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We show sharpened forms of the concentration of measure phenomenon centered at first order stochastic
expansions. The bound are based on second order difference operators and second order derivatives. Appli-
cations to functions on the discrete cube and stochastic Hoeffding type expansions in mathematical statistics
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1. Introduction

The concentration of measure phenomenon for product measures has been extensively studied
in the past decades. It was established by M. Talagrand in the 1990s [31,32]. Further research
was done by S. Bobkov, M. Ledoux and others [6,7,22]. For a comprehensive survey which
summarizes the central concentration of measure results up to the end of the 1990s, see the
monographs by M. Ledoux [23,24], for a more recent one see [13].

One of the basic results due to M. Talagrand are concentration inequalities for Lipschitz func-
tions around their mean or median. For instance, in discrete probability models, the product
probability space (�,A,μ) := ⊗n

i=1(�i,Ai ,μi) is typically equipped with the Hamming dis-
tance d(x, y) := card{k = 1, . . . , n : xk �= yk}. A related approach, which is essentially due to
M. Ledoux [22], makes use of certain “difference operators”. That is, for any function f : � → R

in L2(μ), set

dif (x) :=
(

1

2

∫
�i

(
f (x) − f (x1, . . . , xi−1, yi, xi+1, . . . , xn)

)2
μi(dyi)

)1/2

(1.1)

and df := (d1f, . . . ,dnf ). A slight modification of [7], Proposition 2.1, then yields

Proposition 1.1. Let (�i,Ai ,μi) be probability spaces, and denote by (�,A,μ) := ⊗n
i=1(�i,

Ai ,μi) their product. Moreover, let f : � → R be a bounded measurable function such that∫
f dμ = 0. Assume that |df | ≤ 1. Then, for any t ≥ 0 we have

μ
(|f | ≥ t

) ≤ 2e−t2/4.
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Note that the boundedness of f is in fact a consequence of the condition |df | ≤ 1 (see Sec-
tion 2). If we apply Proposition 1.1 to 1-Lipschitz functions with respect to the Hamming dis-
tance, we recover the classical concentration inequalities by M. Talagrand (cf. [22]). Similar
results can be derived in the context of “penalties”, which can be regarded as generalizations of
the Hamming distance [22]. In [7], a generalized version of Proposition 1.1 is used for deriving
concentration inequalities for randomized sums.

The tail bounds we deduce in the present article are motivated as follows: consider a suitably
normalized non-linear statistic which is stochastically non-degenerate and bounded in the limit.
By general principles, it will have the same limit distribution as a stochastically bounded Gaus-
sian chaos functional. If it is non-degenerate of order 2 in the limit, it certainly has exponential
tail decay.

As an example, consider a set of i.i.d. centered random variables X1, . . . ,Xn in L∞ (e.g.,
Rademacher variables). Then, a particularly simple case where Proposition 1.1 applies is the
function g(X) := 1√

n

∑n
i=1 Xi . A natural second order analogue of g is the function f (X) :=

1
n

∑
i<j XiXj . However, in this case, evaluating the condition |df | ≤ 1 and hence applying

Proposition 1.1 does not lead to correct results. Indeed, f is not a function of a Lipschitz class
bounded in n. This motivates the use of second order differences instead. A further aspect can
be observed if we do not assume the Xi to be centered. In this case, we shall replace f (X) by
Rf (X) := 1

n

∑
i<j (Xi − EXi)(Xj − EXj). Comparing Rf to f , we see that we have not only

removed the expected value of f but also a sort of “linear term”.
Indeed, the notion of second order concentration has two aspects which generalize these ob-

servations. First, it refers to the use of difference operators of second order. Second, it means
that instead of fluctuations of f − Ef we will study fluctuations of f − Ef − f1, where f1
is the first order term in the Hoeffding decomposition of f . Let us briefly recall the notion
of Hoeffding decomposition, which was introduced in [19]. Given a product probability space
(�,A,μ) := ⊗n

i=1(�i,Ai ,μi) and some function f ∈ L1(μ), the Hoeffding decomposition is
the unique decomposition

f (x1, . . . , xn) =
∫

f dμ +
n∑

i=1

hi(xi) +
∑
i<j

hij (xi, xj ) + · · ·

= f0 + f1 + f2 + · · · + fn (1.2)

such that
∫

hi1···ik (xi1, . . . , xik )μij (dxij ) = 0 for all k = 1, . . . , n, 1 ≤ i1 < · · · < ik ≤ n and j ∈
{1, . . . , k}. The sum fd is called the Hoeffding term of degree d or simply d th Hoeffding term
of f . Note that for f ∈ L2(μ) the fj , j ∈ N0, form an orthogonal decomposition of f in L2(μ).

We now formulate our main results. For that, we need to introduce a notion of second order
differences based on d. Indeed, for any function f : � →R in L2(μ) and any i �= j , set

dij f (x) :=
(

1

4

∫
�i

∫
�j

(
f (x) − f (x1, . . . , xi−1, yi, xi+1, . . . , xn) − f (x1, . . . , yj , . . . , xn)

+ f (x1, . . . , yi, . . . , yj , . . . , xn)
)2

μi(dyi)μj (dyj )

)1/2

. (1.3)
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In particular, we consider the following modified “Hessian” with respect to d:

(
d(2)f (X)

)
ij

:=
{
dij f (X), i �= j,

0, i = j.
(1.4)

For x ∈ R
n let |x| denote its Euclidean norm, and for an n × n matrix A = (aij )ij let ‖A‖HS

denote its Hilbert–Schmidt norm given by ‖A‖HS = (
∑n

i,j=1 |aij |2)1/2.

Theorem 1.2. Let (�i,Ai ,μi) be probability spaces, and denote by (�,A,μ) := ⊗n
i=1(�i,

Ai ,μi) their product. Moreover, let f : � → R be a bounded measurable function so that its
Hoeffding decomposition with respect to μ is given by f = ∑n

k=2 fk . Assume that the conditions

∣∣d|df |∣∣ ≤ 1 and
∫ ∥∥d(2)f

∥∥2
HS dμ ≤ b2 (1.5)

are satisfied for some b ≥ 0, where ‖d(2)f ‖HS denotes the Hilbert–Schmidt norm of d(2)f . Then,
we have ∫

exp

(
1

2(3 + b2)
|f |

)
dμ ≤ 2.

Note that by Chebychev’s inequality, Theorem 1.2 implies μ(|f | ≥ t) ≤ 2e−ct for all t > 0
and some constant c = c(b2) (in fact, c = (2(3 + b2))−1). In other words, Theorem 1.2 yields
subexponential tails with an optimal exponent for large t in accordance with the discussion above.

In Theorem 1.2, we have one condition assuming pointwise boundedness of second order-
type differences and a second condition assuming boundedness in mean of the squared Hilbert–
Schmidt norm of a suitable “Hessian”. This mirrors the structure of Theorem 1.1 in S.G. Bobkov,
G.P. Chistyakov and F. Götze [5]. Some ways of explicitly evaluating the pointwise condition
|d|df || ≤ 1 are given in Section 6. In particular, if for large n, the much stronger Hilbert–Schmidt
norm is used, this will bound the constant b in the second condition in (1.5). In other situations
(especially in differentiable settings, cf. Section 1.1), |d|df || may be bounded by operator-type
norms of second order differences or derivatives.

Note that in general, the two conditions are incomparable: though the pointwise condition will
often dominate, sometimes it may happen that the second one is more restrictive. An elementary
example is given by the function f (X) := 1√

n
(X1X2 + X3X4 + · · · ) for a set of independent

Rademacher variables and n even (here, we obviously have |d|df || = 0, and thus, the pointwise
condition does not suffice in order to control the variance in the exponential estimates).

For applications, we formulate a convenient “hybrid” bound extending the results from Theo-
rem 1.2 to functions with non-vanishing first order Hoeffding term (say, f1). To this end, we need
to provide that f1 is of sufficiently small stochastic size. That is, in Theorem 1.2, let f : � → R

be a function in L1(μ) with Hoeffding decomposition f = ∑n
k=0 fk . Then, we denote by

Rf := f − f0 − f1 =
n∑

k=2

fk (1.6)
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the projection of f onto the space of the functions f ∈ L1(μ) whose Hoeffding terms of orders
0 and 1 vanish. For convenience, we shall assume that the expected value f0 of f vanishes. In
order to obtain a result similar to Theorem 1.2, we add conditions ensuring f1 = OP (1) (cf.
Proposition 1.1). The result is the following theorem.

Theorem 1.3. Let (�i,Ai ,μi) be probability spaces, and denote by (�,A,μ) := ⊗n
i=1(�i,

Ai ,μi) their product. Moreover, let f : � → R be a bounded measurable function such that
its Hoeffding decomposition with respect to μ is given by f = f1 + ∑n

k=2 fk = f1 + Rf . (In
particular, we have Ef = 0.) Suppose that |df1| ≤ b0 for some b0 ≥ 0 and that the conditions

∣∣d|dRf |∣∣ ≤ 1 and
∫ ∥∥d(2)f

∥∥2
HS dμ ≤ b2

for some b ≥ 0 are satisfied. Then, we have∫
exp

(
1

12 + 4b2 + 7b0
|f |

)
dμ ≤ 2.

Discussion of related inequalities. Hoeffding decompositions have been studied in particular
in the context of U -statistics, that is, statistics of the form Un(h) = (n−m)!

n!
∑

i1 �=···�=im
h(Xi1, . . . ,

Xim) for a sequence of i.i.d. random variables (Xi)i∈N, a measurable kernel function h on R
m

and natural numbers n, m such that n ≥ m. A U -statistic is called completely degenerate (or
canonical) if its Hoeffding decomposition consists of a single term only. There are a lot of results
on the distributional properties of U -statistics. A partial overview is given in the monograph by
V. de la Peña and E. Giné [15]. In particular, there are many inequalities describing their tail
behavior starting with Hoeffding’s inequalities. That is, for U -statistics like Un(h) introduced
above, we have P(Un(h) > t) ≤ exp(−[n/m]t2/(2M2)) if the function h : Rm → R is bounded
by some universal constant M and satisfies Eh(X1, . . . ,Xm) = 0. Further exponential inequali-
ties for completely degenerate U -statistics have been proved by M. Arcones and E. Giné [3] as
well as P. Major [26]. These inequalities typically depend on the order m, the second moment σ 2

and some bound M of the kernel h only.
Finally, let us mention that in a subsequent paper together with S.G. Bobkov [9], we have ex-

tended some of the results of the present paper to arbitrary higher orders. However, the method-
ology is quite different. For instance, in the present paper our arguments are mainly based on
modified logarithmic Sobolev inequalities and exponential inequalities which follow from them.
By contrast, the main tool in [9] is a recursion inequality for the Lp-norms of f and its higher
order differences (or derivatives) for any p ≥ 2, which in turn does not appear in the present
paper.

