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Strong orthogonal arrays were recently introduced as a class of space-filling designs for computer experi-
ments. The most attractive are those of strength three for their economical run sizes. Although the existence
of strong orthogonal arrays of strength three has been completely characterized, the construction of these
arrays has not been explored. In this paper, we provide a systematic and comprehensive study on the con-
struction of these arrays, with the aim at better space-filling properties. Besides various characterizing re-
sults, three families of strength-three strong orthogonal arrays are presented. One of these families deserves
special mention, as the arrays in this family enjoy almost all of the space-filling properties of strength-four
strong orthogonal arrays, and do so with much more economical run sizes than the latter. The theory of
maximal designs and their doubling constructions plays a crucial role in many of theoretical developments.

Keywords: computer experiment; doubling and projection; maximal design; second order saturated design;
space-filling design

1. Introduction

Computer models are powerful tools that enable researchers to study complex systems in natural
sciences, engineering, social sciences and humanities. When a computer program representing
a complex model is expensive to run, it is desirable to build a more economical version of the
model. Computer experiments are concerned with building these so-called surrogate models.
This type of models is built using data consisting of a set of inputs and the corresponding outputs
from the computer program. A vital step in the process of designing such an experiment is the
selection of the right kinds of inputs to use. A widely accepted type of designs used for computer
experiments is that of space-filling designs (Santner, Williams and Notz [24]; Fang, Li and Sud-
jianto [7]). Broadly speaking, a space-filling design refers to any design that scatters its points in
the design region in some sort of uniform fashion.

There are several ways to obtain space-filling designs. An intuitively appealing approach is
to use criteria based on distances or discrepancies. See Johnson, Moore and Ylvisaker [14] and
Fang, Lin, Winker and Zhang [8] for early work, and Moon, Dean and Santner [19], Lin and
Kang [16], Wang, Xiao and Xu [26] for more recent developments. Orthogonality also plays
an important role in the quest for space-filling designs (Ye [28]; Bingham, Sitter and Tang [2];
Georgiou and Efthimiou [9]; Liu and Liu [17]). Use of orthogonal arrays to generate space-filling
designs has a long history and goes back to McKay, Beckman and Conover [18], Owen [22] and
Tang [25].
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Motivated by (t,m, s)-nets from quasi-Monte Carlo (Niederreiter [21]), He and Tang [11]
introduced and studied strong orthogonal arrays (SOAs), which are more space-filling in low
dimensions than comparable ordinary orthogonal arrays. SOAs of strength three are most useful
because of their economical run sizes. They are the subject of study in this paper.

Although the existence problem of strength-three SOAs has been completely solved (He and
Tang [12]), the same cannot be said about the construction of such arrays. We undertake in this
paper a systematic and comprehensive study on the construction of strength-three SOAs. We do
not want just any array; we want an array that possesses more space-filling properties whenever
possible. More specifically, we aim at constructing strength-three SOAs that enjoy some of the
space-filling properties that only strength-four SOAs can offer. Besides various characterizing
results, we present three families of strength-three SOAs. The arrays in one of these families
enjoy almost all of the space-filling properties of strength-four strong orthogonal arrays, and
do so with much more economical run sizes than the latter. Section 2 introduces these better
strength-three SOAs and presents illustrative examples of three families of strength-three SOAs.
Characterizations and constructions will be studied under various scenarios in Section 3. We
conclude the paper with a discussion in Section 4.

2. Background, preliminaries and examples

2.1. Background

We use OA(n,m, s1 × · · · × sm, t) to denote an orthogonal array of n runs, with m factors and
having strength t , such that the j th factor has sj levels taken from {0,1, . . . , sj − 1}. The array
is symmetric if s1 = · · · = sm = s and asymmetric otherwise. A simple notation OA(n,m, s, t)

is used for the symmetric case. Orthogonal arrays provide very useful designs in many scientific
and technological investigations. Hedayat, Sloane and Stufken [13] is devoted entirely to them;
Dey and Mukerjee [6] and Cheng [5] also contain abundant sources of information on orthogonal
arrays.

Point sets and sequences from quasi-Monte Carlo (Niederreiter [21]) have long been recog-
nized as useful in design of experiments – see Bates, Buck, Riccomagno and Wynn [1], Owen
[23], and Haaland and Qian [10]. Inspired by the combinatorial characterization of (t,m, s)-nets
by Lawrence [15] and Mullen and Schmid [20], He and Tang [11] introduced strong orthogonal
arrays (SOAs) as space-filling designs for computer experiments. SOAs are more general than
(t,m, s)-nets, and they are formulated in design language and thus more accessible to design
researchers.

