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We study the asymptotic behavior of the clique number in rank-1 inhomogeneous random graphs, where
edge probabilities between vertices are roughly proportional to the product of their vertex weights. We
show that the clique number is concentrated on at most two consecutive integers, for which we provide an
expression. Interestingly, the order of the clique number is primarily determined by the overall edge density,
with the inhomogeneity only affecting multiplicative constants or adding at most a log log(n) multiplicative
factor. For sparse enough graphs the clique number is always bounded and the effect of inhomogeneity
completely vanishes.
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1. Introduction

The clique number of a graph G is the size of the largest clique (i.e., the largest complete sub-
graph) in G. In an Erdős–Rényi random graph, edges between vertices are present with the same
probability independently of one another. This is sometimes also called the homogeneous setting
because all edges have the same probability of being included. In this setting, it is well known
that the clique number is highly concentrated when the graph has a large number of vertices,
meaning that with high probability the clique number takes values in a small interval [17,20,21].
In fact, Matula [20] shows that the clique number converges to one of two consecutive integers,
and provides an explicit formula for the asymptotic clique size.

In this work, we are interested in understanding the behavior of the clique number in inho-
mogeneous random graphs, where edges have different occupation probabilities. In such random
graphs, the properties of different vertices (e.g. their expected degree) can be radically different
and can take a wide range of values. This is in contrast, for instance, with Erdős–Rényi random
graphs, where degrees can only take values in a relative narrow range.

Our work is in part motivated by the statistical problem of community detection. Formally,
this amounts to testing whether a given graph was obtained by “planting” a clique, or dense
subgraph, inside a random graph. Arias-Castro and Verzelen [2,27] have recently considered this
problem with an Erdős–Rényi random graph as the underlying model. To extend these results to
the inhomogeneous setting, one needs a better understanding of cliques in the corresponding null
model; thus, studying the clique number in inhomogeneous random graphs is a natural starting
point.
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Related work

Inhomogeneous random graphs have received much attention over the past decade because they
more accurately model the network structure observed in many real-world networks. The litera-
ture on this subject can be divided into sparse and dense graphs.

In the sparse setting, the edge probabilities decrease with the graph size such that the resulting
graph has bounded average degree. This setting was first studied in substantial detail by Bollobás,
Janson, and Riordan [5] in which the critical value for the existence of the giant component
was established, as well as several related fundamental properties of such graphs were derived.
This has sparked great interest in this model, see also [25,26] and the references therein for an
overview of recent results.

The dense setting (when the average degree is unbounded) leads to the theory of graphons
developed by Lovász and Szegedy [19]. Recently, first order results for the clique number were
also obtained for this case by Doležal, Hladký, and Máthé [13], and further studied by McKinley
[22].

Inhomogeneous random graphs with an intermediate density have received less attention, al-
though recently results about connectivity have been obtained by Devroye and Fraiman [12], and
the diameter was considered by Fraiman and Mitsche [15].

A special class of the inhomogeneous random graphs above are the so-called rank-1 random
graphs. Here each vertex receives a weight and, conditionally on these weights, edges are present
independently with probability equal to the product of their vertex weights. Many well-known
random graphs fit this model, such as the Erdős–Rényi random graph by giving each vertex the
same weight or scale-free graphs such as the Chung-Lu, Norros-Reitu, and Generalized random
graphs by taking the weights from a power-law [6–9,23].

Our contribution

In this paper, we show that the clique number of rank-1 inhomogeneous random graphs is con-
centrated on at most two consecutive integers, provided that all vertex weights are bounded away
from 1. We provide a single expression for the order of the clique number that is valid for every
edge density, bringing together results of both the sparse and dense regimes.

To derive our results, we essentially make use of the same methodology as Matula [20], namely
using the first and second moment methods to obtain, respectively, upper and lower bounds
for the clique number. The main contribution here lies in the definition of what we call the
typical clique number ωn, which is the point where the clique number concentrates around. This
quantity is defined implicitly, and we show that this is indeed a sound definition. Furthermore,
the inhomogeneity of these graphs substantially complicates the derivation of the lower bounds,
which now requires significantly more effort than for Erdős–Rényi random graphs.

We find quite different asymptotic behaviors of the clique number depending on the edge den-
sity of the graph, although our results are more interesting when the average degree diverges. In
sparse graphs, the clique number is always bounded regardless of the “amount of inhomogene-
ity”, and the only parameter that affects the asymptotic clique number is the edge density. In
dense graphs, the clique number behaves similarly as in an Erdős–Rényi random graph. Specif-
ically, the clique number is always of order log(n), with the inhomogeneity only affecting the
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constants. Interestingly, graphs with intermediate edge density can be rather different, with the
inhomogeneity sometimes adding a log log(n) multiplicative factor to the clique number.

2. Main results

In this paper, we consider a random graph model denoted by G(n;W,λn). This model has three
parameters: the number of vertices n, the weight distribution W , and the scaling λn. An element
of G(n;W,λn) is a simple graph G = (V ,E) that has n ∈ N vertices with vertex set V = [n] :=
{1, . . . , n}, and a random edge set E. Each vertex i ∈ [n] is assigned a weight, which is an
independent copy Wi of the non-negative random variable W ∈ [0,∞). In other words, Wi are
i.i.d. non-negative random variables with the same distribution as W . Conditionally on these
weights, the presence of an edge between two vertices i, j ∈ [n], with i �= j , is modeled by
independent Bernoulli random variables with success probability

pi,j := P
(
(i, j) ∈ E | (Wk)k∈[n]

) = Wi

λn

· Wj

λn

∧ 1, (1)

where the scaling λn : N �→ R is a deterministic sequence. Note that the weights do not depend
on the graph size n. This is why the introduction of the scaling λn is useful, as it allows us to
naturally control the edge density of the graph. We assume that the scaling is at most of order√

n, because otherwise we are in the trivial case where the graph is asymptotically almost or
completely empty.

Random graph models like the classical Erdős–Rényi random graphs are homogeneous in the
sense that for a typical realization the degrees of all vertices tend to take a narrow range of
values. Furthermore, all parts of the graph look more or less the same. However, graphs arising
in real-world settings do not generally satisfy this property and tend to be inhomogeneous, with
a relatively wide range of different vertex degrees across the entire graph. In our model, the
weight distribution W determines the inhomogeneity of the graph, and the heavier the tails of
this distribution the more inhomogeneous the graph is. Recall that the weight distribution is not a
function of the graph size and without any scaling factor the resulting graphs are dense (i.e., with
a number of edges that is quadratic in the graph size n). The parameter λn allows us, therefore,
to control the edge density. When λn is constant, we are in the dense regime. On the other hand,
when λn ≈ √

n, we are in the sparse regime with a number of edges that is linear in n, which
corresponds to graphs with finite average degree. Choices of λn in between those extremes lead
to graphs of intermediate density with a number of edges more than linear but less than quadratic
in n.

We are interested in an asymptotic characterization of these graphs as the number of vertices
n increases. In this paper, when limits are unspecified, they are taken as the number of vertices
n tends to ∞. We use standard asymptotic notation. For deterministic sequences an and bn, we
write an = O(bn) when an/bn is bounded, and an = o(bn) when an/bn → 0. We say that a
sequence of events holds with high probability if it holds with probability tending to 1.
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2.1. The clique number

Our main contribution is to show that the clique number of a graph G ∼G(n;W,λn), denoted by
ω(G), is concentrated on at most two consecutive integers provided that the following assump-
tions hold:

Assumption 1. There exists δ > 0 such that

P

(
max
i∈[n] Wi ≤ λn

1 + δ

)
→ 1, as n → ∞. (2)

This assumption, which seems relatively benign, ensures that all edge probabilities are
bounded away from 1 with high probability. Alternatively, it can be regarded as a restriction
on the denseness of the graph, requiring that λn grows fast enough, which causes the resulting
graphs not to become too dense. Our second assumption strengthens the above for large λn.

Assumption 2. If lim infn→∞ log(λn)/ log(n) > 0, then for every η > 0

P

(
max
i∈[n] Wi ≤ λn

1 + η

)
→ 1, as n → ∞. (3)

Note that this assumption is only a restriction when the scaling is large (i.e., when λn is a pos-
itive power of n). Moreover, in many cases, Assumption 2 is a direct consequence of Assump-
tion 1 (e.g., when all or enough moments of W are finite, or when W has a regularly-varying
distribution). We only need Assumption 2 to eliminate some pathological cases. This issue is
discussed in more detail in Section 4.

The clique number in graphs from our model depends both on the amount of inhomogeneity
(captured by W ) and the average edge density (which is close to (E[W ]/λn)

2). Under Assump-
tions 1 and 2, it turns out that the relation between the conditional moments of the weights fully
characterizes the asymptotic clique number. To simplify notation, define the truncated weight W̃

as the random variable with distribution

P
(
W̃ ≤ x

) = P

(
W ≤ x

∣∣∣ W ≤ λn

1 + δ

)
, for all x ∈ R, (4)

where δ > 0 comes from Assumption 1. In other words, the distribution of W̃ is the conditional
distribution of W given W ≤ λn/(1 + δ). The relative truncated moments (abbreviated to relative
moments in the rest of the paper) are defined as follows:

Definition 1 (Relative moments). Given a weight W and scaling λn, the r-th relative moment
is defined by

cn,r = E
[
Wr | W ≤ λn

1+δ

]
E

[
W | W ≤ λn

1+δ

]r = E
[
W̃ r

]
E

[
W̃

]r . (5)
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Note that the relative moments cn,r depend on the graph size n, but only through the scaling
λn. To avoid notational clutter, we often omit the explicit dependence of cn,r on δ.