1.1. Differentiable functions

In arbitrary product spaces, the usual notion of differentiation is not available, which is why
we need to work with difference operators as a kind of substitute. However, if we do consider
differentiable settings, it seems natural to use the ordinary gradient ∇ instead. Therefore, we now
complement our main theorems by results valid in differentiable settings.
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Indeed, it is possible to formulate a result similar to Theorem 1.2 for probability measures
on R

n which satisfy a logarithmic Sobolev inequality. Note that this situation has already been
sketched in [5] (see Remark 5.3 there). In the present paper, we work out these ideas in detail
and add some further material, including a version with an additional “linear” term similar to
Theorem 1.3 and some applications. Let us first recall some basic notions.

Let G ⊂ R
n be some open set, and let μ be a probability measure on (G,B(G)). Then, μ

satisfies a Poincaré inequality with constant σ 2 > 0 if for all locally Lipschitz functions f : G →
R

Varμ(f ) ≤ σ 2
∫

G

|∇f |2 dμ, (1.7)

where Varμ(f ) = ∫
f 2 dμ − (

∫
f dμ)2 and |∇f | denotes the Euclidean norm of the usual gra-

dient. Another type of functional inequality for probability measures μ on (G,B(G)) is given
by the logarithmic Sobolev inequality. That is, μ satisfies a logarithmic Sobolev inequality with
(Sobolev) constant σ 2 > 0 if for all locally Lipschitz functions f : G → R

Entμ
(
f 2) ≤ 2σ 2

∫
G

|∇f |2 dμ, (1.8)

where Entμ(f 2) = ∫
f 2 logf 2 dμ − ∫

f 2 dμ log
∫

f 2 dμ (see Section 3). Logarithmic Sobolev
inequalities are stronger than Poincaré inequalities. For instance, if μ satisfies a logarithmic
Sobolev inequality with constant σ 2, it also satisfies a Poincaré inequality with the same con-
stant σ 2.

We now have the following result.

Theorem 1.4. Let G ⊂ R
n be some open set, and let μ be a probability measure on (G,B(G))

which satisfies a logarithmic Sobolev inequality with constant σ 2 > 0. Let f : G → R be a C2-
smooth function such that f ∈ L1(μ) and ∂if ∈ L1(μ) for all i = 1, . . . , n, where ∂if denotes
the ith partial derivative of f . Assume that

∫
G

f dμ = 0 and
∫
G

∂if dμ = 0 for all i = 1, . . . , n.
Moreover, assume that

∥∥f ′′(x)
∥∥

Op ≤ 1 for all x ∈ G and
∫

G

∥∥f ′′∥∥2
HS dμ ≤ b2

for some b ≥ 0, where f ′′ denotes the Hessian of f and ‖f ′′‖Op, ‖f ′′‖HS denote its operator
and Hilbert–Schmidt norms, respectively. Then, the following inequality holds:∫

G

exp

(
1

2σ 2(1 + b2)
|f |

)
dμ ≤ 2.

Note that unlike in Theorem 1.2, we do not need to require μ to be a product measure. Given
any function f ∈ C2(G) such that f ∈ L1(μ) and ∂if ∈ L1(μ) for all i = 1, . . . , n, we may
modify f to remove a “linear” term by considering

Rf (x) = f (x) − μ[f ] −
n∑

i=1

μ[∂if ](xi − μ[xi]
)
, (1.9)
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where μ[h] = ∫
G

hdμ for any function h ∈ L1(μ). Rf represents a centered function with cen-
tered derivatives.

Similarly to Theorem 1.3, we may allow non-vanishing integrals μ[∂if ] in Theorem 1.4 if
they are of sufficiently small size. This is the objective of the following theorem.

Theorem 1.5. Let G ⊂ R
n be some open set, and let μ be a probability measure on (G,B(G))

which satisfies a logarithmic Sobolev inequality with constant σ 2 > 0. Let f : G → R be a C2-
smooth function such that f ∈ L1(μ) and ∂if ∈ L1(μ) for all i = 1, . . . , n, where ∂if denotes
the ith partial derivative of f . Assume that

∫
G

f dμ = 0 and
∑n

i=1(
∫
G

∂if dμ)2 ≤ σ 2b2
0 for

some b0 ≥ 0. Moreover, assume that

∥∥f ′′(x)
∥∥

Op ≤ 1 for all x ∈ G and
∫

G

∥∥f ′′(x)
∥∥2

HS dμ ≤ b2

for some b ≥ 0, where f ′′ denotes the Hessian of f and ‖f ′′‖Op, ‖f ′′‖HS denote its operator
and Hilbert–Schmidt norms, respectively. Then, we have

∫
G

exp

(
1

σ 2(4 + 4b2 + 5b0)
|f |

)
dμ ≤ 2.

Discussion of related inequalities. We shall compare our results to a measure concentration
result for functions on the n-sphere which are orthogonal to linear functions, see S.G. Bobkov,
G.P. Chistyakov and F. Götze [5]. In this context, Theorem 1.2 can be regarded as a “discrete”
analogue of the latter result. Note that in particular, it covers the case of the discrete hypercube
{±1}n equipped with the uniform distribution. Theorem 1.4 may then be seen as an intermediate
between Theorem 1.2 and the bounds in [5]. Indeed, if in Theorem 1.4 μ is the standard Gaussian
measure, the condition

∫
∂if dμ = 0 for all i is satisfied if we require orthogonality to all linear

functions (by partial integration). The idea of sharpening concentration inequalities for Gaussian
and related measures by requiring orthogonality to linear functions also appears in [14].

We would moreover like to mention the results by R. Adamczak and P. Wolff [1]. They study
the tail behavior of differentiable functions. Requiring certain Sobolev-type inequalities or sub-
gaussian tail conditions, they derive exponential inequalities for functions with bounded higher-
order derivatives (evaluated in terms of some tensor-product matrix norms). In comparison, our
paper has a stronger emphasis on discrete models and difference operators with a focus on func-
tions structured by Hoeffding expansions of vanishing first order or, in differentiable cases as in
Theorem 1.4, functions from which we remove a kind of “linear term”.

1.2. Outline

The main tools we use in this article will be introduced in Sections 2 and 3. This includes
some basic facts about difference operators, Hoeffding decompositions and modified logarith-
mic Sobolev inequalities. The proofs of our main theorems for product measures will be given in
Sections 4 and 5. Here, we will first derive exponential inequalities based on modified Sobolev
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inequalities. After that, second order differences will be invoked by making use of certain “har-
monic analysis” arguments on the symmetric group established in Section 2. The proof of Theo-
rem 1.2 then follows as an easy combination of both chains of arguments.

In Section 6, we discuss how to evaluate the second order conditions from Theorem 1.2. In
particular, we give a reformulation of Theorem 1.2 which involves conditions which may be
easier to apply. We also apply our results to functions of independent Rademacher variables.

The differentiable case will be discussed in Section 7. Here we need to modify some of the
arguments from the proof of Theorems 1.2 and 1.3. Together with a simple application of the
Poincaré inequality, this will lead us to the proof of Theorems 1.4 and 1.5.

Finally, Section 8 presents a number of examples for functions of independent random vari-
ables as well as in differentiable settings.

A prior version of these results is based on the Ph.D. thesis of the second author [29].

2. Difference operators

Let (�1,A1), . . . , (�n,An) be measurable spaces, and denote by (�,A) their product space.
Similarly to [6], we study (difference) operators � on the space of the bounded measurable real-
valued functions on (�,A) such that the following two conditions hold (in particular, no sort of
“Leibniz rule” is required):

Conditions 2.1.

(i) For any bounded measurable function f : � → R, �f = (�1f, . . . ,�nf ) : � → R
n is a

measurable function with values in R
n. We often call � a gradient operator or simply

gradient.
(ii) For all i = 1, . . . , n, all a > 0, b ∈R and any bounded measurable real-valued function f ,

we have |�i(af + b)| = a|�if |.

In addition to the “L2 difference operator” d in (1.1), we need a difference operator adapted to
the Hoeffding decomposition. Indeed, for any function f : � → R in L1(μ), let

Dif (x) := f (x) −
∫

�i

f (x1, . . . , xi−1, yi, xi+1, . . . , xn)μi(dyi) (2.1)

and Df := (D1f, . . . ,Dnf ). Higher order differences are defined by iteration, e.g. Dij f :=
Di (Dj f ) for 1 ≤ i, j ≤ n. As in (1.4), we then define a modified “Hessian” with respect to D by

(
D(2)f (x)

)
ij

:=
{
Dij f (x), i �= j,

0, i = j.
(2.2)

The difference operator D is closely related to the Hoeffding decomposition (1.2). In essence,
proving (1.2) is based on the identity Ei + Di = Id with Di as in (2.1). We finally get
hi1···ik (Xi1, . . . ,Xik ) = (

∏
j /∈{i1,...,ik} Ej

∏
l∈{i1,...,ik} Dl )f (X1, . . . ,Xn).
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Let us collect some elementary facts about the difference operators d and D. In the following
assume that X1, . . . ,Xn is a sequence of independent random variables on some probability
space (�′,A′,P ) with distributions μ1, . . . ,μn respectively. As we will see, introducing random
variables sometimes facilitates notation:

Remark 2.2.

1. If μi = 1
2δ+1 + 1

2δ−1 for all i = 1, . . . , n, we have Dif (X) = 1
2 (f (X) − f (σiX)), where

X = (X1, . . . ,Xn) and σiX := (X1, . . . ,−Xi, . . . ,Xn). Moreover, note that dif = |Dif |.
2. For any function f (X) ∈ L1(P ), we have Dif (X) = f (X) − Eif (X) or (in short) Di =

Id −Ei . Here, Id denotes the identity and Ei taking the expectation with respect to Xi .
3. Let f (X) ∈ L2(P ), and let X̄1, . . . , X̄n be a set of independent copies of the random

variables X1, . . . ,Xn. Set Tif := f (X1, . . . ,Xi−1, X̄i ,Xi+1, . . . ,Xn) for any function
f (X1, . . . ,Xn). Then, we have

dif (X) =
(

1

2
Ēi

(
f (X) − Tif (X)

)2
)1/2

.

