + 1), {δjk(r), k = 1,2, . . . , r − 1} are some constants and the
first line follows from properties of (x)r while the second line follows form properties of the
Poisson distribution. By taking expectations and using the cr -inequality, we obtain that

E1/r
[
Y r

i,t

] ≤ E1/r
[
λr

i,t

] +
r−1∑
k=1

∣∣δik(r)
∣∣1/r

μi,

where μi = maxk<r E[Y k
i,t | FY,λ

t−1 ], which exists by the induction hypothesis. But

E
(
λr

i,t

) ≤ E
(
Y r

i,t

)
,

because of the properties of the linear model. Therefore, we obtain that (because of (3))

E1/r
[
Y r

i,t

] ≤ di +
p∑

j=1

aij E1/r
[
Y r

i,t

] +
p∑

j=1

bij E1/r
[
Y r

i,t

] +
r−1∑
k=1

∣∣δik(r)
∣∣1/r

μi,

and by summing up, using the definition of |||.|||1 and its properties, we obtain that

p∑
i=1

E1/r
[
Y r

i,t

] ≤
p∑

i=1

di + (|||A|||1 + |||B|||1
) p∑

i=1

E1/r
[
Y r

i,t

] +
p∑

i=1

r−1∑
k=1

∣∣δik(r)
∣∣1/r

μi.

A.4. Proof of Lemma 3.2

We will prove the second and fourth conclusion as the other results follow from [23] and the
proof of Lemma 3.1. But to prove the second statement, note that

E
∥∥(

νm
t − νt

)∥∥2
2

= E
∥∥AE

(
νm

t−1 − νt−1
) + BE

(
log

(
Ym

t−1 + 1p

) − log(Yt−1 + 1p)
) + E

(
εm
t

)∥∥2
2

≤ |||A|||22E
∥∥νm

t−1 − νt−1
∥∥2

2 + |||B|||22E
∥∥log

(
Ym

t−1 + 1p

) − log(Yt−1 + 1p)
∥∥2

2

+ 2|||A|||2|||B|||2
√

E
∥∥νm

t−1 − νt−1
∥∥2

2E
∥∥log

(
Ym

t−1 + 1p

) − log(Yt−1 + 1p)
∥∥2

2 + κc2
m,
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where κ > 0. Consider now E(log(Ym
j,t−1 + 1) − log(Yj,t−1))

2, j = 1,2, . . . , p. Then, following
the proof of [23], Lemma 2.1, and assuming without loss of generality that λm

j,t−1 ≥ λj,t−1 we
obtain that ((Ym

j,t−1 +1)/(Yj,t−1 +1) ≥ 1. Therefore by using Jensen’s inequality (by employing

the function (logx)2), we obtain that

E

[
log

Ym
j,t−1 + 1

Yj,t−1 + 1

]2

≤
[

log E

(
Ym

j,t−1 + 1

Yj,t−1 + 1

)2]
.

But according to [23], p. 576, the right-hand side of the above inequality is bounded by E(νm
j,t−1 −

νj ;t−1)
2 for j = 1,2, . . . , p. Hence, the conclusion of the lemma follows again by the same

arguments used in the proof of Lemma 3.1.
To prove the fourth result, we follow [23], pp. 576–577. Consider the test function V (x) =

exp(r‖x‖2) for r ∈ N. Set b = r|||B|||2. Then

E
[
exp

(
r
∥∥νm

t

∥∥
2

) | νm
t−1 = ν

]
≤ exp

(
r
(‖d‖2 + |||A|||2‖ν‖2

))
E
[
exp

(
r|||B|||2

∥∥log
(
Ym

t−1 + 1p

)∥∥
2

) | νm
t−1 = ν

]
.

However,

E
[
exp

(
b
∥∥log

(
Ym

t−1 + 1p

)∥∥
2

)|νm
t−1 = ν

]
= E

{
exp

[
b

(
p∑

i=1

log2(Ym
i,t−1 + 1

))1/2]∣∣∣∣νm
t−1 = ν

}

= E

{
exp

[
b

(
p∑

i=1

(
νi +

( log(Ym
i,t−1 + 1)

exp(νi)

))2
)1/2]∣∣∣∣νm

t−1 = ν

}
.

