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In this paper, we consider the random walk approximation of the solution of a Markovian BSDE whose
terminal condition is a locally Holder continuous function of the Brownian motion. We state the rate of
the L,-convergence of the approximated solution to the true one. The proof relies in part on growth and
smoothness properties of the solution u of the associated PDE. Here we improve existing results by showing
some properties of the second derivative of u in space.
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1. Introduction

Let (2, F,P) be a complete probability space carrying the standard Brownian motion B =
(B:t)r>0 and assume (F;);>0 is the augmented natural filtration. We consider the following back-
ward stochastic differential equation (BSDE for short)

T T
Yszg(BT)“‘/ f(r,Br,YraZr)dr_/ Z.dB,, 0<s<T, (1)
s s

where f is Lipschitz continuous and g is a locally a-Holder continuous and polynomially
bounded function (see (3)). In this paper, we are interested in the L,-convergence of the nu-
merical approximation of (1) by using a random walk. First, results dealing with the numerical
approximation of BSDEs date back to the late 1990s. Bally (see [2]) was the first to consider this
problem by introducing random discretization, namely the jump times of a Poisson process. In
his Ph.D. thesis, Chevance (see [17]) proposed the following discretization

yk:E()’k+l+hf()’k+l)|}—1?)a k:n_lv"'v()’nEN*

and proved the convergence of (Y/"); := (y[r/n)): t0 Y. At the same time, Coquet, MackeviCius
and Mémin [18] proved the convergence of Y” by using convergence of filtrations, still in the
case of a generator independent from z. The general case (f depends on z, terminal condition
& € Lj) has been studied by Briand, Delyon and Mémin (see [7]). In that paper the authors
define an approximated solution (Y", Z™) based on random walk and prove weak convergence to
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(Y, Z) using convergence of filtrations. We also refer to [27,29-31] for other numerical methods
for BSDEs which use a random walk approach. The rate of convergence of this method was left
as an open problem.

Introducing instead of random walk an approach based on the dynamic programming equa-
tion, Bouchard and Touzi in [6] and Zhang in [36] managed to establish a rate of convergence.
However, to be fully implementable, this algorithm requires to have a good approximation of
its associated conditional expectation. For this, various methods have been developed (see [13,
20,25]). Forward methods have also been introduced to approximate (1): a branching diffusion
method (see [26]), a multilevel Picard approximation (see [34]) and Wiener chaos expansion
(see [9]). Many extensions of (1) have also been considered: high order schemes (see [10,11]),
schemes for reflected BSDEs (see [3,15]), for fully-coupled BSDEs (see [4,21]), for quadratic
BSDE:s (see [14]), for BSDEs with jumps (see [23]) and for McKean—Vlasov BSDEs (see [1,12,
16]).

From a numerical point of view, the random walk is of course not competitive with recent
methods listed above. We emphasize that the aim of this paper is to give the convergence rate of
the initial method based on random walk, which, to the best of our knowledge, has not been done
so far.

As in [7], let us introduce the following approximation of B, based on a random walk:

[1/h]
Bl =vVh) &, 0<t=<T,

i=1

where h = % (n € N*) and (&;);=12,... is a sequence of i.i.d. Rademacher random variables.
Consider the following approximated solution (Y”, Z") of (Y, Z)

n—1 n—1
Y =g(Bf)+h Y ftmir BL Y. Z0) =~ Y Z! em1, 0<k<n—1. (2
m=k m=k

The main result of our paper gives the rate of convergence in L-norm of Y! — Y, and Z}} — Z,
for each v € [0, T') (see Theorem 3.1). Basically, we get that the L,-norm of the error on Y is of
ha
on several ingredients. In particular, we need some estimates on the bound of the first and second
derivatives of the solution of the PDE associated to the BSDE (1). We establish these bounds in
the case of a forward backward SDE (FBSDE for short) whose terminal condition satisfies the
Holder continuity condition (3). This result extends Zhang [37], Theorem 3.2.

The rest of the paper is organized as follows. Section 2 introduces notations, assumptions and
the representation for Z and Z" based on the Malliavin weights. Section 3 states the rate of
convergence of the error on Y and Z in L,-norm, which is the main result of the paper. Section 4
presents numerical simulations and Section 5 recalls some properties of Malliavin weights, of the
regularity of solutions to FBSDEs with a locally Holder continuous terminal condition function
and states some properties of the solutions to the PDEs associated to these FBSDE:s.

order h% and the Ly-norm of the error on Z is of order The proof of this result is based
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2. Preliminaries

This section is dedicated to notations, assumptions and the representation of Z and Z”" using the
Malliavin weights.
Notation.
e Gr:=o0( :1<i<k)and Gy = {T, Q). The associated discrete-time random walk
(B )k—o 18 (Gr)j—p-adapted.
o [[-llp:=1"llLr@) for p>1 and for p =2 simply || - ||.
Assumption 2.1.

e g is locally Holder continuous with order « € (0, 1] and polynomially bounded (po > 0,
C,; > 0) in the following sense

Vi, y) eR% [g(x) — g0 < Co(1 4 X170 + [y170)|x — y[*. 3)
e The function [0, T] x R3: (t,x,y,2)— f(t,x,y,z) satisfies
|fa,x, v, — f(t/,x ¥, ) <sLy(Vt =t +|x=x'|+ |y =y|+]z=7Z]). @
Notice that (3) implies
g = K(1+1x17H) = w(0), )
In the rest of the paper, the study of the error (Y" — Y, Z" — Z) will either rely on (2) or on its
integral version:
Y!' =g(BY}) +/ f(r.B.Y",Z" )d[B", B"], —/ Z' dB!, 0<s<T, (6)
(s,T] (s,T]
where the backward equation (6) arises from (2) by setting ¥;" :=Y;! and Z} := Z} for r €

n—1

[t4, tm+1). For n large enough, (6) has a unique solution (Y”, Z"), and (Y’fn’ Zt'in)m:0

is adapted

to the filtration (gm)g;‘o. Let us now introduce the Malliavin representations for Z and Z". They
are the cornerstone of our study of the error on Z.

2.1. Representations for Z and Z"

We will use the representation (see Ma and Zhang [28], Theorem 4.2)

T
Zz=Et(g(BT)N'T+/ f(szsaYst)NstdS), 0<t=T, @)
t

where E,[-] = E[-|F;], and for all s € (¢, T] we have

_Bs_Bt
s —t

N

N
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Lemma 2.2. Suppose that Assumption 2.1 holds. Then the process Z" given by (6) has the
representation

]  Bi — B v yn ) B B
Ztk :Ek g(BT)ﬁ +Ek h Z f(tm—&-ly Bzm’ Yzm’ Ztm)ﬂ (8)
m=k+1

fork=0,1,...,n—1,where E¢[-] :=E[-|Gk]-

Proof. We multiply equation (2) by &+ and take the conditional expectation with respect to
Gr. Since (Y,Z, ZZ() is Gr-measurable, it holds for 0 <k <n — 1 that

]Ek(Y[}ng-i-l)

n—1 n—1
=Ey(g(B})ek+1) + hEx <Z £ (tmt, Bp .Y, ZZn)skH) — VhE; (Z Z;fnem+18k+1>

m=k m=k

B" — B! n-l1 B" — B"
:“/ZE/«<8(B'%)M) + 12 Z H'Ek(f(th,B;’,Y;’,z;1 ’k)
th — I Sarat m? S Sty
—~Vhz}