Here, Ēi denotes the expectation with respect to X̄i . By independence, if Ei denotes the
expectation with respect to Xi we can rewrite

dif (X) =
(

1

2

((
f (X) −Eif (X)

)2 +Ei

(
f (X) −Eif (X)

)2))1/2

=
(

1

2

((
Dif (X)

)2 +Ei

(
Dif (X)

)2))1/2

. (2.3)

4. Setting Tij = Ti ◦ Tj , second order analogues of the formulas for di are given by

dij f (X) =
(

1

4
Ēij

(
f (X) − Tif (X) − Tjf (X) + Tijf (X)

)2
)1/2

, (2.4)

dij f =
(

1

4

(
(Dij f )2 +Ei (Dij f )2 +Ej (Dij f )2 +Eij (Dij f )2))1/2

(2.5)

for any i �= j . Here, Ēij means taking the expectation with respect to X̄i and X̄j , and Eij

means taking the expectation with respect to Xi and Xj .

By induction over n, f is bounded if and only if |Df | is bounded. Using (2.3), the same holds
for |df | instead of |Df |. Moreover, it follows immediately from (2.5) that∫ ∥∥d(2)f

∥∥2
HS dμ =

∫ ∥∥D(2)f
∥∥2

HS dμ, (2.6)

which will turn out to be an important identity in our proof.
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For some kind of “harmonic” analysis arguments on the symmetric group, we shall need a
specific second order operator we would call “Laplacian”. Since in our discrete setting Dii =Di

for all i, this cannot be L = ∑
i Dii . Instead, we define

L :=
∑
i �=j

Dij . (2.7)

Calling (2.7) a Laplacian is justified for several reasons. First of all, (2.7) enjoys similar prop-
erties with respect to scalar products in function spaces (see Lemma 5.1 below) compared to
the classical Euclidean or spherical Laplacian. Moreover, if we assume μi ≡ μ1 for all i in Ex-
ample 2.2, that is for functions of i.i.d. random variables, the Laplacian (2.7) is invariant under
permutations, that is, Lf (x) = Lf (π(x)) for any μ-integrable function f on R

n and any per-
mutation π of {1,2, . . . , n}. As usual, here we set f (π(x)) = f (xπ−1(1), . . . , xπ−1(n)). This may
be regarded as a discrete analogue of the rotational invariance of the usual Laplacian.

Relating the Hoeffding decomposition to the Laplacian L yields the following result.

Theorem 2.3. Let (�i,Ai ,μi) be probability spaces, and denote by (�,A,μ) := ⊗n
i=1(�i,

Ai ,μi) their product. Moreover, let f be some function in L1(μ) with Hoeffding decomposition
f = ∑n

d=0 fd . Then, we have

Lfd = (d)2fd.

Here, L is the Laplacian as introduced in (2.7), and we write (d)2 = d(d − 1). Thus, the d th
Hoeffding term is an eigenfunction of L with eigenvalue (d)2.

Consequently, there is an orthogonal decomposition of L2-functions f on which the Laplacian
operates diagonally.

Proof. Write fd(x1, . . . , xn) = ∑
i1<···<id

hi1···id (xi1, . . . , xid ) as in (1.2). Fix i1 < · · · < id .
Then, we get

∫
hi1···id (xi1, . . . , xid )μi(dxi) =

{
0, i ∈ {i1, . . . , id},
hi1···id (xi1 , . . . , xid ), i /∈ {i1, . . . , id}.

Therefore, we have

Difd(x1, . . . , xn) =
∑

i1<···<id
i∈{i1,...,id }

hi1···id (xi1 , . . . , xid ), (2.8)

Dij fd(x1, . . . , xn) =
∑

i1<···<id
i,j∈{i1,...,id }

hi1···id (xi1, . . . , xid ). (2.9)

Hence, it remains to check how often each term hi1···id (xi1, . . . , xid ) appears in Lfd =∑
i �=j Dij fd . As we just saw, each pair i �= j such that i, j ∈ {i1, . . . , id} replicates the sum-

mand hi1···id (xi1, . . . , xid ) precisely once. As there are d(d − 1) = (d)2 such pairs, we arrive at
the result. �
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In fact, there are at least two larger families of difference operators which satisfy similar
“invariance properties” with respect to the symmetric group and the Hoeffding decomposi-
tion. One family of this type can be defined via L1 := ∑

i Di , L2 := L2
1 and more generally

Lk := Lk
1 for any k ∈ {1,2, . . . , n}. Another one is given by L∗

k := ∑
i1 �=i2 �=···�=ik

Di1 · · ·Dik for
any k ∈ {1,2, . . . , n}. It is possible to relate these two families to each other by representing the
L∗

k as polynomials in L1, for example, we have L∗
2 = L2

1 −L1.
As in the proof of Theorem 2.3, simple combinatorial arguments show that all the Lk and L∗

k

operate diagonally on the Hoeffding decomposition. In case of the L∗
k , the eigenvalues of the

Hoeffding terms of order up to k − 1 are 0.
In particular, with L as in (2.7), we see that we have L = L∗

2. In other words, L is the second
order difference invariant operator which annihilates the Hoeffding terms up to first order. This
is in accordance with our basic concept of second order concentration.

3. Modified logarithmic Sobolev inequalities and exponential
inequalities

Let μ be a probability measure on some measurable space (�,A) and g : � → [0,∞) a mea-
surable function. Then, we define the entropy of g with respect to μ by Ent(g) := Entμ(g) :=∫

g logg dμ − ∫
g dμ log

∫
g dμ. Here, we set Ent(g) := ∞ if any of the integrals involved does

not exist. A natural condition for existence of entropy is whether the integral of g log(1 + g) is
finite or not. It is well known that by Jensen’s inequality, we have Ent(g) ∈ [0,∞]. As a modifi-
cation of the usual logarithmic Sobolev inequality, we now define the following.

Definition 3.1. Let μ be a probability measure on some measurable space (�,A), and let � be
a difference operator on this space satisfying Conditions 2.1. Then, μ satisfies a modified loga-
rithmic Sobolev inequality with constant σ 2 > 0 with respect to � if for any bounded measurable
function f : � →R

Ent
(
ef

) ≤ σ 2

2

∫
|�f |2ef dμ. (3.1)

Here, |�f | denotes the Euclidean norm of the gradient �f .

This definition goes back to [6], where it is called LSIσ 2 . The term “modified logarithmic
Sobolev inequality” is due to [24], Chapter 5.3, where other modifications of logarithmic Sobolev
inequalities are discussed as well. The difference between the usual form of the LSI and the
modified one in (3.1) is motivated by the fact that difference operators do not necessarily satisfy
any sort of chain rule. The number σ 2 > 0 is also called Sobolev constant. When using σ instead
of σ 2 itself, we will always assume it to be positive.

We will use Definition 3.1 with � = d. Note that setting � =D would be too restrictive since in
this case, only discrete probability measures with a finite number of atoms would have a chance
to fulfill a modified LSI of type (3.1). By contrast, in case of d we have the following proposition.
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Proposition 3.2. Let μ be any probability measure on some measurable space (�,A). Then,
μ satisfies the modified LSI (3.1) with Sobolev constant σ 2 = 2 with respect to the gradient
operator d from (1.1).

Proof. This is due to [7] and essentially based on [22]. For the reader’s convenience, we include
a sketch of its proof here. First, we apply Jensen’s inequality to get

Entμ
(
eg

) ≤ Covμ

(
g, eg

) = 1

2

∫∫ (
g(x) − g(y)

)(
eg(x) − eg(y)

)
μ(dx)μ(dy)

≤ 1

4

∫∫ (
g(x) − g(y)

)2(
eg(x) + eg(y)

)
μ(dx)μ(dy) =

∫
|dg|2eg dμ.

Here g is any real-valued measurable function on � such that the integrals involved are finite,
and the next-to-last step uses the elementary estimate (a − b)(ea − eb) ≤ 1

2 (a − b)2(ea + eb) for
all a, b ∈ R. However, this means that μ satisfies the modified LSI (3.1) with Sobolev constant
σ 2 = 2. �

If we especially consider two-point measures, the Sobolev constant can still be improved a
little by the following.

Proposition 3.3. Let μ = pδ+1 + (1 − p)δ−1 for some p ∈ (0,1), where δx denotes the Dirac
measure in x ∈ R. Then, μ satisfies the modified LSI (3.1) with Sobolev constant σ 2 = 1 with
respect to d as in (1.1).

This is again due to [7], and we omit the proof here. It is easy to verify that for instance, in
case of p = 1

2 , this constant is optimal.
From Propositions 3.2 and 3.3, we can easily go on to product spaces by the following ten-

sorization property which goes back to [22].

Lemma 3.4. For all i = 1, . . . , n, let (�i,Ai ) be measurable spaces equipped with probability
measures μi each satisfying the modified LSI (3.1) with Sobolev constants σ 2

i > 0 with respect
to d as in (1.1). Then, the product measure μ1 ⊗ · · · ⊗ μn on (�1 × · · · × �n,A1 ⊗ · · · ⊗ An)

also satisfies the modified LSI (3.1) with Sobolev constant σ 2 = maxi=1,...,n σ 2
i with respect to d.

As in the case the usual logarithmic Sobolev inequality, this is a consequence of the subaddi-
tivity (or tensorization) property of the entropy functional together with the additivity property of
the gradient operator d. Therefore, Propositions 3.2 and 3.3 naturally extend to product measures.

4. Exponential inequalities

In this section, we derive exponential moment inequalities for functions of independent ran-
dom variables. Consider any probability measure on some measurable space (�,A) which sat-
isfies the modified LSI (3.1) with Sobolev constant σ 2 > 0 with respect to d. In S.G. Bobkov
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and F. Götze [6], it was proved that for all bounded measurable functions f : � → R such that∫
f dμ = 0, we have ∫

ef dμ ≤
∫

eσ 2|df |2 dμ. (4.1)

The proof of (4.1) is similar to the proof of inequality (4.5) which will be sketched in the proof
of Lemma 4.2.

In addition to (4.1), we need a second inequality of the form∫
etu2

dμ ≤ exp

(
c(t)

∫
u2 dμ

)

for small t and some constant c depending on t . An inequality of the desired form due to S. Aida,
T. Masuda and I. Shikegawa [2] is known if the underlying gradient operator satisfies the chain
rule (cf. (7.4) in Section 7). Here, the main argument for which the chain rule is needed is as
follows: let ∇ denote the usual gradient and |∇f | its Euclidean norm. Then, if we assume |∇f | ≤
1, we immediately get |∇f 2| = 2|f ||∇f | ≤ 2|f |. However, if we replace ∇ by the L2-difference
operator d from (1.1), such an inequality does not hold.

