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We consider the recovery of a low rank M ×N matrix S from its noisy observation S̃ in the high dimensional
framework when M is comparable to N . We propose two efficient estimators for S under two different
regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular
matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and
vectors for such matrices.
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1. Introduction

Matrix denoising is important in many scientific endeavors. They appear prominently in singal
processing [36], image denoising [12], machine learning [37], statistics [13,14,16], empirical
finance [6,20] and biology [31]. In these applications, researchers are interested in recovering
the true deterministic matrix from a noisy observation. Consider that we can observe a noisy
M × N data matrix S̃N , where

S̃N = SN + XN, (1.1)

the deterministic matrix SN is known as the signal matrix and XN the noise matrix. In the clas-
sic framework where M is much smaller than N , the truncated singular value decomposition
(TSVD) is the default technique, see for example [15]. This method recovers SN with an estima-
tor ŜN =∑m

i=1 μiũi ṽ
∗
i using the truncated singular value decomposition, where m < min{M,N}

denotes the truncation level, μi , ũi , ṽi , i = 1,2, . . . ,m are the singular values and vectors of S̃.
We usually need to provide a threshold γ to choose m and use the singular values only when
μi ≥ γ . Two popular methods are the soft thresholding [11] and hard thresholding [13].

In recent years, the advance of technology has lead to the observation of massive scale data,
where the dimension of the variable is comparable to the length of the observation. In this situa-
tion, the TSVD will lose its validity. To address this problem, in the present paper, we consider
the matrix denoising problem (1.1) by assuming M is comparable to N and estimate SN in the
following two regimes:

Regime (1). SN is of low rank and we have prior information that its singular vectors are sparse.

1350-7265 © 2020 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/19-BEJ1129
mailto:xiucai.ding@mail.utoronto.ca


388 X. Ding

Regime (2). SN is of low rank and we have no prior information on the singular vectors.

In Regime (1), SN is called simultaneously low rank and sparse matrix. This type of matrix
has been heavily used in biology. A typical example is from the study of gene expression data
[23,31]. In [37], Yang, Ma and Buja also consider such problem but from a quite different per-
spective. They do not take the local behavior of singular values and vectors into consideration.
Instead, they use an adaptive thresholding method to recover SN in (1.1). In Regime (2), we are
interested in looking at what is the best we can do in this case. A natural (and probably necessary)
assumption is rotation invariance [5], as the only information we know about the singular vectors
is orthonormality. It is notable that, in this case, our result coincides with the results proposed by
Gavish and Donoho [14], where they consider the estimator from another perspective and restrict
the estimator to be conservative (see Definition 3 in [14]).

In this paper, we will study the convergent limits and rates of the singular values and vectors
for the sequence of matrices S̃N defined in (1.1). For the rest of the paper, we will omit the
subscript N for convenience and write

S̃ = S + X. (1.2)

To avoid repetition, we summarize the technical assumptions of the noise matrix X.

Assumption 1.1. We assume X is a white noise matrix, where the entries xij of X are i.i.d.
random variables such that

Exij = 0, E|xij |2 = 1

N
.

Furthermore, we assume that for l ∈N, there exists some constant Cl > 0, such that

E|√Nxij |l ≤ Cl. (1.3)

Denote the SVD of S as

S = UDV ∗ =
r∑

k=1

diuiv
∗
i , (1.4)

where D = diag{d1, . . . , dr}, U = (u1, . . . , ur ), V = (v1, . . . , vr ), and where ui ∈ R
M , vi ∈ R

N

are orthonormal vectors and r is a fixed constant. We also assume d1 > d2 > · · · > dr > 0. Then
(1.2) can be written as

S̃ = X + UDV ∗. (1.5)

Throughout the paper, we are interested in the following setup

cN := N

M
, lim

N→∞ cN = c ∈ (0,∞). (1.6)

It is well known that for the noise matrix X, the spectrum of XX∗ satisfies the celebrated
Marchenco–Pastur (MP) law [24] and the largest eigenvalue satisfies the Tracy–Widom (TW)
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distribution [35]. Specifically, denote λi := λi(XX∗), i = 1,2, . . . ,K , where K = min{M,N},
as the eigenvalues of XX∗ in a decreasing fashion, we have that

λ1 = λ+ + O
(
N−2/3), λ+ = (

1 + c−1/2)2
, (1.7)

holds with high probability. Furthermore, denote ξi , ζi as the singular vectors of X, for some
large constant C > 0, with high probability, we have [9]

max
k

{∣∣ξi(k)
∣∣2 + ∣∣ζi(k)

∣∣2}= O
(
N−1), i ≤ C.

To sketch the behavior of S̃, we consider the case when r = 1 in (1.5). Assuming that the distri-
bution of the entries of X is bi-unitarily invariant, Benaych-Georges and Nadakuditi established
the convergent limits in [2] using free probability theory. Denote μi := μi(S̃S̃∗), i = 1,2, . . . ,K ,
they proved that when d > c−1/4, μ1 would detach from the spectrum of the MP law and become
an outlier. And when d < c−1/4, μ1 converges to λ+ and sticks to the spectrum of the MP law.
For the singular vectors, denote ũi , ṽi as the left and right singular vectors of S̃, i = 1,2, . . . ,K .
They proved that when d > c−1/4, ũ1, ṽ1 would be concentrated on cones with axis parallel to
u1, v1 respectively, and the apertures of the cones converged to some deterministic limits. And
when d < c−1/4, ũ1, ṽ1 will be asymptotically perpendicular to u1, v1, respectively. We point
out that similar results have been proved for the Wigner matrices with additive deformation and
covaraince matrices with multiplication perturbation. For such results, we refer the readers to
[1,4,7,17,18,28,30,32].

Our computation and proof rely on the isotropic local MP law [3,19,29]. These results say that
the eigenvalue distribution of the sample covariance matrix XX∗ is close to the MP law, down to
the spectral scale containing slightly more than one eigenvalue. These local laws are formulated
using the Green functions,

G1(z) := (
XX∗ − z

)−1
, G2(z) := (

X∗X − z
)−1

, z = E + iη ∈ C
+. (1.8)

To illustrate our results and ideas, we give an overview of the present paper. As we have seen
from [9,10], the self-adjoint linearization technique is quite useful in dealing with rectangular
matrices. Hence, in a first step, we denote by

H̃ =
[

0 z1/2S̃

z1/2S̃∗ 0

]
=
[

0 z1/2X

z1/2X∗ 0

]
+
[

0 z1/2UDV ∗
z1/2V DU∗ 0

]

= H + UDU∗, (1.9)

where D, U are defined as

D :=
[

0 z1/2D

z1/2D 0

]
, U :=

[
U 0
0 V

]
. (1.10)

Next we will give a heuristic description of our results. We will always denote μ1 ≥ · · · ≥ μK ,
K = min{M,N} as the eigenvalues of S̃S̃∗ and ũi , ṽi as the singular vectors of S̃. And we
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denote G(z) as the Green function of H . Consider r = 1 in (1.5) and by a standard perturbation
discussion (see Lemma 4.7), we find that μ1 satisfies the equation det(U∗G(μ1)U + D−1) = 0.
Using the isotropic local law in [19], we find that (see Lemma 4.9) G has a deterministic limit �

when N is large enough. Heuristically, the convergent limit of μ1 is determined by the equation
det(U∗�(z)U + D−1) = 0. An elementary calculation shows that, when d > c−1/4, μ1 → p(d),
where p(d) is defined in (2.6).