But

Var

[
Ym

t + 1

exp(νi)

∣∣∣ νm
t−1 = ν

]
= exp(−νi) → 0, (19)

provided that νi → ∞ for all i = 1,2, . . . , p. Therefore, we have that

Var

[
log

(
Ym

t + 1

exp(νi)

) ∣∣∣ νm
t−1 = ν

]
→ 0,

by the delta-method for moments and provided that νi → ∞ for all i = 1,2, . . . , p. Using now
the multivariate delta-method and Cauchy–Schwarz inequality to the function g(x1, . . . , xp) =
exp(b(

∑p
i (νi + xi)

2)1/2) (with some abuse of notation), we obtain that

Var

{
exp

[
b

(
p∑

i=1

(
νi +

( log(Ym
i,t−1 + 1)

exp(νi)

))2
)1/2]∣∣∣∣νm

t−1 = ν

}
→ 0.
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However,

E

[
Ym

t + 1

exp(νi)

∣∣∣ νm
t−1 = ν

]
∼ 1 (20)

provided that νi → ∞ for all i = 1,2, . . . , p. Therefore, asymptotically, we obtain that

E
[
exp

(
b
∥∥log

(
Ym

t−1 + 1p

)∥∥
2

)|νm
t−1 = ν

] ∼ exp
(
b‖ν‖2

)
.

To complete the proof, we note that the above calculations show that

E
[
exp

(
r
∥∥νm

t

∥∥
2

)|νm
t−1 = ν

] ≤ exp
(
r
(|||A2|||2 + |||B2|||2 − 1

)‖ν‖2
)

exp
(
r‖ν‖2

)
.

Therefore, the conclusion follows as in [23], pp. 576–577.

A.5. Proof of Proposition 3.4

For the log-linear model, we prove weak dependence by the following method. Set Yj,t =
Nj,t (exp(νj,t )), j = 1,2, . . . , p. Then setting Zj,t = log(1 + Yj,t ) we have for Xt = (Zt ,νt )

with Zt = (Zj,t , j = 1,2, . . . , p) and Nt = (Nj,t , j = 1,2, . . . , d) that

Xt = (Zt ,νt ) = F
(
XT

t−1,NT
t

)
,

where Nt = (Nj,t , j = 1,2, . . . , p) i.i.d. copula p-variate Poisson processes. Then using again
the same arguments as in [15] we obtain (with the same norm) that

E
[∥∥F(x,N) − F

(
x�,N

)∥∥
ε

] ≤
p∑

j=1

∥∥(
A

(
ν − ν�

))
j

∥∥
1 +

p∑
j=1

∥∥(
B

(
ζ − ζ �

))
j

∥∥
1

+ ε
(∥∥A

(
ν − ν�

)∥∥
1 + ∥∥B

(
ζ − ζ �

)∥∥
1

)
≤ (1 + ε)

(|||A|||1
∥∥ν − ν�

∥∥
1 + |||B|||1

∥∥ζ − ζ �
∥∥

1

)
,

where the first inequality follows from [23], pp. 575–576. The results now follow as in [15]. Now
we show existence of moments for the log-linear model. Suppose that r ∈N. Then

E
[
exp

(
r‖νt‖1

) | νt−1 = ν
] ≤ exp

(
r
(‖d‖1 + |||A|||1‖ν‖1

))
E
[
exp

(
r|||B|||1‖Zt−1‖1

) | νt−1 = ν
]

With b = r|||B|||1, for the second factor of the right hand side we obtain that

E
[
exp

(
b‖Zt−1‖1

) | νt−1 = ν
] = exp

(
b‖ν‖1

)
E

[
p∏

i=1

(
Yi,t−1 + 1

exp(νi)

)b ∣∣∣ νt−1 = ν

]

But from the proof of Lemma 3.2 (see eq. (19)) and using similar arguments

Var

[
p∏

i=1

(
Yi,t−1 + 1

exp(νi)

)b ∣∣∣ νt−1 = ν

]
→ 0,
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provided that νi → ∞, for all i = 1,2 . . . , p. In addition, because of (20) and the multivariate
delta-method of moments

E

[
p∏

i=1

(
Yi,t−1 + 1

exp(νi)

)b ∣∣∣ νt−1 = ν

]
→ 1,

provided that νi → ∞, for all i = 1,2, . . . , p. The above two displays show that

E
[
exp

(
b‖Zt−1‖1

) | νt−1 = ν
] ∼ exp

(
b‖ν‖1

)
,

as required.