Building towards our result stating that the clique number is highly concentrated, we define
next the typical clique number. Unfortunately, the typical clique number depends in a cumber-
some way on the relative moments cn,r−1. Therefore, it is only possible to give an implicit char-
acterization in the general setting.

Definition 2 (Typical clique number). Let ωn ∈ [1,∞) denote the solution in r ≥ 1 of

r = log(n) − log(r) + log(cn,r−1) + 1

log
(
λn/E

[
W̃

]) + 1. (6)

We call ωn the typical clique number of G(n;W,λn).

Note that the typical clique number ωn needs not be an integer. Also, it is not immediately
obvious that ωn is well defined because there could either be no solution or (6) might have
multiple solutions. However, the following lemma shows that the typical clique number ωn is
well defined.

Lemma 1. Under Assumption 1 the typical clique number ωn from Definition 2 exists and is
unique.

The following theorem is our main result and shows that asymptotically almost all graphs
generated by our model have a clique number that differs at most one from the typical clique
number ωn.

Theorem 1. Let ε > 0 be arbitrary. Under Assumptions 1 and 2 the clique number ω(Gn) of a
random graph Gn ∼G(n;W,λn) satisfies

lim
n→∞P

(
ω(Gn) ∈ [
ωn − ε�, 
ωn + ε�]) = 1, (7)

where ωn is the typical clique number from Definition 2.

It is important to note that the typical clique number ωn depends on the δ from Assumption 1
through the behavior of the truncated weights W̃ . This might give the impression that the clique
number ω(Gn) of a graph Gn must also depends on δ, which it obviously does not. However,
provided δ is small enough to ensure that Assumption 1 holds, the dependence of the typical
clique number ωn on δ vanishes. This is further discussed in Section 4 below.

Theorem 1 shows that the clique number converges to at most one of two possible values
with high probability, provided we take ε < 1/2. This shows two-point concentration of the
clique number for rank-1 inhomogeneous random graphs. To find the explicit values of these two
points, we need to find an explicit solution of (6), which is generally difficult, see the Appendix
for the details. To facilitate this, we give two alternative asymptotic characterizations of the
typical clique number ωn.
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Lemma 2. Under Assumption 1 the typical clique number ωn is equal to the solution in r of

r = logb(ncn,r−1) − logb logb(ncn,r−1) + logb(e) + 1 + o(1), (8)

where we abbreviate b = λn/E[W̃ ].

Note that when the weight distribution is degenerate (i.e., has probability 1 on a single point)
we obtain an Erdős–Rényi random graph, and cn,r−1 = 1 for all r ∈ N. Using Lemma 2, our
result in Theorem 1 reduces to the main result in [20]. On the other hand, when we consider in-
homogeneous graphs, Lemma 2 shows that we essentially have to rescale the number of vertices
n by the relative moments cn,r−1 to account for the inhomogeneity.

The second characterization pertains the setting where the scaling is such that it gives rise to
relatively sparse graphs. In this case, many of the edge probabilities have become so small that
the shape of the distribution W stops playing a role, and the typical clique number ωn converges
to a constant independent of the weight distribution.

Lemma 3. Let α ∈ (0,1). Under Assumption 1 the following are equivalent:

(i) The scaling satisfies λn = nα+o(1).
(ii) The typical clique number satisfies ωn = 1 + 1/α + o(1).

This result states that when the typical clique number ωn converges to a constant, the scaling
λn is essentially a power of n, and the converse is also true.

It is important to note that we required some assumptions to show two-point concentration
of the clique number. A natural question to ask is whether these assumptions are strictly speak-
ing necessary. Although we cannot formally make this statement, we can argue that Assump-
tion 1 cannot be significantly relaxed: consider for instance a graph Gn ∼ G(n;W,λn) where
the weights have a positive probability ρ > 0 of becoming larger than the scaling λn, that is
P(W ≥ λn) = ρ > 0. Then the vertices belonging to these weights form a clique because the
probability of an edge between any of these vertices equals 1. Hence, the clique number will
have approximately a binomial distribution, that is ω(Gn) ∼ Bin(n,ρ), and we cannot expect the
clique number ω(G) to be concentrated on any fixed length interval.

This shows that Assumption 1 defines a rather sharp threshold. Below this threshold the clique
number ω(G) is at most logarithmic and highly concentrated, whereas above this threshold the
clique number has polynomial size and cannot be concentrated on any fixed length interval.

3. Examples

Theorem 1 shows that the typical clique number ωn must be very close to the clique number
ω(Gn) of a graph Gn ∼G(n;W,λn). However, Definition 2 does not give an explicit expression
for ωn, but rather it gives an implicit definition as the solution of the fixed-point equation (6).
Nevertheless, we may derive the asymptotic behavior of ωn for several interesting choices of
weights W and scalings λn, illustrating the different regimes one might encounter. Note that in
most cases these derivations are far from trivial, see the Appendix for the details. Interestingly,
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in all the examples that we consider, the typical clique number ωn is primarily determined by the
scaling, namely ωn ≈ kn logλn/E[W ](n) where kn is typically just a constant but can be as large
as O(log logn).

The maximum weight in the graph plays a crucial role in Assumption 1 and it is directly related
to the tail probabilities of the weight distribution by the relation

P

(
max
i∈[n] Wi ≤ x

)
= (

1 − P(W > x)
)n

. (9)

Because of this relation, we find that the tail behavior of the weight distribution plays a key role
in the asymptotic behavior of the clique number, and we identify three main classes of weight
distributions based on this.

When the weight distribution has bounded support, the behavior of the clique number is very
similar to an Erdős–Rényi random graph. For weights with unbounded support, the behavior of
the clique number depends on how heavy the tails are. For weights with heavy-tailed distribu-
tions, the scaling must grow roughly as a power of n to ensure that Assumption 1 is satisfied. This
restriction on the scaling makes the graph highly sparse, which causes the effect of inhomogene-
ity due to the weight distribution to disappear. Interestingly, when the weights have a light-tailed
distribution, the behavior of the clique number strongly depends on the scaling λn with different
regimes depending on how λn is chosen.

3.1. Weights with bounded support

In this section, we consider the clique number ω(Gn) for graphs Gn ∼G(n;W,λn) with weight
distributions W that have bounded support. The best-known example in this class is the Erdős–
Rényi random graph. In our model, this corresponds to a degenerate weight distribution W , with
all the mass at 1 (denoted by Degen(1)). Note that Assumption 1 is trivially satisfied by taking
λn ≥ s for any constant s > 1, and the edge probability is simply pn = 1/λ2

n. In this case, the
relative moments are cn,r−1 = 1 for all 1 ≤ r ≤ n, and we immediately see from Lemma 2 that

ωn = logλn
(n) − logλn

logλn
(n) + logλn

(e) + 1 + o(1)

= 2 log1/pn
(n) − 2 log1/pn

log1/pn
(n) + 2 log1/pn

(e/2) + 1 + o(1). (10)

This result was also obtained by Matula [20].
For other weight distributions, vertices with large weights are more likely to be in the largest

clique than vertices with small weights. This idea can be used to show that the first order be-
havior of the clique number remains as in (10) but with pn = (wmax/λn)

2 and where wmax is
the supremum of the support of W . Therefore, for weights with bounded support, the first or-
der behavior of the clique number remains unchanged when we replace the random weights W

by the maximum of their support wmax. This happens because vertices with small weight have,
asymptotically, a negligible probability of being part of the largest clique.

To see this, note that the edge probabilities are bounded by pi,j ≤ (wmax/λn)
2 for all i �=

j ∈ [n]. Plugging this into (10) gives the following high probability upper bound on the clique
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number ω(Gn) of a graph Gn ∼ G(n;W,λn),

ω(Gn) ≤ (1 + o(1))
log(n)

log(λn/wmax)
. (11)

To obtain a matching lower bound, we can use the following simple heuristic. Instead of consid-
ering the whole graph, consider the subgraph induced by the vertices with large enough weights,
in particular the subgraph induced by the vertices Un = {i ∈ [n] : Wi > tn} for some tn. On this
subgraph all weights are larger than tn, and therefore we can bound the edge probability by
pi,j ≥ (tn/λn)

2 for all i �= j ∈ Un. Since |Un| ≈ nP(W > tn), we can use (10) to obtain the
following high probability lower bound on the clique number,

ω(Gn) ≥ (1 + o(1))
log(|Un|)

log(λn/tn)
= (1 + o(1))

log(n) + log
(
P(W > tn)

)
log(λn/tn)

. (12)

Note that this lower bound holds for every tn, so we can find an optimal tn that maximizes the
right-hand side of (12). For weights with bounded support, taking tn = wmax − o(1) suffices,
provided that the o(1) term vanishes slowly enough to ensure that logP(W > tn) = o(log(n)).
This gives

ω(Gn) = (1 + o(1))
log(n)

log(λn/wmax)
. (13)

This is precisely the leading order behavior in (10), but with pn = (wmax/λn)
2.

Determining the asymptotics of the clique number ω(Gn) more accurately requires signifi-
cantly more effort, because the argument above no longer suffices and one needs to actually solve
(6) from Definition 2. In Table 1, the typical clique number is shown for some weight distribu-
tions. As explained above, the first order behavior is the same in all these examples. However,
it can clearly be seen that weights with less mass around the maximum of their support have a
smaller second order term, as expected.