An n × m matrix with entries from {0,1, . . . , st − 1} is called an SOA of n runs, m factors,
st levels and strength t if any subarray of g columns for any g with 1 ≤ g ≤ t can be collapsed
into an OA(n, g, su1 × · · · × sug , g) for any positive integers u1, . . . , ug with u1 + · · · + ug = t ,
where collapsing st levels into suj levels is according to [a/st−uj ] for a = 0,1, . . . , st − 1. We
use SOA(n,m, st , t) to denote such an array.

SOAs of strength three are most useful, since SOAs of strength two are no more space-filling
than ordinary orthogonal arrays of strength two and SOAs of strength four or higher are pro-
hibitively expensive. The present article focuses on this class of most useful arrays.



420 C. Shi and B. Tang

2.2. Preliminaries

The existence of strength-three SOAs has been completely characterized in He and Tang [12],
but the construction of these arrays has not been explored. The objectives of this paper are to
provide a systematic and comprehensive study on the construction of strength-three SOAs. We
want to find those designs that are most space-filling within this class of arrays. Our approach is
to identify and construct those strength-three SOAs that enjoy some of the space-filling properties
that only strength-four SOAs can offer.

The next result is taken from He and Tang [11] and is needed in the paper.

Lemma 1. An SOA(n,m, s3,3), say D, exists if and only if there exist three arrays A =
(a1, . . . , am), B = (b1, . . . , bm) and C = (c1, . . . , cm) such that (ai, aj , au), (ai, aj , bj ) and
(ai, bi, ci) are OA(n,3, s,3) s for all i �= j , i �= u and j �= u. These arrays are related through
D = s2A + sB + C.

An SOA(n,m, s3,3) is collapsible into an OA(n,3, s,3) in any three-dimension, and thus
achieves stratifications on s × s × s grids in all three-dimensions. In any two-dimension, an
SOA(n,m, s3,3) can be collapsed into an OA(n,2, s × s2,2) and an OA(n,2, s2 × s,2), and it
therefore achieves stratifications on s × s2 and s2 × s grids in all two-dimensions.

An SOA(n,m, s4,4) is more space-filling, achieving

(α) stratifications on s2 × s2 grids in all two-dimensions,
(β) stratifications on s2 × s × s, s × s2 × s and s × s × s2 grids in all three-dimensions, and
(γ ) stratifications on s3 × s and s × s3 grids in all two-dimensions.

Our goals are to construct strength-three SOAs that enjoy some or all of properties α, β and
γ . The following provides a basis for later construction results. Its proof is similar to that of
Proposition 2 of He and Tang [11].

Proposition 1. An SOA(n,m, s3,3), as characterized in Lemma 1 through A, B and C, has

(i) property α if and only if (ai, bi, aj , bj ) is an OA(n,4, s,4) for all i �= j ,
(ii) property β if and only if (ai, aj , au, bu) is an OA(n,4, s,4) for all i �= j , i �= u and j �= u,

and
(iii) property γ if and only if (ai, aj , bj , cj ) is an OA(n,4, s,4) for all i �= j .

An SOA(n,m, s4,4) has two more space-filling properties: (δ) stratifications on a set of s4 in-
tervals in all one-dimensions and (ε) stratifications on s × s × s × s grids in all four-dimensions.
These two properties are not very interesting for strength-three SOAs. Property δ is not interest-
ing at all because Latin hypercubes based on an SOA(n,m, s3,3) can achieve the maximum strat-
ifications in all one-dimensions. Property ε is not very interesting because an SOA(n,m, s3,3)

with this property implies the existence of an OA(n,m, s,4), requiring a large run size n for a
given number m of factors.

The remainder of the paper is devoted to the construction of strength-three SOAs with some or
all of properties α, β and γ , by making use of regular 2m−p designs. To our surprise, the results
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are far richer and more insightful than we have initially anticipated. The theory of maximal
designs and doubling constructions as studied by Chen and Cheng [4] plays a crucial role in
many of our theoretical developments. In return, our construction results also bring some new
insights into the theory of doubling.

2.3. Three examples

To help the reader appreciate the general theoretical results to be presented in Section 3, we
provide three examples in this subsection.