[/

)
where the Lh.s. is equal to zero. Indeed, for m > k + 1, we have
Ex (Z] emy1ec1h) = Ei(Z] exp1Bmems1) =0,

and for m = k it holds By (2 e7 ) = Z'. Moreover, the fact that B} = v/h Y_ii_{) &yu+1, where
(&m)m=12... are i.i.d., yields

m=k

B — B!
= VhE; <g(B¥)%>

n — Ik

B (3(BY)ers1) = Ex (g(B;) i :k_“k) =Ty <g(B;) i em_+1>

Similarly, for m > k + 1, we get (using [7], Proposition 5.1, where it is stated that both Y;’n and
Z} can be represented as functions of 7,, and By )

B! — B
]Ek(f(’mﬂ’ B Y, Ztnm)gkﬂ) = VhEy; (f(tm+1’ B Yi, Z[‘m)H).
m

It remains to divide (9) by /A and rearrange.
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3. Main result

This section is devoted to the main result of the paper: the rate of the L,-convergence of (Y”, Z")
to (Y, Z). The proof will rely on the fact that the random walk B” can be constructed from the
Brownian motion B by Skorohod embedding. Let 7y := 0 and define

t:=inf{t > 7_1 1 |B; — By, | = \/71}, k>1.

Then (By, — By,_,)7; is a sequence of i.i.d. random variables with
1
P(B‘[k - B‘L'k,1 = :t\/}_l) = 53

. d . . L
which means that v/hex = B, — By,_,. We will use this random walk for our approximation,
that is, we will require

[t/h]
B! = Z(Brk — By ), 0<t<T. (10
k=1

Properties satisfied by t; and By, are stated in Lemma A.1. We will denote by E,, the conditional
expectation w.r.t. Fr,.

Theorem 3.1. Let Assumption 2.1 hold. If B" satisfies (10) then we have (for sufficiently large n)
that

E|y, — Y![> <Coh% forvel0,T),

h? h?
+C 2

— Ik (T —v) 2

E|z, - Z!|" < Co Ly, forveli, tip1), k=0,...,n—1,

where we have the dependencies Co = C(T, po, Ly, Cyq, C§v3, Ci4,Kf,cs54,0), Cr =C(T, po,
Cs3 ) and K g :=supy, 7 | f(¢,0,0,0)|.

Remark 3.2. Theorem 3.1 implies that
2 o T 2 o
sup E|Y, —Y]'|"<Coh? and ]E/ |Z, — Z2|"dv < C(Co, Cy, B)hP  for B e (0, —).
0

vel0,T) 2

Proof of Theorem 3.1. Let u : [0,T) x R — R be the solution of the PDE associated to (1).
Since by Theorem 5.4

Ys =u(s, By), Zs =ux(s, By), a.s.

we introduce

F(s,x):= f(s,x, u(s,x), ux(s,x)),
so that F (s, By) = f(s, By, Y5, Zs). We first give some properties satisfied by F.
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Lemma 3.3. If Assumption 2.1 holds then F is a Lipschitz continuous and polynomially bounded
function in x:

|F(t,x1) = F(t,x0)] < C(T, Ly, 33) (14 a7 + 'xz'mﬂ)%’
AT )
|F(t.0)| = (T, Ly, el K ) — 2
(T -1

where W (x) is given in (5).

Proof of Lemma 3.3. Thanks to the mean value theorem and Theorem 5.4-(ii-c) and (iii-b) we
have for x1, x € R that there exist &1, & € [min{x1, x2}, max{x, xo}] such that

|F(t,x1) = F(t,x2)| = | f (. x0, u(t, x0), ux (8, x1)) — f(1, X2, ut, x2), ux (1, x2)))|
< Lp(lxr = xal + Jut, x1) — u(t, x2)| + |ux (2, x1) — ux (£, x2)|)

2 3
Lf(1+ G0 65'4\1/(?2)“)')”_)62'
(T-n= (T-n"2

|x1 — x2|

1 1
= (T, Lf’cs4)(1+|x1|p0+ + el P )m

The second inequality can be shown similarly. ([

For the estimate of E|Y, — Y 1> we will use (1) and (2): Since Y, is Fr -measurable we have

1, =21 < [t ~ B (8]
n—1

E,k/ f(s, B, Yy, Zg)ds — thka tme1, Bl YR Z2 )L (1)

We frequently express conditional expectations with the help of an independent copy of B de-
noted by B, for example, E;g(Bt) = IEg(B, + Br_,).
By (3) and Lemma A.1,

HEfkg(BT) - ]Efkg(Bg) H2 = E’Eg(Blk + BT*lk) - Eg(BTk + B‘fnfk)yz
~ 1 ~ ~ 1
< (EE(W)*)? (EE|B;, — By, + Br—;, — Bz, ,1**)?

< C(Cy, T, po)((E|By, — By |* ) + (E|Br— ,k—BW““))

< C(Cq, T, po)h?, (12)
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where Wy :=Co(1+ |By, + f?T_,klpo ~+ By + B;ﬂ_k|p0). To estimate the other term in (11), we
consider the decomposition

By f(s. By, Yy, Zs) — B f (tms1. B Y] 2] )
= (Ey f (s, By, Yy, Zg) — By f (tm Biy i Z1,)) + (B F(tm, By,,) — Eq F (1, By,))
+ (Eq F (tm, Bx,,) — Eq  F(tm, By,))
+ (Eq f (tms B,y Yis Z1,) — By f (tmr1. B Y] L Z] )

=:Di(s,m) + Dy(m) + ---+ Dg(m)

so that

Z;,lnl )

tm?

T n—1
E,k/ f(s.B. Y. Z)ds — hEq, Y f(tmyr. By, Y/
173

m=k

For D; we have by Theorem 5.3 that

Im+1
/ Di(s,m)ds
tm

4
+hZ||D,-(m)||>.
=2

|Di(s,m)|| < Ly (Vs =tm + 1By = By, || + Y5 = Y, | + 1 Z5 = Zy,II)

< C(T. Ly, €Ly, Ciy. po) (T —5)“T h2, (13)

where the last inequality follows from || By — By, || = /s — ti < h7 for s € [tm, tw+1] and

1Yy = Y, | + 1 Zs = Zy,, |l

1

2 ] y : a—1 % z ’ a—2 ?
< (E\I'(B,m) )2 <C5'3</z (T —r) dr) +C5‘3< (T —r) dr> )

tm
< C(T. €Ly Cay, pO)s —tm (T = )T +(T —5)°T).

We bound D, using Lemma 3.3~and Lemma A.1. Similar to (12) we conclude (setting W, :=
1+ |By + By, |P°"! + By + Bz, |Po*1) that

1
| D2(m) || = (B[R F(tm, Biy) — By F b, Bry)|)?

- 1 1 1
<C(T, Ly, E(EREGH  ——— (thh + tyy_ih)?
( f 5.4)( 2) (T—lm)1_7 m
1
2,3
<C(T,po,Ls,c5y))——h*.
( f 5A4)(T_tm)1_7

ST
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For D3 we apply again Lemma 3.3 and Lemma A.1,
1

| Dsm)|| < | Ftm, Bi,) = Ftm, By,)| < C(T. Ly, c37)————— | 3|B,, — By,
(T _tm) 2
23 1 1
< C(T, po, Ly, c53) T — )13 h3,

where W3 := 1+ |B,, |0 4 |B,, |P0*!. For the last term Dy we get

).