Table 1. The asymptotic behavior of the typical clique number ωn for some weights
W with support on [0,1]. Here 	(·) denotes the gamma function. See the Appendix
for the derivation of these results.

W Typical clique number ωn

Degen(1) logλn
(n) − logλn

logλn
(n) + logλn

(e) + 1 + o(1)

Ber(p) logλn
(np) − logλn

logλn
(np) + logλn

(e) + 1 + o(1)

Unif(0,1) logλn
(n) − 2 logλn

logλn
(n) + logλn

(e) + 1 + o(1)

Beta(α,β) logλn
(n) − (1 + β) logλn

((1 + β) logλn
(n))

+ logλn
(e) + logλn

(	(α + β)/	(α)) + 1 + o(1)
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3.2. Weights with light tails

In this section, we consider the clique number ω(Gn) for graphs Gn ∼G(n;W,λn) with weight
distributions W that have unbounded support but light tails. This is arguably the most interest-
ing setting, and where the effect of inhomogeneity is the most pronounced. For such weight
distributions the maximum weight Mn := maxi∈[n] Wi is typically highly concentrated around its
expectation E[Mn]. Therefore, we can choose any scaling λn slightly larger than E[Mn] to satisfy
Assumption 1. For this class of distributions, we observe two very distinct behaviors depending
on the choice of scaling λn.

The slowest scaling that still ensures that Assumption 1 is satisfied is λn ≈ (1 + ϕ)E[Mn],
with ϕ > 0. For a given weight distribution, this is the densest graph for which we can apply
Theorem 1. In this case, we see that the shape of the weight distribution has a real impact on the
asymptotic behavior of the typical clique number ωn, as shown in Table 2. In other words, the
asymptotic behavior of the clique number depends on the chosen weight distribution, and this
amounts to more than constant multiplicative factors in the various terms.

We consider three distributions, namely the half-normal, the Gamma and the log-normal. For
both the half-normal and Gamma distribution we see that the typical clique number is of order
log(n), whereas in an Erdős–Rényi random graph with the same edge density the cliques are
smaller, of order log(n)/ log log(n). For log-normal weights the first order behavior of the typ-
ical clique number ωn is the same in the corresponding Erdős–Rényi random graph although
with different constants. Note that the effect of inhomogeneity is much weaker for log-normal
weights. Because the log-normal distribution is “nearly” heavy tailed, this is consistent with our
findings in the next section, where we show that, for heavy-tailed weights, the specific shape of
the distribution is not relevant anymore.

If the scaling is such that Assumption 1 is more easily satisfied (and therefore resulting in
sparser graphs) then the contribution of the weight distribution becomes far less prominent. In
particular, we consider λn ≈ E[Mn]1+ϕ , with ϕ > 0. This choice of scaling leads to behavior that
is qualitatively similar to that in Section 3.1. As soon as ϕ > 0, the resulting graphs become so

Table 2. The asymptotic behavior of the typical clique number ωn for some light-tailed weights W and
scaling λn ≈ (1 + ϕ)E[Mn] with ϕ > 0 arbitrary. For comparison we include the clique number of an
Erdős–Rényi random graph with the same edge density, that is pn = (E[W ]/λn)2. Here 	(·) is the gamma
function, and we write ξk(ϕ) = −k/W−1(−1/(e(1 + ϕ)k)) ∈ (0,1), where W−1(·) is the lower branch of
the Lambert-W function, see (39). See the Appendix for the derivation of these results.

W λn Typical clique number ωn

|N(0, σ )| (1 + ϕ)
√

2σ 2 log(n) (1 + o(1))ξ2(ϕ) log(n)

Comparable Erdős–Rényi graph (1 + o(1))2 log(n)/ log log(n)

Gamma(α,β) (1 + ϕ) log(n)/β (1 + o(1))ξ1(ϕ) log(n)

Comparable Erdős–Rényi graph (1 + o(1)) log(n)/ log log(n)

LN(0,1) (1 + ϕ) exp
(√

2 log(n)
)

(1 + o(1))
√

2 log(n)

Comparable Erdős–Rényi graph (1 + o(1))
√

(1/2) log(n)
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Table 3. The asymptotic behavior of the typical clique number ωn for some light-tailed weights W and scal-
ing λn ≈ E[Mn]1+ϕ with ϕ > 0 arbitrary. For comparison we include the clique number of an Erdős–Rényi
random graph with the same edge density, that is p = (E[W ]/λn)2. See the Appendix for the derivation of
these results.

W λn Typical clique number ωn

|N(0, σ )| √
2σ 2 log(n)

1+ϕ
(1 + o(1))(2/ϕ)(log(n)/ log log(n))

Comparable Erdős–Rényi graph (1 + o(1))(2/(1 + ϕ))(log(n)/ log log(n))

Gamma(α,β) log(n)1+ϕ/β (1 + o(1))(1/ϕ)(log(n)/ log log(n))

Comparable Erdős–Rényi graph (1 + o(1))(1/(1 + ϕ))(log(n)/ log log(n))

LN(0,1) exp
(√

2 log(n)
)1+ϕ

(1 + o(1))((1 + ϕ) − √
ϕ(2 + ϕ))

√
2 log(n)

Comparable Erdős–Rényi graph (1 + o(1))(1/(1 + ϕ))
√

(1/2) log(n)

sparse that the shape of the weight distribution has no severe impact on the asymptotic behavior
of the typical clique number ωn, and only multiplicative factors are affected. This can be seen in
Table 3.

The heuristic to obtain a high probability lower bound on the clique number, as explained in
the previous section, also remains valid for light-tailed distributions. Interestingly, also in this
case the lower bound seems to be tight. That is, for the tn that maximises the lower bound in
(12), we find exactly the same behavior, including the same constants, of the clique number as
in Tables 2 and 3. However, because the weights are no longer bounded from above, we are not
aware of a simple method to obtain a matching upper bound. Nevertheless, we strongly suspect
that this heuristic also gives the correct first order behavior of the clique number for other light-
tailed distributions.

3.3. Weights with heavy tails

In this section, we consider the clique number ω(Gn) for graphs Gn ∼G(n;W,λn) with weight
distributions W that have heavy tails, which we define as distributions whose moments are not
all finite. For these distributions, finding the clique number is surprisingly straightforward. To
apply Theorem 1, we need a scaling λn such that Assumptions 1 and 2 are satisfied, and we
necessarily have λn ≥ nα+o(1) for some α > 0. This means that for heavy-tailed distributions
we can always apply Lemma 3, which shows that the typical clique number ωn is bounded and
completely determined by the scaling.

A notable special case of this was treated in [18] and [3,4], where the clique number in scale-
free graphs with a model similar to ours was considered. In those works the weights have a
power-law distribution and the scaling is chosen as λn = √

n. The authors find that the clique
number asymptotically becomes either 2 or 3 when the variance of the weights is finite. Using
Lemma 3, we first determine that ωn → 3, since the scaling is λn = √

n. Therefore, it follows
from Theorem 1 that, asymptotically, the clique number must be either 2 or 3, precisely the same
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result. Note that for this scaling, having weights with finite variance and Assumptions 1 and 2
are equivalent.

In the highly inhomogeneous case, where the weights have infinite variance, we require a scal-
ing of λn ≥ nα+o(1) for some α > 1/2 in order to satisfy Assumptions 1 and 2. However, when
the scaling is this large, the resulting graphs are asymptotically almost or completely empty.
On the other hand, as explained at the end of Section 2, when α ≤ 1/2 the clique number will
approximately have a binomial distribution and thus cannot concentrate on any fixed length in-
terval.

4. Discussion and overview

In this section, we remark on our results and discuss some possibilities for future work.

Typical clique number

Let us first remark on our main result, Theorem 1, that shows that the clique number ω(Gn) of
a graph Gn and the corresponding typical clique number ωn must be very close. As explained
in Section 2, the typical clique number ωn still depends on the δ from Assumption 1, whereas
the clique number ω(Gn) of a graph Gn obviously does not. This is certainly not desirable, and
it should be possible to define the typical clique number ωn independently of δ. In all examples
that we considered in Section 3 this is indeed possible, since in those examples:

E
[
W̃ r

]
E

[
W̃

]r = E
[
Wr | W ≤ λn

1+δ

]
E

[
W | W ≤ λn

1+δ

]r = (
1 + o(1)

)E[Wr ]
E[W ]r , for all r ≤ ωn. (14)

We conjecture that a similar statement should hold in general, or at least for a wide class of
weights W and scalings λn. When proven, this would imply that the truncation in Definitions
1 and 2 can be ignored. This would solve the issue of the seeming dependence between the
typical clique number ωn and the δ from Assumption 1, and at the same time, make explicit
computations of the typical clique number ωn somewhat easier.

Connection between Assumptions 1 and 2

Most of our results only require Assumption 1, but to prove our main result we require the slightly
stronger Assumption 2. However, in most cases that we checked, Assumption 2 is implied from
Assumption 1, and the choice of weight distribution W and scaling λn.