Example 1. Consider the following array (transposed):
7 3 6 2 7 3 6 2 4 0 5 1 4 0 5 1 5 1 4 0 5 1 4 0 6 2 7 3 6 2 7 3
7 7 2 2 5 5 0 0 6 6 3 3 4 4 1 1 5 5 0 0 7 7 2 2 4 4 1 1 6 6 3 3
7 5 6 4 3 1 2 0 4 6 5 7 0 2 1 3 7 5 6 4 3 1 2 0 4 6 5 7 0 2 1 3
7 7 4 4 5 5 6 6 2 2 1 1 0 0 3 3 7 7 4 4 5 5 6 6 2 2 1 1 0 0 3 3
7 5 6 4 5 7 4 6 6 4 7 5 4 6 5 7 3 1 2 0 1 3 0 2 2 0 3 1 0 2 1 3
7 1 0 6 3 5 4 2 4 2 3 5 0 6 7 1 5 3 2 4 1 7 6 0 6 0 1 7 2 4 5 3
7 1 2 4 7 1 2 4 2 4 7 1 2 4 7 1 5 3 0 6 5 3 0 6 0 6 5 3 0 6 5 3
7 3 2 6 5 1 0 4 4 0 1 5 6 2 3 7 3 7 6 2 1 5 4 0 0 4 5 1 2 6 7 3
7 1 4 2 3 5 0 6 2 4 1 7 6 0 5 3 3 5 0 6 7 1 4 2 6 0 5 3 2 4 1 7

As one can easily verify, this is an SOA(32,9,8,3). But it is a special SOA(32,9,8,3), as
any subarray of two columns becomes an OA(32,2,4,2) when the eight levels are collapsed
into four levels according to 0,1 → 0; 2,3 → 1; 4,5 → 2; 6,7 → 3. Because of this, the array
achieves stratifications on 4 × 4 grids in all two-dimensions, that is, it possesses property α.

Example 2. The array (transposed) below
7 6 6 7 6 7 7 6 3 2 2 3 2 3 3 2 1 0 0 1 0 1 1 0 5 4 4 5 4 5 5 4
7 0 4 3 4 3 7 0 3 4 0 7 0 7 3 4 1 6 2 5 2 5 1 6 5 2 6 1 6 1 5 2
7 4 2 1 4 7 1 2 3 0 6 5 0 3 5 6 1 2 4 7 2 1 7 4 5 6 0 3 6 5 3 0
7 2 0 5 6 3 1 4 3 6 4 1 2 7 5 0 1 4 6 3 0 5 7 2 5 0 2 7 4 1 3 6
7 4 6 5 2 1 3 0 3 0 2 1 6 5 7 4 1 2 0 3 4 7 5 6 5 6 4 7 0 3 1 2
7 2 4 1 0 5 3 6 3 6 0 5 4 1 7 2 1 4 2 7 6 3 5 0 5 0 6 3 2 7 1 4
7 6 2 3 0 1 5 4 3 2 6 7 4 5 1 0 1 0 4 5 6 7 3 2 5 4 0 1 2 3 7 6
7 0 0 7 2 5 5 2 3 4 4 3 6 1 1 6 1 6 6 1 4 3 3 4 5 2 2 5 0 7 7 0

is an SOA(32,8,8,3), which has properties both α and β . The array has property β since any
subarray of three columns becomes an OA(32,3,4 × 2 × 2,3), an OA(32,3,2 × 4 × 2,3), or an
OA(32,3,2 × 2 × 4,3) when the levels of one factor are collapsed into four levels, and the levels
of the other two factors are collapsed into two levels. Collapsing eight levels into two levels is
according to 0,1,2,3 → 0; 4,5,6,7 → 1.

Example 3. The following array (transposed)
7 6 6 7 6 7 7 6 2 3 3 2 3 2 2 3 0 1 1 0 1 0 0 1 5 4 4 5 4 5 5 4
7 0 4 3 4 3 7 0 2 5 1 6 1 6 2 5 0 7 3 4 3 4 0 7 5 2 6 1 6 1 5 2
7 4 2 1 4 7 1 2 2 1 7 4 1 2 4 7 0 3 5 6 3 0 6 5 5 6 0 3 6 5 3 0
7 2 0 5 6 3 1 4 2 7 5 0 3 6 4 1 0 5 7 2 1 4 6 3 5 0 2 7 4 1 3 6
7 4 6 5 2 1 3 0 2 1 3 0 7 4 6 5 0 3 1 2 5 6 4 7 5 6 4 7 0 3 1 2
7 2 4 1 0 5 3 6 2 7 1 4 5 0 6 3 0 5 3 6 7 2 4 1 5 0 6 3 2 7 1 4
7 6 2 3 0 1 5 4 2 3 7 6 5 4 0 1 0 1 5 4 7 6 2 3 5 4 0 1 2 3 7 6
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is an SOA(32,7,8,3) with all of the properties α, β and γ . It has property γ because any
subarray of two columns becomes an OA(32,2,2 × 8,2) or an OA(32,2,8 × 2,2) when the
levels of one factor are collapsed into two levels.

