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In this paper, we investigate the parametric inference for the linear fractional stable motion in high and low
frequency setting. The symmetric linear fractional stable motion is a three-parameter family, which consti-
tutes a natural non-Gaussian analogue of the scaled fractional Brownian motion. It is fully characterised by
the scaling parameter σ > 0, the self-similarity parameter H ∈ (0,1) and the stability index α ∈ (0,2) of
the driving stable motion. The parametric estimation of the model is inspired by the limit theory for station-
ary increments Lévy moving average processes that has been recently studied in (Ann. Probab. 45 (2017)
4477–4528). More specifically, we combine (negative) power variation statistics and empirical character-
istic functions to obtain consistent estimates of (σ,α,H). We present the law of large numbers and some
fully feasible weak limit theorems.
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1. Introduction

Since the pioneering work by Mandelbrot and van Ness [18] fractional Brownian motion (fBm)
became one of the most prominent Gaussian processes in the probabilistic and statistical litera-
ture. As a building block in stochastic models, it found various applications in natural and social
sciences such as physics, biology or economics. Mathematically speaking, the scaled fBm is fully
characterised by its scaling parameter σ > 0 and Hurst parameter H ∈ (0,1). More specifically,
the scaled fBm Zt = σBH

t is a zero mean Gaussian process with covariance kernel determined
by

E
[
BH

t BH
s

]= 1

2

(
t2H + s2H − |t − s|2H

)
, t, s ≥ 0.

We recall that the (scaled) fBm with Hurst parameter H ∈ (0,1) is the unique Gaussian pro-
cess with stationary increments and self-similarity index H , that is, it holds that (aH Zt )t≥0 =
(Zat )t≥0 in distribution for any a > 0. Over the last forty years there has been a lot of progress
in limit theorems and statistical inference for fBm’s. The estimation of the Hurst parameter H

and/or the scaling parameter σ has been investigated in numerous papers both in low and high
frequency framework. We refer to [13] for efficient estimation of the Hurst parameter H in the
low frequency setting and to [9,12,16] for the estimation of (σ,H) in the high frequency setting,
among many others. In the low frequency framework, the spectral density methods are usually
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applied and the optimal convergence rate for the estimation of (σ,H) is known to be
√

n. In the
high frequency setting the estimation of the pair (σ,H) typically relies upon power variations
and related statistics, and the optimal convergence rate is known to be (

√
n/ log(n),

√
n). More

recently, the class of multifractional Brownian motions, which accounts for time varying Hurst
parameter, has been introduced in the literature (see, e.g., [2,19,30]). We refer to the work [4,17]
for estimation techniques for the regularity of a multifractional Brownian motion.

If we drop the Gaussianity assumption, the class of stationary increments self-similar pro-
cesses becomes much larger. This is a consequence of the work by Pipiras and Taqqu [20], which
in turn applies the decomposition results from the seminal paper by Rosiński [25] (see also [26]).
The crucial theorem proved in [25] shows that each stationary stable process can be uniquely
decomposed (in distribution) into three independent parts: the mixed moving average process,
the harmonizable process and the “third kind” process described by a conservative nonsingular
flow. The most prominent example of a non-Gaussian stationary increments self-similar process
is the linear fractional stable motion (an element of the first class), which has been introduced
in [11]. It is defined as follows: On a filtered probability space (�,F, (Ft )t∈R,P), we introduce
the process

Xt =
∫
R

{
(t − s)

H−1/α
+ − (−s)

H−1/α
+

}
dLs, x+ := max{x,0}, (1.1)

where L is a symmetric α-stable Lévy motion, α ∈ (0,2), with scale parameter σ > 0 and
H ∈ (0,1) (here we use the convention xa+ = 0 for any x ≤ 0 and a ∈ R). In some sense the
linear fractional stable motion is a non-Gaussian analogue of fBm. The process (Xt )t∈R has
symmetric α-stable marginals, stationary increments and it is self-similar with parameter H .
Fractional stable motions are often used in natural sciences, e.g. in physics or internet traf-
fic, where the process under consideration exhibits stationarity and self-similarity along with
heavy tailed marginals (see, e.g., [15] for the context of turbulence modelling). The probabilistic
properties of linear fractional stable motions, such as integration concepts, path and variational
properties, have been intensively studied in several papers, see, for example, [6–8] among many
others. However, from the statistical point of view, very little is known about the inference for
the parameter θ = (σ,α,H) ∈ R+ × (0,2) × (0,1) in high or low frequency setting. The few
existing papers mostly concentrate on estimation of the self-similarity parameter H . The work
[3,22] investigates the asymptotic theory for a wavelet-based estimator of H when α ∈ (1,2). In
[5,28] the authors suggest to use power variation statistics to obtain an estimator of H , but this
method also requires the a priori knowledge of the lower bound for the stability parameter α.
Recently, the work [14] suggested to use negative power variations to get a consistent estimator
of H , which applies for any α ∈ (0,2), but this article does not contain a central limit theorem for
this method. Finally, in [5,15] the authors propose to use an empirical scale function to estimate
the pair (α,H). However, this approach only provides a log(n)-consistent estimator without any
hope for a central limit theorem.

In this paper, we will propose a new estimation procedure for the parameter θ = (σ,α,H) in
high and low frequency framework. Our methodology is based upon the use of power variation
statistics, with possibly negative powers, and the empirical characteristic function. The prob-
abilistic techniques originate from the recent article [5], which has developed the asymptotic
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theory for power variations of higher order differences of stationary increments Lévy moving av-
erages (see also [21,22] for related asymptotic theory). However, we will prove a much stronger
result, which in particular includes the complete asymptotic theory for negative power variations
and empirical characteristic functions consisting of normal and stable limits (see Theorem 2.2).
This novel result is key to obtaining a distributional theory for the estimator of the parameter
θ ∈ R+ × (0,2)× (0,1). We will deduce a fully feasible asymptotic theory for our estimator with
convergence rates (

√
n,

√
n,

√
n) in the low frequency setting and (

√
n/ log(n),

√
n/ log(n),

√
n)

in the high frequency setting. We will distinguish two different scenarios H − 1/α > 0 and the
general case, where the first one corresponds to the continuous framework. In the continuous
setting our estimation method is simpler than in the general case, which requires a two-step pro-
cedure. Finally, we present an extensive simulation study to uncover the finite sample properties
of our estimators. We conclude that the estimators of the self-similarity parameter H are quite
reliable in all considered scenarios, while estimators for the scaling parameter σ have the worst
finite sample performance.

The paper is structured as follows. Section 2 presents the basic properties of the linear frac-
tional stable motion, the review of the probabilistic results from [5] and a multivariate limit the-
orem, which plays a key role for the statistical estimation. Section 3 is devoted to the statistical
inference in the continuous case H − 1/α > 0. The general case is treated in Section 4. Finally,
Section 5 demonstrates some simulation results. All proofs are collected in the supplementary
material [27].

2. First properties and some asymptotic results

2.1. Distributional and path properties

In this section, we review some basic properties of the linear fractional stable motion. First of all,
we recall that the symmetric α-stable process (Lt )t∈R with scale parameter σ > 0 is uniquely
determined by the characteristic function of L1, which is given by

E
[
exp(itL1)

]= exp
(−σα|t |α), t ∈R. (2.1)

Following the theory of integration with respect to infinitely divisible processes investigated in
[23], we know that for any deterministic function g : R→R

X =
∫
R

gs dLs < ∞ almost surely ⇔ ‖g‖α
α :=

∫
R

|gs |α ds < ∞.

Furthermore, if ‖g‖α < ∞ then X has a symmetric α-stable distribution with scale parameter
σ‖g‖α . In particular, setting

Xt =
∫
R

gt (s) dLs, gt (s) := {(t − s)
H−1/α
+ − (−s)

H−1/α
+

}
, (2.2)

we see that gt ∈ Lα(R) for any t ∈ R, since |gt (s)| ≤ Ct |s|H−1−1/α when s → −∞ and H ∈
(0,1). Hence, Xt is well defined for any t ∈ R and all finite dimensional distributions of the
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linear fractional stable motion (Xt )t∈R are symmetric α-stable. It is easily seen that the linear
fractional stable motion has stationary increments.