A.6. Proof of Lemma 4.1

In what follows, we drop notation that depends on θ because all quantities are evaluated at the
true parameter θ0. The notation C refers to a generic constant. Initially, we show that∣∣∣∣∣∣∣∣∣∣∣∣∂λm

t

∂dT
− ∂λt

∂dT

∣∣∣∣∣∣∣∣∣∣∣∣
2
< γm, a.s., (21)

for some positive sequence γm → 0, as m → ∞. Using the first equation of (12), we obtain that∣∣∣∣∣∣∣∣∣∣∣∣∂λm
t

∂dT
− ∂λt

∂dT

∣∣∣∣∣∣∣∣∣∣∣∣
2
≤ |||A|||2

∣∣∣∣∣∣∣∣∣∣∣∣∂λm
t−1

∂dT
− ∂λt−1

∂dT

∣∣∣∣∣∣∣∣∣∣∣∣
2

and therefore, by repeated substitution, (21) follows since |||A|||2 < 1 and the results of
Lemma 3.1. Similarly, ∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm

t

∂ vecT (A)
− ∂λt

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣
2
≤ γm, a.s. (22)

Indeed, using the second equation of (12), we obtain that∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t

∂ vecT (A)
− ∂λt

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣
2
≤ √

p
∥∥λm

t−1 − λt−1
∥∥

2 + |||A|||2
∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm

t−1

∂ vecT (A)
− ∂λt−1

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣
2
,

where the first bound comes from the fact that in terms of the Frobenius matrix norm |||Ip|||F =√
p. Therefore, by Lemma 3.1 we obtain the desired result. Finally, it can be shown quite analo-

gously (by using again Lemma (3.1)) that∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t

∂ vecT (B)
− ∂λt

∂ vecT (B)

∣∣∣∣∣∣∣∣∣∣∣∣
2
≤ γm, a.s. (23)

To prove the lemma, we consider the d × d matrix difference∣∣∣∣∣∣sm
t

(
sm
t

)T − st s
T
t

∣∣∣∣∣∣
2 = ∣∣∣∣∣∣(sm

t − st
)(

sm
t

)T + st
(
sm
t − st

)T ∣∣∣∣∣∣
2

≤ ∥∥sm
t − st

∥∥
2

∥∥(
sm
t

)T ∥∥
2 + ‖st‖2

∥∥(
sm
t − st

)T ∥∥
2. (24)
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But

sm
t − st =

[(
∂λm

t

∂θT

)T

−
(

∂λt

∂θT

)T ](
Dm

t

)−1(Ym
t − λm

t

)
+

(
∂λt

∂θT

)T [(
Dm

t

)−1 − (Dt )
−1](Ym

t − λm
t

)
+

(
∂λt

∂θT

)T

D−1
t

[(
Ym

t − λm
t

) − (Yt − λt )
)

= (I ) + (II) + (III), (25)

with obvious notation. Then we obtain for the first term (I ) of (25)∥∥∥∥[(
∂λm

t

∂θT

)T

−
(

∂λt

∂θT

)T ](
Dm

t

)−1(Ym
t − λm

t

)∥∥∥∥
2

≤
∣∣∣∣∣∣∣∣∣∣∣∣∂λm

t

∂θT
− ∂λt

∂θT

∣∣∣∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣(Dm
t

)−1∣∣∣∣∣∣
2

∥∥(
Ym

t − λm
t

)∥∥
2. (26)

We deal with the first factor. Recall that ||| · |||F stands for the Frobenius norm of a matrix. Then∣∣∣∣∣∣∣∣∣∣∣∣∂λm
t

∂θT
− ∂λt

∂θT

∣∣∣∣∣∣∣∣∣∣∣∣2

2
≤

∣∣∣∣∣∣∣∣∣∣∣∣∂λm
t

∂θT
− ∂λt

∂θT

∣∣∣∣∣∣∣∣∣∣∣∣2

F

=
∣∣∣∣∣∣∣∣∣∣∣∣∂λm

t

∂dT
− ∂λt

∂dT

∣∣∣∣∣∣∣∣∣∣∣∣2

F

+
∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm

t

∂ vecT (A)
− ∂λt

∂ vecT (A)

2∣∣∣∣∣∣∣∣∣∣∣∣
F

+
∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm

t

∂ vecT (B)
− ∂λt

∂ vecT (B)

∣∣∣∣∣∣∣∣∣∣∣∣2

F

≤ p

∣∣∣∣∣∣∣∣∣∣∣∣∂λm
t

∂dT
− ∂λt

∂dT

∣∣∣∣∣∣∣∣∣∣∣∣2

2
+ p2

∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t

∂ vecT (A)
− ∂λt

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣2

2

+ p2
∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm

t

∂ vecT (B)
− ∂λt

∂ vecT (B)