Suppose that λn ≥ nα+o(1) for some α ∈ (0,1). Then we necessarily need to have E[W 1/α] <

∞ in order to satisfy Assumption 1. When a slightly larger moment of W is also finite, that is
E[W 1/α+ε] < ∞ for some ε > 0, then both assumptions are simultaneously satisfied. To see this,
note that by the moment condition we have P(W 1/α+ε > n) ≤ o(1/n). Now take any η > 0, then
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for n large enough

P

(
W >

λn

1 + η

)
≤ P

(
W >

nα+o(1)

1 + η

)
≤ P

(
W > nα/(1+αε)

) = P
(
W 1/α+ε > n

) ≤ o(1/n). (15)

Hence, both Assumptions 1 and 2 are simultaneously satisfied.
Alternatively, Assumption 1 is also sufficient when W is regularly varying of index β < 0. In

this case, for any η > 0, we have

P

(
W > λn

1+η

)
P

(
W > λn

1+δ

) = (
1 + o(1)

)(1 + η

1 + δ

)−β

. (16)

By Assumption 1 we have P
(
W > λn

1+δ

) = o(1/n); therefore, we also have P
(
W > λn

1+η

) =
o(1/n). Hence, Assumption 2 is also satisfied.

Different models

In our model, the edge probabilities are pi,j = min(Xi,j ,1), where Xi,j = (Wi/λn) · (Wj/λn).
We require the minimum because otherwise some edge probabilities could exceed 1. To achieve
the same effect one has other options; some common examples are p̂i,j = 1 − exp(−Xi,j ) or
p̃i,j = Xi,j /(1 + Xi,j ). Changing the model in this manner does not have a significant influ-
ence on the asymptotic clique number, provided Assumption 1 holds. To see this, note that we
can bound the edge probabilities of these models by min(Xi,j /2,1) ≤ p̂i,j , p̃i,j ≤ min(Xi,j ,1)

with high probability. Obviously, the clique number is then also bounded by the clique numbers
obtained from the models with edge probabilities as given in these bounds. Since these bounds
differ only by a constant multiplicative factor, it is easily seen from Definition 2 that both lead
to the same leading order asymptotics of the clique number when the scaling is diverging. When
the scaling is constant, the situation is more subtle and the precise clique number will change by
a multiplicative factor that depends on the specific model considered.

Instead of the change in truncation described above, we could also consider different interac-
tions between the weights. We currently only consider so-called rank-1 inhomogeneous random
graphs, where the probability of an edge is proportional to the product of the weights of the inci-
dent vertices. Instead, we could model different types of interaction by considering an arbitrary
symmetric function, called a kernel. It would be interesting to see whether our results can be
extended to this more general setting. In particular, whether the two-point concentration of the
clique number is specific to rank-1 inhomogeneous random graphs, or whether this remains true
for a wider class of kernels.

When weights have bounded support, the heuristic explained in Section 3.1 can be extended
to obtain first order behavior of the clique number for a large class of kernels. For these kernels,
this gives a simpler approach to finding the asymptotic behavior of the clique number than the
method described in [13] which provided a general answer. Moreover, based on the results in
Section 3.2 it might also be possible to extend these results to unbounded kernels.
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Planted clique problem

In the planted clique problem one starts by generating a graph as usual. After generating this
graph we select a small number of vertices and connect all of them, so that they form a clique.
Given such a graph with a planted clique, the problem is to locate this clique with high probabil-
ity.

The work on this problem has focussed on two cases. In the first case, the underlying graph is
an Erdős–Rényi random graph. In principle, this problem can be solved as soon as the planted
clique is of size O(log(n)). However, if one is interested in algorithms that can recover the largest
clique in polynomial time, then the best-known algorithms require the planted clique to be of size
O(

√
n), see [1,11,14]. The second case focusses on the very inhomogeneous case, with graphs

that have a power-law degree distribution. Here the largest clique can be recovered in polynomial
time, see [16,18].

Alternatively, one could consider the similar hypothesis testing problem. Here we observe a
graph where it is unknown whether a clique was planted, and the problem is to decide whether
it was planted or not. Instead of a clique, one could plant a denser subgraph and test whether
that was planted or not, see [2,27]. Using the model from Section 2 all these problems can be
considered in a single framework. It would be particularly interesting to see what the effects of
inhomogeneity and sparsity are on the computational complexity in these problems.

5. Proofs

This section is devoted to proving the results in Section 2. The proofs of Lemmas 1, 2, and 3
are fairly self explanatory. To prove Theorem 1, we use the same approach as Matula [20], using
the first and second moment method to obtain an upper and lower bound on the clique number
separately.

5.1. Proof of Lemma 1: Existence and uniqueness of the typical clique
number

Lemma 1 shows that Assumption 1 is sufficient to guarantee the existence and uniqueness of the
typical clique number ωn in Definition 2. We first show that there must be at least one solution
to (6) and then show that this solution is unique.

Proof of Lemma 1. To simplify notation, let fn(r) be the right-hand side of (6), that is

fn(r) = log(n) − log(r) + log(cn,r−1) + 1

log
(
λn/E

[
W̃

]) + 1. (17)

To prove the lemma we must show that the solution set of (6), given by {r ≥ 1 : r = fn(r)}, is
non-empty and consists of a single point. First, note that cn,r−1 is a continuous function in r
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(since these are relative moments of a truncated distribution). This in turn implies that fn(r) is
continuous in r . To ensure that the solution set is non-empty, first note that

fn(1) = log(n) + 1

log(λn/E[W̃ ]) + 1 ≥ 1,

and

fn(n) = log(cn,n−1) + 1

log
(
λn/E

[
W̃

]) + 1 ≤ (n − 1)
log

(
λn

1+δ
/E

[
W̃

])
log

(
λn/E

[
W̃

]) + 1 ≤ n.

Hence, there exists at least one value r ∈ [1, n] satisfying r = fn(r). To show the uniqueness of
this solution we simply show that the slope of fn(r) is strictly smaller than 1. Note that

∂

∂r
fn(r) =

(
c′
n,r−1/cn,r−1

) − (
1/r

)
log

(
λn/E

[
W̃

])
=

(
E

[
log

(
W̃/E

[
W̃

])
W̃ r−1

]
/E

[
W̃ r−1

]
) − (1/r)

log
(
λn/E

[
W̃

])
≤

log
(

λn

1+δ
/E

[
W̃

]) − (1/r)

log
(
λn/E

[
W̃

]) < 1, (18)

where c′
n,r−1 denotes the partial derivative of cn,r−1 with respect to r . Since the partial derivative

of fn(r) is strictly less than 1, there can be at most a single solution of r = fn(r). Hence, the
typical clique number is well defined. �

5.2. Proof of Lemma 2: Alternative characterization of the typical clique
number

Here we derive an alternative representation for the typical clique number ωn, as formulated in
Lemma 2. This is sometimes more convenient than the original in Definition 2.

Proof of Lemma 2. By Lemma 1, we know that the typical clique number ωn exists. Therefore,
we can solve (6) to see that the typical clique number is also the solution of

r = W0(ncn,r−1eb log(b))

log(b)
,

where b = λn/E[W̃ ] and W0(·) denotes the principal branch of the Lambert-W function, see
(39). Using the approximation W0(x) = log(x)− log log(x)+ o(1) as x → ∞, as shown in [10],
we obtain

r = logb

(
ncn,r−1eb log(b)

) − logb log
(
ncn,r−1eb log(b)

) + o(1)

= logb(ncn,r−1) − logb logb(ncn,r−1) + logb(e) + 1 + o(1). �



Cliques in rank-1 random graphs 267

5.3. Proof of Lemma 3: Bounded typical clique number

Here we show that the scaling λn is a positive power of n if, and only if, the typical clique number
ωn converges to a constant. To this end, we first derive a small lemma.

Lemma 4. Let α ∈ (0,1). If the scaling satisfies λn ≥ nα+o(1) then

log
(
cn,1/α+o(1)

)
log

(
λn/E

[
W̃

]) = o(1).

Proof. By Assumption 1,

P

(
max
i∈[n] Wi ≤ λn

)
= (

1 − P(W > λn)
)n → 1.

Let ε > 0 be arbitrary, then for n large enough and using the above we obtain

P
(
W 1/α−ε > n

) ≤ P
(
W 1/(α+o(1)) > n

) = P(W > λn) = o

(
1

n

)
.

Therefore, using the tail formula for expectation,

E
[
W̃ 1/α−ε

] ≤ (
1 + o(1)

)
E

[
W 1/α−ε1{W 1/α+o(1)≤n}

]
≤ (

1 + o(1)
)
E

[
W 1/α−ε1{W 1/α−ε≤n}

]
= (

1 + o(1)
)∫ ∞

0
P
(
W 1/α−ε1{W 1/α−ε≤n} > x

)
dx,

where 1{·} denotes the usual indicator function. Note that W 1/αn1{W 1/αn≤n} ≤ n, so we can change
the upper integration limit. This gives

E
[
W̃ 1/α−ε

] ≤ O(1) + (
1 + o(1)

)∫ n

1
P
(
W 1/α−ε > x

)
dx

≤ O(1) + (
1 + o(1)

)∫ n

1

1

x
dx =O(1) + (

1 + o(1)
)

log(n).

Based on the above we conclude

log
(
cn,1/α+o(1)

)
log

(
λn/E

[
W̃

]) = (
1 + o(1)

) log
(
E

[
W̃ 1/α+o(1)

])
log(λn)

≤ (
1 + o(1)

) log
(
E

[
W̃ 1/α−ε

]
λ2ε

n

)
log(λn)

= (
1 + o(1)

) log log(n)

log
(
nα+o(1)

) + 2ε + o(1) = 2ε + o(1).

Since ε > 0 can be taken arbitrarily small, this completes the proof. �
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We are now ready to prove Lemma 3. The main idea is that, as n → ∞, most terms of (6)
become negligible and the remaining terms no longer involve n.