We recall that symmetric α-stable random variables with α ∈ (0,2) do not exhibit finite sec-
ond moments, and hence their dependence structure can’t be measured via the classical covari-
ance kernel. Instead it is often useful to consider the following measure of dependence. Let
X = ∫

R
gs dLs and Y = ∫

R
hs dLs with ‖g‖α,‖h‖α < ∞. Then we introduce the measure of

dependence Ug,h : R2 →R via

Ug,h(u, v) := E
[
exp
(
i(uX + vY )

)]−E
[
exp(iuX)

]
E
[
exp(ivY )

]
= exp

(−σα‖ug + vh‖α
α

)− exp
(−σα

(‖ug‖α
α + ‖vh‖α

α

))
. (2.3)

The quantity Ug,h is extremely useful when computing covariances cov(K1(X),K2(Y )) for func-
tions K1,K2 ∈ L1(R); see for instance [22]. Let F denote the Fourier transform and let F−1 be its
inverse. Furthermore, let p(X,Y ), pX and pY denote the density of (X,Y ), X and Y , respectively.
We recall that these densities are not available in a closed form except in some special cases.
Using the duality relationship we obtain the identity

cov
(
K1(X),K2(Y )

)= ∫
R2

K1(x)K2(y)
(
p(X,Y )(x, y) − pX(x)pY (y)

)
dx dy

=
∫
R2

K1(x)K2(y)F−1Ug,h(x, y) dx dy

=
∫
R2

(
F−1K1(x)

)(
F−1K2(y)

)
Ug,h(x, y) dx dy. (2.4)

We remark that the latter provides an explicit formula for computation of covariances cov(K1(X),

K2(Y )).
Finally, we recall that the path properties of a linear fractional stable motion strongly depend

on the interplay between the parameters H and α. When H − 1/α > 0 the process (Xt )t∈R is
Hölder continuous on compact intervals of any order smaller than H − 1/α; we refer to [6] for
more details on this property. If H − 1/α < 0 the linear fractional stable motion explodes at
jump times of the driving Lévy process L; in particular, X has unbounded paths on compact
intervals. We demonstrate some sample paths of the linear fractional stable motions in Figure 1.
In the critical case H − 1/α = 0, we obviously have the identity Xt = Lt . In this situation the
parameter estimation has been investigated in [1].

2.2. Review of the limit theory

In this section, we review some probabilistic results, which will be relevant for our estimation
method. Due to stationarity of the increments and self-similarity of the process (Xt )t∈R, we
can discuss the limit theory for the high and low frequency case simultaneously. We start by
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Figure 1. Left (from bottom to top): The driving symmetric stable Lévy process with α = 1, linear frac-
tional stable motions with parameters α = 1, H = 0.8 and α = 1, H = 0.2. Right (from bottom to top):
The driving symmetric stable Lévy process with α = 1.8, linear fractional stable motions with parameters
α = 1.8, H = 0.8 and α = 1.8, H = 0.2.

introducing higher order increments of X. We denote by �
n,r
i,k X (i, k, r, n ∈ N) the kth order

increment of X at stage i/n and frequency r/n, that is,

�
n,r
i,k X :=

k∑
j=0

(−1)j
(

k

j

)
X(i−rj)/n, i ≥ rk. (2.5)

Note that for r = k = 1 we obtain the usual increments �
n,1
i,1 X = Xi/n − X(i−1)/n. For the ease

of notation, we will often drop the index r (resp. k and n) in �
n,r
i,k X and other quantities when

r = 1 (resp. k = 1 and n = 1). In particular, the low frequency kth order increments of X are
denoted by

�r
i,kX :=

k∑
j=0

(−1)j
(

k

j

)
Xi−rj , i ≥ rk. (2.6)

According to the self-similarity of the process (Xt )t∈R we readily have that (nH �
n,r
i,k X)i≥rk

d=
(�r

i,kX)i≥rk . Our main probabilistic tools will be statistics of the form

Vhigh(f ; k, r)n := 1

n

n∑
i=rk

f
(
nH �

n,r
i,k X

)
, Vlow(f ; k, r)n := 1

n

n∑
i=rk

f
(
�r

i,kX
)
, (2.7)
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where f : R → R is a measurable function. It is well known that the process (Xt )t∈R is
mixing, see, for example, [10]. Hence, Birkhoff’s ergodic theorem implies the convergence
Vlow(f ; k, r)n → E[f (�r

rk,kX)] almost surely whenever E[|f (�r
rk,kX)|] < ∞. The same re-

sult holds in probability for the statistic Vhigh(f ; k, r)n due to self-similarity of the process X.
However, the weak limit theorems associated with the aforementioned law of large numbers and
the framework of functions f with E[|f (�r

rk,kX)|] = ∞ are not completely understood in the
literature. To get an idea about possible limits that may appear, we briefly demonstrate some re-
cent theoretical developments from the paper [5], where the case fp(x) = |x|p (p > 0) has been
investigated. We remark that their results are obtained for a wider class of processes, namely
stationary increments Lévy moving average processes, and we adapt them to the setting of linear
fractional stable motions.

We need to introduce some more notation to describe the various limits. For p ∈ (−1,1) \ {0}
we define the constant

ap :=

⎧⎪⎨⎪⎩
∫
R

(
1 − cos(y)

)|y|−1−p dy : p ∈ (0,1)

√
2π�(−p/2)/2p+1/2�

(
(p + 1)/2

) : p ∈ (−1,0),

(2.8)

where � denotes the Gamma function. It is easy to see that ap > 0 is indeed finite in all relevant
cases. For any functions g,h ∈ Lα(R), we introduce the notation

θ(g,h)p = a−2
p

∫
R2

|xy|−1−pUg,h(x, y) dx dy, (2.9)

where Ug,h is defined in (2.3), whenever the above double integral is finite. Furthermore, for
k, r ∈N, we define the function hk,r : R→R by

hk,r (x) =
k∑

j=0

(−1)j
(

k

j

)
(x − rj)

H−1/α
+ , x ∈ R. (2.10)

Below (Um)m≥1 is an i.i.d. U(0,1)-distributed sequence of random variables independent of L,
(Tm)m≥1 are jump times of L and �LTm := LTm − LTm− are jump sizes. The following result
summarises the limit theory for the statistic Vhigh(fp; k)n (i.e. r = 1) in the power variation
setting.

Theorem 2.1 ([5], Theorems 1.1 and 1.2). We consider the function fp(x) = |x|p (p > 0) and
assume that H − 1/α > 0.

(i) (First order asymptotics) If p > α we obtain convergence in law

n1−p/αVhigh(fp; k)n
d−→

∑
m:Tm∈[0,1]

|�LTm |p
( ∞∑

l=0

∣∣hk(l + Um)
∣∣p).

If p < α, we deduce the law of large numbers

Vhigh(fp; k)n
P−→ mp,k := E

[|�k,kX|p].
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(ii) (Second order asymptotics) Assume that p < α/2. If H < k − 1/α, we obtain the central
limit theorem

√
n
(
Vhigh(fp; k)n − mp,k

) d−→ N
(
0, η2), η2 = θ(hk,hk)p + 2

∞∑
j=1

θ
(
hk,hk(· + j)

)
p
,

where the quantity θ(g,h) has been introduced at (2.9). If H > k − 1/α, we deduce a
non-central limit theorem

n1−1/(1+α(k−H))
(
Vhigh(fp; k)n − mp,k

) d−→ S,

where S is a totally right skewed (1 + α(k − H))-stable random variable with mean zero
and scale parameter σ̃ , which is defined in [5], Theorem 1.2.