When d > c−1/4, the largest eigenvalue μ1 will detach from the bulk and become an outlier
around its classical location p(d). We would expect this happens under a scale of N−1/3. This
can be understood in the following ways: increasing d beyond the critical value c−1/4, we expect
μ1 to become an outlier, where its location p(d) is located at a distance greater than O(N−2/3)

from λ+. By using mean value theorem, the phase transition will take place on the scale when∣∣d − c−1/4
∣∣≥ O

(
N−1/3). (1.11)

When (1.11) happens, we also prove that

μ1 = p(d) + O
(
N−1/2(d − c−1/4)1/2)

. (1.12)

Below this scale, we would expect the spectrum of S̃S̃∗ to stick to that of XX∗. Especially, the
largest eigenvalue μ1 still has the Tracy–Widom distribution with the scale N−2/3, which reads
as

μ1 = λ+ + O
(
N−2/3). (1.13)

For the singular vectors, when d > c−1/4, we have 〈u1, ũ1〉2 → a1(d), 〈v1, ṽ1〉2 → a2(d),
where a1(d), a2(d) are deterministic functions of d and defined in (2.9). For the local behavior,
we will use an integral representation of Greens functions (see (5.17)). Under the assumption
that di ’s are well-separated and satisfy (1.11), we prove that

〈u1, ũ1〉2 = a1(d) + O
(
N−1/2), 〈v1, ṽ1〉2 = a2(d) + O

(
N−1/2). (1.14)

Below the scale of (1.11), we prove that

〈u1, ũ1〉2 = O
(
N−1), 〈v1, ṽ1〉2 = O

(
N−1). (1.15)

Armed with (1.12), (1.13), (1.14) and (1.15), we can go to the matrix denoising problem (1.5)
under the two different regimes. In the first regime, we assume there exists sparse structure of the
singular vectors, in the case when d > c−1/4, we would expect ũ1, ṽ1 to be sparse as well. Hence,
S̃ will be of sparse structure. Therefore, by suitably choosing a submatrix of S̃ and doing SVD
for the submatrix, we can get an estimator for the singular vectors. Our novelty is to truncate
singular values and vectors simultaneously. For the estimation of singular values, we can reverse
(1.12) to get the estimator for d . For the singular vectors, based on (1.15), the truncation level
should be much larger than N−1/2 and we will use K-means clustering algorithm to choose such
level. However, when d < c−1/4, we can estimate nothing according to (1.13) and (1.15).

In the second regime, as we have no prior information whatsoever on the true eigenbasis of S,
the only possibility is to use the eigenbasis of S̃. This is equivalent to the assumption of rotation
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invariance. We will propose a consistent rotation invariant estimator (RIE) �(S̃), which satisfies
the following condition,

	1�(S̃)	2 = �(	1S̃	2), (1.16)

where 	1, 	2 are orthogonal (rotation) matrix in R
M , RN , respectively. Before concluding this

section, we list our main contributions of this paper:
(i). We systematically study the local behavior of the singular values and vectors for finite

rank perturbation of large dimensional rectangular matrices of model (1.5). We compute the
convergent limits and rates for them.

(ii). We provide two efficient estimators for the matrix denoising model (1.5) under two dif-
ferent regimes. We provide practical algorithms to compute the estimators. For the sparse esti-
mation, as far as we know, our paper is the first one to truncate the singular values and vectors
simultaneously.

This paper is organized as follows. In Section 2, we give the main results of this paper. In
Section 3, we propose the estimators for (1.5) under two regimes. In Section 4, we record the
basic tools for the proof of the main theorems. In Section 5, we prove the main theorems listed
in Section 2.

Conventions. For two quantities aN and bN depending on N , the notation aN = O(bN) means
that |aN | ≤ C|bN | for some positive constant C > 0, and aN = o(bN) means that |aN | ≤ cN |bN |
for some positive constants cN → 0 as N → ∞. We also use the notation aN ∼ bN if aN =
O(bN) and bN = O(aN). We define the minimum of any two reals a, b by a ∧ b. For any matrix
A, we denote by A∗ as the transpose of A and ‖A‖F the Frobenius norm of A. We will also use
σ (H) to denote the spectrum for any square matrix H . And for any rectangular matrix S we use
σi(S) to denote its i-th largest singular value.

2. Main results

Throughout the paper, we always use ε1 for a small constant and D1 for a large constant. Denote
R := {1,2, . . . , r} and O as a subset of of R by

O := {
i : di ≥ c−1/4 + N−1/3+ε0

}
, ε0 > ε1 is a small constant, (2.1)

and the number of outlier singular values as

k+ = |O|. (2.2)

Our results can be extended to a more general domain by denoting O′ := {i : di ≥ c−1/4 +
N−1/3}. We will not pursue this generalization. For more details, we refer to [4]. For any subset
A ⊂O, we define the projections on the left and right singular subspace of S̃ by

Pl :=
∑
i∈A

ũi ũ
∗
i , Pr :=

∑
j∈A

ṽj ṽ
∗
j . (2.3)

We also need the non-overlapping condition, which was firstly introduced in [4].
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Definition 2.1. For i = 1,2, . . . ,M , the non-overlapping condition is written as

νi(A) ≥ (
di − c−1/4)−1/2

N−1/2+ε0 , (2.4)

where ε0 is defined in (2.1) and νi(A) is defined by

νi(A) :=
⎧⎨
⎩

min
j /∈A

|di − dj |, if i ∈ A,

min
j∈A

|di − dj |, if i /∈ A.
(2.5)

With the above preparation, we state our main results of the singular values of S̃. Denote

p(d) = (d2 + 1)(d2 + c−1)

d2
. (2.6)

Recall S̃ defined in (1.5) and μi are the eigenvalues of S̃S̃∗.

Theorem 2.2. Under Assumption 1.1 and the assumption of (1.6), for i = 1,2, . . . , k+, where
k+ is defined in (2.2), there exists some large constant C > 1 such that Cε1 < ε0, when N is
large enough, with 1 − N−D1 probability, we have

∣∣μi − p(di)
∣∣≤ N−1/2+Cε0

(
di − c−1/4)1/2

, (2.7)

where p(di) is defined in (2.6). Moreover, for j = k+ + 1, . . . , r , we have

|μj − λ+| ≤ N−2/3+Cε0 , (2.8)

where λ+ is defined in (1.7).

The above theorem gives precise location of the outlier singular values and the extremal non-
outlier singular values. For the outliers, they locate around their classical locations p(di) and
for the non-outliers, they locate around λ+. The results of the singular vectors are given by the
following theorem. Denote

a1(d) = d4 − c−1

d2(d2 + c−1)
, a2(d) = d4 − c−1

d2(d2 + 1)
. (2.9)

Theorem 2.3. Under Assumption 1.1 and the assumptions of (1.6) and (2.4), for all i, j =
1,2, . . . , r , there exists some constant C > 0, with 1−N−D1 probability, when N is large enough,
we have ∣∣〈ui,Pluj 〉 − δij 1(i ∈ A)a1(di)

∣∣≤ Nε1R(i, j,A,N), (2.10)∣∣〈vi,Prvj 〉 − δij 1(i ∈ A)a2(di)
∣∣≤ Nε1R(i, j,A,N), (2.11)
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where a1(d), a2(d) are defined in (2.9) and R(i, j,A,N) is defined as

R(i, j,A,N) := N−1/2
[

1(i ∈ A,j ∈ A)

(di − c−1/4)1/2 + (dj − c−1/4)1/2

+ 1(i ∈ A,j /∈ A)
(di − c−1/4)1/2

|di − dj |

+ 1(i /∈ A,j ∈ A)
(dj − c−1/4)1/2

|di − dj |
]

+ N−1
[(

1

νi

+ 1(i ∈ A)

|di − c−1/4|
)(

1

νj

+ 1(j ∈ A)

|dj − c−1/4|
)]

.

Moreover, fix a small constant τ > 0, for k+ + 1 ≤ j ≤ (1 − τ)K , denote κd
j := N−2/3(j ∧ (K +

1 − j))2/3, we have

∣∣〈ui, ũj 〉2
∣∣≤ NCε0

N((di − c−1/4)2 + κd
j )

, i = 1,2, . . . , r, (2.12)

and

∣∣〈vi, ṽj 〉
∣∣2 ≤ NCε0

N((di − c−1/4)2 + κd
j )

, i = 1,2, . . . , r. (2.13)

Furthermore, if c �= 1, (2.12) and (2.13) hold for all j = k+ + 1, . . . ,M .

Remark 2.4. The assumption j ≤ (1− τ)K ensures that μj ≥ δ, for some constant δ > 0. When
c �= 1, it is guaranteed as we will see from Lemma 4.12 that μj ≥ (1−c−1/2)2/2. We need μj ≥ δ

for the technical purpose of the application of the local laws.

Next, we will give some examples to illustrate our results. We assume that c �= 1.

Example 2.5. (1) Consider the right singular vectors and let A = {i}, we have

∣∣〈vi, ṽi〉2 − a2(di)
∣∣≤ Nε1

[
1

N1/2(di − c−1/4)1/2
+ 1

Nν2
i (di − c−1/4)2

]
.

This implies that, the cone concentration of the singular vector holds if i ∈ O and the non-
overlapping condition (2.4) holds. Furthermore, if di is well-separated from both the critical
point c−1/4 and the other outliers, the error bound is of order 1√

N
.