Finally, using the estimates for the terms Dj (s, m), D2(m), ..., D4(m) we arrive at

+ ¥, =i |+ 12, - 2,

Im

| Daew)| < Ly (n* + | B, — By

Im

T
|¥i = Y2 | < C(Co. T, p)h% +C(T, Ly, CLs, C2y, po)h? / (T — )7 ds
179

n—1
h
N 1 pp——

n—1

Ly (Y = Y5 |+ 120, = 73, 1)

m=k
< C(Cy T, po. Ly c3y. €35, C53)h ¥
n—1

thLy (Yo = Y5 | + 120, - 7,

m=k

)- (14)

For || Z;, — Z?k || we exploit the representations (7) and (8) and estimate

1
” Zl‘k - Z;‘,lc “ S TTI[{ ||Etkg(BT)(BT - Btk) - ]E'L'kg(B‘rn)(B‘[n - B'L'k)”

T B; — By,
+ Etk f(s, By, Yy, Zy) ds

s
let1 S — Ik

n—1 Bn _ Bn
tm 1]
—Ey (h > f(rmH,B:;,Y,ZI,Z;:W)—k)H

m=k+1 fm = Ik

lk+1 Bs; — By
Etk f(s, By, Y, Zg)————ds|.
179 s _tk

|
Then, similar to (12), we have for the terminal condition by Lemma A.1 that

|IE:[g(Br)(Br — By)] — Eq [g(Bz,) (B, — Br)]|
=|E[g(By, + Br—y) — 8(By)](Br—y — B:, )
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+E[g(By + Br—,) — g(By + Bz, )]Bz, |

< C(Co. T, po)hi (T — 1) 575 + C(Cq. T po)h S (T — 10)? < C(Cq. T, po)h % (T — 1) 2.

Here we have used that INE[g(B,k)(éT_tk — Ig’f,hk)] = 0. The term E[g(B,k + ET_tk) —

g(B,k)](I?T,,k — B;nfk) provides us with the factor (T — tk)% (T — tk)h)%. For the next term of
the estimate of || Z;, — Zt"k || we use for s € [, tnt1), Where m > k + 1, the decomposition

Etkf(s7 BS’ YS’ ZS)(BS - Blk) _ ]Efkf(tm+1’ B;yly,’ Yl‘:ln’ ZZ71)(B;rln B B;Ilc)

S — Ir tm —
_ ]Etkf(sa BSa YS’ ZY)(BS‘ - Blk) _ ]Etkf(tﬂh Btm’ th’ Ztm)(Btm — Btk)
S — i Im — Ik
+ Etk F(tm’ Btm)(Btm - Btk) _ Erk F(tm» Brm)(Brm - Brk)
Im — Ik Im — Ik

B, — B
+E, [[F(rm, By,) — F(tm, Bzm)]j"itk”}
-

n yn 18w~ By
+E‘[k [f(tm, Btma tha Zl‘,,,) - f(tm-i-l» Btm’ th7 Ztm)] P tk
' —
=:Ti(s,m)+To(m)+---+ Ty(m).

Then by the conditional Holder inequality and by (13) as well as by Lemma 3.3 we have

| Bs — Byl Bs; — B B, — B
|7i6s.m)]| < [ DiGsom) | === 4 | f (. By, Yoy Zo) || e = =2
s — 1 s — tk tm —
1
a— h2
< C(T. Ly Cy. Gy p) (T = )T —=
3 €53 =

1

1.2 (EW(B,,)?)?

+C(T’Lf’05.4aKf)71;a

(T_tm) 2
| Bs — By, |l 1
x <S7’+||Btm — By | -
S — I S—tk tym—I
hi
a2
<C(T, Ly, Ky, €5, Coyy 05, po) (T —9) T ———.
(s — )2
Indeed,
1
B; — B 1 =1 T — Te(s — ¢ hi
M‘i‘“Btm_Btk” _ E\/S m At — (s m)SC -
§ =1 S—Ik  Im— Ik s — Ik (s = 1) (tm — 1) (s — )3
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where the last inequality follows from s — #,, <t,+1 —tpy =hand h <t, —ty <s — t;. We
estimate 77 with the help of Lemma 3.3 and Lemma A.1 as follows:

| B, — Byl [ Ftm. Bsy)| 1By — Broi |l
Iy — Ik

[Tatm)| < [ Dam) | =2

-

1 h
(T =tw)'"% (1, — 1)1

<C(T,po,Lf,K¢,cs54)

Here 52(m) = (E|F(tm, B;, + E’,mfk) — F(ty, By, + B;m_k)lz)% which can be estimated as
D, (m). For T3 the conditional Holder inequality and Lemma A.1 yield

By,

~ By, — 1 hi
| T3] < [D30m)| H—
tn —

(T - tm)l_% (tm — tk)% ’

= C(T, po, Ly, c33)

where 53 (m) :== F(ty, B,,) — F(tm, B;,) 1s estimated as D3(m). Finally,

I 1
[Taem)| <Ly (h2 + 1By, = By, |+ 1Y =5, | + 1120, 2, D=

s—1,

For the estimate of ||E; tikH f(s, Bs, Y5, Zy)

By—B . -
‘ k"‘ ds| one notices that by the conditional
Holder inequality,

Bs - Btk
Ey f (s, Bs, Yy, Zs) ———
S — Ik

BS_Btk
Etk (f(S, BSa YS7 Zs) - f(S, Btk, Ytka Ztk))s—

_tk
< || f(s. By, Y5, Zs) = f (s, By, Yo, Zy) | %
S — I
1
a=2 h2
<C(T,Lys,C3i; Ciy, po)(T —5) 2 —

where the last inequality follows in the same way as in (13). Consequently, we have

C C 7Ts o
|7~ 73] = =
—1)2
T
, ds 1
1,2 1
+C(T,Lf,K_f’,CS).3,C§_3,C5.4,p())/ e Tht
t (T —s5)"2(s—1t)%

n—1

1 h3
+C(T, po. Ly Ky.es)h Y —a 3
m=k+1 (T - tm) 2 (tm — tk)Z

n—1

1
+Leh ), (B = By, |+ 1Yo, = Y0 | + 120, = 25, ) —
m:Zk_H t t t (A
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1
Lemma A.2 enables to bound the second and third term of the r.h.s. by C %B(% %)

which is bounded by C — - Thus, we get (Tmnt

(T—4)2" 4
2=z == 3 (w2 - 2
Tk gl = T — 1) f S tm Ay, tm — L1, N
Then we use (14) and the above estimate to get

I~ ¥+ 12 - 20 == ewn 5 (- v+ 12 - 2L
oo " (T —1)2 ! m=k—+1 S i Stk

If this inequality is iterated, one gets a shape where the Gronwall lemma applies. Indeed, setting
am == (1Y, = Y] | +11Zs,, — Z;, |I) one has to consider the double sum

n—1 (nl h ) n—1 n—1
Y (S ap ) S (Y ot azar S
m=k+1 \I=m+1 fi=m fm—k I=k+1 \m=k+1 fm f I=k+1

Consequently,
[~ ¥+ N2 -z < =2
which gives the bound on the error on Z. Moreover, (14) yields
V2 = vii]) = Con.