We remark that the results of Theorem 2.1 remain valid for the low frequency statistic
Vlow(fp; k)n due to self-similarity property of L. Apart from various critical cases Theorem 2.1
gives a rather complete understanding of the asymptotic behaviour of the power variation
Vhigh(fp; k)n in the setting H − 1/α > 0. The strong law of large numbers in Theorem 2.1(i)
will be useful for estimation of the parameter H . However, without an a priori knowledge about
the stability parameter α, we can’t insure that the condition p < α holds. Similarly, we would
like to use the central limit theorem in Theorem 2.1(ii) whose convergence rate

√
n is faster than

the rate n1−1/(1+α(k−H)) in the non-central limit theorem. But the conditions of Theorem 2.1(ii)
rely again on an a priori knowledge about α.

There are some related results in the literature. In [21], the authors have shown a central limit
theorem for a standardised version of the statistic

∑n
i=1 f (Yi), where f is a bounded function

and (Yt )t∈R is a stable moving average process. In a later work [22] the result has been extended
to a certain class of unbounded functions f under the additional assumption that α ∈ (1,2).
Similarly to Theorem 2.1 the sufficient conditions for the validity of the central limit theorems in
[21,22] depend on the interplay between the kernel function of the stable moving average process
and the stability index α. We remark that extensions of these results in various directions will be
necessary to obtain the full asymptotic theory for estimators of the parameter θ = (σ,α,H).

2.3. A multivariate weak limit theorem

Although Theorem 2.1(ii) gives a rather complete picture of the weak limit theory in the power
variation case, we will require a much stronger result for our statistical applications. We introduce
the function ψt : R→R with ψt(x) = cos(tx) and define the statistics

ϕhigh(t;H,k)n := Vhigh(ψt ; k)n and ϕlow(t; k)n := Vlow(ψt ; k)n, (2.11)

which correspond to r = 1. Notice that, in contrast to ϕlow(t; k)n, the high frequency statistic
ϕhigh(t;H,k)n depends on the unknown self-similarity parameter H . In fact, this is the major
difference between the high and low frequency settings, which will result in different rates of
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convergence later on. Applying again the strong law of large numbers we readily obtain the
strong consistency

ϕlow(t; k)n
a.s.−→ ϕ(t; k) := exp

(−∣∣σ‖hk‖αt
∣∣α). (2.12)

Clearly, the same result holds in probability for the high frequency statistic ϕhigh(t;H,k)n. Next,
we introduce various types of statistics, which will play a major role in estimation of the un-
known parameter θ . More specifically, we will extend the definition of power variation to cer-
tain negative powers and prove a multivariate limit theorem for power variations and empirical
characteristic functions. We fix d ∈ N and define the statistics for any 1 ≤ j ≤ d , rj ∈ {1,2},
p ∈ (−1/2,1/2) \ {0} and tj > 0:

W(n)
(1)
j := √

n
(
Vlow(fp; kj , rj )n − r

pH
j mp,kj

)
W(n)

(2)
j := √

n
(
Vlow(ψtj ; kj )n − ϕ(tj ; kj )

) }
when kj > H + 1/α

S(n)
(1)
j := n1−1/(1+α(k−H))

(
Vlow(fp; k, rj )n − r

pH
j mp,k

)
S(n)

(2)
j := n1−1/(1+α(k−H))

(
Vlow(ψtj ; k)n − ϕ(tj ; k)

) }
when k < H + 1/α

(2.13)

Note the identity E[|�r
rk,kX|p] = rpH mp,k , which explains the centring of the statistics W(n)(1)

and S(n)(1). We remark that the functionals W(n)(1) and W(n)(2) are in the domain of attraction
of the normal distribution (under appropriate assumption on the powers p) while the functionals
S(n)(1) and S(n)(2) are in the domain of attraction of the (1 +α(k −H))-stable distribution. The
latter fact is rather surprising since the statistic S(n)

(2)
j exhibits finite moments of any order.

Before we proceed with the main result of this section, we need to introduce some more
notation. In the first step, for any x ∈R, we define the functions

�
(1)
j (x) = E

[
fp

(
�

rj
rj k,kX + x

)]−E
[
fp

(
�

rj
rj k,kX

)]
,

�
(2)
j (x) = E

[
ψtj (�k,kX + x)

]−E
[
ψtj (�k,kX)

]
.

(2.14)

Since the functions fp and ψt are even we readily obtain that �
(l)
j (0) = ∇�

(l)
j (0) = 0 for all l, j .

Thus, using Lemma 0.5, we deduce the growth estimates∣∣�(1)
j (x)

∣∣≤ C
(
x2 ∧ |x|max{p,0}), ∣∣�(2)

j (x)
∣∣≤ C

(
x2 ∧ 1

)
, (2.15)

for some positive constant C. Next, we introduce the functions

�
(1)

j (x) =
∞∑
i=1

�
(1)
j

(
hk,rj (i)x

)
, �

(2)

j (x) =
∞∑
i=1

�
(2)
j

(
hk(i)x

)
. (2.16)

Note that these functions are indeed finite due to (2.15) and the estimate |hk,r (x)| ≤ C|x|H−1/α−k

for large x. Finally, we set � = (�
(1)

,�
(2)

) = (�
(1)

1 , . . . ,�
(1)

d ,�
(2)

1 , . . . ,�
(2)

d ). The main prob-
abilistic result of this paper is the following theorem.
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Theorem 2.2. Assume that either p ∈ (−1/2,0) or p ∈ (0,1/2) and p < α/2. Set W(n)(i) =
(W(n)

(i)
1 , . . . ,W(n)

(i)
d ) and S(n)(i) = (S(n)

(i)
1 , . . . , S(n)

(i)
d ) for i = 1,2. Then we obtain weak

convergence in law on R
4d :(

W(n)(1),W(n)(2), S(n)(1), S(n)(2)
) d−→ (

W(1),W(2), S(1), S(2)
)
, (2.17)

where W = (W(1),W(2)) and S = (S(1), S(2)) are independent, W is a centred 2d-dimensional
normal distribution with covariance matrix determined by

cov
(
W

(i)
j ,W

(i′)
j ′
)= lim

n→∞ cov
(
W(n)

(i)
j ,W(n)

(i′)
j ′
)

1 ≤ j, j ′ ≤ d, i, i′ = 1,2,

and S(1), S(2) are independent d-dimensional (1 + α(k − H))-stable random variables. The law
of S(1) (resp. S(2)) is determined by the Lévy measure ν1 (resp. ν2) whose support is the cone
(R+)d (resp. (R−)d ). More specifically, for any Borel sets A1 ∈ (R+)d , A2 ∈ (R−)d bounded
away from 0 the quantities ν1(A1), ν2(A2) are determined by the identity

νl(Al) = lim
n→∞nP

(
n−1/(1+α(k−H))�

(l)
(L1) ∈ Al

)
, l = 1,2. (2.18)

The probabilistic result of Theorem 2.2 is new in the literature; neither the negative power
variations nor the (real part of) empirical characteristic function have been studied from the
distributional perspective. We remark that the statistics W(n)(1) and S(n)(1) use the same powers
p while the quantities S(n)(1) and S(n)(2) are based on the same order of increments k. The result
of Theorem 2.2 does not really use these particular restrictions, but its statement is sufficient for
the statistical application under investigation.

There exists an explicit expression for the covariance matrix of the limit W . We obtain the
following representations:

cov
(
W

(1)
j ,W

(1)

j ′
)=∑

l∈Z
θ
(
hkj ,rj , hkj ′ ,rj ′ (· + l)

)
p
,

cov
(
W

(2)
j ,W

(2)

j ′
)= 1

2

∑
l∈Z

(
Uhkj

,hk
j ′ (·+l)(tj , tj ′) + Uhkj

,−hk
j ′ (·+l)(tj , tj ′)

)
, (2.19)

cov
(
W

(1)
j ,W

(2)

j ′
)=∑

l∈Z
θ(l)jj ′ ,

with

θ(l)jj ′ = −a−1
p

∫
R

|y|−1−pUhkj ,rj
,hk

j ′ (·+l)(y, tj ′) dy.