∣∣∣∣∣∣∣∣∣∣∣∣2

2
,

where the first and third inequality hold because of result 4.67(a) of [52] and the second inequality
is a consequence of the definition of Frobenius norm. Then we need to show that

E

[∣∣∣∣∣∣∣∣∣∣∣∣∂λm
t

∂dT
− ∂λt

∂dT

∣∣∣∣∣∣∣∣∣∣∣∣2

2

]
,E

[∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t

∂ vecT (A)
− ∂λt

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣2

2

]
,

E

[∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t

∂ vecT (B)
− ∂λt

∂ vecT (B)

∣∣∣∣∣∣∣∣∣∣∣∣2

2

]
≤ γm, (27)
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with γm → 0. We deal with the middle term only; similar arguments can be used for the other
two terms. Squaring the expression after (22) and taking expectations, we obtain that

E

[∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t

∂ vecT (A)
− ∂λt

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣2

2

]

≤ pE
[∥∥λm

t−1 − λt−1
∥∥2

2

] + |||A|||22E

[∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t−1

∂ vecT (A)
− ∂λt−1

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣2

2

]
+ 2

√
p|||A|||2E

[∥∥λm
t−1 − λt−1

∥∥
2

∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t−1

∂ vecT (A)
− ∂λt−1

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣
2

]

≤ δ2;m + |||A|||22E

[∣∣∣∣∣∣∣∣∣∣∣∣ ∂λm
t−1

∂ vecT (A)
− ∂λt−1

∂ vecT (A)

∣∣∣∣∣∣∣∣∣∣∣∣2

2

]
+ 2C

√
p|||A|||2

√
δ2;m ≤ γm,

where γm can become arbitrarily small. This follows from Proposition 3.1, (22) and the fact that
|||A|||2 < 1. For the second term of (26), we note that

∣∣∣∣∣∣(Dm
t

)−1∣∣∣∣∣∣
2 ≤

√
p max

1≤i≤p

1

d2
i

≤ C, (28)

where di is the ith component of d. In addition

E
[∥∥(

Ym
t − λm

t

)∥∥2
2

] =
p∑

i=1

E
[
λm

i,t

]
< C (29)

by Proposition 3.1 and using a conditioning argument. Collecting (27), (28) and (29) an applica-
tion of Cauchy–Schwarz inequality shows that the

E

[∣∣∣∣∣∣∣∣∣∣∣∣∂λm
t

∂θT
− ∂λt

∂θT

∣∣∣∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣(Dm
t

)−1∣∣∣∣∣∣
2

∥∥(
Ym

t − λm
t

)∥∥
2

]
→ 0,

as m → ∞. Now we look at the second summand (II) of (25). First of all, we note that
E|||∂λt /∂θT |||42 < C. This is proved by using the same decomposition of the norm as the sum
of norms of the matrix of derivatives with respect to d, vec(A) and vec(B). Then using (12), the
fact that |||A|||2 < 1 and the compactness of the parameter space, the result follows. In addition,
for some finite constants (cij ), we obtain that

E
[∥∥Ym

t − λm
t

∥∥4
2

] = E

[(
p∑

i=1

(
Ym

i,t − λm
i,t

)2

)2]

= E

[
p∑

i=1

(
Ym

i,t − λm
i,t

)4 + 2
∑
i �=j

(
Ym

i,t − λm
i,t

)2(
Ym

j,t − λm
j,t

)2

]
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≤
p∑

i=1

E
[(

λm
i,t

)4] +
p∑

i=1

3∑
j=1

cij E
[(

λm
i,t

)j ]
< C,

because of Proposition 3.1 and from the same arguments given in the proof of Proposition 3.2.
Now we have that ∣∣∣∣∣∣(Dm

t

)−1 − (Dt )
−1

∣∣∣∣∣∣2
2 ≤ C

∥∥λm
t − λt

∥∥2
2

and therefore its expected value tends to zero by Lemma 3.1. Collecting all these results we have
that the expected value of (II) in (25) tends to zero. Finally, the expected value of term (III) in
(25) tends to zero, as m → ∞ by combining the above results and using Cauchy–Schwarz in-
equality and Lemma 3.1. In addition, the above results show that E[‖st‖2

2] < ∞. The conclusion
of the lemma follows.
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