If v € [t, tk+1), we have by Theorem 5.3 that

1

Yo = Y| < 1Yy = Yyl + | s — Y”||<C(C53,T 10 (/ (T =% 1dr) + v -7,

Tk

|z, —zy| <112y — Zy Il + || 2, — 21|
1

v 2
<cci ([ @ =rear) 41z -2
k
where

v » 1 1
/ (T—r)*""dr<—(@—1)*<—-h"
: o o



170 C. Geiss, C. Labart and A. Luoto

and

’ a=2 1 Y 2 _1 1 2 o
(T—-r2dr<——— | T-nldr<—F=(v—1)?2
tk (T -2 Jy (T-v)' 7

2 A2
<—-——\
Ta(T-v)l2 O

4. Numerical simulations

This section deals with the algorithm used to compute (Y}, Z )k=0,....» and numerical experi-
ments for different terminal conditions and drivers. In the first three cases the exact solution is
available and we are able to compute the error (Y" — Y, Z" — Z) in Ly-norm. In the last two
cases the exact solution is unknown, therefore we plot the evolution of (Y", Z") w.r.t. n.

.....

4.1. Simulation of (t1,..., 7,) and B"

In order to simulate (zy, ..., 7,;), we use the fact that
70=0 and Vk>1, 1w =1_1+4 o0z,

where (ok)1<p is an i.i.d. sequence whose common law o represents the first exit time of the
Brownian motion B of the interval [—\/E , \/ﬁ],

o :=inf{t > 0:|B| =«/E}

From the book of Borodin and Salminen [5], we have that the Laplace transform of ¢ is given

by E(e Aoy = m

Let F denote the cumulative distribution function of o. It holds E(e ) = Y2 (1), where F
is the Laplace transform of F. Then, to obtain F, it remains to inverse numerically its Laplace
transform. Once we have F', we simulate the sequence (0x)1<k<, by following the steps of Al-
gorithm 1.

Algorithm 1 Simulation of the sequence (71, ..., 7,;)
Simulate one vector with uniform law (Uy, ..., Uy)
70=0
fork=1:ndo

Compute oy := F~YUp)
Define 1y = 14 —1 + 0%
end for
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4.2. Simulation of B"

In order to get the trajectory By, ..., By (By =0), we simulate an i.i.d. Bernoulli sequence

(£x)1<k=n that is, P(§ = £1) = 1. Then

. | Bi+VR ifg =1,

ol = (15)
et B,’f{—«/ﬁ otherwise.

4.3. Simulation of (Y", Z")

Since B” is built using the random walk (15), it can be represented by a recombining binomial
tree. Both (YzZ)OSkSn and (Z,';)Osksnfl can then also be represented as a recombining binomial
tree. Since ¥;' = g(By.), we solve backward in time the BSDE by following these equalities,
ensuing from (2) (¥, has been replaced by Y;' | in the generator term, but the error induced by
this modification is smaller than the ones we consider)

1
72N = —E, (Y ¢ ,
1 Jh Tk( tit1 k+1) (16)
Yie =Br (Vi +hf (trr. By Yy, Z3).

Practically, we compute (Y", Z") backward in time in the following way. From (15) it is easy
to see that By has k + 1 different values. We store all values of B" in the upper triangular
(n+ 1) x (n + 1) matrix B defining B[i, k] = Vh(k —2i) (i and k vary from O to n). Similarly
we store the values of Y” and Z”" in the upper triangular (n + 1) x (n 4 1) matrices Y and Z
setting Y[i, k] = YIZ(BZ( = B[i, k]) and Z[i, k] = Z,’; (Bt’]’c = B[i, k]) (i and k vary from O to n).
Algorithm 2 describes the computation of the conditional expectations appearing in (16). Note
that the computation of the conditional expectation is very simple: to get for instance the values

ofE,k(Y,’Z+l),wecompute %(Y[i,k—i— 11+Y[li+1,k+1]) fori =0,...,k+1.

Algorithm 2 Computation of (Z", Y")
Y[:, n] = g(B[:, n]), Z[:,n] =0
fork=n—1:0do
fori=0:(k+1)do
Compute z[i, k] = ﬁ * (Y[, k+11—=Y[i +1,k+1])

Compute ¥[i, k1= L (¥[i, k + 11+ hf e[k + 11, Bli, k1, ¥[i, k + 11, Z[i, k1)
+Y[i + 1,k + 1]+ hf (t[k + 11, B[i, k], Y[i + L, k + 11, Z[i, k1))

end for
end for
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4.4. Study of the error E|Y;! — Y, |* and E|Z}! — Z,, |?

In this subsection, we assume that we are able to compute the exact solution (Y, Z). We want to
study numerically the convergence in n of E|Y; — Yy, |> and E|Zy — Zy |2, where (Y, Z) solves
(1) and (Y", Z™) solves (6). To do so, we approximate the error ]E|A;; — Ay 2P(A=YorA=2)
by Monte Carlo:

M
]E\A;lk—A,k|2~$Z|A;1’m—A;“;\2:= Ex (17)
m=1
1. For each Monte Carlo simulation, we pick at random one sequence (1, ...,&,) (which
gives the value of (B,’i, ..., Bf')) and one sequence (71, ..., Tn)-
2. From the sequence (&1, ..., §,) we get the trajectory of Y", including Y, .
3. From the sequence (B, ..., By,) (which is equal to (Bt’i ey Bt',’l)), we compute B;, by

using the Brownian bridge method. We deduce (Y, Z;,) as functions of By, .

In the following experiments, we plot the logarithm of the errors Ey and Ez (defined in (17))
w.r.t. log(n). From Theorem 3.1, we get that log(Ey) and log(Ez) decrease as —% log(n). By
using a linear regression, we compute the slope of the line solving the least square problem and

compare it to —F.

4.5. Numerical experiment

45.1. Case g(x)=e"  and f(y,2) =y +z

We consider the BSDE with terminal condition g(x) = e’ +* and driver f(y,z) =y + z. In this
case, we know that ¥; = eT+B’+%(T_’). We run M = 20,000 Monte Carlo simulations. We fix
T=1.

Figure 1 represents log(error on Y) and log(error on Z) at time ¢ = 0.5 (the error is defined
by (17)) with respect to log(n), when n varies between 10 to 70 with step 10. For the Y case,
the slope ensuing from the linear regression is —0.53. Even though g(x) = e’ +* does not satisfy
(3), g is locally Lipschitz continuous, and the outcome seems to be consistent with Theorem 3.1
for « = 1. For the Z case, we get the slope —0.61.

452, Case g(x)=x>and f(y,2) =y +z

In that case, we know that ¥; = e? (B, — (T —1))2+ T — ) and Z; = 2¢T (B, — (T —1)).
We run M = 20,000 Monte Carlo simulations. We fix 7 = 1.