We will prove that cov(W) < ∞ in all relevant cases and the mapping (σ,α,H) → cov(W) is
continuous (see Section 0.1). In principle, the latter allows us to estimate the covariance matrix
cov(W) < ∞ and thus to obtain a feasible version of the central limit theorem in Theorem 2.2,
although we will use a different approach in the simulation study.
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Similarly, the Lévy measures νl (l = 1,2) can be determined explicitly. First of all, the repre-
sentation (0.2) from Section 0.1 implies the identities

�
(1)
j (x) = a−1

p

∫
R

(
1 − cos(ux)

)
exp
(−∣∣σ‖hk,rj ‖αu

∣∣α)|u|−1−p du,

�
(2)
j (x) = (cos(tj x) − 1

)
exp
(−∣∣σ‖hk‖αtj

∣∣α).
In particular, it holds that �

(1)
j (x) ≥ 0 and �

(2)
j (x) ≤ 0. In the next step we need to determine

the asymptotic behaviour of �
(1)

j (x) (resp. �
(2)

j (x)) as x → ∞ (resp. as x → −∞). By the

substitution u = (x/z)1/(k+1/α−H) we have that

x1/(H−k−1/α)�
(1)

j (x)

= x1/(H−k−1/α)

∫ ∞

0
�

(1)
j

(
hk,rj

(�u� + 1
)
x
)
du

= (k + 1/α − H)−1
∫ ∞

0
�

(1)
j

(
hk,rj

(⌊
(x/z)1/(k+1/α−H)

⌋+ 1
)
x
)
z−1+1/(H−k−1/α) dz

→ c
(1)
j := (k + 1/α − H)−1

∫ ∞

0
�

(1)
j

(
rk
j

k−1∏
i=0

(H − 1/α − i) · z
)

× z−1+1/(H−k−1/α) dz (2.20)

as x → ∞. The convergence at (2.20) follows from the asymptotic behaviour hk,rj (x) ∼
rk
j

∏k−1
i=0 (H − 1/α − i) · xH−1/α−k as x → ∞. Applying the same technique, we deduce that

|x|1/(H−k−1/α)�
(2)

j (x)

→ c
(2)
j := (k + 1/α − H)−1

∫ ∞

0
�

(2)
j

(
k−1∏
i=0

(H − 1/α − i) · z
)

× z−1+1/(H−k−1/α) dz (2.21)

as x → −∞. Now, both measures ν1 and ν2 from Theorem 2.2 can be related to the Lévy measure
ν of L. We introduce the mappings τ1 : R→ (R+)d and τ2 : R→ (R−)d via

τ1(x) = x1/(k+1/α−H)
(
c
(1)
1 , . . . , c

(1)
d

)
, τ2(x) = |x|1/(k+1/α−H)

(
c
(2)
1 , . . . , c

(2)
d

)
.

Then, for Borel sets A1, A2 as defined in Theorem 2.2, we deduce the identity

νl(Al) = lim
n→∞nP

(
τl

(
n−1/αL1

) ∈ Al

)= ν
(
τ−1
l (Al)

)
, l = 1,2. (2.22)
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3. Statistical inference in the continuous case H − 1/α > 0

We start with the continuous case H − 1/α > 0, which turns out to be somewhat easier to treat
compared to the general setting. Since H ∈ (0,1) and α ∈ (0,2), condition H − 1/α > 0 implies
the restrictions

α ∈ (1,2) and H ∈ (1/2,1).

It is the lower bound α > 1 that enables us to use the law of large numbers in Theorem 2.1(i)
whenever p < 1, and the central limit theorem in Theorem 2.1(ii) whenever p < 1/2 and H <

k−1/α. The latter condition H < k−1/α never holds for k = 1 since 0 < H −1/α < 1−2/α <

0 gives a contradiction, but it is always satisfied for any k ≥ 2 since

H < 1 < k − 1/α for any k ≥ 2,

because α > 1.
Now, we introduce an estimator for the parameter θ = (σ,α,H) in high and low frequency

setting. We start with the statistical inference for the self-similarity parameter H , which is based
upon a ratio statistic that compares power variations at two different frequencies. More specifi-
cally, we define the quantities

Rhigh(p, k)n :=
∑n

i=2k |�n,2
i,k X|p∑n

i=k |�n,1
i,k X|p , Rlow(p, k)n :=

∑n
i=2k |�2

i,kX|p∑n
i=k |�1

i,kX|p , (3.1)

where the increments �r
i,kX have been defined at (2.6). We obtain the convergence

Rhigh(p, k)n
P−→ 2pH , Rlow(p, k)n

a.s.−→ 2pH

for any p ∈ (0,1) as an immediate consequence of Theorem 2.1(i). Consequently, defining the
statistics

Ĥhigh(p, k)n := 1

p
log2 Rhigh(p, k)n, Ĥlow(p, k)n := 1

p
log2 Rlow(p, k)n, (3.2)

we deduce the consistency Ĥhigh(p, k)n
P−→ H , Ĥlow(p, k)n

a.s.−→ H as n → ∞ for any k ≥ 1 and
any p ∈ (0,1). We remark that this type of ratio statistics is commonly used in the framework of
fBm’s when estimating the Hurst parameter H (see e.g. [16] among many others). In the Gaussian
setting, which corresponds to α = 2, the central limit theorem for the quantity

√
n(Ĥhigh(p, k)n −

H) holds for all k ≥ 2 and also for k = 1 if further H ∈ (0,3/4). As we indicated above, in
the framework of pure jump α-stable driving motion L the central limit theorem never holds if
k = 1. Hence, there is no smooth transition between the non-Gaussian and Gaussian setting when
α → 2.

The estimation strategy for the parameter θ = (σ,α,H) based on high frequency observations
is now straightforward: Infer the self-similarity parameter H by (3.2) and use the plug-in esti-
mator ϕhigh(t; Ĥhigh(p, k), k)n for two different values of t to infer the scale parameter σ and the
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stability index α. For the latter step, we consider t2 > t1 > 0 and observe the identities

σ = (− logϕ(t1; k)
)1/α

/t1‖hk‖α, α = log | logϕ(t2; k)| − log | logϕ(t1; k)|
log t2 − log t1

.

Recalling that hk depends on α and H , we readily obtain a function G such that

(σ,α) = G
(
ϕ(t1; k),ϕ(t2; k),H

)
, (3.3)

where we applied the above identities. Next, we present the estimator of the pair (σ,α) in high
and low frequency setting, recalling that the estimators of the self-similarity parameter H have
been defined at (3.2). We introduce the following estimators:(

σ̂high(k, t1, t2)n, α̂high(k, t1, t2)n
)

= G
(
ϕhigh

(
t1; Ĥhigh(p, k)n, k

)
n
,ϕhigh

(
t2; Ĥhigh(p, k)n, k

)
n
, Ĥhigh(p, k)n

)
,(

σ̂low(k, t1, t2)n, α̂low(k, t1, t2)n
)= G

(
ϕlow(t1; k)n,ϕlow(t2; k)n, Ĥlow(p, k)n

)
.

(3.4)

Before we present the main result of this section we need to introduce more notation. We define
the functions vp :R2+ → R and F :R2+ ×R

2 → R
3 by

vp(x, y) = p−1(log2 y − log2 x), F (x, y,u,w) = (G(u,w,vp(x, y)
)
, vp(x, y)

)
, (3.5)

and let JF denotes the Jacobian of F . For any matrix A we write A� for its transpose. The
asymptotic normality in the low and high frequency setting is summarised in the following theo-
rem.

Theorem 3.1. Consider the linear fractional stable motion (Xt )t∈R introduced at (1.1). Let k ≥
2 and t2 > t1 > 0.

(i) (Low frequency case) Let W = (W(1),W(2)) be the 4-dimensional normal limit defined in
Theorem 2.2 associated with d = 2, p ∈ (0,1/2), k1 = k2 = k and rj = j . Then we obtain
the central limit theorem

√
n

⎛⎝σ̂low(k, t1, t2)n − σ

α̂low(k, t1, t2)n − α

Ĥlow(p, k)n − H

⎞⎠ d−→ Bnor
low(p, k) = JF

(
mp,k,2H mp,k, ϕ(t1; k),ϕ(t2; k)

)
W�.