The arrays in Examples 1, 2 and 3 enjoy some or all of properties α, β and γ . Strength-
four SOAs automatically have these properties, but for 32 runs, an SOA(32,m,16,4) can be
constructed only for m ≤ 3 (He and Tang [11], Theorem 1).

3. Construction results

We now concentrate on SOA(n,m, s3,3)s with s = 2, and consider their constructions using
regular 2m−p designs. This means that in applying Lemma 1 to obtain an SOA, the columns
of A, B and C are all selected from a saturated regular two-level design. With k independent
factors, one can obtain a saturated design of n = 2k runs for m = n − 1 factors. Let S denote this
saturated design. If S is viewed as a collection of columns, then any subset of S is a design of
resolution III or higher. Designs with repeated columns have resolution II and are also needed in
presenting our construction results.

Two-level designs are commonly and conveniently studied with the two levels denoted by ±1.
When A, B and C all have two levels ±1, we can make them to have levels 0,1 by (A + 1)/2,
(B + 1)/2 and (C + 1)/2. This implies that D = 4A + 2B + C in Lemma 1 should be replaced
by

D = 2A + B + C/2 + 7/2. (1)

3.1. Designs with property α

When strength-three SOAs are constructed using regular 2m−p designs, the following result can
be obtained.

Theorem 1. If an SOA(n,m,8,3) is to be constructed using regular A, B and C with their
columns selected from a saturated design S, then it has property α if and only if A is of resolution
IV or higher and (A,B,B ′) has resolution III or higher, where B ′ = (b′

1, . . . , b
′
m) with b′

j = ajbj .

Proof. According to Lemma 1 and Proposition 1(i), we only need to show that (ai, bi, aj , bj )

where i �= j has strength four if and only if (A,B,B ′) has resolution III or higher. That
(ai, bi, aj , bj ) has strength four means that the four columns are independent, thus without
any defining words among them. That (A,B,B ′) has resolution III or higher simply says that
(A,B,B ′) has no repeated columns. Therefore, to prove Theorem 1, it remains to assert that
(ai, bi, aj , bj ) where i �= j has no defining words if and only if (A,B,B ′) has no repeated
columns. This assertion can be easily verified. �

Designs A, B and B ′ in Theorem 1 produce a collection of mutually exclusive triplets
(aj , bj , b

′
j = ajbj ) with j = 1, . . . ,m. For a different purpose, such mutually exclusive triplets



Strong orthogonal arrays of strength three 423

are also wanted in Wu [27]. There is, however, a major difference, being that we require A to
have resolution IV or higher whereas there is no such a requirement in Wu [27]. This implies that
the method of Wu [27] would not help us to construct A, B and B ′ in Theorem 1. New methods
have to be developed for this purpose.

Theorem 1 leads to an important result on the number of factors in an SOA(n,m,8,3) with
property α.

Proposition 2. If an SOA(n,m,8,3) with property α, as characterized in Theorem 1, exists,
then it must hold that m ≤ 5n/16.

Proof. By Theorem 1, design A has resolution IV or higher. A resolution IV or higher design is
either even or even/odd. A design is even if the lengths of the words in its defining relation are
all even, and it is even/odd if its defining relation contains words of both even and odd lengths.
If A is even/odd, then we have that m ≤ 5n/16 (Butler [3]; Chen and Cheng [4]). Now suppose
that A is even. Then A is a subset of a saturated resolution IV design, say Q, which has form
Q = (ek, ekQ0), where e1, . . . , ek are independent factors and Q0 consists of e1, . . . , ek−1, and
all their interaction columns. Clearly, S = (Q0,Q). For each j = 1, . . . ,m, as aj = bjb

′
j , one of

bj and b′
j must be in Q0 and the other in Q. Since A does not share any column with B or B ′,

we therefore have that 2m ≤ n/2, with n/2 being the number of columns in Q. This shows that
m ≤ n/4 if A is even. The proof is completed. �

The proof of Proposition 2 actually reveals that, in order to construct an SOA(n,m,8,3) with
property α, if an even A is used, it is impossible to obtain more than n/4 factors, and one has to
consider an even/odd A in order to break this barrier.