(2) Let A = {i} and for 1 ≤ j �= i ≤ r , we have

∣∣〈vj , ṽi〉2
∣∣≤ Nε1

N(di − dj )2
.
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Hence, if |di − dj | = O(1), then ṽi will be completely delocalized in any direction orthogonal to
vi .

(3) If i ∈O, j /∈ O, then we have

∣∣〈vi, ũj 〉2
∣∣≤ NCε0

N((di − c−1/4)2 + κd
j )

.

Hence, when |di − c−1/4| = O(1) or κd
j = O(1), ũj will be completely delocalized in the direc-

tion of vi . The first case reads as μi is an outlier and the second case as that μj is in the bulk of
the spectrum of S̃S̃∗.

Before concluding this section, we use the following figure to illustrate the accuracy of the
proposed bounds in (2.7), (2.10) and (2.11). We consider the rank one perturbation S̃ = duv∗ +
X, where X is a Gaussian random matrix with mean zero and variance 1/N and u, v are sparse
vectors generated from the R package R1magic.

To avoid the influence of the constant, we consider the ratio between the empirical bound and
dominated part, that is, for d > c−1/4, we will consider

R1 = �1
∣∣μ1 − p(d)

∣∣, R2 = �2
∣∣〈u, ũ1〉2 − a1(d)

∣∣, R3 = �2
∣∣〈v, ṽ1〉2 − a2(d)

∣∣,
where �1 := √

N(d − c−1/4)−1/2 and �2 := √
N(d − c−1/4). We consider the cases c = 0.5

and c = 2, and choose d = 2. For each N , we record the averaged ratios for Ri, i = 1,2,3,
using 1000 repetitions and plot these ratios for a variety of choices (in total 181) of N between
200 and 2000. We can conclude from Figure 1 that these ratios are around some fixed constants
independent of N .

Figure 1. We can see from the above figure that R1, R2, R3 are independent of N . Further, the left and
right singular vectors have the same bounds.
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3. Statistical applications

3.1. Sparse estimation

In the present application, we study the denoising problem (1.2), where S is sparse in the sense
that the nonzero entries are assumed to be confined on a block. We assume that ui , vi are sparse
and introduce the following definition to precisely describe the sparsity.

Definition 3.1. For any vector ν ∈ R
N , ν is a sparse vector if there exists a subset N

∗ ⊂
{1,2, . . . ,N} with |N∗| = O(1), such that

∣∣ν(i)
∣∣=

{
O(1), i ∈ N

∗;
O
(
N−1/2), otherwise.

Next we will propose an estimator for S by estimating the singular values and vectors sepa-
rately. As can been see from Theorem 2.2, we can estimate the true outlier singular values from
their corresponding sample values. To ease our discussion, we impose the following stronger
assumptions on the outlier singular values of S.

Assumption 3.2. For i, j = 1,2, . . . , k+, we assume that there exists some constant δ > 0, such
that

di > c−1/4 + δ, |di − dj | ≥ δ, i �= j.

Note that the above assumption is a stronger version of (2.1) and widely used in the practical
applications [14,25–27]. We first estimate the number k+ of outlier singular values. In [26], k+
is referred as the effective number of identifiable signals and the author provided an information
theoretic estimator by minimizing the Akaike Information Criterion (AIC). Furthermore, some
other useful statistics have been proposed to effectively estimate the number of spikes in the
spiked covariance matrix model, for instance the differences between consecutive eigenvalues
in [27]. By Theorem 2.2, when i ≤ k+, we expect μi/μi+1 will be away from one and when
i > k+, it will be close to one. In the present paper, we will employ the ratios of consecutive
sample singular values [21] as our statistic. For τ := O(N−α) satisfying

0 < α <
2

3
, (3.1)

we denote (Recall K = min{M,N}.)

q = arg max
i

{1 ≤ i ≤ K : Ri > 1 + τ }, τ > 0,Ri = μi

μi+1
. (3.2)

We summarize the property of q as the following proposition and its proof can be found in the
supplementary material [8].
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Proposition 3.3. Under the assumptions of Theorem 2.2 and Assumption 3.2, for some τ =
O(N−α) satisfying (3.1), we have that

P
(
q = k+)= 1 − o(1).

In practice, for the choice of τ , we employ the automatic calibration procedure of [27], Sec-
tion 4. The idea is to use the ratio of the first two largest eigenvalues of a Wishart matrix, that
is, an M × N random Gaussian matrix satisfying Assumption 1.1. Indeed, we need to search the
eigenvalue index such that the ratio of two consecutive eigenvalues of S̃S̃∗ is much larger than
1+τ corresponding to that of XX∗. In detail, we will use the following procedure to calibrate τ .

(1) Generate a sequence (say 1000) of M × N random Gaussian matrices Zk , k =
1,2, . . . ,1000 satisfying Assumption 1.1. Calculate the ratios of the first and second
eigenvalue of ZkZ

∗
k and write them as R1,k , k = 1,2, . . . ,1000.

(2) For a given large probability β , (say β = 0.98 as suggested by [27]), find the value τ such
that

#{k : R1,k − 1 ≤ τ }
1000

= β.

For c = 2, we find that τ = 0.0577 for M = 300 and τ = 0.0372 for M = 500. These will be
used later for our simulation studies.

With the above notations, we provide the stepwise SVD Algorithm 1 to recover S in (1.2).
As ui , vi are sparse, we need to find a submatrix of S̃ by a suitable truncation. Instead of simply
truncating the singular values [14,37], we truncate the singular values and vectors simultaneously.

Algorithm 1 Stepwise SVD

1: Do SVD for S̃ =∑K
i=1 μiũi ṽ

∗
i , and do the initialization S̃1 = S̃ =∑

t1
i ũ1

i (ṽ
1
i )

∗.
2: while 1 ≤ j ≤ q do
3: d̂j = p−1((t

j

1 )2), where p−1(x) is the inverse of the function defined in (2.6).
4: Use two thresholds αuj

� 1√
M

, αvj
� 1√

N
, and denote

Ij := {
1 ≤ k ≤ M : ∣∣ũj

1(k)
∣∣≥ αuj

}
, Jj := {

1 ≤ k ≤ N : ∣∣ṽj

1 (k)
∣∣≥ αvj

}
. (3.3)

5: Do SVD for the block matrix S̃b = S̃j [Ij , Jj ] =∑
ρiu

j
i (v

j
i )∗.

6: Assume Ij = {k1, . . . , kj }, construct ûj by letting

μ̂j (kj ) =
{

μ
j

1(j), kj ∈ Ij ,

0, otherwise.

Similarly, we can construct v̂j .

7: Let S̃j+1 = S̃j − d̂j ûj v̂
∗
j and do SVD for S̃j+1 =∑

t
j+1
i ũ

j+1
i (ṽ

j+1
i )∗.

8: end while
9: Denote Ŝ =∑q

k=1 d̂kûkv̂
∗
k as our estimator.
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Algorithm 1 provides us a way to recover S stepwise. We first estimate d1, u1, v1 using the
estimation d̂1, û1, v̂1, then d2, u2, v2 by analyzing S̃ − d̂1û1v̂

∗
1 . In each step, we only need to

look at the largest singular value and its associated singular vectors. It is notable that, we drop
all the eigenvalues μi of S̃S̃∗ when i < q and

d̂i = 1(i ≥ q)p−1(μi). (3.4)

Our methodology relies on truncating singular values and vectors simultaneously. As illus-
trated in (3.3), the thresholds αu and αv play the key roles in recovering the sparse structure of
the singular vectors. It will be proved in Section 2 that any threshold satisfying (3.3) should work
when N is sufficiently large. In the finite sample framework (when N is not quite large), we em-
ploy the K-means algorithm [16], Section 10.3.1, to stabilize the recovery of the sparse structure
of S. The reason behind is, the entries in the singular vectors ũi , ṽi can be well classified into
two categories. Denote the index sets C

j
u , C

j
v getting from the K-means algorithm, where they

satisfy

min
k∈C

j
u

∣∣ũj

1(k)
∣∣� 1√

M
, min

k∈C
j
v

∣∣ṽj

1 (k)
∣∣� 1√

N
. (3.5)

We now replace (3.3) with the following step:

• Do K-means clustering to partition the entries of ũ
j

1, ṽ
j

1 into two classes, where

Ij := {
1 ≤ k ≤ M : k ∈ C

j
u

}
,

Jj := {
1 ≤ k ≤ N : k ∈ Cj

v

}
,

(3.6)

where C
j
u , C

j
v satisfy (3.5).