Figure 2 represents log(error on Y) and log(error on Z) with respect to log(n) at time ¢ = 0.5
when n varies between 10 to 100 with step 10 and from 200 to 500 with step 100. The slope of
the linear regression for Y (resp. for Z) is —0.465 (resp. —0.48). The results are then consistent
with Theorem 3.1.
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Figure 1. log(error on Y') and log(error on Z) attime t = 0.5 w.r.t. log(n) — f(y,2) = y+z—-g(x) = el
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Figure 2. log(error on Y) (on the left) and log(error on Z) (on the right) at time # = 0.5 as a function of
log(n) - f(y.2) =y +z-gx) =x2.

4.5.3. Case g(x) =+/|x|and f(y,2) =y +z

In that case, we know that Y; = e%fE(\/ |Br_; + B;|eP7-1). We run M = 20,000 Monte Carlo
simulations. We fix ' = 1.

Figure 3 represents log(error on Y) at time ¢ = 0.5 and at time r = 0 with respect to log(n)
when n varies between 10 to 100 with step 10 and from 200 to 500 by step 100. The slope of
the linear regression is —0.51 (resp. —1.7) when ¢ = 0.5 (resp. when ¢ = 0). Here we notice
that the modulus of the slope we get is larger than %, the upper bound obtained in that case in
Theorem 3.1.
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Figure 3. log(error on Y) at time # = 0.5 (on the left) and at time # = O (on the right) as a function of
log(n) - f(y,2) =y +z-gx)=+Ix].
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Figure 4. Evolution of ¥/ as a function of log(n) — £ (., z) = cos(y) — g(x) = |x|1/4.

4.5.4. Case g(x) = |x|"* and f(y,z) = cos(y)

There is no explicit solution. We fix 7 = 1 and plot the evolution of Y for different values of
n where n varies from 10 to 100 by step 10, then from 100 to 1000 by step 100, from 2000 to
10,000 by step 1000 and the last three values are 15,000, 20,000 and 30,000. We notice a slow
convergence (in n) of Y which can be expected to happen in view of Theorem 3.1.

4.5.5. Case g(x) =x2and f(y,z) = cos(y) + sin(z)

There is no explicit solution. We fix 7' = 1 and plot the evolution of Y and Z; for different
values of n (see Figure 5), where n varies from 10 to 100 by step 10. The convergence of Yy and
Zg in n is quite fast.
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Figure 5. Evolution of Y (on the left) and Z (on the right) as a function of n — f (v, z) = cos(y) +sin(z) —

g(x) =x2.

5. Some properties of solutions to PDEs and BSDEs

In the following, we recall and prove results for FBSDEs with a general forward process, even
though we apply them in the present paper only for the case where the forward process is just the
Brownian motion. Restricting ourselves to the case of Brownian motion would not shorten the
proofs considerably. Let us consider the following SDE started in (¢, x),

N N
X =x +/ b(r, X1")dr +/ o(r,X!*)dB,, 0<t=<s<T, (18)
t '
where b and o satisfy the following.

Assumption 5.1.

1. b,o € Cg’z([O, T1 x R), in the sense that the derivatives of order k =0, 1, 2 w.r.t. the space
variable are continuous and bounded on [0, T] x R,

2. the first and second derivatives of b and o w.r.t. the space variable are assumed to be
y-Holder continuous (for some y € (0, 1], w.r.t. the parabolic metric d((x, 1), (x', ")) =
(x —x']2+ |t — t/|)% on all compact subsets of [0, T] x R,

3. b, o are %—Hélder continuous in time, uniformly in space,

4. o(t,x) > 6> 0forall (z, x).

5.1. Malliavin weights

In this section, we recall the Malliavin weights and their properties from [22], Section 1.1 and
Remark 3.
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Lemma 5.2. Let H : R — R be a polynomially bounded Borel function. If Assumption 5.1 holds
and X" is given by (18), then setting

G(t,x):=EH(X%")
implies that G € C]’z([O, R) x R). Especially it holds for 0 <t <r < R <T that
0:G(r, X0¥) = E[H (X5 )NG OO F),  and 982G (r, X1Y) = E[H (XY ) N>V 1,

where (f,’)re[l’T] is the augmented natural filtration of(Bf’O)re[,,T],

1 (R vXg*
NRheY = / 4B, and
R—rJ o(s. X\ VXD

0,1,(t,x) t,x A7 1,(2,%) 0,1,(t,x)
Nr2) _ Np VXN, + VNR

VXt ’
with p := #. Moreover, for q € (0, 00) it holds a.s.
ri(62) |4 £\ ¢ Kq
E[ NP = o (19)
(R—r)2

and E[Nlre’i’(t'x) |F!1=0 a.s. fori =1,2. Finally, we have

IH (X% —E[HXEOIF L, @)
||LP(IP’) Skq m

lo:G (. x;")

and

IH (X% —EHXEOIFAIL, @
”LP(IP’) Skq R_r

|36 ( x7)

forl<q,p<oowith%+é=l.

5.2. Regularity of solutions to BSDEs

Let us now consider the FBSDE

T T

Yor =g(X7") +/ Flr Xp5, YP>, Z Y dr —/ Zy*dB., 0<t<s<T, (20)
N N

where X'* is the process satisfying (18). The following result is taken from [22], Theorem 1.

We reformulate it here for the simple situation where we need it. On the other hand, we will use

P; x and are interested in an estimate for all (#,x) € [0, T) x R.
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Theorem 5.3. Let Assumption 2.1 and 5.1 hold. Then for any p € [2, 00) the following assertions
are true.

(i) There exists a constant C§i3 > 0 such that for 0 <t <s < T and x € R,

§ 2
1Ys = YellL, @, ) SCsyg‘lf(X)(/ (T—r)“_ldr) .
t

(ii) There exists a constant C5 5 > 0 such that for 0 <t <s < T and x € R,

1
s 3
1Zs = ZillL, @, ) < Cs3¥(x) </ (T —r)*~2 dr) )
t

The constants C;3 and CSZ.3 dependon Ky, Ly, Cg, c;"f, T, po, b, o, k4 and p.

Proof of Theorem 5.3. (i) First, we follow the step [22], Theorem 1, proof of (C2;) = (C3)).
We conclude from the linear growth | f(r,x,y,2)| < L¢(Ix| + |y| + |z]) + K and from the
Burkholder-Davis—Gundy inequality with constant a;, > O that

1Ys = Yell, .0

S s
f f(V,Xr,Yr,Zr)dr—/ ZrdBr
4 t

Lp(Prx)

N
<Kp(s—0)+ Lf/ IXrllL, @ + 1Yz, @0
t

1

N 2
+||Zr||L,,<JP,,x)dr+ap(/ ||Zr||%p<ﬂ%.x>dr> :
t

We then use (i) and (ii) of Theorem 5.4 below to get

1Ys = Yell, @,
<Kjs(s—1)

+C(T.Ly.cs3,p.b.o, po)‘I’(x)Us(l +(T—)T ) dr + </S(T—r)“‘ldr> 2].
t t

(i1) Here one can follow [22], Theorem 1, proof of (C4;) = (C1;).