Proof of Lemma 3. First, suppose that λn = nα+o(1) with α ∈ (0,1). By Definition 2 the typical
clique number ωn satisfies

ωn = log(n) − log(ωn) + log(cn,ωn−1) + 1

log
(
λn/E

[
W̃

]) + 1. (19)

Plugging ωn = 1 + 1/α + o(1) into (19) and using Lemma 4,

ωn = log(n) + log(cn,1/α+o(1))

log
(
λn/E

[
W̃

]) + 1

= log(n)

log
(
nα+o(1)/E

[
W̃

]) + 1 + o(1)

= 1

α
+ 1 + o(1).

Hence (19) is satisfied for ωn = 1+1/α+o(1) and by Lemma 1 this must be the unique solution.
For the other direction, suppose that ωn = 1+1/α+o(1) with α ∈ (0,1). Then, by Definition 2

and Lemma 4,

ωn − 1 = log(n) − log(ωn) + log(cn,ωn−1) + 1

log
(
λn/E

[
W̃

])
= log(n)

log
(
λn/E

[
W̃

]) + o(1).

Solving for λn we see that λn = nα+o(1) since E[W̃ ] is uniformly bounded. �

5.4. Proof of Theorem 1: Concentration of the clique number

In this section we prove Theorem 1, our main result. First, we derive some useful results char-
acterizing the relative moments. Then the proof itself is split into two parts: the high-probability
upper bound on the clique number in Sections 5.4.2 and 5.4.3 using the first moment method,
and the high-probability lower bound on the clique number in Sections 5.4.4 and 5.4.5, using
the second moment method. In both parts, we separately consider two cases: ωn → ∞ and ωn is
bounded. In fact, a third might be possible, namely lim infn→∞ ωn < lim supn→∞ ωn = ∞. How-
ever, in that case we can apply the reasoning below to a maximal subsequence of ωn converging
to infinity, and control the remaining terms by the argument used when ωn is bounded.

5.4.1. Auxiliary results

Binomial coefficients play an important role in counting the number of cliques. Therefore, it
is crucial to have tight bounds on the binomial coefficient, provided by the lemma below. This
lemma and the corresponding proof can be found in [24].
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Figure 1. Example of the line �n(r) with slope βn through ωn (solid line). Note that this line is a lower
bound on fn(r) for all r ∈ [1,ωn], and an upper bound on fn(r) for all r ∈ [ωn,n].

Lemma 5. Suppose that r = o(
√

n), then the binomial coefficient can be approximated by(
n

r

)
= (

1 + o(1)
) 1√

2πr

(
ne

r

)r

.

Another important ingredient for the proof of Theorem 1 is to have sharp bounds on the rela-
tive moments from Definition 1, which are provided by the following lemma. By definition, the
typical clique number ωn is the solution to (6). If we consider the right-hand side and left-hand
side of (6) separately, then we see that these two functions must intersect at ωn. Moreover, the
right-hand side of (6) will always grow more slowly than the left-hand side, as shown in the proof
of Lemma 1. This means that there exists a straight line in between these two functions, inter-
secting at ωn as illustrated in Figure 1. Using this line, we can then find bounds on the right-hand
side of (6) which in turn lead to bounds on the relative moments.

Lemma 6. Under Assumption 1, the relative moments cn,r−1 from Definition 1 can be bounded
by

cn,r−1 ≥
(

λn

E[W̃ ]
)βn((r−1)−(ωn−1))+(ωn−1)

r

ne
, for all 1 ≤ r ≤ ωn,

cn,r−1 ≤
(

λn

E[W̃ ]
)βn((r−1)−(ωn−1))+(ωn−1)

r

ne
, for all ωn ≤ r ≤ n,

with βn given by

βn =
log

(
λn

1+δ
/E

[
W̃

])
log

(
λn/E

[
W̃

]) < 1, (20)

and where δ > 0 arises from Assumption 1.

Proof. Let fn(r) be as defined in (17), then the typical clique number ωn is the solution in r of
r = fn(r). Consider �n(r) = βn(r − ωn) + ωn, which is the line through ωn with slope βn, as
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shown in Figure 1. We will show that, for all n, the line �n(r) is a lower bound on fn(r) when
r ∈ [1,ωn], and an upper bound on fn(r) when r ∈ [ωn,n].

The slope of fn(r) was derived in (18) and is bounded by βn given in (20). Hence, we have
�n(r) ≤ fn(r) when r ∈ [1,ωn] and �n(r) ≥ fn(r) otherwise.

To finish the proof note that, for all r ∈ [1,ωn],

βn

(
(r − 1) − (ωn − 1)

) + ωn = �n(r)

≤ fn(r) = log(n) − log(r) + log(cn,r−1) + 1

log
(
λn/E

[
W̃

]) + 1.

Exponentiating both sides yields(
λn

E[W̃ ]
)βn((r−1)−(ωn−1))+(ωn−1)

≤ ncn,r−1e

r
.

Multiplying both sides by r/(ne) gives the first result. The second result follows similarly. �

5.4.2. Upper bound with diverging typical clique number

In this section, we prove the upper bound of Theorem 1 assuming that ωn → ∞. Define the event

Tn,δ =
{

max
i∈[n] Wi ≤ λn

1 + δ

}
. (21)

Assumption 1 enforces that P(Tn,δ) → 1 as n → ∞. A trivial, but crucial, observation is that the
joint distribution of the weights (W1, . . . ,Wn) conditional on the event Tn,δ is the same as that
of a sequence of i.i.d. truncated weights (W̃1, . . . , W̃n). In other words

(W1, . . . ,Wn) | Tn,δ
d= (W̃1, . . . , W̃n), (22)

where W̃i are i.i.d. random variables with the same distribution as W̃ . This statement can be
checked by an elementary computation.

Let ω(Gn) be the clique number of the graph Gn and define Nr to be the number of cliques of
size r in Gn. Then, by Assumption 1 and the first moment method,

P
(
ω(Gn) ≥ r

) = (
1 + o(1)

)
P
(
ω(Gn) ≥ r | Tn,δ

)
= (

1 + o(1)
)
P(Nr ≥ 1 | Tn,δ)

≤ (
1 + o(1)

)
E[Nr | Tn,δ]. (23)

Then by linearity of expectation,

E[Nr | Tn,δ] =
∑

C⊆[n]:|C|=r

P(C is a clique in Gn | Tn,δ)
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=
∑

C⊆[n]:|C|=r

E

[ ∏
i<j∈C

Wi

λn

· Wj

λn

∧ 1
∣∣∣ Tn,δ

]

=
∑

C⊆[n]:|C|=r

E

[ ∏
i<j∈C

W̃i

λn

· W̃j

λn

]

=
(

n

r

)
E

[(
W̃

λn

)r−1]r

=
(

n

r

)(
cn,r−1

(
E[W̃ ]
λn

)r−1)r

. (24)

To prove the upper bound of Theorem 1, we need show that E[Nr | Tn,δ] → 0, as n → ∞, when
r > 
ωn + ε�, and since r is integer this implies r ≥ ωn + ε. Using Lemmas 5 and 6 we can
further bound the above expression as

E[Nr | Tn,δ] ≤ (
1 + o(1)

) 1√
2πr

(
ne

r

)r(
cn,r−1

(
E[W̃ ]
λn

)r−1)r

≤ (
1 + o(1)

) 1√
2πr

(
E[W̃ ]
λn

)r(r−1)−r(βn((r−1)−(ωn−1))+(ωn−1))

= (
1 + o(1)

) 1√
2πr

(
E[W̃ ]
λn

)−(1−βn)·r((ωn−1)−(r−1))

, (25)

where βn comes from Lemma 6. Using the definition of βn we have(
λn

E[W̃ ]
)−(1−βn)

=
(
E[W̃ ]
λn

)(
λn/(1 + δ)

E[W̃ ]
)

= 1

1 + δ
. (26)

Combining (25) and (26) and because r − ωn ≥ ε we obtain

E[Nr | Tn,δ] = (
1 + o(1)

) 1√
2πr

(
1

1 + δ

)−r(ωn−r)

≤ (
1 + o(1)

) 1√
2πr

(
1

1 + δ

)rε

. (27)

Since ωn → ∞ it is easily seen from (27) that E[Nr | Tn,δ] → 0 when r > 
ωn + ε�. Hence it
follows from (23) that P(ω(Gn) > 
ωn + ε�) → 0.

5.4.3. Upper bound with bounded typical clique number

In this section, we prove the upper bound of Theorem 1 assuming that ωn is bounded. First,
we consider the case where ωn converges, in this case there exists an α > 0 such that ωn =
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1/α + 1 + o(1). We want to apply all the steps in Section 5.4.2, but instead of conditioning on
the event in (21) we will condition on the event

Tn,η =
{

max
i∈[n] Wi ≤ λn

1 + η

}
, (28)

where η > 0 comes from Assumption 2.
Since ωn = 1/α + 1 + o(1) it follows from Lemma 3 that λn = nα+o(1), and by Assumption 2

we have P(Tn,η) → 1. Moreover, by repeating the steps in Lemmas 3 and 4 it can easily be
checked that replacing δ by η in Definitions 1 and 2 the typical clique number remains equal to
ωn = 1/α + 1 + o(1). Therefore, we can follow all steps in Section 5.4.2 but conditioning on
Tn,η instead of Tn,δ . This gives

P
(
ω(Gn) ≥ r

) = (
1 + o(1)

)
P
(
ω(Gn) ≥ r | Tn,η

)
≤ (

1 + o(1)
)
E[Nr | Tn,η]

≤ (
1 + o(1)

) 1√
2πr

(
1

1 + η

)rε

. (29)

Since η > 0 is arbitrary and r = ωn + ε is bounded it follows from (29) that we can make
P(ω(Gn) ≥ r) arbitrarily small, hence P(ω(Gn) ≥ r) → 0.