Next, we summarize the theoretical properties of Algorithm 1 as the following theorem and
leave its proof into the supplementary material [8].

Theorem 3.4. With prior information that ui , vi are sparse in the sense of Definition 3.1, under
the assumptions of Theorems 2.2 and 2.3, and Assumption 3.2, there exists some C > 0, with
1 − o(1) probability, for the estimator Ŝ getting from Algorithm 1, we have

‖Ŝ − S‖F ≤ N−1/2+Cε0 +
√√√√ r∑

i=k++1

d2
i .

Before concluding this subsection, we compare our method with other different algorithms.
In [37], the authors proposed another algorithm from a quite different perspective. They did not
take the properties of the singular values and vectors of S̃ into consideration. Instead, they used
iterative thresholding on the rows of S̃ to get an estimator. The algorithm is called sparse SVD.
Their algorithm can be regarded as the extension of TSVD on the submatrix of S̃.
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Table 1. Comparison of the algorithms. We choose r = 2, c = 2, d1 = 7, d2 = 4 in (1.5). The noise matrix
X is Gaussian. In the table, sparsity is defined as the ratio of non-zero entries and length of the vector and
we assume that ui , vi , i = 1,2 have the same sparsity. We highlight the smallest error norm

M = 300 M = 500

Sparsity L2 error norm Std Sparsity L2 error norm Std

SWSVD 0.05 0.043 0.175 0.05 0.045 0.189
0.1 0.614 0.178 0.1 0.6 0.16
0.2 0.822 0.126 0.2 0.825 0.137
0.45 1.1 0.114 0.45 1.09 0.09

SSVD 0.05 4.01 0.002 0.05 4.01 0.002
0.1 4.01 0.004 0.1 4.02 0.002
0.2 4.04 0.004 0.2 4.03 0.004
0.45 4.06 0.005 0.45 4.08 0.004

TSVD 0.05 53.9 6.872 0.05 53.75 6.63
0.1 53.72 6.63 0.1 53.38 6.71
0.2 52.33 7.01 0.2 52.2 6.65
0.45 51.043 2.49 0.45 52.4 4.3

We use Table 1 to compare the results of three algorithms, our stepwise SVD (SWSVD), the
sparse SVD (SSVD) proposed by [37] and the truncated SVD (TSVD). For the implementa-
tion of SSVD, we use the ssvd package in R which is contributed by the first author of [37].
From Table 1, we find that our method outperforms both the SSVD and TSVD in all the cases.
Furthermore, the standard deviation is small, which implies that our estimation is quite stable.

3.2. Rotation invariant estimation

This subsection is devoted to recovering S in (1.2) assuming that no prior information about
S is available. In this regime, we will consider the rotation invariant estimator (RIE) satisfying
(1.16). We conclude from [5] that any RIE shares the same singular vectors as S̃. To construct the
optimal estimator, we use the Frobenius norm as our loss function. Denote Ŝ = �(S̃), we have

‖S − Ŝ‖2
F = Tr(S − Ŝ)(S − Ŝ)∗. (3.7)

Therefore, the form of the RIE can be written in the following way

Ŝ = arg min
H∈M(Ũ ,Ṽ )

‖H − S‖F , (3.8)

where M(Ũ , Ṽ ) is the class of M × N matrices whose left singular vectors are Ũ and right
singular vectors are Ṽ . Suppose Ŝ = ∑K

i=1 ηkũkṽ
∗
k , denote μk1k = 〈uk1 , ũk〉, νk1k = 〈vk1 , ṽk〉,
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then by an elementary computation, we find

‖S − Ŝ‖2
F =

r∑
k=1

(
d2
k + η2

k

)− 2
r∑

k=1

dkηkμkkνkk +
K∑

k=r+1

η2
k

− 2
r∑

k1 �=k2

dk1ηk2μk1k2νk1k2 − 2
K∑

k1=r+1

r∑
k2=1

ηk1dk2μk2k1νk2k1 . (3.9)

Therefore, Ŝ is optimal if

ηk = 〈ũk, Sṽk〉 =
r∑

k1=1

dk1μk1kνk1k, k = 1, . . . ,K. (3.10)

In the present paper, we use the following estimator for ηk and will prove its consistency in
Section 2. Recall (3.2), the estimator is denoted as

η̂k =
{

d̂ka1(d̂k)a2(d̂k), k ≤ q;
0, k > q,

(3.11)

where d̂k = p−1(μk) and a1(x), a2(x) are defined in (2.9). Denote

Ŝ =
q∑

k=1

η̂kũkṽ
∗
k . (3.12)

It is notable that the convergent limits for the shrinkage η̂k and MSE for Ŝ have already been
computed in [25]. We next summarize the theoretical properties of our estimators as the following
theorem. Its proof can be found in the supplementary material [8].

Theorem 3.5. (1). Under the assumptions of Theorem 2.2 and 2.3, there exists some large
constant C > 0 and small constant τ > 0, with 1 − o(1) probability, we have η̂k → ηk ,
k = 1,2, . . . ,K . Furthermore, for 1 ≤ k ≤ (1 − τ)K , we have

|η̂k − ηk| ≤ 1
(
k ≤ k+)N−1/2+Cε0 + 1

(
k > k+)N−1+Cε0 . (3.13)

Moreover, when c �= 1, (3.13) holds for all k = 1, . . . ,K . (2). When c �= 1, there exists some
constant C > 0, with 1 − o(1) probability, for Ŝ defined in (3.12), we have

‖Ŝ − S‖2
F ≤

r∑
i=1

d2
i −

k+∑
i=1

(
dia1(di)a2(di)

)2 + N−1/2+Cε0 .

Figure 2 are two examples of the estimations of ηk . From the graph, we find that our estimator
η̂k is quite accurate. Figure 3 records the relative improvement in average loss (RIAL) compared
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Figure 2. RIE. We choose r = 1 and M = 300 for (1.5). We estimate η1 using the estimator (3.11) for
c = 0.5,2 with different values of d . The entries of X are Gaussian random variables and the singular
vectors satisfy the exponential distribution with rate 1.

to TSVD, where the RIAL is defined as

RIAL(N) = 1 − E‖Ŝ − S‖F

E‖ST − S‖F

, (3.14)

and where ST is the TSVD estimation and Ŝ the RIE. We conclude from the figure that our
method provides better estimation compared to the TSVD. Similar results have been shown for
the estimation of covariance matrices by Ledoit and Péché in [22].

Remark 3.6. In [14], Donoho and Gavish get similar results from the perspective of optimal
shrinkage. However, they need two more assumptions: (1). they drop the last two error terms in

Figure 3. RIE compared to TSVD. We choose r = 1, d = 4, c = 2 in (1.2). X is a random Gaussian matrix
and the entries of the singular vectors satisfy the exponential distribution with rate 1. We perform 1000
Monte-Carlo simulations for each M to simulate the RIAL defined in (3.14). The red line indicates the
increasing trend as M increases.
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(3.9) by assuming they are small enough (see Lemma 4 in their paper); (2). their estimators are
assumed to be conservative, where they assume the shrinker vanishes when the sample singular
values are below λ+ defined in (1.7), that is, for some constant γ > 0,

ηk = 0, when μk ≤ λ+ + γ.

However, we find that the estimator defined in (3.11) can still be consistent even without these
assumptions.

4. Basic tools

In this section, we introduce some notations and tools which will be used in this paper. Recall
that the empirical spectral distribution (ESD) of an n × n symmetric matrix H is defined as

F
(n)
H (λ) := 1

n

n∑
i=1

1{λi(H)≤λ}.

We define the typical domain for z = E + iη by

D(τ ) ≡ D(τ,N) := {
z ∈ C

+ : τ ≤ E ≤ τ−1,N−1+τ ≤ η ≤ τ−1}, (4.1)

where τ > 0 is a small constant. Recall (1.6), we assume that τ < cN < τ−1.

Definition 4.1. The Stieltjes transform of the ESD of X∗X is given by

m2(z) ≡ m
(N)
2 (z) :=

∫
1

x − z
dF

(N)
X∗X(x) = 1

N

N∑
i=1

(G2)ii(z) = 1

N
TrG2(z),

where G2(z) is defined in (1.8). Similarly, we can also define m1(z) := M−1TrG1(z).