This desirable property is restored by switching to yet another difference operator which we
denote by d+. In detail,

d
+
i f (x) :=

(
1

2

∫
�i

(
f (x) − f (x1, . . . , xi−1, yi, xi+1, . . . , xn)

)2
+μi(dyi)

)1/2

. (4.2)

Here, f : � →R is any function in L2(μ), and g+ := max(g,0) denotes the positive part of any
real-valued function g. As always, d+f = (d+

1 f, . . . ,d+
n f ).

Let f : � → R be any measurable function on some probability space (�,A,μ). Then, for
any x, y ∈ � we have

(
f (x)2 − f (y)2)2

+ = (∣∣f (x)
∣∣ + ∣∣f (y)

∣∣)2(∣∣f (x)
∣∣ − ∣∣f (y)

∣∣)2
+ ≤ 4

∣∣f (x)
∣∣2(∣∣f (x)

∣∣ − ∣∣f (y)
∣∣)2

+.

Taking integrals and roots, we thus get that for any function f : � → R in L2(μ) such that
|d+|f || ≤ 1, we have ∣∣d+f 2

∣∣ ≤ 2|f |. (4.3)

The same holds for product measures, that is, the multivariate case.
In the sequel, we also need modified LSI results for d+. It is easily seen that if some measur-

able space (�,A) equipped with a probability measure μ satisfies the modified LSI (3.1) with
Sobolev constant σ 2 > 0 with respect to d, it also satisfies the modified LSI (3.1) with respect
to d+, and the Sobolev constant can be chosen 2σ 2. Hence, we can transport Propositions 3.2
and 3.3 and Lemma 3.4 to the d+ difference operators. In fact, results of this type can already be
found in [24] (Proposition 5.8) or [12] (e.g., Proposition 10).

Proposition 4.1. For all i = 1, . . . , n, let (�i,Ai ) be measurable spaces equipped with proba-
bility measures μi . Then, the product measure μ1 ⊗· · ·⊗μn on (�1 ×· · ·×�n,A1 ⊗· · ·⊗An)
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satisfies the modified LSI (3.1) with Sobolev constant σ 2 = 4 with respect to d+ as in (4.2). If all
the �i are two-point spaces, we can take σ 2 = 2.

Now (4.3) leads us back to the basic inequality needed to estimate large deviations in [6]. We
therefore arrive at the following lemma.

Lemma 4.2. Let μ be a probability measure on some measurable space (�,A) which satisfies
the modified LSI (3.1) with Sobolev constant σ̃ 2 > 0 with respect to the gradient operator d+
from (4.2). Moreover, let f : � → R be a bounded measurable function such that |d|f || ≤ 1.
Then, for all t ∈ [0, 1

2σ̃ 2 ) we have

∫
etf 2

dμ ≤ exp

(
t

1 − 2σ̃ 2t

∫
f 2 dμ

)
. (4.4)

Proof. We adapt the arguments from [6], p. 6 f. First, consider the inequality

∫
ef dμ ≤

(∫
eλf +(1−λ)σ̃ 2|d+f |2/2 dμ

)1/λ

(4.5)

for all bounded measurable functions f : � → R and all λ ∈ (0,1]. Here, we have already
plugged in d+ as our choice of the difference operator. To deduce (4.5), we use the well-known
“variational formula”

Ent(g) = sup

{∫
ghdμ : h : � →R measurable s. th.

∫
eh dμ ≤ 1

}
,

which can be shown by Young’s inequality in the form uv ≤ u logu − u + ev for all u ≥ 0 and
v ∈ R, for instance. See [24], Proposition 5.6, for details. If we set g := ef and h := λf + (1 −
λ)σ̃ 2|d+f |2/2 − β with β = log

∫
eλf +(1−λ)σ̃ 2|d+f |2/2 dμ, we have

∫
eh dμ = 1 and thus∫ (

λf + (1 − λ)σ̃ 2
∣∣d+f

∣∣2
/2 − β

)
ef dμ ≤ Ent

(
ef

)
.

Since f satisfies the modified LSI (3.1) with constant σ̃ 2, it follows that

λ

∫
f ef dμ + (1 − λ)Ent

(
ef

) − β

∫
ef dμ ≤ Ent

(
ef

)
⇔ λ

∫
ef dμ log

∫
ef dμ − β

∫
ef dμ ≤ 0,

from which we directly get (4.5).
We now apply (4.5) to the function sf 2/(2σ̃ 2) with 0 < s < 1 and λ = (p − s)/(1 − s) for any

p ∈ (s,1]. Together with (4.3) (note that |d|f || ≤ 1 implies |d+|f || ≤ 1), this gives

∫
esf 2/(2σ̃ 2) dμ ≤

(∫
exp

(
psf 2

2σ̃ 2

)
dμ

)(1−s)/(p−s)

.
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For p = 1 both sides are equal, and as for p < 1 the upper inequality holds, we get that the
logarithm of the left-hand side (considered as a function of p) must increase more rapidly at
p = 1 than that of the right-hand side. We thus consider the derivatives of the logarithms of both
sides at p = 1 and arrive at the inequality

0 ≥ 1

1 − s

[
(1 − s)

∫
sf 2

2σ̃ 2
esf 2/(2σ̃ 2) dμ −

∫
esf 2/(2σ̃ 2) dμ log

∫
esf 2/(2σ̃ 2) dμ

]
.

Now we set u(s) := ∫
esf 2/(2σ̃ 2) dμ, s ∈ (0,1]. Then we get

0 ≥ 1

1 − s

[
s(1 − s)u′(s) − u(s) logu(s)

] ⇔ 0 ≥ 1 − s

s

u′(s)
u(s)

− 1

s2
logu(s).

Hence, the function v(s) := exp( 1−s
s

logu(s)) is non-increasing in s, and therefore we have
v(s) ≤ lims↓0 v(s) =: v(0+) for all s ∈ (0,1].

Note that

v
(
0+) = lim

s↓0

(
u(s)(1−s)/s

) = lim
s↓0

(∫
esf 2/(2σ̃ 2) dμ

)(1−s)/s

= exp

(
1

2σ̃ 2

∫
f 2 dμ

)
.

Thus, for all s ∈ (0,1] we have

exp

(
1 − s

s
logu(s)

)
≤ exp

(
1

2σ̃ 2

∫
f 2 dμ

)

⇔
∫

esf 2/(2σ̃ 2) dμ ≤ exp

(
1

2σ̃ 2

s

1 − s

∫
f 2 dμ

)
.

Setting t = s/(2σ̃ 2) completes the proof. �

Combining inequalities (4.1) and (4.4), we now get the following result.

Proposition 4.3. Let μ be a probability measure on some measurable space (�,A) which sat-
isfies the modified LSI (3.1) with Sobolev constant σ 2 > 0 with respect to d and which moreover
satisfies the modified LSI (3.1) with Sobolev constant σ̃ 2 with respect to d+. Furthermore, let
f : � → R be a bounded measurable function such that

∫
f dμ = 0 and |d|df || ≤ 1. Then, we

have ∫
exp

(
1

2σ σ̃
f

)
dμ ≤ exp

(
1

2σ̃ 2

∫
|df |2 dμ

)
. (4.6)

Proof. First, applying (4.1) to λf and then (4.4) with t = λ2σ 2 for any λ ∈ [0, 1√
2σ σ̃

) and with
f replaced by |df | leads to∫

eλf dμ ≤
∫

eλ2σ 2|df |2 dμ ≤ exp

(
λ2σ 2

1 − 2σ 2σ̃ 2λ2

∫
|df |2 dμ

)
.

Setting λ = 1
2σ σ̃

completes the proof. �
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5. Relating first and second order difference operators

In order to remove the first order difference operator on the right-hand side of (4.6), we may now
study relations of the form γ

∫ |df |2 dμ ≤ ∫ ‖d(2)f ‖2
HS dμ for some constant γ > 0. Note that

due to (2.6), we may replace d(2)f by “Hoeffding” differences D(2)f on the right-hand side,
which enables us to make use of the “harmonic analysis” arguments established in Section 2. In-
deed, one of our main tools is the following lemma about partial integration and self-adjointness
for difference operators and the discrete Laplacian L defined on functions of independent random
variables.

Lemma 5.1. Let (�i,Ai ,μi) be probability spaces, and denote by (�,A,μ) := ⊗n
i=1(�i,

Ai ,μi) their product. Let D = (Di )i be the difference operator from (2.1), and let L be the
Laplacian as in (2.7). Then, for any f,g ∈ L2(μ) we have:

1. ∫
(Dif )g dμ =

∫
f (Dig) dμ =

∫
(Dif )(Dig) dμ.

2. ∫
(Df )g dμ =

∫
f (Dg)dμ,

where D the integral has to be understood componentwise.
3. ∫

(Lf )g dμ =
∫

f (Lg)dμ =
∑
i �=j

∫
(Dij f )(Dij g) dμ.

Proof. The proof is elementary. Note that in order to prove (2) and (3), we only need to check
(1). Part 1 in turn follows from the fact that by Fubini’s theorem, we have∫

g

(∫
f dμi

)
dμ =

∫ (∫
f dμi

)(∫
g dμi

)
dμ =

∫
f

(∫
g dμi

)
dμ.

For (3), note that we always have Dij f =Djif for any i, j by (2.1) and Fubini’s theorem. �

Using this result, we can prove an inequality of the desired type.

Proposition 5.2. Let (�i,Ai ,μi) be probability spaces, and denote by (�,A,μ) := ⊗n
i=1(�i,

Ai ,μi) their product. Let f ∈ L2(μ) be a function such that its Hoeffding decomposition with
respect to μ is given by f = ∑n

k=d fk for some d ≥ 2. Then, we have∫
|df |2 dμ ≤ 1

d − 1

∫ ∥∥d(2)f
∥∥2

HS dμ.

Equality holds if f = fd , that is, the Hoeffding decomposition of f consists of a single term only.
Here, ‖·‖HS denotes the Hilbert Schmidt norm of a matrix.
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Proof. First, let f = fk . Then, applying Lemma 5.1(3) leads to∫ ∥∥D(2)fk

∥∥2
HS dμ =

∑
i �=j

∫
(Dij fk)(Dij fk) dμ =

∫
fkLfk dμ.