(ii) (High frequency case) We obtain the central limit theorem⎛⎜⎝
√

n(logn)−1(σ̂high(k, t1, t2)n − σ
)

√
n(logn)−1(̂αhigh(k, t1, t2)n − α

)
√

n
(
Ĥhigh(p, k)n − H

)
⎞⎟⎠

d−→ Bnor
high(p, k) = ∇v

(
mp,k,2H mp,k

)(
W(1)

)�
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×
⎛⎝∇G1

(
ϕ(t1; k),ϕ(t2; k),H

)(
t1ϕ

′(t1; k), t2ϕ
′(t2; k),0

)�
∇G2

(
ϕ(t1; k),ϕ(t2; k),H

)(
t1ϕ

′(t1; k), t2ϕ
′(t2; k),0

)�
1

⎞⎠ .

We remark that the central limit theorem of Theorem 3.1(i) is a simple consequence of The-
orem 2.2 and the delta method. In contrast to the low frequency case Theorem 3.1(ii) is de-
generate in the sense that the limit distribution is solely driven by the asymptotics of the term√

n(Ĥhigh(p, k)n − H). Since the parameter H enters the quantity ϕhigh(t;H,k)n via nH the
additional term (logn)−1 appears in the convergence rate.

For a later use, we need to extend the definition of the random variables Bnor
high(p, k) and

Bnor
low(p, k) to various directions. First of all, we will allow for negative powers −p with

p ∈ (0,1/2). Secondly, we would like to define the same limiting variables but associated
with the stable limit S = (S(1), S(2)) from Theorem 2.2 rather than W . Thus, for d = 2,
p ∈ (−1/2,1/2) \ {0}, k1 = k2 = k and rj = j , we set

Bsta
low(p, k) = JF

(
mp,k,2H mp,k, ϕ(t1; k),ϕ(t2; k)

)
S�,

Bsta
high(p, k) = ∇v

(
mp,k,2H mp,k

)(
S(1)
)�

×
⎛⎝∇G1

(
ϕ(t1; k),ϕ(t2; k),H

)(
t1ϕ

′(t1; k), t2ϕ
′(t2; k),0

)�
∇G2

(
ϕ(t1; k),ϕ(t2; k),H

)(
t1ϕ

′(t1; k), t2ϕ
′(t2; k),0

)�
1

⎞⎠ .

Remark 3.1. In Theorem 3.1, we use two values t1, t2 ∈ R
2+ and an estimator Ĥ to infer the

parameters (σ,α). Applying basic statistical principles it is more natural to use all t ∈ R+ for
the estimation procedure. For example, when considering the low frequency framework, we may
estimate the parameters (σ,α) via a minimal contrast approach. Given a positive weight function
w ∈ L1(R+) we obtain an estimator (̃σn, α̃n) of (σ,α) by

(̃σn, α̃n) ∈ argmin
θ∈R+×(0,2)

∫ ∞

0

(
ϕlow(t; k)n − ϕ̂(t; k)

)2
w(t) dt,

where ϕ̂(t; k) = ϕ(Ĥlow(p, k)n, t; k). In this setting, we are likely to require tightness or a similar
property of the stochastic process ϕlow(·; k)n to prove asymptotic normality of (̃σn, α̃n). However,
this seems to be a non-trivial problem, at least when using standard tightness criteria for the space
(C(R+),‖ · ‖∞). We leave it for future research.

Remark 3.2. The described statistical methodology can be applied to more general processes
than the mere linear fractional stable motion. In the paper, [5] the authors investigated limit
theorems for stochastic processes of the form

Yt =
∫
R

{
g(t − s) − g0(−s)

}
dLs,

where g, g0 are deterministic functions vanishing on R− with g(x) = xH−1/αf (x) and f (0) �= 0,
and L is a symmetric α-stable Lévy motion. In the high frequency setting, the process Y exhibits
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the tangent process f (0)X, that is, we have that

�
n,r
i,k Y ≈ f (0)�

n,r
i,k X.

In particular, we believe that under certain assumptions on f (cf. [5]) the central limit theorem
part of Theorem 2.2 should hold for the more general class of processes Y (however, it would
require a non-trivial modification of the proofs). Hence, in this semi-parametric model it should
be possible to estimate the parameter (|f (0)|σ,α,H) via the same approach as presented in The-
orem 3.1(ii). We remark that the function f can’t be inferred from high frequency observations
on a fixed time interval.

4. Statistical inference in the general case

In this section, we treat the case of a general linear fractional stable motion as it has been intro-
duced at (1.1). We recall that in the continuous setting the restriction H − 1/α > 0 has led to
the lower bound α > 1, which is essential for obtaining the asymptotic results of Theorem 3.1.
Without having an explicit lower bound for the stability parameter α statistical inference turns
out to be more complex. As a consequence, we will require a different estimation method for the
self-similarity parameter H and a two-step procedure to choose the right order of increments k.
Furthermore, in order to obtain fast rates of convergence we need different treatments for the low
and high frequency frameworks.

4.1. Low frequency setting

We note that the basic idea behind the ratio statistic Rlow(p, k)n introduced in (3.1) is the homo-
geneity of the function fp(x) = |x|p and the fact that mp,k < ∞ which is a consequence of p < α

(for the associated central limit theorem we need the stronger condition p < α/2). In order to
keep both properties, we may instead consider the negative power variation, which corresponds
to the function f−p(x) = |x|−p , and we assume throughout this section that p ∈ (0,1/2). This
approach has been originally proposed in [14], although central limit theorems have not been
investigated in this setting. Note that the function f−p is still homogenous and m−2p,k < ∞,
which is due to the fact that for any random variable Y with bounded density near 0 it holds that
E[|Y |a] < ∞ for all a ∈ (−1,0). Thus, Ĥlow(−p,k)n is a strongly consistent estimator of the
parameter H for any p ∈ (0,1/2).

In the next step, we need to ensure that we end up in the domain of attraction of the central
limit theorem in Theorem 2.1(ii), which requires that k > H + 1/α. To guarantee this, we need
a preliminary estimator of the parameter α. They are obtained as in (3.4) using the function f−p

and k = 1:

α̂0
low(t1, t2)n = G2

(
ϕlow(t1)n, ϕlow(t2)n, Ĥlow(−p)n

)
, (4.1)

where G = (G1,G2). Notice that this estimator is consistent, but we do not know if it is in the
domain of attraction of a normal distribution or not. Now, we define

k̂low(t1, t2)n = 2 + ⌊α̂0
low(t1, t2)

−1
n

⌋
. (4.2)
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For the sake of brevity we write k̂low = k̂low(t1, t2)n. In the second step we estimate the parameter
θ = (σ,α,H) using k̂low. The self-similarity parameter H is thus estimated by Ĥlow(−p, k̂low)n.
Next, similarly to definitions at (3.4), we introduce the estimators(

σ̃low(̂klow, t1, t2)n, α̃low(̂klow, t1, t2)n
)

= G
(
ϕlow(t1; k̂low)n, ϕlow(t2; k̂low)n, Ĥlow(−p, k̂low)n

)
. (4.3)

In order to determine, the asymptotic distribution of the proposed estimators we will need the full
force of Theorem 2.2. Due to definition (4.2), we also require a separate treatment of the cases
α−1 /∈N and α−1 ∈ N. In the first case k̂low

a.s.−→ 2 +�α−1� while in the second case we will have

P
(̂
klow = 2 + α−1)→ λ and P

(̂
klow = 1 + α−1)→ 1 − λ

for a certain constant λ ∈ (0,1). In the first setting, which is easier to treat, we obtain the follow-
ing result.

Theorem 4.1. Let X be the linear fractional stable motion defined at (1.1). Assume that p ∈
(0,1/2) and α−1 /∈ N. We obtain the central limit theorem

√
n

⎛⎜⎝σ̃low(̂klow, t1, t2)n − σ

α̃low(̂klow, t1, t2)n − α

Ĥlow(−p, k̂low)n − H

⎞⎟⎠ d−→ Bnor
low

(−p,2 + ⌊α−1⌋).
In the framework α−1 ∈ N we distinguish two further cases, that determine the asymptotic

behaviour of the preliminary estimate α̂0
low, which is constructed using k = 1. According to The-

orem 2.2 we are in the domain of the validity of a central limit theorem when H < 1−1/α while
a non-central limit theorem holds if H > 1 − 1/α.