Denote m1c(z) := limN→∞ m1(z), m2c(z) := limN→∞ m2(z) be the Stieltjes transforms of
limiting spectral distributions of m1(z), m2(z). Using the identity m1(z) = − 1−cN

z
+ cNm2(z),

we have

m1c(z) = c − 1

z
+ cm2c(z). (4.2)

Definition 4.2. For X satisfying (1.3), under the assumption (1.6), the ESD of XX∗ converges
weakly to the Marchenko–Pastur (MP) law as N → ∞ [24]:

ρ1c(x) dx = c

2π

√
(λ+ − x)(x − λ−)

x
dx, λ± = (

1 ± c− 1
2
)2

. (4.3)

The Stieltjes transform of the MP law m1c(z) has the closed form expression (see (1.2) of [33])

m1c(z) = 1 − c−1 − z + i
√

(λ+ − z)(z − λ−)

2zc−1
. (4.4)
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Remark 4.3. From (4.2), we have that m2(z) converges to m2c(z) as N → ∞, where

m2c(z) = c−1 − 1

z
+ c−1m1c(z) = c−1 − 1 − z + i

√
(λ+ − z)(z − λ−)

2z
. (4.5)

It is notable that

−z−1(1 + m2c(z)
)−1 = m1c(z). (4.6)

Recall (1.9) and G(z) = (H − z)−1, by Schur’s complement [19], it is easy to check that

G(z) =
(

G1(z) z−1/2G1(z)X

z−1/2X∗G1(z) G2(z)

)
, (4.7)

for G1,2 defined in (1.8). Denote the index sets I1 := {1, . . . ,M}, I2 := {M + 1, . . . ,M + N},
I := I1 ∪ I2. Then we have

m1(z) = 1

M

∑
i∈I1

Gii, m2(z) = 1

N

∑
μ∈I2

Gμμ.

Similarly, we denote G̃(z) = (H̃ − z)−1, where H̃ is defined in (1.9). Next we introduce the
spectral decomposition of G̃(z). By (4.7), we have

G̃(z) =
K∑

k=1

1

μk − z

(
ũũ∗

k z−1/2√μkũkṽ
∗
k

z−1/2√μkṽkũ
∗
k ṽkṽ

∗
k

)
. (4.8)

As we have seen in (2.6), the function p(d) plays a key role in describing the convergent limits
of the outlier singular values of S̃. An elementary computation yields that p(d) attains its global
minimum when d = c−1/4 and p(c−1/4) = λ+, and

p′(x) ∼ (
x − c−1/4). (4.9)

To precisely locate the outlier singular values of S̃, we need to analyze

T s(x) :=
s∏

i=1

(
xm1c(x)m2c(x) − d−2

i

)
. (4.10)

By (4.4) and (4.5), when x ≥ λ+, we have

xm1c(x)m2c(x) = x − (1 + c−1) −√
(x + c−1 − 1)2 − 4c−1x

2c−1
. (4.11)

Next we collect the preliminary results of the properties of T s(x), whose proof will be provided
in the supplementary material [8].
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Lemma 4.4. Suppose d1 > d2 > · · · > ds > c−1/4, then we have that there exist s solutions of
T s(x) = 0 and they are pi := p(di), i = 1,2, . . . , s, write

T s(pi) = 0. (4.12)

Furthermore, denote

T (x) := xm1c(x)m2c(x), (4.13)

T (x) is a strictly monotone decreasing function when x > λ+.

For z ∈ D(τ ) defined in (4.1), denote

κ := |E − λ+|. (4.14)

By (4.11), it is easy to check that

T (z) − c1/2 = z − λ+ − i
√

(λ+ − z)(z − λ−)

2c−1
. (4.15)

The following lemma summarizes the basic properties of m2c(z) and T (z), the estimates are
based on the elementary calculations of (4.11) and (4.15). Their proofs can be found in [3],
Lemma 3.3, and [4], Lemma 3.6.

Lemma 4.5. For any z ∈ D(τ ) defined in (4.1), we have∣∣T (z)
∣∣∼ ∣∣m2c(z)

∣∣∼ 1,
∣∣c1/2 − T (z)

∣∣∼ ∣∣1 − m2
2c(z)

∣∣∼ √
κ + η,

and

ImT (z) ∼ Imm2c(z) ∼
⎧⎨
⎩

√
κ + η, if E ∈ [λ−, λ+],
η√

κ + η
, if E /∈ [λ−, λ+],

as well as

∣∣ReT (z) − c1/2
∣∣∼

⎧⎨
⎩

η√
κ + η

+ κ, E ∈ [λ−, λ+],
√

κ + η, E /∈ [λ−, λ+].
(4.16)

The next lemma provides the local estimate on the derivative of T (x) on the real axis. We put
its proof in the supplementary material [8].

Lemma 4.6. For d > c−1/4, denote Id := [x−(d), x+(d)], x±(d) := p(d) ± N−1/2+ε0(d −
c−1/4)1/2, where ε0 is defined in (2.1). Then ∀x ∈ Id , we have that

T ′(x) ∼ (
d − c−1/4)−1

. (4.17)
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The following perturbation identity plays the key role in our proof, as it naturally provides us
a way to incorporate the Green functions using a deterministic equation. Its proof can be found
in [17], Lemma 6.1.

Lemma 4.7. Recall (1.9), assume μ ∈ R/σ (H) and det D �= 0, then μ ∈ σ (H̃ ) if and only if

det
(
U∗G(μ)U + D−1)= 0. (4.18)

The following lemma establishes the connection between the Green functions of H and H̃

defined in (1.9), which is proved in the supplementary material [8].

Lemma 4.8. For z ∈ C
+, we have

G̃(z) = G(z) − G(z)U
(
D−1 + U∗G(z)U

)−1U∗G(z), (4.19)

and

U∗G̃(z)U = D−1 − D−1(D−1 + U∗G(z)U
)−1D−1. (4.20)

One of the key ingredients of our computation are the local laws. We firstly introduce the
anisotropic local law, which can be found in [19], Theorem 3.6. Denote

�(z) :=
√

Imm2c(z)

Nη
+ 1

Nη
, � :=

(
z−1/2 0

0 I

)
, (4.21)

and m(z) ≡ mN(z) as the unique solution of the equation

f
(
m(z)

)= z, Imm(z) ≥ 0, f (x) = − 1

x
+ 1

cN

1

x + 1
.

Recall (4.7), the following lemma shows that G(z) converges to a deterministic matrix �(z) with
high probability.

Lemma 4.9. Fix τ > ε1, then for all z ∈ D(τ ), with 1 − N−D1 probability, for any unit deter-
ministic vectors u,v ∈R

M+N , we have

∣∣〈u,�−1(G(z) − �(z)
)
�−1v

〉∣∣≤ Nε1�(z),
∣∣m2(z) − m(z)

∣∣≤ Nε1

Nη
, (4.22)

where �(z) is defined as

�(z) :=
(−z−1(1 + m(z)

)−1 0
0 m(z)

)
. (4.23)

It is notable that in general, m(z) depends on N and Lemma 4.5 also holds for m(z). However,
in our computation, we can replace m(z) with m2c(z) due to the following local MP law, which
is proved in [29], Theorem 3.1.
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Lemma 4.10. Fix τ > ε1, then for all z ∈ D(τ ), with 1 − N−D1 probability, we have∣∣m2(z) − m2c(z)
∣∣≤ Nε1�(z).

Beyond the support of the limiting spectrum of the MP law, we have stronger results all the
way down to the real axis. More precisely, define the region

D̃(τ, ε1) := {
z ∈C

+ : λ+ + N−2/3+ε1 ≤ E ≤ τ−1,0 < η ≤ τ−1}, (4.24)

then we have the following stronger control on D̃(τ, ε1). The proof can be found in [3], Theorem
3.12, and [19], Theorem 3.7.

Lemma 4.11. For z ∈ D̃(τ, ε1), with 1 − N−D1 probability, we have∣∣〈u,G2(z)v
〉− m2c(z)〈u,v〉∣∣≤ N−1/2+ε1(κ + η)−1/4,

for all unit vectors u,v ∈ R
N . Similar result holds for G1(z), m1c(z). Furthermore, for any de-

terministic vectors u,v ∈ R
M+N , we have∣∣〈u,�−1(G(z) − �(z)

)
�−1v

〉∣∣≤ N−1/2+ε1(κ + η)−1/4. (4.25)

Denote the non-trivial classical eigenvalue locations γ1 ≥ γ2 ≥ · · · ≥ γK of XX∗ as
∫∞
γi

dρ1c =
i
N

, where ρ1c is defined in (4.3). The consequent result of Lemma 4.9 is the rigidity of eigenval-
ues, which can be found in [4], Theorem 3.5.