Moreover, Theorem 2.3 yields Lfk = (k)2fk . Together with (2.6), this yields∫ ∥∥D(2)fk

∥∥2
HS dμ = (k)2

∫
f 2

k dμ. (∗)

On the other hand, if X1, . . . ,Xn is a sequence of independent random variables with distri-
butions μi , i = 1, . . . , n, we have fk(X1, . . . ,Xn) = ∑

i1<···<ik
hi1···ik (Xi1, . . . ,Xik ), where the

summands on the right-hand side are pairwise orthogonal in L2. Here, we used the notation of
the proof of Theorem 2.3.

Now let X̄1, . . . , X̄n be a sequence of independent copies of the random variables X1, . . . ,Xn,
and additionally consider the functions Tij hi1···ik (Xi1, . . . ,Xid ) = hi1···ik (Xi1, . . . , X̄ij , . . . ,Xik )

(cf. Example 2.2(3)). Then,⋃
i1<···<ik

{
hi1···ik (Xi1, . . . ,Xik )

} ∪ {
Tij hi1···ik (Xi1, . . . ,Xik ), j = 1, . . . , k

}

is still a (larger) family of pairwise orthogonal functions in L2, now integrating with respect to
the Xi and the X̄i .

Similarly to the deduction of (2.8), we therefore get

(
difk(X1, . . . ,Xn)

)2 = 1

2
Ēi (fk − Tifk)

2

= 1

2
Ēi

( ∑
i1<···<ik

i∈{i1,...,ik}

(
hi1···ik (Xi1, . . . ,Xik ) − Tihi1···ik (Xi1, . . . ,Xik )

))2

.

Using orthogonality, it follows that

E
(
difk(X1, . . . ,Xn)

)2

=
∑

i1<···<ik
i∈{i1,...,ik}

1

2

(
EĒi

(
h2

i1···ik (Xi1, . . . ,Xik ) + Tih
2
i1···ik (Xi1, . . . ,Xik )

))

=
∑

i1<···<ik
i∈{i1,...,ik}

Eh2
i1···ik (Xi1, . . . ,Xik ).

As in the proof of Theorem 2.3, it remains to check how often each term Eh2
i1···ik (Xi1, . . . ,Xik )

appears in E|dfk|2 = ∑
i E(difk)

2. However, it is clear that each i ∈ {i1, . . . , ik} replicates the
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summand Ehi1···ik (Xi1, . . . ,Xik ) exactly once. Consequently, it follows that E|dfk|2 = kEf 2
k , or

∫
|dfk|2 dμ = k

∫
f 2

k dμ. (∗∗)

Comparing (∗) and (∗∗) completes the proof in case of f = fk .
For functions with arbitrary Hoeffding expansion we shall use the orthogonality of the terms

of the Hoeffding decomposition to get

∫
|df |2 dμ =

n∑
k=d

1

k − 1

∫ ∥∥D(2)fk

∥∥2
HS dμ ≤ 1

d − 1

∫ ∥∥D(2)f
∥∥2

HS dμ.

In view of (2.6), this finally completes the proof. �

We are now ready to prove Theorem 1.2. In fact, using the results established in Sections 2–4,
we may easily obtain some complementary results which can be shown along the lines of the
proof of Theorem 1.2. For instance, we have the following slight sharpening of Theorem 1.2 if
all the measures μi are Bernoulli measures.

Proposition 5.3. Using the notations of Theorem 1.2, let all the μi be of the form μi = piδai
+

(1 − pi)δbi
, where ai, bi ∈ R, pi ∈ (0,1) for all i, and δx denotes the Dirac measure at x ∈ R.

Then, assuming the conditions of Theorem 1.2, we have∫
exp

(
1

3 + 2b2
|f |

)
dμ ≤ 2.

We now prove give a joint proof of Theorem 1.2 and Proposition 5.3.

Proof of Theorem 1.2 and Proposition 5.3. First, combining Proposition 4.3, Proposition 5.2
with d = 2 and the assumptions from Theorem 1.2 leads to

∫
exp

(
1

2σ σ̃
f

)
dμ ≤ exp

(
1

2σ̃ 2

∫ ∥∥d(2)f
∥∥2

HS dμ

)
≤ exp

(
b2

2σ̃ 2

)
(5.1)

if μ satisfies the modified LSI (3.1) with constant σ 2 > 0 with respect to d and furthermore with
constant σ̃ 2 > 0 with respect to d+. Now, from (5.1) we get

∫
exp

(
1

2σ σ̃
|f |

)
dμ ≤

∫ (
exp

(
1

2σ σ̃
f

)
+ exp

(
1

2σ σ̃
(−f )

))
dμ ≤ 2 exp

(
b2

2σ̃ 2

)
.

Thus, by applying Hölder’s inequality we obtain

∫
exp

(
1

2σ σ̃κ
|f |

)
dμ ≤

(∫
exp

(
1

2σ σ̃
|f |

)
dμ

)1/κ

≤
(

2 exp

(
b2

2σ̃ 2

))1/κ
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for all κ ≥ 1. The last term is bounded by 2 if κ ≥ (log 2 + b2/(2σ̃ 2))/ log 2, or equivalently
1/(2σ σ̃κ) ≤ log 2/(2σ σ̃ log 2 + σ σ̃−1b2).

By Proposition 3.2, Proposition 3.3, Lemma 3.4 and Proposition 4.1, we can set σ 2 = 2 and
σ̃ 2 = 4 or, in the Bernoulli case, σ 2 = 1 and σ̃ 2 = 2. We thus choose

∫
exp

(
log 2√

32 log 2 + 1√
2
b2

|f |
)

dμ ≤ 2,

∫
exp

(
log 2√

8 log 2 + 1√
2
b2

|f |
)

dμ ≤ 2

(5.2)

for σ 2 = 2 and σ̃ 2 = 4 or σ 2 = 1 and σ̃ 2 = 2, respectively. The proof of completed by noting
that for all x ≥ 0,

log 2√
32 log 2 + 1√

2
x

≥ 1

6 + 2x
and

log 2√
8 log 2 + 1√

2
x

≥ 1

3 + 2x
.

�

Moreover, it is straightforward to reformulate Theorem 1.2 using d+ instead of d. The proof
is easily obtained by simple modifications of the above arguments:

Proposition 5.4. Using the notations of Theorem 1.2, we require that |d+|d+f || ≤ 1, where d+
is the difference operator from (4.2). Then, we have

∫
exp

(
1

2(4 + b2)
|f |

)
dμ ≤ 2.

Proof. Note that we can use (4.1) with d replaced by d+, that is
∫

ef dμ ≤ ∫
eσ̃ 2|d+f |2 dμ for

any bounded measurable function f : � → R with
∫

f dμ = 0. Proceeding as in Section 4 then
leads to the inequality

∫
exp

(
1

2σ̃ 2
f

)
dμ ≤ exp

(
1

2σ̃ 2

∫ ∣∣d+f
∣∣2

dμ

)

if f : � → R is any bounded measurable function such that
∫

f dμ = 0 and |d+|d+f || ≤ 1.
Since

∫ |d+f |2 dμ ≤ ∫ |df |2 dμ, we can now use Proposition 5.2 as well. The remaining part
of the proof is similar to the proof of Theorem 1.2. Thus, we finally arrive at the inequality
1/(2σ̃ 2κ) ≤ log 2/(2σ̃ 2 log 2 + b2). Plugging in σ̃ 2 = 4 and noting that log 2/(8 log 2 + x) ≥
1/(8 + 2x) for all x ≥ 0 completes the proof. �

Finally, we prove Theorem 1.3.
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Proof of Theorem 1.3. The basic argument is as follows: if we have two functions ϕ1 and ϕ2 on
R

n both satisfying
∫

eci |ϕi | dμ ≤ 2 for some constants ci > 0, i = 1,2, it follows that∫
emin(c1,c2)|ϕ1+ϕ2|/2 dμ ≤

∫
ec1|ϕ1|/2ec2|ϕ2|/2 dμ

≤
(∫

ec1|ϕ1| dμ

)1/2(∫
ec2|ϕ2| dμ

)1/2

≤ 2 (5.3)

due to the Cauchy–Schwarz inequality. In our situation, we set ϕ1 = f1 and ϕ2 = Rf .
The bound for Rf is obvious by Theorem 1.2 and the fact that DijRf = Dij f for all i �= j

in view of (2.9). This leads to c2 = 1/(6 + 2b2). It remains to bound f1. Here, inequality (4.1)
yields ∫

eλf1 dμ ≤
∫

eσ 2λ2|df1|2 dμ ≤ eσ 2λ2b2
0

for any λ > 0, thus
∫

eλ|f1| dμ ≤ 2eσ 2λ2b2
0 . As in the proof of Theorem 1.2, it follows that∫

eλ|f1|/κ dμ ≤ (
2eσ 2λ2b2

0
)1/κ

for all κ ≥ 1. The right-hand side is bounded by 2 if λ/κ ≤ λ log 2/(log 2 + λ2σ 2b2
0). Here, the

expression on the right-hand side attains a maximum at λ = (log 2)1/2/(σb0) whose value is
(log 2)1/2/(2σb0). Plugging in σ 2 = 2, we get c1/2 = (log 2)1/2/(4

√
2b0) ≥ 1/(7b0), and hence

we can estimate min(c1, c2)/2 as stated in Theorem 1.3. �

6. Evaluating second order difference operators

In Theorem 1.2, checking the condition
∫ ‖d(2)f ‖2

HS dμ ≤ b2 is typically straightforward, once
we know the Hoeffding decomposition of f (cf. (2.6), enabling us to use the “Hoeffding” differ-
ences D). In contrast, evaluating the condition |d|df || ≤ 1 tends to be more involved. Therefore,
we shall provide a reformulated version of Theorem 1.2 with conditions which are easier to
apply.

Theorem 6.1. Let (�i,Ai ,μi) be probability spaces, and denote by (�,A,μ) := ⊗n
i=1(�i,

Ai ,μi) their product. Moreover, let f : � → R be a bounded measurable function so that its
Hoeffding decomposition with respect to μ is given by f = ∑n

k=2 fk . Assume that the conditions∥∥d(2)f
∥∥

HS ≤ B1 and max
i=1,...,n

|dif | ≤ B2 (6.1)

are satisfied for some B1,B2 ≥ 0, where ‖d(2)f ‖HS denotes the Hilbert–Schmidt norm of d(2)f .
Then, we have ∫

exp

(
c

B1 + B2
|f |

)
dμ ≤ 2
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for some numerical constant c > 0. A possible choice is c = 1/11. If all the underlying measures
μi are two-point measures, we can take c = 1/7.