Proposition 4.2. Let X be the linear fractional stable motion defined at (1.1). Assume that p ∈
(0,1/2).

(i) (Normal case) Assume that H < 1 − 1/α. Then we obtain the central limit theorem

√
n
(̂
α0

low(t1, t2)n − α
) d−→ Bnor

low(−p,1)2.

(ii) (Stable case) Assume that H > 1 − 1/α. Then we obtain the weak limit theorem

n1−1/(1+α(1−H))
(̂
α0

low(t1, t2)n − α
) d−→ Bsta

low(−p,1)2.

We note that the result of Proposition 4.2(ii) is essentially the same as in the asymptotically
normal regime except that the convergence rate is now n1−1/(1+α(1−H)) and the normal limit W

is replaced by S.
The next theorem presents the statistical behaviour of the estimator (̃σlow, α̃low, Ĥlow(−p,

k̂low)n) in the case α−1 ∈N.
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Theorem 4.3. Let X be the linear fractional stable motion defined at (1.1). Assume that p ∈
(0,1/2) and α−1 ∈N.

(i) (Case H < 1 − 1/α) Assume that H < 1 − 1/α. Then we obtain

√
n

⎛⎜⎝σ̃low(̂klow, t1, t2)n − σ

α̃low(̂klow, t1, t2)n − α

Ĥlow(−p, k̂low)n − H

⎞⎟⎠ d−→ Dnor
low,

where the probability distribution Dnor
low on R

3 is given by

Dnor
low(·) = P

({
Bnor

low

(−p,2 + α−1) ∈ ·}∩ {Bnor
low(−p,1)2 < 0

})
+ P
({

Bnor
low

(−p,1 + α−1) ∈ ·}∩ {Bnor
low(−p,1)2 > 0

})
.

(ii) (Case H > 1 − 1/α) Assume that H > 1 − 1/α. Then we obtain

√
n

⎛⎜⎝σ̃low(̂klow, t1, t2)n − σ

α̃low(̂klow, t1, t2)n − α

Ĥlow(−p, k̂low)n − H

⎞⎟⎠ d−→ Dsta
low,

where the probability distribution Dsta
low on R

3 is given by

Dsta
low(·) = P

(
Bsta

low(−p,1)2 < 0
)
P
(
Bnor

low

(−p,2 + α−1) ∈ ·)
+ P
(
Bsta

low(−p,1)2 > 0
)
P
(
Bnor

low

(−p,1 + α−1) ∈ ·).
According to Theorem 2.2 the statistic (Bnor

low(−p,k),Bnor
low(−p,1)) is jointly normal for

k ∈ {1 + α−1,2 + α−1}. Thus, the probability distribution Dnor
low can be easily computed using

conditioning rules for normal distribution.
Note however that it is problematic to use Theorem 4.3 for constructing confidence regions

since we do not know a priori whether part (i) or part (ii) applies. We now introduce a decision
rule that helps us to solve this problem. Let t4 > t3 > t2 > t1 > 0 be given real numbers and
let α̂0

low(t1, t2)n, α̂0
low(t3, t4)n be two estimators of parameter α ∈ (0,2) defined at (4.1). Then,

similarly to Proposition 4.2, we deduce that

an

(̂
α0

low(t3, t4)n − α̂0
low(t1, t2)n

)
converges in law,

where an = √
n if H < 1 − 1/α and an = n1−1/(1+α(1−H)) if H > 1 − 1/α. Hence, we immedi-

ately conclude the convergence

dn := − log |̂α0
low(t3, t4)n − α̂0

low(t1, t2)n|
log(n)

P−→
{

1/2 : if H < 1 − 1/α

1 − 1/
(
1 + α(1 − H)

) : if H > 1 − 1/α
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In other word, the statistic dn helps us to identify the rate of convergence, but it has a bias of
order 1/ log(n). Our decision rule is now as follows: Use Theorem 4.3(i) to perform statistical
inference if

dn > 1/2 − (log(n)
)−1+ε

for some small chosen ε > 0; otherwise use Theorem 4.3(ii).

Remark 4.1. While we can obtain fully feasible asymptotic theory if we know whether α−1 ∈N

or not, we are not yet able to deduce a complete statistical method without this a priori knowl-
edge. Possibly subsampling procedures are required to obtain empirical confidence regions that
automatically adapt to a given setting.

4.2. High frequency setting

In the framework of high frequency observations the application of the empirical characteristic
function might lead to suboptimal convergence rates for the estimator of (σ,α). This comes from
the following observation. Assume that α < 1. Using the inequality | cos(x)−cos(y)| ≤ |x −y|α′

for any α′ < α we obtain the upper bound∣∣ϕhigh
(
t; Ĥhigh(p, k)n, k

)
n
− ϕhigh(t;H,k)n

∣∣
≤ tα

′
(nĤhigh(p,k)n−H − 1)α

′

n

n∑
i=k

∣∣nH �n
i,kX

∣∣α′ = OP

((
n−1/2 logn

)−α′/2)
,

where the last statement follows from E[|�k,kX|α′ ] < ∞ and the ergodic theorem. Since the
above expression is predominant in the asymptotic theory and it seems hard to improve it, we
obtain slow rates of convergence for the parameters σ and α if we apply the same estimation
procedure as in the previous section. For this reason we require a different approach in the high
frequency setting.

First of all, we give an explicit formula for the constant m−p,k = E[|�k,kX|−p], p ∈ (0,1/2),
which has been introduced in Theorem 2.1. We recall that the random variable �k,kX is sym-
metric α-stable with scale parameter σ‖hk‖α . Consequently, applying the identity [14], Eq. (18),
we conclude that

m−p,k = (σ‖hk‖α)−p

a−p

∫
R

exp
(−|y|α)|y|−1+p dy = 2(σ‖hk‖α)−p

αa−p

�(p/α),

where the last equality follows by substitution z = yα for y > 0. Now, we use the idea that has
been originally proposed in [14] to identify the parameter α via power variation statistics. We
consider p,p′ ∈ (0,1/2), p �= p′, and observe that

m
p

−p′,k

m
p′
−p,k

= (2/α)p−p′
a

p′
−p�(p′/α)p

a
p

−p′�(p/α)p
′ =: φp,p′(α). (4.4)
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It has been shown in [14] that the mapping α → φp,p′(α) is invertible for any p �= p′. Hence,

we have α = φ−1
p,p′(m

p

−p′,k/m
p′
−p,k). Now, assuming that we know α and H (recall that the norm

‖hk‖α depends on these parameters), we can recover the scale parameter σ via

σ =
(

αa−pm−p,k

2�(p/α)

)− 1
p

/‖hk‖α.

Summarising the above identities we obtain the function G : (R+)2 × (0,1) →R
2 such that

(σ,α) = G(m−p,k,m−p′,k,H). (4.5)

Next, we follow the same two-stage routine as in the previous section. We first compute
Ĥhigh(−p)n = Ĥhigh(−p,1)n with p ∈ (0,1/2) and define the preliminary estimator of α by

α̂0
high

(−p,−p′)
n

= G2
(
Vhigh

(
f−p, Ĥhigh(−p)n

)
n
,

Vhigh
(
f−p′ , Ĥhigh(−p)n

)
n
, Ĥhigh(−p)n

)
, (4.6)

where the statistic Vhigh(f−p, Ĥhigh(−p)n)n refers to power variation introduced in (2.7) with
k = 1 and with H replaced by Ĥhigh(−p)n. Now, we define

k̂high = k̂high
(−p,−p′)

n
= 2 + ⌊α̂0

high

(−p,−p′)−1
n

⌋
(4.7)

and introduce the estimator(
σ̃high

(̂
khigh,−p,−p′)

n
, α̃high

(̂
khigh,−p,−p′)

n

)
= G

(
Vhigh

(
f−p, Ĥhigh(−p, k̂high)n; k̂high

)
n
,

Vhigh
(
f−p′ , Ĥhigh(−p, k̂high)n; k̂high

)
n
, Ĥhigh(−p, k̂high)n

)
.