We next present a recursive construction of designs A, B and B ′ needed in Theorem 1. Recall
that B ′ = (b′

1, . . . , b
′
m) is determined by A = (a1, . . . , am) and B = (b1, . . . , bm) via b′

j = ajbj .
Let Ak , Bk and B ′

k , based on k independent factors e1, . . . , ek , satisfy the condition in Theorem
1 that Ak is of resolution IV or higher and (Ak,Bk,B

′
k) is of resolution III or higher. Then Ak+2,

Bk+2 and B ′
k+2, based on k + 2 independent factors e1, . . . , ek+2, can be constructed to satisfy

the requirement in Theorem 1. This is done by defining

Ak+2 = (Ak, ek+1Ak, ek+2Ak, ek+1ek+2Ak),

Bk+2 = (Bk, ek+2Bk, ek+1ek+2Bk, ek+1Bk).
(2)

Then B ′
k+2 = (B ′

k, ek+1ek+2B
′
k, ek+1B

′
k, ek+2B

′
k). It is straightforward to verify that Ak+2 has

resolution IV or higher and (Ak+2,Bk+2,B
′
k+2) has resolution III or higher.

Essentially, Ak+2, Bk+2 and B ′
k+2 are obtained by doubling Ak , Bk and B ′

k twice, respectively.
However, their columns are re-arranged in order for (Ak+2,Bk+2,B

′
k+2) to have resolution III or

higher. The above construction of Ak+2 and Bk+2 from Ak and Bk gives a recursive construction
of an SOA(n,m,8,3) with property α.

Proposition 3. Suppose that an SOA(n,m,8,3) with property α is available. Then an
SOA(4n,4m,8,3) with property α can be constructed.
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Table 1. Designs A and B for constructing an SOA(128,40,8,3) with property α

A B

e1 e1e6 e1e7 e1e6e7 e2e4e6 e3e4e5e7 e2e3e5e6 e3e4e5e6
e2 e2e6 e2e7 e2e6e7 e1e3e6 e1e3e7 e3e4e5 e3e4
e3 e3e6 e3e7 e3e6e7 e1e4e5 e1e2e3e5 e1e2e3 e1e4
e4 e4e6 e4e7 e4e6e7 e1e2 e2e3 e1e3 e1e3e4
e1e2e3e4 e1e2e3e4e6 e1e2e3e4e7 e1e2e3e4e6e7 e1e3e5e6e7 e1e2e5e7 e1e4e5e6 e2e4e5e6
e1e5 e1e5e6 e1e5e7 e1e5e6e7 e2e4e7 e2e4e5e7 e1e3e4e5e6 e1e2e3e5e6
e2e5 e2e5e6 e2e5e7 e2e5e6e7 e1e4e6 e1e4e7 e3e4e6 e2e3e4e5e6
e3e5 e3e5e6 e3e5e7 e3e5e6e7 e2e4 e1e2e3e7 e2e3e5 e1e2e6
e4e5 e4e5e6 e4e5e7 e4e5e6e7 e2e3e4 e1e3e5 e1e2e5 e1e2e4e5
e1e2e3e4e5 e1e2e3e4e5e6 e1e2e3e4e5e7 e1e2e3e4e5e6e7 e2e3e6e7 e2e3e5e7 e1e3e5e6 e2e3e6

For k = 4 and n = 16, one can easily see that A4 = (e1, e2, e3, e4, e1e2e3e4) and B4 =
(e3e4, e1e4, e1e2, e2e3, e1e3) satisfy the requirement. For k = 7 and n = 128, the required A7
and B7 have been found to have m = 40 factors, and are presented in Table 1.

Combining the construction of Ak and Bk for k = 4 and 7 with Propositions 2 and 3, we obtain
another major result.

Theorem 2. With the exception of k = 5, we have that

(i) an SOA(n = 2k,m,8,3) with property α can be constructed for every k ≥ 4 and for
m = 5n/16 factors, and

(ii) the SOA(n,5n/16,8,3) with property α given in (i) has the maximum number of factors.

For k = 5, the maximum number m of factors for desired A and B is 9. This follows from Wu
[27] or by a direct check on a computer. We have that

A5 = (e1, e2, e3, e4, e5, e1e2e3, e1e2e4, e1e2e5, e1e3e4e5),

B5 = (e4e5, e3e5, e1e4, e2e3, e1e3, e1e2e4e5, e1e5, e3e4, e1e2),

based on which an SOA(32,9,8,3) with property α can be constructed. This array was displayed
earlier in Example 1.

In addition to A and B , to construct an SOA(n,m,8,3) as in (1), design C is also required.
For the SOAs discussed in this subsection, design C can be trivially obtained. For given A =
(a1, . . . , am) and B = (b1, . . . , bm), one can use C = (c1, . . . , cm) by taking cj to be any column
other than aj , bj and ajbj for j = 1, . . . ,m.