Step 1: We first assume additionally that £ : [0, T] x R? — R is continuously differentiable
in x, y, and z with uniformly bounded derivatives as it was assumed for [22], Theorem 1. To
take the dependency on x into consideration which arises since we use P; ., it suffices to replace
everywhere in the proof in [22] the constant ¢ BOw by C(T,Cg,0,b, p, po)¥(x). The constant

Z
Cs , depends moreover on L ¢ and k.
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Step 2: Now let f be as in Assumption 5.1. In [22], Theorem 1, proof of (C4;) = (C1;),
a linear BSDE is used which describes the behaviour of the process Z minus its counterpart
where the generator is identically 0. Here the partial derivatives of fy, f), f; appear but only
their uniform bound is needed in the estimates. Hence, if f satisfies (4), we can use mollifying
as explained in (26) below (one may choose N = 00). Since |3, f° (¢, x, y, 2)|, |3y fE(t, x, ¥, 2)|
and |9, f*(¢, x, y, z)| are bounded by L s we conclude from Step 1 that for all & > 0 the process
Z¢ corresponding to f* satisfies

1
2

s
|zt - z¢| L@y < C§'3\Il(x)</ (T —r)*2 dr) (21)
s t

for p > 2. Especially, the family {|Z{ — Z7|7 : ¢ > 0} is then uniformly integrable provided that
q < p. By an a priori estimate (cf. [8], Lemma 3.1) we have that

T T
E/ |Zr—Zf}2dr§C/ sup]f(r,x,y,z)—fs(r,x,y,z)|2dr§C82TL§.
0 0 x,y.2

Fubini’s theorem implies that there exists a sequence ¢, — 0 and a measurable set N C [0, T']
of Lebesgue measure zero, such that lim,,_, o E|Z, — zo |2 =0forall r € [0, T]\ N. Conse-
quently, forany g < p and all ¢,5 € [0, T]\ N with t <,

1

S 2
1Zs = ZillL, e, < C§_3W(x>( f (T - r)“_zdr) .
t

The assertion follows for all g > 2 since (21) holds for all p € [2, 00). Since by Theorem 5.4(ii)
the process Z does have a continuous version, we finally get the assertion for all # < s. |

5.3. Properties of the associated PDE

We collect in the theorem below properties of the solution to the PDE which are mainly known.
The new part concerns 8)%14. For Lipschitz continuous g, the behaviour of afu has been studied
in [35]. General results related to this topic can be found in [19].

Theorem 5.4. Consider the FBSDE (20) and let Assumptions 2.1 and 5.1 hold. Then for the
solution u of the associated PDE

2
ul(t’x)+ g (t’x)uxx(t,x)—i—b(l‘,x)ux(t,x)—I—f(l‘,x,u(t,x),a(t,x)ux(t,x)) :07
tel0,7),xeR,
u(T,x)=g(x), xelR
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we have

(i) Y; = u(t, X;) where u(t,x) = E, (g(X7) + f,T fr, Xp, Y, Z)dr) and |u(t,x)| <
c;4\ll(x) with W given in (5), where c;4 depends on Cq, T, po, Ly, Ky and on the
bounds and Lipschitz constants of b and o .

(1) uy exists,

X T
Mx(tsx)z]EI,)C<g(XT)N;: +/ f(rvxrsY}"er)Nrt’]dr>! (22)
t

and

(iii)

(a) uy is continuous in [0, T) x R,
(b) Z¢* =u(s, XyM)o (s, X§),

2 W(x)
(©) |ux(t,x)| < 24—

>

(T-1 2
where c§_4 depends on Cq, T, po, k2, L, K y and on the bounds and Lipschitz constants
ofbando.

Uyy €XIStS,
2
Uy (2, x) =Fy & <g(XT)N;3

T
+/ [f(r’Xr’Yryzr)_f(raXl‘aYhZI)]N;{’Zdr)a (23)
t

and
(a) uyy is continuous in [0, T) x R,

3
() luyy (1, x)] < 342

(Tft)l_% ’
where c§.4 depends on Cq, T, po, k2, Ly, C5y.3, C§'3 and on the bounds and Lipschitz
constants of b and o .

In the following cs4 represents (c;_4, c§'4,cg4) and Clsi (i # J) represents (cg'4,c5/_4), @, j)e
{1,2,3}.

Proof.

(i): This follows from [37], Theorem 3.2.

(i1): From the proof of [37], Theorem 3.2, we get (22). The points (ii)(a) and (b) ensue from
[37], Theorem 3.2(i). It remains to prove (c).

Proof of (ii)(c). We show the assertion for a generator not depending on X, since the terms
arising from that dependency would be easy to treat. Since E; (E;  (g(X T))NtT’]) =0 we can
subtract it from the right-hand side of (22) and get

T
deu(t,x) =E, ([g(Xr) —Eex(s(X) NG + / f@r, Y., Z)NE! dr>.
t
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It holds

By o|e(X1) — B g(X0)|* =Fr e (X7) — Bg(X5%) > < B, B |g(X7) — g (X551,

and thanks to the Cauchy—Schwarz inequality with W1 = Co (1 + | X7 |70 + | X7 XX

tion (3),

|P0) and equa-

IE”CE|g(XT)— ( tX’)} <E E (\p |XT_XITX¢|2a)

<[E, x]qu“] [E: | X7 — X5 |4°‘]7

< C(Cq. T, po. b, o)W (x)(T — 1)°. (24)
Relation (19) and the Lipschitz continuity of f imply

|8xu(t,x)|
< C(Cg3 T’ vaszbva)lII(x)
- (T —1) ="

T
+C(Lf,Kf)IE,,X/ (1 + |u(r, X)| + |8cur, X))o (r, X,)|)| N dr. (25)
t

Since we have |g(x)| < W(x), [37], Theorem 3.2(ii), gives |u(t,x)| < cW¥(x) and |0 u(t, x)| <
cW(T — 1)~ Y2, where ¢ depends on T, Ly, K¢, k2, b, o and py. Hence, inequality (25)
becomes

C(Cgv Ta va K27 b7 O’)\II()C)

|Ou(r, x)| < —
(T —1)7
T ( i‘) 1,1
+C(Ly, Ky, c,0)E;« 1+ W(X,) + ——— | |N>!|dr
t (T —r)?
C(Cg,T po,Kz,b o)W (x)
(T -1
T W(x)
+C(T’ Lf7Kf’K27baa9p0) —dr

b (T —r)2r—1)?
C(Cg,T po,Kz,Lf,Kf b, a)\ll(x)
(T—1)'7" O

(iii): We start with an approximation of g and f by smooth and bounded functions. Let ¢ be
a non-negative C* function with support [—1, 1], such that fR ¢(u)du =1, and ¢ € (0, 1]. For
N eNletby :R—[-N — 1, N + 1] be a monotone C* function such that 0 < b}v(x) <1
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and
N+1, x>N+2,
by(x):={x, |x] <N,
—-N—-1, x<-—-N-2.
Define
1
gs’N(x)=/1¢(u)g(bN(x)—5u)du
and

1 1
£y, = / 1 / BB by () —euby(@ —e)dudv.26)

Lemma 5.5. g®N and f&V satisfy

@ llg°Vlloc + 11 /5" lloc < € = C(e, N) for some C (g, N) > 0,

() g5V and &N are C* functions, with bounded derivatives (the bounds depend on &
and N). Moreover, f&" is a Lipschitz function in y and z, with Lipschitz constant L 1

(c) g&N satisfies (3), uniformly in € € (0,1) and N > 1,

(d) forall x eR and ¢ € [0, 1], we have |g&" (x) — g(x)| < C(CHW(x)(e* + %),

() forallr €[0,T] and for all (v, z) € R?, we have

| oV y,2) = F(ry,2)| < Lp(26 + |bn () — y| + [ba(2) — 2]).