We again require a separate treatment of the cases α−1 /∈ N and α−1 ∈ N. We start with the first
setting. When H < k − 1/α we consider the statistic W(n)(1) = (W(n)

(1)
1 ,W(n)

(1)
2 ) associated

with the power −p and

k1 = k̂high, r1 = 1 and k2 = k̂high, r2 = 2.

Recall that W(n)(1) d−→ W(1) according to Theorem 2.1. Now, similarly to Theorem 3.1, we
define

B
nor
high

(−p,−p′, k
) := ∇vp

(
m−p,k,2H m−p,k

)(
W(1)

)�
×
⎛⎝∇G1(m−p,k,m−p′,k,H)

(−pm−p,k,−p′m−p′,k,H
)�

∇G2(m−p,k,m−p′,k,H)
(−pm−p,k,−p′m−p′,k,H

)�
1

⎞⎠ , (4.8)

where the function vp has been introduced at (3.5). Our first result is the following theorem.
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Theorem 4.4. Let X be the linear fractional stable motion defined at (1.1). Assume that p,p′ ∈
(0,1/2) and α−1 /∈ N. Then we obtain the central limit theorem⎛⎜⎝

√
n(logn)−1(σ̃high

(̂
khigh,−p,−p′)

n
− σ

)
√

n(logn)−1(̃αhigh
(̂
khigh,−p,−p′)

n
− α
)

√
n
(
Ĥhigh(−p, k̂high)n − H

)
⎞⎟⎠ d−→ B

nor
high

(−p,−p′,2 + ⌊α−1⌋).
Next, we treat the case α−1 ∈ N. For this purpose, whenever H > k − 1/α, we introduce the

notation B
sta
high(−p,−p′, k) to denote the random variable at (4.8) where W(1) is replaced by

S(1). We deduce the following result, which is the analogue of Theorem 4.3.

Theorem 4.5. Let X be the linear fractional stable motion defined at (1.1). Assume that p,p′ ∈
(0,1/2) and α−1 ∈ N.

(i) (Case H < 1 − 1/α) Assume that H < 1 − 1/α. Then we obtain⎛⎜⎝
√

n(logn)−1(σ̃high
(̂
khigh,−p,−p′)

n
− σ

)
√

n(logn)−1(̃αhigh
(̂
khigh,−p,−p′)

n
− α
)

√
n
(
Ĥhigh(−p, k̂high)n − H

)
⎞⎟⎠ d−→ Dnor

high,

where the probability distribution Dnor
high on R

3 is given by

Dnor
high(·) = P

({
B

nor
high

(−p,−p′,2 + α−1) ∈ ·}∩ {Bnor
high

(−p,−p′,1
)

2 < 0
})

+ P
({

B
nor
high

(−p,−p′,1 + α−1) ∈ ·}∩ {Bnor
high

(−p,−p′,1
)

2 > 0
})

.

(ii) (Case H > 1 − 1/α) Assume that H > 1 − 1/α. Then we obtain⎛⎜⎝
√

n(logn)−1(σ̃high
(̂
khigh,−p,−p′)

n
− σ

)
√

n(logn)−1(̃αhigh
(̂
khigh,−p,−p′)

n
− α
)

√
n
(
Ĥhigh(−p, k̂high)n − H

)
⎞⎟⎠ d−→ Dsta

high,

where the probability distribution Dsta
high on R

3 is given by

Dsta
high(·) = P

(
B

sta
high

(−p,−p′,1
)

2 < 0
)
P
(
B

nor
high

(−p,−p′,2 + α−1) ∈ ·)
+ P
(
B

sta
high

(−p,−p′,1
)

2 > 0
)
P
(
B

nor
high

(−p,−p′,1 + α−1) ∈ ·).
Remark 4.2. We may use a similar decision rule as proposed in Section 4.1 to figure out whether
part (i) or (ii) of Theorem 4.5 is applicable. Let p1, . . . , p4 ∈ (0,1/2) be distinct real numbers.
As in the previous subsection we have that

dn := − log |̂α0
high(−p1,−p2)n − α̂0

high(−p3,−p4)n|
log(n)



Estimation of the linear fractional stable motion 245

P−→
{

1/2 : if H < 1 − 1/α

1 − 1/
(
1 + α(1 − H)

) : if H > 1 − 1/α

We thus use Theorem 4.5(i) to perform statistical inference when

dn > 1/2 − (log(n)
)−1+ε

.

5. A simulation study

In this section, we demonstrate the finite sample performance of our estimators based upon the
theoretical results of Theorems 3.1, 4.1 and 4.4, where the latter two correspond to the setting
α−1 /∈ N (we dispense with the numerical analysis associated with Theorems 4.3 and 4.5). We
simulate high and low frequency observations of the linear fractional stable motion defined at
(1.1) for n = 100, 1.000 and 10.000. To generate the paths of the linear fractional stable motion,
we discretise the integral in (1.1) and use the fast Fourier transform as proposed in [29]. When-
ever we use the statistics Vhigh(f ; k, r)n and Vlow(f ; k, r)n introduced in (2.7), we multiply them
by (n − rk + 1)/n to account for the actual number of summands. Throughout the section, we
set t1 = 1 and t2 = 2. We use 5000 repetitions to uncover the finite sample properties of our esti-
mators. The asymptotic variances appearing in central limit theorems are rather hard to compute
numerically due to slow rate of convergence of the involved infinite sums/integrals. Instead we
perform Monte Carlo simulations to estimate them. More specifically, after computing an esti-
mator (̂σ , α̂, Ĥ ), we generate sample paths of the process X with these parameters and calculate
the associated empirical means/variances for all relevant statistics. These are used to construct
empirical density functions.

We begin with the discussion of Theorem 3.1. Table 1 reports the bias and the standard devia-
tion of the estimator of (σ,α,H) = (0.3,1.8,0.8) in high and low frequency settings, where we
use the power p = 0.4 and the order k = 2. We observe that our estimators exhibit a rather con-
vincing finite sample performance in both settings. As expected from the theoretical statements
of Theorem 3.1, the estimators of the self-similarity parameter H exhibit similar finite sample
properties in high and low frequency settings, while the performance of the low frequency esti-
mators for the parameters σ and α is better than in the high frequency case. This is obviously a
consequence of a slightly slower convergence rate in the high frequency setting. Figure 2 plots the
empirical densities of the standardised estimators from Theorem 3.1 in comparison to the den-
sity of the standard normal distribution. As mentioned earlier, we use Monte Carlo simulations

Table 1. Bias/standard deviation of the estimators (̂σlow, α̂low, Ĥlow) and (̂σhigh, α̂high, Ĥhigh). We use
p = 0.4 and k = 2, and the true parameter is (σ,α,H) = (0.3,1.8,0.8)

n σ̂low α̂low Ĥlow σ̂high α̂high Ĥhigh

100 −0.024/0.06 −0.038/0.18 −0.05/0.12 0.06/0.18 −0.07/0.2 0.02/0.10
1000 −0.0008/0.02 0.012/0.068 −0.012/0.05 −0.001/0.12 0.015/0.07 −0.009/0.05

10,000 0.00014/0.006 0.0005/0.022 −0.005/0.016 −0.010/0.05 0.001/0.022 −0.005/0.016
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Figure 2. Empirical pdfs of (̂σ , α̂, Ĥ ) in high and low frequency settings. The right column corre-
sponds to the high frequency case and the left one to the low frequency case. The true parameter is
(σ,α,H) = (0.3,1.8,0.8), k = 2, p = 0.4.

to estimate the theoretical variances. We again observe a very good performance of estimators of
the parameter H , while the numerical results for the estimators of σ and α are better in the low
frequency case.