Lemma 4.12. Fix any small τ ∈ (0,1), for 1 ≤ i ≤ (1 − τ)K , with 1 − N−D1 probability, we
have

|λi − γi | ≤ N−2/3+ε1
(
i ∧ (K + 1 − i)

)−1/3
.

Furthermore, if c �= 1, the above estimate holds for all i = 1,2, . . . ,K .

Using Lemma 4.12, we find that κd
j defined in (2.12) is a deterministic version of κμj

=
|μj − λ+|.

5. Proofs of Theorem 2.2 and 2.3

5.1. Singular values

In this subsection, we focus on the singular values of S̃ and prove Theorem 2.2. We will follow
the basic idea of [17] and slightly modify the proof. A key deviation from their proof is that our
matrix D defined in (1.10) is not diagonal, it appears that in order to analyze (4.18), they only
need to deal with the diagonal elements but we need to control the whole matrix. We will make
use of the following interlacing theorem for rectangular matrices, the proof can be found in [34],
Exercise 1.3.22.



406 X. Ding

Lemma 5.1. For any M × N matrices A, B , denote σi(A) as the i-th largest singular value of
A, then we have

σi+j−1(A + B) ≤ σi(A) + σj (B), 1 ≤ i, j, i + j − 1 ≤ K.

The proof relies on two main steps: (i) fix a configuration independent of N , establish two
permissible regions, �(d) of k+ components and I0, where the outliers of S̃S̃∗ are allowed to lie
in �(d) and each component contains precisely one eigenvalue and the r − k+ non-outliers lie in
I0; (ii) a continuity argument where the result of (i) can be extended to arbitrary N -dependent D.

The following 2r × 2r matrix plays the key role in our analysis

Mr(x) := U∗G(x)U + D−1. (5.1)

By Lemma 4.7, x ∈ σ (S̃S̃∗) if and only if detMr(z) = 0. Using Lemma 4.10 and 4.11, we find
that x−rT r (x) ≈ detMr(x), where T r(x) is defined in (4.10). As T r(x) behaves differently in
�(d) and I0, we will use different strategies to prove (2.7) and (2.8).

We remark that, our discussion is slightly easier than [17], Section 6, in particular the counting
argument of the non-outliers. The reason is, for the application purpose, we only need the result
of (2.8) to locate the eigenvalues around λ+. However, in [17], they have stronger results to stick
the eigenvalues of S̃S̃∗ around those of XX∗. We will not pursue this generalization in this paper.

Proof of Theorem 2.2. Denote k0 := r − k+ and write

d = (d1, . . . , dr ) = (
d0,d+), dσ = (

dσ
1 , . . . , dσ

kσ

)
, σ = 0,+,

where we adapt the convention

d0
k0 ≤ · · · ≤ d0

1 ≤ c1/4 < d+
k+ ≤ · · · ≤ d+

1 , k0 + k+ = r.

Next, we define the sets

D+(ε0) := {
d+ : c−1/4 + N−1/3+ε0 ≤ d+

i ≤ τ−1, i = 1, . . . , k+}, (5.2)

D0(ε0) := {
d0 : 0 < d0

i < c−1/4 + N−1/3+ε0 , i = 1, . . . , k0
}
, (5.3)

and the sets of allowed d′s, which is D(ε0) := {(d0,d+) : dσ ∈ Dσ (ε0), σ = +,0}. Denote the
following sequence of intervals

I+
i (d) := [

p
(
d+
i

)− N−1/2+ε3
(
d+
i − c−1/4)1/2

,p
(
d+
i

)+ N−1/2+ε3
(
d+
i − c−1/4)1/2]

, (5.4)

where ε3 satisfies the following condition

Cε1 < ε3 <
1

4
ε0, C > 2 is some large constant. (5.5)

For d ∈D(ε0), we denote �(d) :=⋃k+
i=1 I+

i (d) and I 0 := [λ+ −N−2/3+C′ε0, λ+ +N−2/3+C′ε0 ],
where C′ satisfies 2 < C′ < 4.



High dimensional matrix denoising 407

For a first step, we show that �(d) is our permissible region which keeps track of the outlier
eigenvalues of S̃S̃∗. And the rest of the eigenvalues corresponding to D0(ε0) will lie in I 0. We
fix a configuration d(0) ≡ d that is independent of N in this step.

Lemma 5.2. For any d ∈ D(ε0), with 1 − N−D1 probability, we have

σ+(S̃S̃∗)⊂ �(d), (5.6)

where σ+(S̃S̃∗) is the set of the outlier eigenvalues of S̃S̃∗ associated with D+(ε0). Moreover,
each interval I+

i (d) contains precisely one eigenvalue of S̃S̃∗, i = 1,2, . . . , k+. Furthermore, we
have

σo
(
S̃S̃∗)⊂ I 0, (5.7)

where σo(S̃S̃∗) is the set of the non-outlier eigenvalues corresponding to D0(ε0).

Proof. First of all, it is easy to check that �(d)∩ I 0 =∅ using (4.9) and the fact C′ > 2. Denote
Sb := p(d+

k+) − N−1/2+ε3(d+
k+ − c−1/4)1/2. In order to prove (5.6), we first consider the case

when x > Sb . It is notable that x /∈ σ (XX∗) by Lemma 4.12, (4.9) and (5.5). Recall (4.23) and
(5.1), using the fact r is bounded and Lemma 4.11, with 1 − N−D1 probability, we have

Mr(x) = U∗�(x)U + D−1 + O
(
N−1/2+ε1κ−1/4). (5.8)

It is well known that if λ ∈ σ (A + B) then dist(λ,σ (A)) ≤ ‖B‖; therefore, we have that
μi(S̃S̃∗) ≤ τ−1, i = 1, . . . ,K for τ > 0 defined in (4.1). Recall (4.10), by (4.9), (4.17) and (5.5),
with 1 − N−D1 probability, we have∣∣T r(x)

∣∣≥ N−1/2+(C−1)ε1κ−1/4, if x ∈ [Sb, τ
−1]/�(d). (5.9)

Using the formula

det

[
xIr diag(α1, . . . , αr)

diag(α1, . . . , αr ) yIr

]
=

r∏
i=1

(
xy − α2

i

)
,

Lemma 4.10, (4.6) and (5.8), we conclude that

det
(
D−1 + U∗�(x)U

)= x−rT r (x) + O
(
N−1/2+ε1κ−1/4). (5.10)

By (5.9) and (5.10), we conclude that Mr(x) is non-singular when x ∈ [Sb, τ
−1]/�(d).

Next, we will use Roché’s theorem to show that inside the permissible region, each inter-
val I+

i (d) contains precisely one eigenvalue of S̃S̃∗. Let i ∈ {1, . . . , k+} and pick a small N -
independent counterclockwise (positive-oriented) contour C ⊂ C/[(1 − c−1/2)2, (1 + c−1/2)2]
that encloses p(d+

i ) but no other p(d+
j ), j �= i. For large enough N , define f (z) := det(Mr(z)),

g(z) := det(T r(z)). By the definition of determinant, the functions g, f are holomorphic on and
inside C. And g(z) has precisely one zero z = p(d+

i ) inside C. On C, it is easy to check that

min
z∈C

∣∣g(z)
∣∣≥ c > 0,

∣∣g(z) − f (z)
∣∣≤ N−1/2+ε1κ−1/4,
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where we use (5.8) and Lemma 4.10. Hence, f (z) has only one zero in I+
i (d) according to

Rouché’s theorem. This concludes the proof of (5.6) using Lemma 4.7. In order to prove (5.7),
using the following fact: for any two M × N rectangular matrices A, B , we have σi(A + B) ≥
σi(A) + σK(B), i = 1, . . . ,K , and Lemma 4.12, we find that

μi ≥ λ+ − N−2/3+C′ε0 , i = k+ + 1, . . . , r. (5.11)

For the non-outliers, we assume that Sb > λ+ + N−2/3+C′ε0 , otherwise the proof is already
done. Now we assume x /∈ I0, by (5.6) and (5.11), we only need to discuss the case when
x ∈ (λ+ + N−2/3+C′ε0, Sb). In this case, we will prove that Mr(x) is non-singular by comparing
with Mr(z), where z = x + iN−2/3−ε4 and ε4 < ε1 is some small positive constant. Denote the
spectral decomposition of G(z) as

G(z) =
∑

k

1

λk − z
gαg∗

α, gα ∈R
M+N.