Proof.

(a) Since g is locally Holder continuous in the sense of (3), [g(x)| < Co(1 + |x|Po+1). Then,
we get |g5N (x)| < CoI+(N+1+ £)Po+1) and for f being Lipschitz continuous in y
and z, uniformly in time, the same type of result applies.

(b) Since ¢ is a C* function and f and g are of polynomial growth, we get the result.

(c) Since g is locally Holder continuous, we get

}gs’N(X) _ gs,N(y)’

1
< / 1 |0 )| Co (1 + by (x) — eu|™ + by (y) — eul™)|by (x) — by ()| du

1
< / Cel@](1-+ (11 +2)™ + (11 +£)")lx = 51
< C(C)(1+ %17 + [y x — y[*.

(d) We have

1
g5V (x) — g(x)| = V_l o) (g(bn (x) — eu) — g(x)) du
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1
ng/ |6 (14 [by (0] + 670 + 1x17) (|by (x) — x| + &%) du
-1
< C(C)(1+ [x]70) (e + x|*Ljx =)

and the result follows.
(e) We simply have to apply the Lipschitz property of f to get the result. ]

We put now ¢ := + and write (g, fV) instead of (g%, F¥*N) in order to simplify the
notation and consider the BSDE

T T
Y,N=gN(XT)+/ ™, Y,N,va)dr—f zZNdB,.
t t

Representation for BfuN (t,x)

By (i) we have that
N N [yt r N N N
u” (t,x)=E; g (XT’X)—l—/ Eixf (r,Yr ,Z,)dr.
t

According to Lemma 5.2 it holds that 3’E, , gV (X7) = E, ,[g" (XT)N'T’Z] and
RZE, , fN(r YN, ZN) =B L[V (r YN, ZN) N,
because
Y YN ZNY = N uN o X, o (r Xoul (r, X)),
and f N (7, y, z) is continuous and bounded. Moreover, [24], Proposition 4 (or [21], Theorem 2.1)

implies that uN (r, x) is C1? and it holds that |uN(r, x)|+ |8xuN(r, x)|+ |8§uN(r, x)| < cV for
some CN > 0. Since o is continuous,

(r,x) — fN(r, uN(r, x),o(r, x)ufcv(r, x))

is a bounded Borel function. Notice that by Lemma 5.2

2

Ez,x[Nrt'z] =0 and Elvx[(Nrt)z)z] = (r izt)T

(27)
so that

B[ (Y 2N =B (£ 6 Y 2 — £V v Z))INE2).

LR )
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Using the Lipschitz continuity of fV (see Lemma 5.5), the inequality of Cauchy—Schwarz and
Theorem 5.3 one can derive the upper bound

|07E, . N (r, YN, ZV)|

s Ly o

B[l 2 — Y 2 N

s Ly o

L
SC(Lf,Kz)(]Ez,xﬂYrN—YtN|2+|ZfV—ZzN|2))2:

1 ’ 3
SC(LszZscsy,3vC§.3)|:</t (T—s)alds>2+</t (T—s)a2ds>2];1/(_x3

1

T —r'=5¢ -0t

<C(T,Lyf, k2,C35,C35)¥(x) (28)

By this we do have an integrable bound for the derivative, and by dominated convergence we get

T T
af/ B fN(r YN, zN)ar =/ RZE, N (r YN, ZN)dr
t

t
T
= [ B Y 2 = £ 2N
t

Hence, we can write (using Fubini’s theorem for the integral)
2 t,2 T 2
32ul(t,x) =F (gN(XT)NT’ + / [N YN, zN) = N (YN, ZY) N dr).
t

Convergence of BfuN (t,x)

Since E; [E; x (gN (X T))NtT’z] = 0, Cauchy—Schwarz’s inequality and the local Holder continu-
ity of gN (see Lemma 5.5) give like in (24) that

B, (¥ XTINE?)| = B x ([¢ (X7) — B i (8 (X)) [NE)|

< (Era (18" (X~ Era (g (X)) 22
W(x)
<C(C,, T, po,icz,b,a)m,

for all N € N. For the second term we can use the upper bound (28) and Lemma A.2 to get

sty

T
B [ 160 20) = Y Y 2N ar
t

W(x)

dr,
(T -n'""5¢-12

T
< C(T, Ly, k2, C3s, CSZ.S)/
t
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<C(T,Ly,k2,C55, C33)¥(x)

which implies
W(x)

|azu™ (1, x)| < C(Cq, T, Ly, po, k2, C35, C25,b, o)m.

(29)
According to [21], Theorem 2.1, 83141\’ (t, x) is continuous. Let

T
v(t,x) =K x <g(XT)NtT’2 —|—/ [f(r, Yo, Z,)— f(r, Yz, Zl)]Nr"zdr>.
t

We show that for any (¢, x) € [0, T) x R it holds 82u™ (¢, x) — v(t, x) if N — oo, and that v is
continuous on [0, 7)) x R. The idea to show continuity of v is as follows: If (¢,, x,) — (f, x), then
we may assume that we can find a § > 0 such that x, € (x —§,x +§) and 1, € (t — 5,1t +5) C
[0, T) for each sufficiently large n. We consider

[t Xn) — v(t, %)| < |Vtn, X0) — 326 (ty %) | + [02u™ (1, x0) — 2™ (2, 1)
+ [0fu™ (1, x) — v(t, x)|.

Since 8§uN is continuous, the term |83uN(tn, Xp) — BfuN(t, x)| is small for large n. Hence, it
suffices to show that supyc;_s 145) ye(x—s,x+8) 182u™ (s, y) — v(s, y)| is small for large N. Let
(s,y)e(t—86,t+8) x (x —§,x +6). It holds

T
|02u™ (s, y) — v(s, )| <Esy|[¢" (X7) — g(X7)|N3?| +/ DI(rs) dr:= Dy + D3,

K2
r—s
where (setting | - llp, , = Il - I, @, )

IR VA (S AN/ B (S AN B VS VARSI AV )|

< Ly([¥Y = ¥¥p, 12N =2V g, + 1Y, = Yslle,, + 12, = Zslle,,)
< ([N zY) = pe e 2o, + 1N YN 20 = £ Y Z0) g, )-

First, let us bound Dj. According to Cauchy—Schwarz’s inequality, (31) below and (27) we get

by 8
Dy < 8iyEs (N7 < Tlfzs =T —1:2—6'

Now let us bound D;. According to Theorem 5.3 it holds

1

— 7
D (r,5) < C(T, Lf,csys,cgj)\y%(y)i(r S? _
( 277

T—r)2

1
< (Y 20 = fe Y 2o, + 7 (0 20) = £ Y Z0)p, )
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Then, using (32), (34), (35) and Proposition 5.6 below gives

r—s7i 8
1 a

1 y
D2(r,5) <C(T, Ly, k2, Ci5, C35)W(y) -
(T—r)274 (T —r)4

Hence, we have shown that

y z r 61
Dy <C(T, Ly, k2,Ci4, C35)W(y) ( )%(T T dr
s (r—s —-r
31
< C(T,Lf,Kz,C§3,C§,3)W(y)7(T e
—s)27 1
, 8
5C(T,Lf,icz,C§_3,C§.3)\If(x+8)—(T ; 15)%7%

V(s,y) et —8,t+38) x (x =8, x +3).