3.2. Designs with property β

For this class of arrays, the following characterization can be obtained.



Strong orthogonal arrays of strength three 425

Theorem 3. If an SOA(n,m,8,3) is to be constructed using regular A, B and C, then it has
property β if and only if A is of resolution IV or higher, (B,B ′) ⊆ Ā and (B,B ′) does not contain
any interaction column involving two factors from A, where Ā = S \ A.

Proof. We only need to give a proof for the sufficiency part, as will be seen, all of our arguments
are reversible. According to Lemma 1 and Proposition 1(ii), we need to show that (ai, aj , au, bu)

does not have a defining word for any distinct i, j, u. The three columns ai, aj , au do not form
a word of length three because A has resolution IV or higher, Columns ai, aj , bu do not form
a word of length three because B does not contain an interaction column involving two factors
from A. Columns ai, au, bu do not form a word of length three because (B,B ′) ⊆ Ā = S \ A.
Finally, ai, aj , au, bu together cannot give a word of length four, since B ′ has no column that is
an interaction involving two factors from A. We have thus completed the proof. �

Note that (B,B ′) in Theorem 3 is allowed to have repeated columns. Based on Theorem 3 and
the theory of doubling (Chen and Cheng [4]), the next result can be established.

Proposition 4. If an SOA(n,m,8,3) with property β , as characterized in Theorem 3, exists, we
must have that m ≤ n/4.

Proof. The basic idea of the proof is by contradiction. We will show that if m ≥ n/4 + 1, then it
is impossible to find designs A and B that satisfy the conditions as required in Theorem 3.

Now suppose m ≥ n/4 + 1. As A has resolution IV or higher, it is either maximal or a projec-
tion design of a maximal design (Chen and Cheng [4], Proposition 3.1). If A is maximal, then the
two-factor interactions of A use up all the columns in Ā. Therefore, there does not exist B ⊆ Ā

that has no interaction column involving two factors of A.
Suppose that A is a projection design of a maximal design of resolution IV or higher, that is,

A is obtained by deleting columns from a maximal design. Let W be this maximal design with w

columns. Obviously, w ≥ m+1. Then by Theorems 3.4 and 3.5 of Chen and Cheng [4], we must
have that w = n/4 + 2j , where j is an integer satisfying w ≥ m + 1, and that W can be obtained
by doubling, repeatedly j times, a maximal design of n/2j runs for n/2j+2 + 1 factors. For W ,
consider its alias sets that do not contain main effects. Let l1, . . . , lf where f = 2k −1−w be the
sizes of these alias sets. Then Theorems 2.2 and 3.2 of Chen and Cheng [4] imply that li ≥ 2j for
all i = 1, . . . , f . When one column is deleted from W , the size of each of these alias set decreases
at most by one, since the two-factor interactions associated with this deleted column are mutually
orthogonal and thus no more than one of them can belong to the same alias set. Therefore, if less
than 2j columns are deleted from W , then none of these alias sets will become empty. Recall that
A is obtained from W by deleting w −m columns and w −m = n/4 + 2j −m < 2j as m > n/4.
This means that each of these alias sets contains at least one two-factor interaction of A. Because
of this, the columns of B in Theorem 3 can only be selected from W \ A for otherwise B will
contain a two-factor interaction of A. Because W has resolution IV or higher, the columns of
B ′ must be all outside of W , and thus are two-factor interactions of A. This contradicts to the
requirement for B ′. The proof is finally completed. �

A construction of designs A and B required in Theorem 3 is now presented. Again, let
e1, . . . , ek be independent factors. Let P0 consist of e3, . . . , ek and all of their interactions, and
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let P = (I,P0) where I is the all-ones column. Then S = (P0, e1P,e2P,e1e2P). Now take
A = e1P and B = e2P . It can be easily seen that such A and B meet the requirements in Theo-
rem 3. Note that A and B have m = n/4 factors.

Theorem 4. With the above choice of A and B , we have that

(i) an SOA(n = 2k,m,8,3) with property β can be constructed for m = n/4 factors, and
(ii) the SOA(n,n/4,8,3) given in (i) has the maximum number of factors among all

SOA(n,m,8,3) with property β .

Theorem 4 is a direct consequence of Proposition 4 and Theorem 3.
The remark about C at the end of Section 3.1 equally applies here.