To complete the proof we consider the case when ωn does not converge. In this case, we
know that every subsequence (ni)i∈N contains a further subsequence (nij )j∈N along which ωnij

converges. Applying the arguments above shows that every subsequence (ni)i∈N has a further
subsequence (nij )j∈N along which P(ω(Gnij

) ≥ r) → 0, and it follows that P(ω(Gn) ≥ r) → 0.

5.4.4. Lower bound with diverging typical clique number

In this section, we prove the lower bound of Theorem 1 assuming that ωn → ∞. Recall that
ω(Gn) denotes the clique number of the graph Gn and Nr is the number of cliques of size r

in Gn. Then, by the second moment method, and using the truncation event Tn,δ given by (21)
together with Assumption 1,

P
(
ω(Gn) < r

) = (
1 + o(1)

)
P
(
ω(Gn) < r | Tn,δ

)
= (

1 + o(1)
)
P(Nr = 0 | Tn,δ)

≤ (
1 + o(1)

)Var(Nr | Tn,δ)

E[Nr | Tn,δ]2

= (
1 + o(1)

)( E[N2
r | Tn,δ]

E[Nr | Tn,δ]2
− 1

)
. (30)

Hence, we need to show that E[N2
r | Tn,δ]/E[Nr | Tn,δ]2 → 1 as n → ∞, with r = 
ωn − ε�. The

first moment of the number of cliques Nr was computed in (24), and is given by

E[Nr | Tn,δ] =
(

n

r

)
E

[(
W̃

λn

)r−1]r

. (31)
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Similarly, the second moment of the number of cliques Nr is also found using (22) and linearity
of expectation as

E
[
N2

r | Tn,δ

] =
∑

|C1|=r,|C2|=r

P(C1 and C2 are both cliques in Gn | Tn,δ)

=
∑

|C1|=r,|C2|=r

E

[∏
i<j∈C1

W̃i

λn
· W̃j

λn

∏
i<j∈C2

W̃i

λn
· W̃j

λn∏
i<j∈C1∩C2

W̃i

λn
· W̃j

λn

]

=
r∑

k=0

∑
|C1|=r,|C2|=r,

|C1∩C2|=k

E

[(
W̃

λn

)r−1]2(r−k)

E

[(
W̃

λn

)2(r−1)−(k−1)]k

(32)

=
r∑

k=0

(
n

r

)(
r

k

)(
n − r

r − k

)
E

[(
W̃

λn

)r−1]2(r−k)

E

[(
W̃

λn

)2(r−1)−(k−1)]k

. (33)

The third equality comes from counting how many times each vertex is an endpoint of an edge,
and thus how many times each weight is present in the product. We count two cases sepa-
rately:

• Vertices in C1 \ C2 will need edges to each other vertex in C1. So, each vertex in C1 \ C2

will be r −1 times in the product of (32) and similarly for vertices in C2 \C1. Since we have
2(r − k) vertices in C1 \ C2 and C2 \ C1 we get the E[Wr−1]2(r−k) term. See Figure 2(a).

• Vertices in C1 ∩ C2 will need edges to each vertex in C1 ∪ C2. So, each vertex in C1 ∩ C2

will be 2(r − 1) − (k − 1) times in the product of (32) and we have k vertices in C1 ∩ C2.
So we get the E[W 2(r−1)−(k−1)]k term. See Figure 2(b).

Figure 2. Example of edges connecting to vertices in different parts of C1 ∪ C2.



274 K. Bogerd, R.M. Castro and R. van der Hofstad

Combining (31) and (33), we obtain

E[N2
r | Tn,δ]

E[Nr | Tn,δ]2
=

r∑
k=0

(
r
k

)(
n−r
r−k

)(
n
r

) · E[( W̃
λn

)r−1]2(r−k)
E[( W̃

λn
)2(r−1)−(k−1)]k

E[( W̃
λn

)r−1]2r

=
r∑

k=0

(
r
k

)(
n−r
r−k

)(
n
r

) (
cn,2(r−1)−(k−1)

c2
n,r−1

)k(
E[W̃ ]
λn

)−k(k−1)

≤ 1 +
r∑

k=1

(
r
k

)(
n−r
r−k

)(
n
r

) (
cn,2(r−1)−(k−1)

c2
n,r−1

)k(
E[W̃ ]
λn

)−k(k−1)

≤ 1 + max
1≤k≤r

r

(
r
k

)(
n−r
r−k

)(
n
r

) (
cn,2(r−1)−(k−1)

c2
n,r−1

)k(
E[W̃ ]
λn

)−k(k−1)

︸ ︷︷ ︸
:=b

n,r
k

. (34)

We will show that maxk∈[r] bn,r
k → 0 as n → ∞. To continue we consider two cases: (i) k = r ;

and (ii) 1 ≤ k ≤ r − 1.
Case (i): Here k = r , so we want to show that b

n,r
r → 0 as n → ∞. By definition of b

n,r
r and

by Lemmas 5 and 6,

bn,r
r = r

1(
n
r

)(
1

cn,r−1

)r(
λn

E[W̃ ]
)r(r−1)

≤ (
1 + o(1)

)
r
√

2πr

(
r

ne

)r( 1

cn,r−1

)r(
λn

E[W̃ ]
)r(r−1)

≤ (
1 + o(1)

)
r
√

2πr

(
λn

E[W̃ ]
)r((r−1)−βn((r−1)−(ωn−1))−(ωn−1))

= (
1 + o(1)

)
r
√

2πr

(
λn

E[W̃ ]
)−(1−βn)r((ωn−1)−(r−1))

,

where βn is given in Lemma 6.
Using (26) together with the fact that r = 
ωn − ε� ≤ ωn − ε yields the bound

bn,r
r ≤ (

1 + o(1)
)
r
√

2πr

(
λn

E[W̃ ]
)−(1−β)r((ωn−1)−(r−1))

≤ (
1 + o(1)

)
r
√

2πr

(
1

1 + δ

)εr

. (35)

Since ωn → ∞ it is easily seen from (35) that b
n,r
r → 0.
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Case (ii): Here we must show that maxk∈[r−1] bn,r
k → 0 as n → ∞. First, we apply Lemma 5

on the binomial coefficients, which gives(
r
k

)(
n−r
r−k

)(
n
r

) = (
1 + o(1)

)√ r

2πk(r − k)

(
re

k

)k(
(n − r)e

r − k

)r−k(
ne

r

)−r

= (
1 + o(1)

)√ r

2πk(r − k)

(
re

k

)k(
n − r

n

r

r − k

)r(
r − k

(n − r)e

)k

= (
1 + o(1)

)√ r

2πk(r − k)

(
re

k

)k(
r − k

n − r

)k

. (36)

Now, for all 1 ≤ k ≤ r − 1 we have that k ≤ ωn − ε − 1 ≤ ωn − 2ε and therefore 2(r − 1) − (k −
1) ≥ ωn − 1. So, we can apply Lemma 6 on both cn,2(r−1)−(k−1) and on cn,r−1, yielding(

cn,2(r−1)−(k−1)

c2
n,r−1

)k(
λn

E[W̃ ]
)k(k−1)

≤
(

2(r − 1) − (k − 1) + 1

ne

)k(
ne

r

)2k(
λn

E[W̃ ]
)k(k−1)

×
(

λn

E[W̃ ]
)k(βn(2(r−1)−(k−1)−(ωn−1))+(ωn−1))

×
(

λn

E[W̃ ]
)−2k(βn((r−1)−(ωn−1))+(ωn−1))

=
(

2(r − 1) − (k − 1) + 1

r2
ne

)k(
λn

E[W̃ ]
)−(1−βn)·k((ωn−1)−(k−1))

. (37)

Combining (36) and (37), we obtain

b
n,r
k ≤ (

1 + o(1)
)
r

√
r

2πk(r − k)

(
r − k

k

2(r − 1) − (k − 1) + 1

r
e2

)k

×
(

λn

E[W̃ ]
)−(1−βn)·k((ωn−1)−(k−1))

≤ (
1 + o(1)

)
r

√
r

2πk(r − k)

(
r − k

k
2e2

)k(
λn

E[W̃ ]
)−(1−βn)·k((ωn−1)−(k−1))

.

Here we can use (26) again. This gives

b
n,r
k ≤ (

1 + o(1)
)
r

√
r

2πk(r − k)

(
r − k

k
2e2

)k(
λn

E[W̃ ]
)−(1−βn)·k((ωn−1)−(k−1))
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≤ (
1 + o(1)

)
r

√
r

2πk(r − k)

(
r − k

k
2e2

)k( 1

1 + δ

)k((ωn−1)−(k−1))

= (
1 + o(1)

)
r

√
r

2πk(r − k)

(
2e2

(
r

k
− 1

)(
1

1 + δ

)ωn−k)k

. (38)

Fix ζ ∈ (0, (1 + 2e2)−1) and recall that ωn → ∞. Then it can easily be seen from (38) that
max1≤k≤(1−ζ )r b

n,r
k → 0 since (1 + δ)−(ωn−k) → 0 exponentially, eventually dominating the

other terms. Finally, to show that max(1−ζ )r≤k≤r b
n,r
k → 0, note that 2e2(r/k − 1) < 1 and there-

fore (2e2(r/k − 1)(1 + δ)−(ωn−k))k → 0 exponentially, again dominating the remaining terms.
Hence maxk∈[r] bn,r

k → 0 as n → ∞ and r = 
ωn − ε�. Using (34) and (30) it follows that
P(ω(Gn) < 
ωn − ε�) → 0 as n → ∞.