Proof. For a set of independent random variables X1, . . . ,Xn with distributions μi , write

∣∣d∣∣df (X)
∣∣∣∣ =

(
n∑

i=1

1

2
Ēi

(∣∣df (X)
∣∣ − ∣∣Tidf (X)

∣∣)2

)1/2

(6.2)

with X = (X1, . . . ,Xn) and Tk as in Remark 2.2(3). Without loss of generality, we may assume
that |df | �= 0. To simplify notation, we introduce the convention that

∑(j) means summation
extending over all indexes but j . Similarly,

∑(j,k) denotes summation over all indexes but j

and k. Now, setting a := ∑n
j=1

(i)(dj f )2, b := (dif )2, c := ∑n
j=1

(i)(Tidj f )2 and d := (Tidif )2

for any 1 ≤ i ≤ n, we arrive at

(|df | − |Tidf |)2 = (
√

a + b − √
c + d)2 =

(
a + b − c − d√
a + b + √

c + d

)2

≤
(

|√a − √
c| + |b − d|√

a + b

)2

≤ 2

(
(
√

a − √
c)2 + (b − d)2

a + b

)
. (6.3)

(Using the simpler estimate |√a + b − √
c + d| ≤ |√a − √

c| + |√b − √
d| instead would es-

sentially lead to a condition on first order differences only.) Moreover,

(
√

a − √
c)2 =

((
n∑

j=1

(i)(dj f )2

)1/2

−
(

n∑
j=1

(i)(Tidj f )2

)1/2)2

≤
n∑

j=1

(i)(dj f − Tidj f )2

= 1

2

n∑
j=1

(i)
((
Ēj (f − Tjf )2)1/2 − (

Ēj (Tif − Tijf )2)1/2)2

≤ 1

2

n∑
j=1

(i)
Ēj (f − Tjf − Tif + Tij f )2. (6.4)

Combining (6.2), (6.3) and (6.4) together with the trivial estimate
√

x + y ≤ √
x + √

y for all
x, y ≥ 0 then yields

∣∣d∣∣df (X)
∣∣∣∣ ≤ √

2

(∥∥d(2)f (X)
∥∥

HS +
(

1

2

n∑
i=1

Ēi

((dif (X))2 − (Tidif (X))2)2

|df (X)|2
)1/2)

. (6.5)
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We may further estimate the last term by

(
n∑

i=1

Ēi

|(dif (X))2 − (Tidif (X))2|
|df (X)|2

)1/2

sup
x∈supp(μ)

max
i=1,...,n

∣∣dif (x)
∣∣. (6.6)

We now claim that (
n∑

i=1

Ēi

|(dif (X))2 − (Tidif (X))2|
|df (X)|2

)1/2

≤ 1. (6.7)

To see this, recall that by (2.3), (dif (X))2 = ((Dif (X))2 +Ei (Dif (X))2)/2, and therefore

∣∣(dif (X)
)2 − (

Tidif (X)
)2∣∣ ≤ ((

Dif (X)
)2 + (

TiDif (X)
)2)

/2.

Taking expectations yields Ēi |(dif (X))2 − (Tidif (X))2| ≤ (dif (X))2, which proves (6.7).
Combining (6.5), (6.6) and (6.7) with the assumptions from the theorem, we therefore arrive

at |d|df || ≤ √
2B1 + B2. Moreover, by (2.5), we have (Dij f (x))2 ≤ 4(dij f (x))2 and hence∫ ∥∥D(2)f

∥∥2
HS dμ ≤ 4B2

1 . (∗)

Finally, consider the “normalized” function f/(
√

2B1 + B2) and use (∗) in (5.2) from the proof
of Theorem 1.2, respectively. The proof of Theorem 6.1 then follows by elementary computa-
tions. �

As for conditions (6.1), note that in typical cases (for instance, if the function f is symmetric)
we have B1 = (B2) as n → ∞.

For functions of independent Rademacher variables taking values in {±1}, we don’t seem to
need first order differences. It is well-known that such functions can be represented in the form

f (X1, . . . ,Xn) = α0 +
n∑

i=1

αiXi +
∑
i<j

αijXiXj + · · · , (6.8)

where the coefficients αI (with a suitable multi-index I ) are real numbers and the summa-
tion extends over all terms up to the order n. More precisely, we have αi1···id = Ef (X1, . . . ,

Xn)Xi1 · · ·Xid for any i1 < · · · < id , d = 0,1, . . . , n. This representation is called the Fourier–
Walsh expansion of the function f , and the expression on the right-hand side of (6.8) is also
known as a Rademacher chaos. It is immediately clear that (6.8) is at the same time the Hoeffd-
ing decomposition of f . Applying Corollary 5.3 to functions of this type leads to the following
result.

Proposition 6.2. Let μ be the product measure of n symmetric Bernoulli distributions
μi = 1

2δ+1 + 1
2δ−1 on {±1}, and define f : Rn → R by f (x1, . . . , xn) := ∑

i<j αij xixj +
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∑
i<j<k αijkxixj xk +· · · , where the sum goes up to order n and the αi1···id are any real numbers.

Set B := supx∈{±1}n‖D(2)f (x)‖HS with D(2)f (x) as in (2.2). Then, we have

∫
exp

(
1

5B
|f |

)
dμ ≤ 2.

Proof. First, note that similarly to Remark 2.2(1), for products of symmetric Bernoulli distribu-
tions we have dij f = |Dij f | for any i �= j and consequently ‖d(2)f ‖HS = ‖D(2)f ‖HS. There-
fore, in view of Corollary 5.3, it suffices to prove that |d|df || ≤ ‖d(2)f ‖HS on supp(μ).

To this end, note that for any i = 1, . . . , n, by the fact that Ti |df | = |Tidf | and the reverse
triangular inequality,

(
di |df |)2 = 1

2
Ēi

(|df | − |Tidf |)2 ≤ 1

2
Ēi |df − Tidf |2. (6.9)

Here, the difference df − Tidf is defined componentwise. Using the Fourier–Walsh expansion
(6.8) and the fact that x2

i = 1 on supp(μ), it is easy to see that Tidif = dif . Therefore, using the
notations from the proof of Theorem 6.1,

|df − Tidf |2 = 1

2

n∑
j=1

(i)
((
Ēj (f − Tjf )2)1/2 − (

Ēj (Tif − Tijf )2)1/2)2

≤ 1

2

n∑
j=1

(i)
Ēj (f − Tjf − Tif + Tij f )2. (6.10)

Here, the last step follows from the reverse triangular inequality again (for the norm (Ēj (·)2)1/2).
Combining (6.9) and (6.10) and summing over i = 1, . . . , n finishes the proof. �

7. Differentiable functions: Proofs

In order to prove Theorem 1.4, we need to adapt some of the elements of the proof of Theorem 1.2
from the previous sections. For that, if (M,d) is a metric space and f : M → R is a continuous
function, we may define the generalized modulus of the gradient by

∣∣∇∗f (x)
∣∣ = lim sup

y→x

|f (x) − f (y)|
d(x, y)

(7.1)

for any x ∈ M , where the limsup is assigned to be zero at isolated points. By the continuity of
f , x �→ |∇∗f (x)| is a Borel-measurable function. If f is a differentiable function on some open
subset G ⊂ R

n, the generalized modulus of the gradient agrees with the Euclidean norm of the
usual gradient. We may iterate the generalized modulus of the gradient by setting for any x ∈ M

∣∣∇∗∣∣∇∗f (x)
∣∣∣∣ := lim sup

y→x

||∇∗f (x)| − |∇∗f (y)||
d(x, y)

. (7.2)
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Using the generalized modulus of the gradient, we have the following analogues of inequalities
(4.1) and (4.4) from Section 4. Let (M,d) be a metric space, equipped with some Borel prob-
ability measure μ which satisfies a logarithmic Sobolev inequality with constant σ 2. Moreover,
let u : M →R be a μ-integrable locally Lipschitz function. Then, we have

∫
eu−∫

udμ dμ ≤
∫

eσ 2|∇∗u|2 dμ. (7.3)

Moreover, if we additionally require |∇∗u| ≤ 1, we have

∫
etu2

dμ ≤ exp

(
t

1 − 2σ 2t

∫
u2 dμ

)
(7.4)

for any 0 ≤ t < 1/(2σ 2). As mentioned in Section 4, (7.3) and (7.4) are due to [6] and [2].
Now consider M = G, where G ⊂R

n is some open subset equipped with the Euclidean metric.
By proceeding as in the proof of Proposition 4.3, we arrive at the following exponential moment
inequality.

Proposition 7.1. Let G ⊂R
n be some open set, and let μ be a probability measure on (G,B(G))

which satisfies the logarithmic Sobolev inequality (1.8) with Sobolev constant σ 2 > 0. Further-
more, let f : G → R be a locally Lipschitz μ-integrable function with μ-mean zero such that
|∇∗f | is locally Lipschitz and |∇∗|∇∗f || ≤ 1. Here, |∇∗f | is the generalized modulus of the
gradient from (7.1). Then, we have

∫
G

exp

(
1

2σ 2
f

)
dμ ≤ exp

(
1

2σ 2

∫
G

∣∣∇∗f
∣∣2

dμ

)
.

Proposition 7.1 is a special case of [5], Proposition 2.1. If f is a C2-function, the condition
|∇∗|∇∗f || ≤ 1 can be simplified by the following lemma.

Lemma 7.2. Let G ⊂ R
n be some open set. Then, for any C2-smooth function f : G → R, the

function |∇∗f | is locally Lipschitz and satisfies

∣∣∇∗∣∣∇∗f (x)
∣∣∣∣ ≤ ∥∥f ′′(x)

∥∥
Op

at all points x ∈ G, where f ′′(x) denotes the Hessian of f at x ∈ G.