3.3. Designs with more than one of properties α, β and γ

The problem of constructing SOA(n,m,8,3)s with property α or β has been completely solved
in the previous two subsections. We now consider the construction of SOA(n,m,8,3)s with
property γ . SOA(n,m,8,3)s with property γ achieve stratifications on 2 × 8 and 8 × 2 grids in
all two-dimensions. Unlike those with property α or β , a simple characterization as in Theorems
1 or 3 is not available for arrays with property γ , but a sufficient condition can be given.

Proposition 5. Suppose that an SOA(n,m,8,3) is to be constructed using regular A, B and
C. If A and B satisfy that (i) A is resolution IV or higher, (ii) (B,B ′) ⊆ Ā shares no common
column with A(2) where A(2) collects all the two-factor interactions of A, and (iii) the set of
distinct columns in (B,B ′,A(2)) is a subset of Ā but is unequal to Ā, then an SOA(n,m,8,3)

with property γ can be constructed. This array also has property β .

Proof. Take C = (c1, . . . , cm) where cj = c is a column in Ā but not any column of
(B,B ′,A(2)). Then we can easily check that (ai, aj , bj , cj ) is an orthogonal array of strength
four for any i �= j . This shows that array D constructed in (1) is an SOA(n,m,8,3) with property
γ . This array also has property β because A and B meet the requirements in Theorem 3. �

Let us go back to S = (P0, e1P,e2P,e1e2P) where P = (I,P0) and P0 consists of e3, . . . , ek

and all their interactions. If we take A = e1P0 and B = e2P0, then the conditions in Proposition
5 are all met.

Proposition 6. An SOA(n = 2k,m,8,3) with properties β and γ can be constructed for m =
n/4 − 1 factors.

Proposition 6 inspires us to consider SOA(n,m,8,3)s with all properties α, β and γ . It is
intriguing and somewhat surprising that they can be constructed for m = n/4 − 1 factors.

Let X,Y,Z be three copies of P0, which have the same set of columns as P0 but with
their columns ordered differently. Suppose that they can be found such that xjyj = zj where
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xj , yj , zj are the j th column of X,Y,Z, respectively, for j = 1, . . . ,m = n/4 − 1. Then
S = (P0, e1, e2, e1e2, e1X,e2Y, e1e2Z). Now if we take

A = e1X and B = e2Y.

Then all the conditions in Theorems 1 and 3, and Proposition 5 are satisfied.

Theorem 5. The above construction gives an SOA(n,n/4 − 1,8,3) with all three properties α,
β and γ .

If we take

A = (e1, e1X) and B = (e2, e2Y)

instead, then Theorems 1 and 3 both apply.

Corollary 1. An SOA(n,m,8,3) with properties α and β can be constructed for m = n/4 fac-
tors.

It remains to establish the existence of X,Y and Z satisfying that xjyj = zj . Suppose that
Xk,Yk and Zk have this property and are based on k independent factors e1, . . . , ek . Then
Xk+2, Yk+2 and Zk+2 can be constructed recursively to have the same property as follows:

Xk+2 = (Xk, ek+1, ek+1Xk, ek+2, ek+2Xk, ek+1ek+2, ek+1ek+2Xk),

Yk+2 = (Yk, ek+2, ek+2Yk, ek+1ek+2, ek+1ek+2Yk, ek+1, ek+1Yk),

Zk+2 = (Zk, ek+1ek+2, ek+1ek+2Zk, ek+1, ek+1Zk, ek+2, ek+2Zk).

For k = 2, Xk,Yk,Zk are given by X2 = (e1, e2, e1e2), Y2 = (e2, e1e2, e1) and Z2 =
(e1e2, e1, e2). For k = 3, they are given by X3 = (e1, e2, e1e2, e3, e1e3, e2e3, e1e2e3), Y3 =
(e1e2e3, e1e3, e2, e1, e2e3, e3, e1e2) and Z3 = (e2e3, e1e2e3, e1, e1e3, e1e2, e2, e3). We thus ob-
tain the next result.

Theorem 6. For any k ≥ 2, Xk,Yk,Zk can be constructed to satisfy that xjyj = zj .

3.4. Three families of strength-three SOAs

Various characterizing and construction results have been presented in Sections 3.1, 3.2 and 3.3.
We now highlight three families of strength-three SOAs and summarize their constructions. This
should be helpful to those readers who are mainly interested in the final products, namely better
strength-three SOAs, and are less concerned with the theoretical characterizations of these arrays.