Consequently, SUD, (5 +18).se—s.1+5) |0xu™ (s, ¥) — v(s, y)| is small for large N, hence v is
continuous. Since

X
deul (1, x) — u™ (2, y) :/ 02uN (1, 2) dz
y

converges to

X
oxu(t,x) — deu(t,y) =/ v(t,z)dz,
y
it follows that 8314([, x) = v(t, x). Then point (iii-a) and (23) are proved. Since 8fuN converges

to v for N — oo, we deduce point (iii-b) from (29). (Il

Proposition 5.6. Let Assumptions 5.1 and 2.1 hold. Then for any (s, y) € (t —8,t +8) X (x —
S, x +&)witht+ 6 <T and r suchthat s <r < T we have

81
JT =7’

where §1 denotes a generic constant which tends to O when N tends to +00.

” YrN - Yr ||L2(Ps,y) + “ Z’{V - Zr ||L2(]Psvy) =

Proof. Let here | - || stand for || - ||, (p, ,). We will use for the ¥ differences the inequality

T
[ =¥ < [8" xr) - gx1)] +f | £¥ (w, ¥, 20) = f(w, Y, Zu) | dw.
r



186 C. Geiss, C. Labart and A. Luoto

For the Z differences, we get by (22) and (ii-b)

|2 -2,

< C(U)(”Er(gN(XT) —g(Xn)N7'|

T
+ ‘Er/ (fN(w,Yufjf,zu’Y)—f(w,Yw,zw))Ng;ldw”)
< Clez a)(”gN(XT)_g(XT)” +fTHf (0, Y2 Z8) = f 0, Yo, Zo) | e dw).
- ' JT —r - Twe » W Jw—r

Let S(r) := |YN — Y| + |ZY — Z,||. Using the inequality (1 +
w <T gives

JJTr) < C(T)\/% for r <

1
S(r) < C(T, k2, a)(HgN(Xn - g(Xr)Hﬁ

T
+/ | (w, ¥, ZN) = fw, Yo, Zu)|

1
w_ydw). (30)

Let us bound ||g" (X7) — g(X7)|. By Lemma 5.5, we get the estimate

N« N
1 20042
Ll )
N2« N2
|X +8|20l+2
N2

i 1 X a+1\ 4 %
Es,y|gN(XT>—g(XT)Fsc<cg>Es,y(W(xT>4)5(Es,)(—+' rl ))

<C(Cy, T, b,o, Po)‘ll(y)z(

§C(Cg,T,b,c7,po)\IJ(x+3)2( + )532, (31)

N2«

for any arbitrarily small §; > 0, provided that N is sufficiently large. Let us now bound
N, YN, ZNY — f(w, Yy, Zy)|. Using again Lemma 5.5 yields to

|5 (. i Z20) = . Y, Za)|

s Lo

<N (w, Y, ZN) = N w, Y, Zw) | + | £V W, Y, Zu) — f(w, Vi, Zu) |

2
< Lf<HYKUV = Yol + 25 = Zu] + 5 + by Cw) = Yu | + v (Z0) —zwn>. (32)
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Then, plugging (31) and (32) into (30) gives

LCT208 oy, [ S

A e T k2, 0)L ¢

- JT—r 2R w—r

T & + 1oy (V) = Yyl + b8 (Zw) = Zo |
Jw—r

To estimate ||by(Zy) — Zy || we use Zy, = o (w, Xy)uyx (w, Xy,) and choose a small a > 0 such

that 8 := w < 1. Then

S(r) dw

—|—C(T,I(2,0’)Lf/ dw. (33)

”bN(Zw) —Zy ||2 = IE:s,y|bN(Zu)) —Zy |21\Zw\zN

< IEs,y|Zw|2+a Es,y|0(w9 Xy)ux(w, Xw)|2+a

- Ne Ne
Using Theorem 5.4(ii-c) yields

C(34: OEs y U (X)) P C(T. po. 34,0, )W (1) P+

IEs,y|bN(Zw) - Zw|2 <

(T _ w) (2+a)2(]7a) Na - (T _ w) (2+a)2(1701) Na
5
< e VY € —8,14+8) x (x =8, x+3). (34)
(T —w) 2

Similarly,
C(T, po,cl, b, o)W (y)C+d
Na
<81, Y(s,y)e@—8,1+8)x(x—8 x+3). (35)

gy [brn (V) = Yol <

Plugging (34) and (35) into (33) gives

Sr) < C(T,k2)é

d
JT —r v

r g

) N 81

. \/m (T _ w) (2+a)2(lfct) w—7r
) rs

1 (w) dw),

dw

+C(T,k2)Ly

+
T —r roAwW—r
where the last inequality comes from Lemma A.2 (8 < 1). If we iterate this inequality by re-

placing S(w) with its estimate and then change the oder of integration we get by Lemma A.2
that

<C(T, Kz,Lf)<

S(r)=C(T,k2,Ly)
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X(LJF/TLLMJF/T/TLCMU))
VT —r r AT —wAJw—r r Juw AUV —wJw —r

81 11 11 r
SC(T,KQ,Lf)(m-FSlB(E,E)—i—B(E,E)/r S(v)dv).

4 9 C T, ,L 3 (S .
It remains to apply Gronwall’s lemma to see that S(r) < % Since C(T, k2, L )51 be-

comes arbitrarily small for N large, we will slightly abuse the notation and write S(r) < Ao

JT—r
Appendix: Technical results and estimates

Lemma A.1. Forall 0 <k <m <n and p > 0, it holds for h = % that
(i) Et; = kh,
(ii) Eli|? < C(p)h?,
(iii) E|By, — By l? = tm — &,
(iv) E|By, — By | < C(p)E|5 — i|P < C(p)(1ch)*.

Proof. The strong Markov property of the Brownian motion implies that (t; — 7;—1)72, is an
i.i.d. sequence. According to [33], Proposition 11.1(iii), we have that Et; = % and (i) follows.
Item (ii) follows by [33], Proposition 11.1(iv), and Jensen’s inequality. To prove item (iii), recall
that (B, — By,_, )?21 is a centered i.i.d. sequence with [E(B;, — B,H)2 =h,i > 1.(v): The BDG
inequality implies that for each p > 0,

T Vi p
]E|B‘L’k_Blk|p = E’/ (I[O,Tk](r)_l[o,tk](r)) dBr
0

T Vi p/2
< C(p)E(/O I[O,rk]A[O,tk](r)dr> =E|r—n|"/?.

To prove the second inequality of (iv), a generalization of [33], Proposition 11.1(iv), we first
assume that p > 1. Let us rewrite 7y —#; = ZLl n; where (17;)1<i<k is ani.i.d. centered sequence
of random variables distributed as 71 — k. Burkholder’s and Holder’s inequalities, and finally item
(ii) yield

k 7 k
Elt — 4 < C(mE(Z n?) <k E(!) < Cp) @),
i=1

i=1

which proves the claim for p > 1. The case p < 1 follows from this result by Jensen’s inequal-
ity. ]

Lemma A.2. Forallt €[0,T) and foralla <1, B <1 we have

/T ! dr = ! B(l—a,1—8)
T —op T e e R

where B denotes the beta function.
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