Proof. By chain rule, |∇f (x)| is differentiable on {|∇f (x)| �= 0} with ∇|∇f (x)| = 1
|∇f (x)| ×

f ′′(x)∇f (x), which immediately yields the desired result if |∇f (x)| �= 0.
It remains to consider the case |∇f (x)| = 0. Here, for any v ∈R

n such that |v| = 1, by Taylor
expansion we obtain 〈∇f (x + h), v〉 = 〈f ′′(x)v,h〉 + o(|h|) as h → 0. Here, the o-term can be
bounded by a quantity which does not depend on the choice of v. Therefore, dividing by |h| and
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taking limits according to (7.1), the proof is finished by noting that

∣∣∇∗∣∣∇f (x)
∣∣∣∣ = lim sup

h→0

|∇f (x + h)|
|h| ≤ sup

{〈
f ′′(x)v,

h

|h|
〉
: |v| = 1, h �= 0

}

= ∥∥f ′′(x)
∥∥

Op. �

We can now prove Theorems 1.4 and 1.5:

Proof of Theorem 1.4. Given a function f as in Theorem 1.4, applying Proposition 7.1 together
with Lemma 7.2 yields ∫

G

exp

(
1

2σ 2
f

)
dμ ≤ exp

(
1

2σ 2

∫
G

|∇f |2 dμ

)
. (7.5)

Since μ satisfies a logarithmic Sobolev inequality with constant σ 2, it also satisfies a Poincaré in-
equality (1.7) with constant σ 2. Therefore, since

∫
G

∂if dμ = 0 for all i, we have
∫
G
(∂if )2 dμ ≤

σ 2 ∑n
j=1

∫
G
(∂ij f )2 dμ for all i = 1, . . . , n, where ∂ij f (x) = d2f (x)

dxidxj
. Summing up over all i, we

get ∫
G

|∇f |2 dμ ≤ σ 2
∫

G

∥∥f ′′∥∥2
HS dμ. (7.6)

Combining (7.5), (7.6) and the assumptions from Theorem 1.4, we arrive at

∫
G

exp

(
1

2σ 2
f

)
dμ ≤ exp

(
1

2

∫
G

∥∥f ′′∥∥2
HS dμ

)
≤ exp

(
b2

2

)
.

The rest of the proof is similar to the proof of Theorem 1.2. We finally arrive at the inequality
1/(2σ 2κ) ≤ log 2/(2σ 2 log 2+b2σ 2). Noting that log 2/(2σ 2 log 2+xσ 2) ≥ 1/(2σ 2(1+x)) for
all x ≥ 0 finishes the proof. �

Proof of Theorem 1.5. The proof is similar to the proof of Theorem 1.3 assuming condition
(i) from the latter theorem. Setting μ[h] = ∫

G
hdμ for any h ∈ L1(μ), write f = ϕ1 + ϕ2 with

ϕ1(x) = ∑n
i=1 μ[∂if ](xi − μ[xi]), ϕ2(x) = f (x) − ϕ1(x). We now apply the basic argument

(5.3) from the proof of Theorem 1.3. Here we need to check that
∫

eci |ϕi | dμ ≤ 2 for i = 1,2 and
some constants c1, c2 > 0. By Theorem 1.4 applied to ϕ2, we may choose c2/2 = 1/(4σ 2(1 +
b2)).

For estimating the function ϕ1, note that |∇ϕ1|2 = ∑n
i=1(μ[∂if ])2 ≤ σ 2b2

0 by assumption.
Therefore, applying (7.3) yields∫

eλϕ1 dμ ≤
∫

eσ 2λ2|∇ϕ1|2 dμ ≤ eσ 4λ2b2
0

for all λ > 0. Proceeding as in the proof of Theorem 1.3, we obtain c1/2 = (log 2)1/2/(4σ 2b0) ≥
1/(5σ 2b0), which easily yields the desired result. �
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8. Applications

8.1. Functions of independent random variables

As a first example, we shall consider a certain type of statistics related to Hoeffding-type expan-
sions. In detail, for any n ∈N, let X1, . . . ,Xn be independent random variables and Tn a statistic
of the form

Tn(X1, . . . ,Xn) = h0,n +
∑

i

h1,n(Xi)n
−1 +

∑
i<j

h2,n(Xi,Xj )n
−2

+
∑

i<j<k

h3,n(Xi,Xj ,Xk)n
−3 + · · · . (8.1)

Here, hd,n, d = 0,1, . . . , n, are some “kernel” functions which are completely degenerate with
respect to the Xi . Usually, we then have concentration inequalities of the form P(

√
n(Tn −

h0,n) ≥ t) ≤ e−ct2
, where c is some absolute constant. Using second order concentration, it is

possible to sharpen these bounds. Here we mainly use the results from Section 6.

Example 8.1. Let X1, . . . ,Xn be some independent random variables, and let Tn be a statistic
of the form (8.1). Assume we have

∥∥nd(2)Tn

∥∥
HS ≤ M and

∣∣∣∣ndi

(
Tn −

∑
i

h1,n(Xi)n
−1

)∣∣∣∣ ≤ M ∀i (8.2)

for some universal constant M and with d(2)Tn as in (1.4). Then, there exists some numerical
constant c > 0 such that

P

(
n

∣∣∣∣Tn − h0,n −
∑

i

h1,n(Xi)n
−1

∣∣∣∣ ≥ t

)
≤ 2e−ct/M.

This follows immediately from Theorem 6.1. In particular, conditions (8.2) are satisfied if
‖hd,n‖∞ ≡ supx |hd,n(x)| ≤ L for d ≤ m and hd,n ≡ 0 for all d ≥ m, where m ∈N is independent
of n and where L is some absolute constant.

A special case is given by functions on the discrete cube, that is, we assume X1, . . . ,Xn to be
i.i.d. random variables with distributions μi = 1

2δ+1 + 1
2δ−1. In this situation, by Proposition 6.2,

we may replace conditions (8.2) by the single condition ‖nD(2)Tn‖HS ≤ M . Here, D(2)Tn is
the “Hessian” of Tn with respect to D defined in (2.2). For instance, if Tn(X1, . . . ,Xn) = α0 +∑

i n
−1αiXi + ∑

i<j n−2αijXiXj for real numbers α0, αi , αij , then ‖nD(2)Tn‖HS ≤ M just

means n−1(2
∑

i<j α2
ij )

1/2 ≤ M .
As a second example, we shall consider additive functionals of partial sums, that is, functionals

of the form

Sf := Sf (X) :=
n∑

i=1

f

(
i∑

j=1

Xj

)
. (8.3)
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Random variables of this kind appear for example, as additive functionals of random walks (cf.
[11]). Here we obtain the following result.

Example 8.2. Let X1, . . . ,Xn be a set of independent random variables, and let f : R→R be a
bounded measurable function. Consider Sf = Sf (X) as defined in (8.3). Then, there exists some
numerical constant c > 0 such that for any t ≥ 0,

P
(|Sf −ESf | ≥ t

) ≤ 2 exp

(
−c

t

n2‖f ‖∞

)
.

Proof. The proof is obtained by combining Theorem 1.3 and Theorem 6.1. For that, we simply
have to calculate the respective differences of first and second order.

To start, note that the first order Hoeffding term of Sf (X) is given by

S1
f (X) =

n∑
ν=1

(∑
i≥ν

(
E

(ν)f

(
i∑

j=1

Xj

)
−Ef

(
i∑

j=1

Xj

)))
,

where E
(ν) denotes taking the expectation with respect to all the random variables X1, . . . ,Xn

but Xν . It follows that for any ν = 1, . . . , n,

(
dνS

1
f (X)

)2 = 1

2
Ēν

(∑
i≥ν

(
E

(ν)f

(
i∑

j=1

Xj

)
−E

(ν)f

(
i∑

j=1

TνXj

)))2

≤ 2‖f ‖2∞(n − ν + 1)2,

and consequently |dS1
f (X)|2 ≤ 2‖f ‖2∞

∑n
ν=1(n − ν + 1)2 = 1

3n(n + 1)(2n + 1)‖f ‖2∞.
Next, we need to check the second order conditions from Theorem 1.3, that is, (1.5) for

RS1
f (X) := Sf (X) − S1

f (X) − ESf (X) (noting that d(2)RS1
f (X) = d(2)S1

f (X)). As shown in
(the proof of) Theorem 6.1, these conditions can be replaced by (6.1). To see the first condition
in (6.1), for any ν �= μ,

(
dνμRSf (X)

)2

= (
dνμSf (X)

)2

= 1

4
Ēνμ

( ∑
i≥ν∨μ

(
f

(
i∑

j=1

Xj

)
− Tνf

(
i∑

j=1

Xj

)
− Tμf

(
i∑

j=1

Xj

)
+ Tνμf

(
i∑

j=1

Xj

)))2

≤ 4‖f ‖2∞
(
n − (ν ∨ μ) + 1

)2

using similar arguments as above, and therefore ‖d(2)Sf (X)‖2
HS = ∑

ν �=μ(dνμSf (X))2 ≤
Cn4‖f ‖2∞ for some numerical constant C > 0. Moreover, to see the second condition in (6.1),
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for any ν = 1, . . . , n,

(
dν

(
Sf (X) − S1

f (X) −ESf (X)
))2

= 1

2
Ēν

(∑
i≥ν

(
f

(
i∑

j=1

Xj

)
− Tνf

(
i∑

j=1

Xj

)
−E

(ν)f

(
i∑

j=1

Xj

)
+E

(ν)Tνf

(
i∑

j=1

Xj

)))2

≤ 8‖f ‖2∞(n − ν + 1)2.

Combining these estimates we easily arrive at the result. �

We may furthermore apply our results in the context of bootstrap methods. Suppose
X1, . . . ,Xn, . . . are random elements taking values in R

p (or some other separable metric space)
which are independent and identically distributed from some distribution P ∈ P0. Here, P0 is a
set of probability measures on R

p which contains all discrete measures. By P̂n we denote the
empirical measure of the first n observations. Let Tn ≡ Tn(X1, . . . ,Xn;P) ≡ Tn(P̂n;P) be a se-
quence of symmetric statistics which may depend on the distribution P , and let h be a bounded
real function defined on the range of Tn.

Here we are interested in estimating θn(P ) := EP h(Tn(X1, . . . ,Xn;P)). Given X1, . . . ,Xn,
Efron’s (nonparametric) bootstrap suggests to estimate θn(P ) by θn(P̂n). That is, if we set

Bn(P ) = 1

nn

n∑
i1,...,in=1

h
(
Tn(Xi1, . . . ,Xin;P)

)
,

Efron’s bootstrap is given by Bn(P̂n). In many situations, this bootstrap can be successfully
applied, but in a number of examples (in particular due to bias problems) it fails asymptotically.
These problems have been addressed by D.N. Politis and J.P. Romano [27], F. Götze [16] and
P.J. Bickel, F. Götze and W.R. van Zwet [4] by introducing the m out of n bootstraps, that is,
sampling from an i.i.d. sample of size n m-times independently with or without replacement.
For instance, in the case of sampling without replacement (also called the

(
n
m

)
bootstrap), we

consider

Jm,n(P ) = Jm(P ) = 1(
n
m

) ∑
i1<···<im

h
(
Tm(Xi1, . . . ,Xim;P)

)

as an estimator of θn(P ). Then, the
(
n
m

)
bootstrap estimator of Jm,n(P ) is given by Jm,n(P̂n).