5.4.5. Lower bound with bounded typical clique number

In this section we prove the lower bound of Theorem 1 assuming that ωn is bounded. First
we consider the case where ωn converges, in this case there exists an α > 0 such that ωn =
1/α + 1 + o(1). We want to apply all the steps in Section 5.4.4, but instead of conditioning
on the event Tn,δ given in (21) we will condition on the event Tn,η given in (28). As shown in
Section 5.4.3, the typical clique number ωn is unaffected by this change, and by Assumption 2
we also have P(Tn,η) → 1.

Now, following all steps in Section 5.4.2 but conditioning on Tn,η instead of Tn,δ we obtain

P
(
ω(Gn) < r

) = (
1 + o(1)

)
P
(
ω(Gn) < r | Tn,η

) ≤ (
1 + o(1)

) E[N2
r | Tn,η]

E[Nr | Tn,η]2
− 1.

By combining (35) and (38), and using that r = ωn − ε is bounded, we get

P
(
ω(Gn) < r

) ≤ (
1 + o(1)

) E[N2
r | Tn,η]

E[Nr | Tn,η]2
− 1 ≤ O(1)

(
1

1 + η

)ε

.

Since we can make η > 0 arbitrarily large it follows that P(ω(Gn) < r) → 0.
To complete the proof we consider the case when ωn does not converge. In this case, we

know that every subsequence (ni)i∈N contains a further subsequence (nij )j∈N along which ωnij

converges. Applying the arguments above shows that every subsequence (ni)i∈N has a further
subsequence (nij )j∈N along which P(ω(Gnij

) < r) → 0, and it follows that P(ω(Gn) < r) → 0.

Appendix: Derivation of examples

In this section, we derive the asymptotic behavior of the typical clique number ωn for some given
weight distributions W and scalings λn. This can be very difficult in general, but for several
choices of weights good asymptotic characterizations can be given. An overview of these results
can be found in Tables 1, 2, and 3.
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Throughout the derivation of the examples below, we make use of the Lambert-W functions,
which are obtained from the solutions in y ∈R of the equation

x = yey, (39)

When x ≥ 0 this has a unique real solution, while for x ∈ (−1/e,0) there are two real solutions.
This gives rise to two branches: the principal branch, denoted by W0 : [−1/e,∞) �→ [−1,∞)

and the lower branch, denoted by W−1 : [−1/e,0) �→ (−∞,−1]. For an overview of this func-
tion and its properties see [10].

A.1. Bernoulli weights

Let W have a Bernoulli distribution with parameter p, that is W ∼ Ber(p), and take any scaling
λn ≥ c > 1. In this case, we have an Erdős–Rényi random graph with connection probability λ−2

n

on approximately np vertices, with all remaining vertices being isolated. Therefore, by (10), we
expect the typical clique number ωn to be

ωn = logλn
(np) − logλn

logλn
(np) + logλn

(e) + 1 + o(1).

In this section, we show that the same result is obtained by solving (6) from Definition 2.
The relative moments from Definition 1 are given by

cn,r−1 = E[W̃ r−1]
E[W̃ ]r−1

= E[Wr−1]
E[W ]r−1

= p2−r .

The typical clique number ωn from Definition 2 is given by the solution in r of

r = log(n) − log(r) + (2 − r) log(p) + 1

log(λn/p)
+ 1.

Solving this we obtain

ωn = W0(npeλn log(λn))

log(λn)
.

where W0 denotes the principal branch of the Lambert-W function, see (39). We can simplify
the solution above using the approximation W0(x) = log(x)− log log(x)+ o(1) as x → ∞ from
[10]. This gives

ωn = log(npeλn log(λn)) − log log(npe(λn) log(λn))

log(λn)
+ o(1)

= log(npeλn log(λn)) − log log(np)

log(λn)
+ o(1)

= logλn

(
np log(λn)

) − logλn
log(np) + logλn

(e) + 1 + o(1)

= logλn
(np) − logλn

logλn
(np) + logλn

(e) + 1 + o(1),

which is exactly the expected solution.
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A.2. Beta weights

Let W have a beta distribution with parameters α > 0 and β > 0, that is W ∼ Beta(α,β), and
take any scaling λn ≥ c > 1. Then the relative moments from Definition 1 are given by

cn,r−1 = E[W̃ r−1]
E[W̃ ]r−1

= E[Wr−1]
E[W ]r−1

=
r−2∏
r=0

α + r

α + β + r

/(
α

α + β

)r−1

= 	(α + r − 1)

	(α + β + r − 1)
· 	(α + β)

	(α)
·
(

α

α + β

)r−1

.

Using Stirling’s approximation, the above can be simplified for large r . This gives

log(cn,r−1) = −β log(r) + log
(
	(α + β)/	(α)

) + (r − 1) log

(
α

α + β

)
+ o(1).

Therefore, the typical clique number ωn from Definition 2 is given by the solution in r of

r = log(n) − (β + 1) log(r) + (r − 1) log( α
α+β

) + log(	(α + β)/	(α)) + 1

log(λn/(
α

α+β
))

+ 1 + o(1).

Solving this we obtain

ωn =
(1 + β)W0

(
(neλn	(α+β)/	(α))

1
1+β log(λn)

1+β

)
log(λn)

+ o(1),

As in the previous example, using the approximation W0(x) = log(x) − log log(x) + o(1), we
obtain

ωn =
(1 + β) log

(
(neλn	(α+β)/	(α))

1
1+β log(λn)

1+β

)
log(λn)

−
(1 + β) log log

(
(neλn	(α+β)/	(α))

1
1+β log(λn)

1+β

)
log(λn)

+ o(1)

= log(neλn	(α + β)/	(α)) + (1 + β) log
( log(λn)

1+β

) − (1 + β) log log(n)

log(λn)
+ o(1)

= logλn

(
ne	(α + β)/	(α)

) − (1 + β) logλn

(
(1 + β) logλn

(n)
) + 1 + o(1)

= logλn
(n) − (1 + β) logλn

(
(1 + β) logλn

(n)
)

+ logλn
(e) + logλn

(
	(α + β)/	(α)

) + 1 + o(1).
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A.3. Gamma weights

Let W have a Gamma distribution with shape α and rate β , that is W ∼ Gamma(α,β). First, we
assume that truncating the weight distribution has asymptotically almost no effect on the relative
moments from Definition 1. We begin by assuming that

cn,r−1 = E[W̃ r−1]
E[W̃ ]r−1

= (
1 + o(1)

)E[Wr−1]
E[W ]r−1

, (40)

for all r ≤ ωn, and use this to find the typical clique number ωn. After that, we will show that the
assumption in (40) is valid. By the assumption in (40)

cn,r−1 = (
1 + o(1)

)E[Wr−1]
E[W ]r−1

= (
1 + o(1)

)	(α + r − 1)

	(α)αr−1
.

To satisfy Assumption 1 we must have λn → ∞, and therefore

log(cn,r−1)

log
(
λn/E

[
W̃

]) = log(	(α + r − 1)) − log(	(α)) − (r − 1) log(α)

log
(
λn/E

[
W̃

]) + o(1).

Using Stirling’s approximation again relying on the fact that r is large, the typical clique
number ωn is given by the solution in r of

r = log(n) − log(r) + log(	(α + r − 1)) − log(	(α)) − (r − 1) log(α) + 1

log(λnβ/α)
+ 1 + o(1)

= log(n) − log(r) + (α + r − 3
2 ) log(α + r − 2) + 2

log(λnβ/α)

− (α + r − 2) + log(	(α)) + (r − 1) log(α) + 2

log(λnβ/α)
+ 1 + o(1)

= log(n) + (α + r − 5
2 ) log(α + r − 5

2 )

log(λnβ/α)

− (α + r − 5
2 ) + log(	(α)) + (r − 1) log(α)

log(λnβ/α)
+ 1 + o(1).

Substituting x = r + α − 5/2, we get

x = log(n) + (α − x − 3
2 ) log(α) + x log(x) − x − log(	(α)) + 2

log(λnβ/α)
− 3

2
+ α + o(1).

Solving for x we find ωn + α − 5/2, and therefore the typical clique number ωn is given by

ωn = 2 log(n) − (3 − 2α) log(βλn) + 4 − 2 log(	(α))

−W−1

(
− 2 log(n)−(3−2α) log(βλn)+4−2 log(	(α))

2eβλn

) + 5

2
− α + o(1), (41)

where W−1 denotes the lower branch of the Lambert-W function, see (39).
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A.3.1. First scaling: λn = (1 + ϕ) log(n)/β

Let λn = (1+ϕ) log(n)/β , with ϕ > 0. We will show that in this case (41) simplifies to the result
in Table 2. This gives

ωn = log(n) − ( 3
2 − α) log((1 + ϕ) log(n)) + 2 − log(	(α))

−W−1

(
− log(n)−( 3

2 −α) log((1+ϕ) log(n))+2−log(	(α))

e(1+ϕ) log(n)

) + 5

2
− α + o(1)

= log(n) − ( 3
2 − α) log((1 + ϕ) log(n)) + 2 − log(	(α))

−W−1

(
− 1

e(1+ϕ)

)
+ o(1)

+ 5

2
− α + o(1)

= (
1 + o(1)

) log(n)

−W−1

(
− 1

e(1+ϕ)

) .