Another approach to estimation of the self-similarity parameter H is the log–log regression,
which is a generalisation of our approach. The key idea is the observation that the convergence
Vlow(fp; k, r)

a.s.−→ rpH mp,k for p ∈ (0, α) or p ∈ (−1,0) leads to the approximative identity

log
(
Vlow(fp; k, r)n

)≈ log(mp,k) + pH log(r), r = 1,2, . . . , r.

Note that the latter is a linear regression and the slope identifies the parameter H . Indeed, H can
be estimated from low frequency data via

Ĥ
log
low =

∑r
r=1(xr − x)(yr − y)

p
∑r

r=1(xr − x)2
,
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Table 2. Bias/standard deviation of the regression-
based estimator for H . Low frequency case. Here p =
−0.4, k = 2 and (σ,α,H) = (0.3,1.8,0.8)

n r Ĥ
log
low

100 4 −5.8e−3/0.13
1000 6 −2.9e−4/0.04

10,000 9 −1.5e−4/0.013

where xr = log(r), yr = log(Vlow(fp; k, r)n) and x (resp. y) denotes the empirical mean of xr ’s

(resp. yr ’s). Obviously, the asymptotic theory for the estimator Ĥ
log
low can be directly deduced from

Theorem 2.2; we leave the details to the reader. Instead we restrict our attention to the empirical
performance of Ĥ

log
low. The next table demonstrates the finite sample bias/standard deviation of

the estimator Ĥ
log
low in the setting of Theorem 3.1 with p = 0.4, k = 2 and r = �log(n)�.

Comparing Tables 1 and 2, we observe that the standard deviations of Ĥ
log
low and Ĥlow are quite

similar in all scenarios, but Ĥ
log
low has a much lower bias.

Now, we turn our attention to the low frequency estimation discussed in Theorem 4.1.
We use the power p = −0.4 and consider the true parameter (σ,α,H) = (0.3,1.8,0.8) and
(σ,α,H) = (0.3,0.8,0.8). Observe that the first case corresponds to the setting of Theorem 3.1
and the second parameter corresponds to the discontinuous setting. The estimated order k̂low is
computed via (4.2). We also compute the log–log regression estimator Ĥ

log
low based upon k̂low

and r = �log(n)� in both scenarios. Table 3 displays the bias and standard deviation in the
case (σ,α,H) = (0.3,1.8,0.8), while Table 4 demonstrates the numerical results in the case
(σ,α,H) = (0.3,0.8,0.8). Finally, Table 5 shows the finite sample performance of Ĥ

log
low.

Comparing the simulation results of Theorems 3.1 and 4.1, we see that the finite sample per-
formance of estimators σ and H in Theorem 4.1 is inferior; on the other hand Ĥ

log
low outperforms

Ĥlow in terms of bias and and also in terms of variance for n = 1000,10,000. This is not really
surprising, since the methodology of Theorem 4.1 requires preliminary estimation of α and k,
and hence leads to an accumulation of errors. On the other hand, the estimator of α is not as sen-
sitive to preliminary estimation. Furthermore, in the setting of a fractional Brownian motion it is
well known that low values of the parameter k give more efficient estimators. We conjecture that

Table 3. Bias/standard deviation of the estimator
(̃σlow, α̃low, H̃low). Here p = −0.4, k̂low is computed
from (4.2) and (σ,α,H) = (0.3,1.8,0.8)

n σ̃low α̃low H̃low

100 −0.05/0.09 −0.031/0.18 −0.12/0.23
1000 −0.004/0.04 0.01/0.068 −0.018/0.12

10,000 0.0003/0.015 0.001/0.022 −0.003/0.05
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Table 4. Bias/standard deviation of the estimator
(̃σlow, α̃low, H̃low). Here p = −0.4, k̂low is computed
from (4.2) and (σ,α,H) = (0.3,0.8,0.8)

n σ̃low α̃low H̃low

100 −0.06/0.31 −0.003/0.41 −0.15/0.24
1000 −0.05/0.27 −0.08/0.31 0.003/0.13

10,000 0.03/0.26 0.008/0.27 0.04/0.05

Table 5. Bias/standard deviation of the regression-based esti-
mator for H with preliminary estimation of k. Low frequency
case. Here p = −0.4, k̂low is computed from (4.2). The left
column corresponds to the triplet (σ,α,H) = (0.3,1.8,0.8),
and the right one – to (σ,α,H) = (0.3,0.8,0.8)

n r Ĥ
log
low Ĥ

log
low

100 4 −4.9e−03/0.22 0.018/0.3
1000 6 −1.1e−03/0.06 0.01/0.09

10,000 9 −2.9e−04/0.017 8e−3/0.03

a similar effect appears for linear fractional stable motions. This would explain the superiority
of the results in Table 3 compared to those in Table 4, since �α−1� + 2 = 2 in the first setting
while �α−1�+ 2 = 3 in the second setting. Figures 3 and 4 show the empirical density functions,
where the theoretical variances have been estimated via a Monte Carlo simulations. They confirm
the better performance of the estimators in the continuous setting (σ,α,H) = (0.3,1.8,0.8). We
also observe that the estimator of the parameter σ exhibits the worst finite sample properties in
the setting (σ,α,H) = (0.3,0.8,0.8).

Figure 3. Empirical pdfs of (̃σlow, α̃low, H̃low). Here (σ,α,H) = (0.3,1.8,0.8) and p = −0.4.
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Figure 4. Empirical pdfs of (̃σlow, α̃low, H̃low). Here (σ,α,H) = (0.3,0.8,0.8) and p = −0.4.

Finally, let us discuss the finite sample performance of the high frequency estimators from The-
orem 4.4. We again consider two parameter settings (σ,α,H) = (0.3,1.8,0.8) and (σ,α,H) =
(0.3,0.8,0.8), and we use p = −0.4 and p′ = −0.2. The estimated order k̂high is computed via
(4.7). Tables 6 and 7 display the biases and standard deviations in both parameter settings. We
observe that the estimators of the parameter σ have the worst performance and we only obtain
reasonable results for n = 10.000. Similar conclusions can be drawn from Figures 5 and 6 that
plot the empirical density functions. The bad performance of the estimator of σ in Theorem 4.4
is explained by the fact that we not only require a preliminary estimation step for our procedure,
but we also need to estimate the parameters H and α first to obtain an estimator of σ . This leads
to accumulation of finite sample errors, which results in large bias and variance for small n. To

Table 6. Bias/standard deviation of the estimator
(̃σhigh, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and
(σ,α,H) = (0.3,1.8,0.8)

n σ̃high α̃high H̃high

100 60/1443 −0.02/0.77 0.23/0.33
1000 0.18/0.82 0.19/0.67 0.02/0.13

10,000 −0.003/0.17 0.052/0.26 −0.003/0.05

Table 7. Bias/standard deviation of the estimator
(̃σhigh, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and
(σ,α,H) = (0.3,0.8,0.8)

n σ̃high α̃high H̃high

100 16/341 0.19/0.37 0.13/0.4
1000 0.103/1 0.02/0.09 0.06/0.16

10,000 −0.11/0.12 0.003/0.04 0.04/0.06
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Figure 5. Empirical pdfs of (̃σhigh, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and
(σ,α,H) = (0.3,1.8,0.8).

Figure 6. Empirical pdfs of (̃σhigh, α̃high, H̃high). Here p = −0.4, p′ = −0.2 and
(σ,α,H) = (0.3,0.8,0.8).

Figure 7. Empirical pdfs for σ (Left=Theorem 4.1, Right=Theorem 4.4) when the parameter
(α,H) = (0.8,0.8) is known. Here σ = 0.3, p = −0.4, p′ = −0.2 and k = 3.

further highlight this issue, we have plotted the empirical densities for the estimators of σ from
Theorems 4.1 and 4.4 in Figure 7 in the setting (σ,α,H) = (0.3,0.8,0.8) where the parameter
(α,H) is assumed to be known. We observe a much better finite sample performance, which
confirms that the bad finite sample properties of the estimator of σ are largely due to preliminary
estimation of (α,H).
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