The first family is given by Theorem 2, which asserts that an SOA(n = 2k,m,8,3) can be
constructed to have property α for m = 5n/16 with the exception for k = 5 in which case m = 9
instead of m = 10. The construction of this array D is via (1) that requires arrays A, B and
C. Arrays A and B can be constructed recursively by (2), with A4 and B4 given right after
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Proposition 3, and A7 and B7 given in Table 1. Once A = (a1, . . . , am) and B = (b1, . . . , bm)

are available, array C = (c1, . . . , cm) can easily be obtained by taking cj to be any column other
than aj , bj and ajbj for j = 1, . . . ,m. Obviously, any array given by deleting columns from
the SOA(n = 2k,5n/16,8,3) still has property α. But if m ≤ n/4, better arrays exist, which we
discuss next.

The second family of strength-three SOAs has properties both α and β . This is given by Corol-
lary 1, which says that an SOA(n = 2k,m,8,3) with properties both α and β can be constructed
for m = n/4 factors. If one needs an array with less than n/4 factors, one can simply delete
some columns from the SOA(n = 2k, n/4,8,3) and the resulting array still has properties both α

and β . This is unnecessary, however, due to the availability of the third family of strength-three
SOAs.

The third family of strength-three SOAs enjoys all properties α, β and γ . According to Theo-
rem 5, we can construct an SOA(n = 2k,m,8,3) with all properties α, β and γ for m = n/4 − 1
factors. Immediately available is an SOA(n = 2k,m,8,3) with all properties α, β and γ for
m < n/4 − 1, which can be obtained by deleting columns from the one for m = n/4 − 1.

We have seen that the first, second and third families of strength-three SOAs enjoy increasingly
better space-filling properties.

The constructions for the second and third families of SOAs are very much related, of which
we now give a summary. The saturated design S based on k independent factors e1, . . . , ek can
be written as

S = (P0, e1, e2, e1e2, e1X,e2Y, e1e2Z),

where P0 consists of e3, . . . , ek and all their interactions, and X, Y and Z are three copies of
P0 obtained by permuting the columns of P0 such that xjyj = zj with xj , yj and zj being the
j th column of X, Y and Z, respectively. The existence of X, Y and Z having this property is
guaranteed by Theorem 6, with their constructions provided right before that theorem.

Recall the construction of strength-three SOAs using (1), which needs three arrays A, B and
C. The second family of SOAs chooses

A = (e1, e1X) and B = (e2, e2Y),

with array C = (c1, . . . , cm) given by taking cj to be any column other than aj , bj and ajbj

where aj and bj are the j th columns of A and B , respectively. The third family of SOAs uses

A = e1X and B = e2Y,

along with array C = (c1, . . . , cm) given by taking cj = e1 for all j = 1, . . . ,m.
Table 2 provides a numerical comparison of the maximum numbers of factors for three families

of SOAs of strength three and SOAs of strength four.
Theorem 5 is a remarkable result, as SOA(n,m,8,3)s with all three properties α, β and γ

achieve stratifications on (i) 4 × 4, 8 × 2 and 2 × 8 grids in all two-dimensions and (ii) 4 × 2 × 2,
2 × 4 × 2 and 2 × 2 × 4 grids in all three-dimensions. The only property they do not have, when
compared with SOAs of strength four, is to achieve stratifications on 2 × 2 × 2 × 2 grids in four-
dimensions. SOAs of strength four are very expensive to construct. According to He and Tang
([11], Theorem 1), SOA(n,m,16,4) can be constructed for up to m = [M(k)/2] factors where
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Table 2. Maximum numbers of factors SOAs of strength three and four

Strength three

k n = 2k Family 1 Family 2 Family 3 Strength four

4 16 5 4 3 2
5 32 9 8 7 3
6 64 20 16 15 4
7 128 40 32 31 5
8 256 80 64 63 8

M(k) is the maximum number of factors for resolution V designs with n = 2k runs. Note that
M(k)/2 is much smaller than n/4 − 1 as M(k) is in the order of O(

√
n).

4. Discussion

This paper introduces and constructs several families of strength-three SOAs that enjoy some
of the space-filling properties of strength-four SOAs. Various characterizing and construction
results are presented. The theory of maximal designs and their doubling constructions plays a
crucial role in many of the theoretical arguments. Strength-three SOAs constructed in this paper
should provide very useful space-filling designs for computer experiments.

The present paper focuses on the construction using regular 2m−p designs. One interesting
direction worth pursuing is to consider the construction using regular sm−p designs. Some results
are possible although it seems unlikely that we can obtain many rich results as what has been done
using 2m−p designs. Another research direction is to examine the use of non-regular two-level
designs. We feel that some of the constructions in this paper could be generalized to include
non-regular situations. This deserves further investigation.
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