Denote ui , i = 1, . . . ,2r as the i-th column in U defined in (1.10) and abbreviate u∗
i G(z)uj as

Guiuj
(z), and η := N−2/3−ε4 , using spectral decomposition and the fact x > λ+ + N−2/3+C′ε0 ,

we have

∣∣Guiuj
(x) − Guiuj

(x + iη)
∣∣≤ ImGuiui

(x + iη) + ImGuj uj
(x + iη).

Therefore, by Lemma 4.10 and 4.11, with 1 − N−D1 probability, we have

Mr(x) = Mr(z) + O

(
Nε1

(
Imm2c(z) +

√
Imm2c(z)

Nη

))
.

Using Lemma 4.5 and a similar discussion to (5.9), we have

Mr(x) = T r(z) + O
(
N−1/3(N−C′ε0/4 + Nε1−C′ε0/4)).

By Lemmas 4.5 and 4.10, we find that |T r(z)| ≥ N−1/3+ C′ε0
2 , where we use the assumption that

x > λ+ + N−2/3+C′ε0 . Therefore, Mr(x) is non-singular as we have assumed 2 < C′ < 4. This
concludes the proof of (5.7). �

In the second step, we will extend the proof to any configuration d(1) depending on N using
the continuity argument. This is done by a bootstrap argument by choosing a continuous path
connecting d(0) and d(1). It is recorded as the following lemma and its proof will be provided
in the supplementary material [8].

Lemma 5.3. For any N -dependent configuration d(1) ∈D(ε0), (2.7) and (2.8) hold true.
�
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5.2. Singular vectors

In this section, we focus on the local behavior of singular vectors. We will follow the discussion
of [4], Section 5 and 6. We first deal with the outlier singular vectors and then the non-outlier
ones. Due to similarity, we only prove (2.11) and (2.13), (2.10) and (2.12) can be handled simi-
larly.

Proof of (2.11). It is notable that, by Lemma 4.11 and Theorem 2.2, for i ∈ O, there exists a
constant C > 0, for N large enough, with 1 − N−D1 probability, we can choose an event � such
that for all z ∈ D̃(τ, ε1) defined in (4.24)

1(�)
∣∣(V ∗G2(z)V

)
ij

− m2c(z)δij

∣∣≤ (κ + η)−1/4N−1/2+Cε1 . (5.12)

Next, we will restrict our discussion on the event �. Recall (2.5) and for A ⊂ O, we define for
each i ∈ A the radius

ρi := νi ∧ (di − c−1/4)

2
. (5.13)

Under the assumption of (2.4), we have (see the equation (5.10) of [4])

ρi ≥ 1

2

(
di − c−1/4)−1/2

N−1/2+ε0 . (5.14)

We define the contour � := ∂ϒ as the boundary of the union of discs ϒ :=⋃
i∈A Bρi

(di), where
Bρ(d) is the open disc of radius ρ around d . We summarize the basic properties of ϒ as the
following lemma, its proof can be found in [4], Lemmas 5.4 and 5.5.

Lemma 5.4. Recall (2.6) and (4.24), we have p(ϒ) ⊂ D̃(τ, ε1). Moreover, each outlier {μi}i∈A

lies in p(ϒ), and all the other eigenvalues of S̃S̃∗ lie in the complement of p(ϒ).

Armed with the above results, we now start the proof of the outlier singular vectors. Our
starting point is an integral representation of the singular vectors. By (4.7), we have

v∗
i G̃2vj = v∗

i G̃vj , (5.15)

where vi ∈ R
M+N is the natural embedding of vi with vi = (0, vi)

∗. Recall (2.3), using the
spectral decomposition of G̃2(z), Lemma 5.4 and Cauchy’s integral formula, we have

Pr = − 1

2πi

∫
p(�)

G̃2(z) dz = − 1

2πi

∫
�

G̃2
(
p(ζ )

)
p′(ζ ) dζ. (5.16)

By Lemma 4.8, Cauchy’s integral formula, (5.15) and (5.16), we have

〈vi,Prvj 〉 = 1

2didjπi

∫
p(�)

(
D−1 + U∗G(z)U

)−1
ij

dz

z
, (5.17)
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where ī, j̄ are defined as ī := r + i, j̄ := r + j . Recall (4.23), as D−1 + U∗�(z)U is of finite
dimension, by Lemma 4.10, 4.11, (4.6) and (5.12), we can now use �(z) as

�(z) :=
(

m1c(z) 0
0 m2c(z)

)
.

Next, we decompose D−1 + U∗G(z)U by

D−1 + U∗G(z)U = D−1 + U∗�(z)U − �(z), �(z) = U∗�(z)U − U∗G(z)U. (5.18)

It is notable that �(z) can be controlled by Lemmas 4.10 and 4.11. Using the resolvent expansion
to the order of one on (5.18), we have

〈vi,Prvj 〉 = 1

didj

(
S(0) + S(1) + S(2)

)
, (5.19)

where

S(0) := 1

2πi

∫
p(�)

(
1

D−1 + U∗�(z)U

)
ij

dz

z
,

S(1) = 1

2πi

∫
p(�)

[
1

D−1 + U∗�(z)U
�(z)

1

D−1 + U∗�(z)U

]
ij

dz

z
,

S(2) = 1

2πi

∫
p(�)

[
1

D−1 + U∗�(z)U
�(z)

1

D−1 + U∗�(z)U
�(z)

1

D−1 + U∗G(z)U

]
ij

dz

z
.

By an elementary computation, we have

(
D−1 + U∗�(z)U

)−1
ij

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δij

zm2c(z)

zm1c(z)m2c(z) − d−2
i

, 1 ≤ i, j ≤ r;

δij

zm1c(z)

zm1c(z)m2c(z) − d−2
i

, r ≤ i, j ≤ 2r;

δīj (−1)i+j z1/2d−1
i

zm1c(z)m2c(z) − d−2
i

, 1 ≤ i ≤ r, r ≤ j ≤ 2r;

δij̄ (−1)i+j
z1/2d−1

j

zm1c(z)m2c(z) − d−2
j

, r ≤ i ≤ 2r,1 ≤ j ≤ r.

(5.20)

Using the fact pim1c(pi)m2c(pi) = 1
d2
i

and the residual theorem, we have

S(0) = δij

m2c(pi)

T ′(pi)
= δij

d4
i − c−1

d2
i + 1

. (5.21)



High dimensional matrix denoising 411

Next, we control the term S(1). Applying (5.20) on S(1), we have

S(1) = 1

2πi

∫
p(�)

f (z)

(zm1c(z)m2c(z) − d−2
i )(zm1c(z)m2c(z) − d−2

j )
dz, (5.22)

where f (z) = f1(z) + f2(z) and f1,2(z) are defined as

f1(z) := m2c(z)
[
zm2c(z)�(z)ij + (−1)i+ī z1/2d−1

i �(z)īj
]
,

f2(z) := d−1
j

[
(−1)j+j̄ z1/2m2c(z)�(z)ij̄ + (−1)i+j+ī+j̄ d−1

i �(z)īj̄
]
.

We now use the change of variable as in (5.16) and rewrite S(1) as

S(1) = 1

2πi

∫
�

f (p(ζ ))

(ζ−2 − d−2
i )(ζ−2 − d−2

j )
p′(ζ ) dζ

= d2
i d2

j

1

2πi

∫
�

f (p(ζ ))ζ 4

(d2
i − ζ 2)(d2

j − ζ 2)
p′(ζ ) dζ,

where we use the fact p(ζ )m1c(p(ζ ))m2c(p(ζ )) = ζ−2. By (4.9), Lemma 4.5 and 4.11, we
conclude that ∣∣f (p(ζ )

)
p′(ζ )ζ 4

∣∣≤ (
ζ − c−1/4)1/2

N−1/2+ε1 . (5.23)

Denote

fij (ζ ) = f (p(ζ ))p′(ζ )ζ 4

(di + ζ )(dj + ζ )
.