It remains to show that our assumption from (40) holds. We will do this in two parts: (i) where
we show E[W̃ r−1]/E[Wr−1] → 1 for any r ≤ ωn; and (ii) where we show (E[W̃ ]/E[W ])r−1 →
1 for any r ≤ ωn. First, observe that for any k ≥ 1 we have

E[W̃ k]
E[Wk] = E

[
Wk | W ≤ λn

1+δ

]
E[Wk] = 1

P
(
W ≤ λn

1+δ

) ∫ λn
1+δ

0 xkfW (x)dx∫ ∞
0 xkfW (x)dx

= P
(
Zk ≤ λn

1+δ

)
P
(
W ≤ λn

1+δ

) , (42)

where Zk ∼ Gamma(α + k,β).
Part (i): To simplify notation, let a := (1 + ϕ)/(1 + δ), b := −1/W−1(−1/(e(1 + ϕ))), and

zn := ωn + α − 1 = (1 + o(1))b log(n) + α − 1. Note that, because ϕ > δ > 0 we have

a = 1 + ϕ

1 + δ
> 1 >

(
−W−1

(
− 1

e(1 + ϕ)

))−1

= b.

Finally, let Xi ∼ Exp(β). Then using (42) and Assumption 1 we have

E[W̃ r−1]
E[Wr−1] = (

1 + o(1)
)
P

(
Zr−1 ≤ λn

1 + δ

)

≥ (
1 + o(1)

)
P

(�zn�∑
i=1

Xi ≤ a

β
log(n)

)

= (
1 + o(1)

)(
1 − P

(
1

�zn�
�zn�∑
i=1

Xi >
(
1 + o(1)

) 1

β

a

b

))

≥ (
1 + o(1)

)(
1 − exp

(
−�zn�I

((
1 + o(1)

) 1

β

a

b

)))
, (43)
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where I (x) := xβ − 1 − log(xβ) is the rate function of an exponential distribution with rate β .
Hence, for n large enough and because a/b > 1 we have

I

((
1 + o(1)

) 1

β

a

b

)
= (

1 + o(1)
)
I

(
1

β

a

b

)
= (

1 + o(1)
)(

(a/b) − 1 − log(a/b)
)
> 0. (44)

Combining (43) and (44) we see that E[W̃ r−1]/E[Wr−1] → 1.
Part (ii): From (42) and integration by parts, we obtain

Eh[W̃ ]
E[W ] = P

(
Z1 ≤ λn

1+δ

)
P
(
W ≤ λn

1+δ

) = γ (1 + α,βλn/(1 + δ))

αγ (α,βλn/(1 + δ))

= 1 − (βλn/(1 + δ))α exp(−βλn/(1 + δ))

αγ (α,βλn/(1 + δ))

= 1 −O(1)
log(n)α

na
,

where γ (·, ·) is the lower incomplete gamma function and we recall that a = (1+ϕ)/(1+δ) > 1.
Hence, we have (E[W̃ ]/E[W ])r−1 → 1 for any r ≤ n.

From parts (i) and (ii) we see that our assumption in (40) indeed holds.

A.3.2. Second scaling: λn = (1 + ϕ) log(n)/β

Let λn = log(n)1+ϕ/β , with ϕ > 0. We will show that in this case (41) simplifies to the result in
Table 3. This gives

ωn = log(n) − ( 3
2 − α)(1 + ϕ) log log(n) + 2 − log(	(α))

−W−1

(
− log(n)−( 3

2 −α)(1+ϕ) log log(n)+2−log(	(α))

e log(n)1+ϕ

) + 5

2
− α + o(1)

= log(n) − ( 3
2 − α)(1 + ϕ) log log(n) + 2 − log(	(α))

−W−1

(
− 1

e log(n)ϕ

)
+ o(1)

+ 5

2
− α + o(1)

= (
1 + o(1)

) log(n)

log(e log(n)ϕ)
= (

1 + o(1)
) 1

ϕ

log(n)

log log(n)
.

Compared to Section A.3.1 the scaling λn is larger and the typical clique number ωn is smaller.
Therefore, it is evident that our assumption from (40) is also valid in this case.

A.4. Half-normal weights

Let W have a half-normal distribution with parameters μ = 0 and σ > 0, that is W ∼ |X|, where
X ∼ N(0, σ ). We proceed in the exact same way as for the Gamma distribution, and assume first
that

cn,r−1 = E[W̃ r−1]
E[W̃ ]r−1

= (
1 + o(1)

)E[Wr−1]
E[W ]r−1

= (
1 + o(1)

)
π

r
2 −1	(r/2), (45)
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for all r ≤ ωn. To satisfy Assumption 1 we must have λn → ∞, and therefore

log(cn,r−1)

log
(
λn/E

[
W̃

]) = ( r
2 − 1) log(π) + log(	(r/2))

log
(
λn/E

[
W̃

]) + o(1).

Using Stirling’s approximation and the fact that the typical clique number ωn grows with n,
the typical clique number ωn is given by the solution in r of

r = log(n) − log(r) + ( r
2 − 1) log(π) + log

(
	( r

2 )
) + 1

log
(
λn/

√
2σ 2/π

) + 1 + o(1)

= log(n) − log(r) + ( r
2 − 1) log(π) + ( r

2 − 1
2 ) log

(
r
2 − 1

) − r
2 + 3

log
(
λn/

√
2σ 2/π

) + 1 + o(1)

= log(n) + ( r−3
2 ) log( r−3

2 ) + ( r−3
2 )(log(π) − 1) + log

( e2√π

2

)
log

(
λn/

√
2σ 2/π

) + 1 + o(1).

Substituting x = (r − 3)/2, we get

x = 1

2

log(n) + x log(x) + x(log(π) − 1) + log
( e2√π

2

)
log

(
λn/

√
2σ 2/π

) − 1 + o(1).

Solving for x we find (ωn − 3)/2, and therefore the typical clique number ωn is given by

ωn = 2 log(n) − 4 log(λn) + 4 − log(π)

−W−1

(
− 2 log(n)−4 log(λn)+4−log(π)

eλ2
n

) + 3 + o(1), (46)

where W−1 denotes the lower branch of the Lambert-W function, see (39).

A.4.1. First scaling: λn = (1 + ϕ)σ
√

2 log(n)

Let λn = (1 + ϕ)σ
√

2 log(n), with ϕ > 0. We will show that in this case (46) simplifies to the
result in Table 2. This gives

ωn = 2 log(n) − 4 log
(
(1 + ϕ)

√
2 log(n)

) + 4 − log(π)

−W−1

(
− 2 log(n)−4 log

(
(1+ϕ)

√
2 log(n)

)
+4−log(π)

2e(1+ϕ)2 log(n)

) + 3 + o(1)

= 2 log(n) − 2 log log(n) − 2 log
(√

4π(1 + ϕ)2/e2
)

−W−1

(
− 1

e(1+ϕ)2

)
+ o(1)

+ 3 + o(1)

= (
1 + o(1)

) 2 log(n)

−W−1

(
− 1

e(1+ϕ)2

) .
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A.4.2. Second scaling: λn = σ
√

2 log(n)
1+ϕ

Let λn = σ
√

2 log(n)
1+ϕ

, with ϕ > 0. We will show that in this case (46) simplifies to the result
in Table 3. This gives

ωn = 2 log(n) − 2(1 + ϕ) log(2 log(n)) + 4 − log(π)

−W−1

(
− 2 log(n)−2(1+ϕ) log(2 log(n))+4−log(π)

e(2 log(n))1+ϕ

) + 3 + o(1)

= 2 log(n) − 2(1 + ϕ) log(2 log(n)) + 4 − log(π)

−W−1

(
− 1

e(2 log(n))ϕ

)
+ o(1)

+ 3 + o(1)

= (
1 + o(1)

) 2 log(n)

log(e(2 log(n))ϕ)
= (

1 + o(1)
) 2

ϕ

log(n)

log log(n)
.

At this stage, we have not yet shown that the assumption in (45) holds. This can be done using a
similar reasoning as for the Gamma distribution, and we omit the details for brevity.

A.5. Log-normal weights

Let W have a log-normal distribution with parameters μ = 0 and σ = 1, that is W ∼ exp(X),
where X is standard normal. Then one can show that the relative moments from Definition 1 are
given by

log(cn,r−1)

log
(
λn/E

[
W̃

]) =
1
2 (r − 1)(r − 2)

log
(
λn/E

[
W̃

]) + o(1).

provided that r ≤ ωn. For brevity of presentation, we omit the details of this derivation.
Using this in Definition 2, the typical clique number ωn is the solution in r of

r = log(n) − log(r) + 1
2 (r − 1)(r − 2) + 1

log(λn/
√

e)
+ 1 + o(1).

To solve this, we bound the solution with the following two bounds

r ≤ log(n) + 1
2 (r − 1)(r − 2) + 1

log(λn/
√

e)
+ 1 + o(1),

r ≥ log(n) − r + 1
2 (r − 1)(r − 2) + 1

log(λn/
√

e)
+ 1 + o(1).

Solving the above gives

ωn ≤ log(λn) −
√

log(λn)2 − 2
(
log(n) + 1

) + 1 + o(1), (47)

ωn ≥ log(λn) −
√(

1 + log(λn)
)2 − 2 log(n) + 2 + o(1). (48)
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Combining (47) and (48), and plugging in λn = (1 + ϕ) exp(
√

2 log(n)), we obtain the result in
Table 2. Similarly, the result in Table 3 is obtained by plugging in λn = exp(

√
2 log(n))1+ϕ .
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