As fij is holomorphic inside the contour �, by Cauchy’s differentiation formula, we have

f ′
ij (ζ ) = 1

2πi

∫
C

fij (ξ)

(ξ − ζ )2
dξ, (5.24)

where the contour C is the circle of radius |ζ−c−1/4|
2 centered at ζ . Hence, by (4.9), (5.23), (5.24)

and the residual theorem, we have

∣∣f ′
ij (ζ )

∣∣≤ (
ζ − c−1/4)−1/2

N−1/2+ε1 . (5.25)

In order to estimate S(1), we consider the following three cases (i) i, j ∈ A, (ii) i ∈ A,j /∈ A (or
i /∈ A, j ∈ A), (iii) i, j /∈ A. By the residual theorem, S(1) = 0 when case (iii) happens. Hence, we
only need to consider the cases (i) and (ii). For the case (i), when i �= j , by the residual theorem
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and (5.25), we have

∣∣S(1)
∣∣ = d2

i d2
j

∣∣∣∣fij (di) − fij (dj )

di − dj

∣∣∣∣≤ d2
i d2

j

|di − dj |
∣∣∣∣
∫ dj

di

∣∣f ′
ij (t)

∣∣dt

∣∣∣∣
≤ d2

i d2
j N−1/2+ε1

(di − c−1/4)1/2 + (dj − c−1/4)1/2
.

When i = j , by the residual theorem, we have |S(1)| ≤ d4
i (di −c−1/4)−1/2N−1/2+ε1 . For the case

(ii), when i ∈ A,j /∈ A, by the residual theorem and (5.12), we have

∣∣S(1)
∣∣= ∣∣∣∣d

2
i d2

j fij (di)

di − dj

∣∣∣∣≤ d2
i d2

j (di − c−1/4)1/2

|di − dj | N−1/2+ε1 .

We can get similar results when i /∈ A,j ∈ A. Putting all the cases together, we find that

∣∣S(1)
∣∣ ≤ N−1/2+ε1

[ 1(i ∈ A,j ∈ A)d2
i d2

j

(di − c−1/4)1/2 + (dj − c−1/4)1/2

+ 1(i ∈ A,j /∈ A)
d2
i d2

j (di − c−1/4)1/2

|di − dj |

+ 1(i /∈ A,j ∈ A)
d2
i d2

j (dj − c−1/4)1/2

|di − dj |
]
. (5.26)

Finally, we need to estimate S(2). Here the residual calculations can not be applied directly
as U∗G(z)U is not necessary to be diagonal and a relation comparable to p(ζ )m1c(p(ζ )) ×
m2c(p(ζ )) = ζ−2 does not exist. Instead, we need to precisely choose the contour �. We record
the result as the following lemma, whose proofs will be given in the supplementary material [8].

Lemma 5.5. When N is large enough, with 1 − N−D1 probability, for some constant C > 0, we
have ∣∣S(2)

∣∣≤ CN−1+2ε1

(
1

νi

+ 1(i ∈ A)

|di − c−1/4|
)(

1

νj

+ 1(j ∈ A)

|dj − c−1/4|
)

. (5.27)

Therefore, plugging (5.21), (5.26) and (5.27) into (5.19), we conclude the proof of (2.11).
Before concluding this subsection, we briefly discuss the proof of (2.10). By Lemma 4.8 and
Cauchy’s integral formula, we have

〈ui,Pluj 〉 = 1

2didjπi

∫
p(�)

(
D−1 + U∗G(z)U

)−1
ī j̄

dz

z
.

Then we can use a similar discussion as (5.19), computing the convergent limit from S(0) and
controlling the bounds for S(1) and S(2). We remark that the convergent limit is different because
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we use (D−1 + U∗�(z)U)ij , r ≤ i, j ≤ 2r in (5.20), which results in

S(0) = δij

m1c(pi)

T ′(pi)
= δij

d4
i − c−1

d2
i + c−1

.

This concludes the proof of (2.10). �

For the non-outliers, the proof strategy for the outlier singular vectors will not work as we
cannot use the residual theorem. We will use a spectral decomposition for our proof.

Proof of (2.13). Denote

z = μj + iη, (5.28)

where η is defined as the smallest solution of

Imm2c(z) = N−1+6ε1η−1. (5.29)

As we assume j ≤ (1−τ)K or c �= 1, we conclude that |z| has a constant lower bound. Therefore,
by Lemma 4.9, 4.10 and 4.11, with 1 − N−D1 probability, we have

∣∣〈u,�−1(G(z) − �(z)
)
�−1v

〉∣∣≤ N4ε1

Nη
. (5.30)

Recall (4.14), abbreviating κ = |μj − λ+|, by Lemma 4.5 and (2.8), we find that (see [4], (6.5)
and (6.6))

η ∼
⎧⎨
⎩

N6ε1

N
√

κ + N2/3+2ε1
, if μj ≤ λ+ + N−2/3+4ε1 ,

N−1/2+3ε1κ1/4, if μj ≥ λ+ + N−2/3+4ε1 .

(5.31)

For z defined in (5.28), by the spectral decomposition, we have

〈vi, ṽj 〉2 ≤ η
〈
vi, Im G̃2(z)vi

〉= η
〈
vi , Im G̃(z)vi

〉
, (5.32)

where vi ∈ R
M+N is the natural embedding of vi . By Lemma 4.8, we have

〈
vi , G̃(z)vi

〉= − 1

zd2
i

(
D−1 + U∗G(z)U

)−1
ii

.

Similar to (5.19), using a simple resolvent expansion and (5.20), we have〈
vi , G̃(z)vi

〉
= − 1

zd2
i

[
zm2c(z)

zm1c(z)m2c(z) − d−2
i

+ zf (z)

(zm1c(z)m2c(z) − d−2
i )2

+ ([(
D−1 + U∗�(z)U

)−1
�(z)

]2(D−1 + U∗G(z)U
)−1)

ii

]
, (5.33)
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where f (z) is defined in (5.22). To estimate the right-hand side of (5.33), we use the following
error estimate

min
j

∣∣d−2
j − T (z)

∣∣≥ ImT (z) ∼ Imm2c(z) = N6ε1

Nη
� N4ε1

Nη
≥ ∣∣�(z)

∣∣,
where we use (5.30) and Lemma 4.10. By a similar resolvent expansion, there exists some con-
stant C > 0, such that ∥∥∥∥ 1

D−1 + U∗G(z)U

∥∥∥∥≤ C

Imm2c(z)
= CN1−6ε1η.

We therefore get from (5.33), the definition of f and (5.30) that

〈
vi , G̃(z)vi

〉= m2c(z)

1 − d2
i T (z)

+ O

(
d2
i

|1 − d2
i T (z)|2

N4ε1

Nη

)
. (5.34)

By (5.32), we have

〈vi, ṽj 〉2 ≤ η

|1 − d2
i T (z)|2

[
Imm2c(z)

(
1 − d2

i c1/2 + Re
(
d2
i c1/2 − d2

i T (z)
))

+ d2
i Rem2c(z) ImT (z) + Cd2

i N4ε1

Nη

]
. (5.35)

By (4.16), (5.29) and (5.31), we have

Imm2c(z)
[(

1 − d2
i c1/2)+ Re

(
d2
i c1/2 − d2

i T (z)
)]

≤ CN6ε1

Nη

(∣∣di − c−1/4
∣∣+ max

{√
κ + η,

η√
κ + η

+ κ

})
.

For the other item, by Lemma 4.5, we have |Rem2c(z) ImT (z)| ∼ Imm2c(z). Putting all these
estimates together, we have

〈vi, ṽj 〉2 ≤ CN6ε1

N |1 − d2
i T (z)|2 .

The rest of the proof leaves to give an estimate of 1 − d2
i T (z). We summarize it as the following

lemma and put its proof in the supplementary material [8].

Lemma 5.6. Recall (4.3), for all μj ∈ [λ−, λ+ +N−2/3+Cε0 ], there exists a constant δ > 0, such
that ∣∣1 − d2

i T (z)
∣∣≥ δd2

i

(∣∣d−2
i − c1/2

∣∣+ ImT (z)
)
.
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Therefore, we have

〈vi, ṽj 〉2 ≤ NCε0

N((di − c−1/4)2 + κd
j )

, κd
j := N−2/3(j ∧ (K + 1 − j)

)2/3
,

where we use the fact that ImT (z) ≥ c
√

κd
j (see the equation (6.14) of [4]). This concludes the

proof of (2.13). For the proof of (2.12), we will use the spectral decomposition

〈ui, ũj 〉2 ≤ η
〈
ui, Im G̃1(z)ui

〉= η
〈
ui , Im G̃(z)ui

〉
,

and 〈
ui , G̃(z)ui

〉= − 1

zd2
i

(
D−1 + U∗G(z)U

)−1
ī ī

.

Then by the resolvent expansion similar to (5.33) and control the items using Lemmas 4.5, 4.9,
4.10 and 4.11, we can conclude the proof. �
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