In order to access the accuracy of this estimate, one would have to estimate the error involved
in replacing P by P̂n in the functional Jm,n(P ). Under sufficient smoothness conditions for the
dependence on P , this would lead to first or second order Hoeffding expansions involving a
kernel of m + 1 or m + 2 variables, respectively. This would be necessary for evaluating the bias
term of this bootstrap estimator. For the sake of brevity, we shall consider the estimate of the
variance term for the original P only at this point.

At first order, the variance part of the error has been estimated in [27] and [16]. For instance,
by [4], Theorem 1, if m

n
→ 0, m → ∞, we have Jm(P ) = θm(P ) +OP ((m/n)1/2). Knowing (or
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at least estimating) the first order Hoeffding term of Jm(P ), we may sharpen this result by the
second order results in this paper:

Proposition 8.3. Suppose m
n

→ 0, m → ∞. Let h = ∑m
i=0 hi be the Hoeffding decomposition of

h = h(Tm(X1, . . . ,Xm;P)), and assume that

|dij h| ≤ c1

m
,

∣∣di (h − h0 − h1)
∣∣ ≤ c2 (8.4)

for all 1 ≤ i < j ≤ m and all i = 1, . . . ,m, respectively, where c1 and c2 are some absolute
constants. Let Jm,1(P ) denote the first order Hoeffding term of Jm(P ). Then, we have

Jm(P ) = θm(P ) + Jm,1(P ) +OP

(
m

n

)
.

Proof. Noting that EP Jm(P ) = θm(P ), let us check the conditions from Theorem 6.1 for
RJm(P ) := Jm(P ) − θm(P ) − Jm,1(P ) (cf. (1.6)). Using d(2)RJm(P ) = d(2)Jm(P ) and (8.4),
by elementary counting arguments we obtain

∥∥d(2)Jm(P )
∥∥

HS =
( ∑

j �=k≤n

(
djk

1(
n
m

) ∑
i1<···<im

j,k∈{i1,...,im}

h(Xi1, . . . ,Xim;P)

)2)1/2

≤
( ∑

j �=k≤n

(
n−2
m−2

)
(
n
m

)2

∑
i1<···<im

j,k∈{i1,...,im}

(
djkh(Xi1 , . . . ,Xim;P)

)2
)1/2

≤ c1
m

n
.

Here, to see the first inequality, we may rewrite djk by (2.4) and use the inequality E(
∑ν

i=1 fi)
2 ≤

ν
∑ν

i=1 Ef 2
i with E replaced by Ējk and ν = (

n−2
m−2

)
. Similarly, we have |diRJm(P )| ≤ c2

m
n

for
all i. The proof now follows by applying Theorem 6.1. �

As for the first order Hoeffding term Jm,1(P ), we have Jm,1(P ) = ∑n
i=1 g1(Xi) with

g1(Xi) = m

n

(
EP

(
h
(
Tm(Xi,Xj1, . . . ,Xjm−1)

)|Xi

) −EP h
(
Tm(Xi,Xj1, . . . ,Xjm−1)

))
,

where j1 < · · · < jm−1 is any (m − 1)-tuple from {1, . . . , n} \ {i}. Conditions (8.4) imply that
h(Tm(X1, . . . ,Xm);P) is “normalized”, i.e. we have B1 = B2 = O(1) in Theorem 6.1 for f =
h − h0 − h1. This may be achieved by requiring h to be sufficiently smooth.

In fact, in many applications, we can only assume |dij h| ≤ c1. In this case, we still get
Jm(P ) = θm(P ) + Jm,1(P ) + OP (m2/n) in Proposition 8.3. A typical situation is h = 1A for
some measurable set A ⊂ R, i.e. we estimate the probability of {h(Tn) ∈ A}. Here, we clearly
have |dij h| ≤ c1 and |di (h − h0 − h1)| ≤ c2. Consequently, while we cannot achieve the error
of Proposition 8.3 in this situation, we still get an improved consistency result especially for
small m.
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8.2. Differentiable functions

We may apply Theorem 1.4 in the context of random matrix theory. Here we consider two cases.

Case 1 (Wigner matrices). Let {ξjk,1 ≤ j ≤ k ≤ N} be a family of independent real-valued
random variables whose distributions all satisfy a logarithmic Sobolev inequality (1.8) with com-
mon constant σ 2. Putting ξjk = ξkj for 1 ≤ k < j ≤ N , we consider a symmetric N × N random
matrix � = (ξjk/

√
N)1≤j,k≤N . Denote by μ(N) = μ the joint distribution of its ordered eigenval-

ues λ1 ≤ · · · ≤ λN on R
N (in fact, λ1 < · · · < λN a.s.). By a simple argument using the Hoffman–

Wielandt theorem, μ satisfies a logarithmic Sobolev inequality with constant σ 2
N = 2σ 2/N (see

for instance [8]). Note that similar observations also hold for Hermitian random matrices.

Case 2 (β-ensembles). For β > 0 fixed, let μ
(N)
β,V = μ(N) = μ be the probability distribution on

R
N with density given by

μ(dλ) = 1

ZN

e−βNH(λ) dλ, H(λ) = 1

2

N∑
k=1

V (λk) − 1

N

∑
1≤k<l≤N

log(λl − λk) (8.5)

for λ = (λ1, . . . , λN) such that λ1 < · · · < λN . Here, V : R → R is a strictly convex C2-smooth
function and ZN is a normalization constant. It is well-known that for β = 1,2,4, these probabil-
ity measures correspond to the distributions of the classical invariant random matrix ensembles
(orthogonal, unitary and symplectic, respectively). For other β , one can interpret (8.5) as particle
systems on the real line with Coulomb interactions. Using the convexity of V , we may easily
verify that

H′′(λ) ≥ a Id (8.6)

uniformly in λ, where H′′(λ) denotes the Hessian of H, Id denotes the N ×N identity matrix and
a > 0 is some constant. As a consequence, by the classical Bakry-Emery criterion, μ satisfies a
logarithmic Sobolev inequality (1.8) with constant σ 2

N = 1/(aN). For a detailed discussion see
S.G. Bobkov and M. Ledoux [10].

Now consider the probability space (RN,BN,μ), where μ is either the joint eigenvalue dis-
tribution of � or the distribution defined in (8.5). If f : R → R is a C1-smooth function, it is
well-known that asymptotic normality

SN =
N∑

j=1

(
f (λj ) − μ

[
f (λj )

]) ⇒ N
(
0, σ 2

f

)
(8.7)

holds for the self-normalized linear eigenvalue statistics SN . Here, “⇒” denotes weak conver-
gence, μ[·] means integration with respect to μ and N (0, σ 2

f ) denotes a normal distribution with

mean zero and variance σ 2
f depending on f .

This result goes back to K. Johansson [20] for the case of β-ensembles and, for general Wigner
matrices, A.M. Khorunzhy, B.A. Khoruzhenko and L.A. Pastur [21] as well as Ya. Sinai and
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A. Soshnikov [30]. Such results have been extensively studied since then. Concentration of mea-
sure results have been obtained by A. Guionnet and O. Zeitouni [18], proving concentration
inequalities centered at the mean using techniques by Talagrand and Ledoux discussed in the in-
troduction. In particular, they proved that SN has fluctuations of order OP (1) if f ′ is absolutely
bounded. Here we can complement these results by a second order concentration bound which
only requires f ′′ to be absolutely bounded.

Proposition 8.4. Let μ be the joint distribution of the ordered eigenvalues of � or the β-
ensemble distribution defined in (8.5). Let f : R → R be a C2-smooth function with f ′(λj ) ∈
L1(μ) and second derivatives bounded by some constant γ > 0, and let S̃N := SN −∑N

j=1(λj −
μ[λj ])μ[f ′(λj )] with SN as in (8.7). Then, we have

∫
exp

(
cN1/2|S̃N |)dμ ≤ 2,

where c = c(γ ) > 0 is some constant. If μ is the eigenvalue distribution of �, c moreover depends
on the Sobolev constant σ 2, and if μ is the β-ensemble distribution (8.5), c also depends on the
quantity a from (8.6).

Proposition 8.4 follows from Theorem 1.4 and the fact that the Sobolev constant σ 2
N is of order

1/N . In view of the self-normalized property of SN , the fluctuation result for S̃N is of the next
order, although the scaling is of order

√
N only.

Results of this type are useful in situations where f ′ is not bounded (i.e. [18] cannot be ap-
plied), in particular if f grows at most quadratically. In this case, concentration results for SN

may be obtained by considering S̃N and the “linear” part separately. Controlling the linear part
is usually an easy task, while S̃N can be handled by Proposition 8.4. The idea of splitting eigen-
value statistics into a “linear” term and a remainder also appears in the analysis of interact-
ing particle systems. That is, in (8.5), another quadratic “interaction energy” term of the form
1
N

∑
i<j h(λj − λi) is added to H(λ), where h is a “kernel” function with suitable properties.

These particle system have been studied by F. Götze and M. Venker [17], including a concen-
tration of measure result similar to our bounds for the recentered interaction energy h, removing
both the expected value and a linear term (cf. e.g., [28] and Remark 4.8 there).

Indeed, second order results may also be used for establishing concentration bounds for
quadratic eigenvalue statistics. The idea of studying higher order statistics of eigenvalues can
already be found in A. Lytova and L. Pastur [25], where the authors proved a law of large num-
bers and a central limit theorem for U -statistics of eigenvalues. Following [17], an interesting
question is whether the self-normalization phenomenon extends to what might be informally
called a “double self-normalization” (at the level of the fluctuations, in our framework). That is,
we shall examine whether quadratic statistics which are “recentered” in a suitable way may have
fluctuations of a better order than OP (N), i.e. possibly even OP (1).

To this aim, we consider a sufficiently smooth “kernel” function g : R2 → R and set TN :=∑
j �=k g(λj , λk). Rescaling TN − μ[TN ], we arrive at asymptotic normality. To obtain second

order concentration of measure results, we shall also center around a linear correction term ac-
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cording to (1.9). That is, we define QN = QN(λ) by

QN :=
∑
j �=k

g(λj , λk) −
∑
j �=k

μ
[
g(λj , λk)

]

−
N∑

i=1

( ∑
k:k �=i

(
μ

[
gx(λi, λk)

] + μ
[
gy(λk, λi)

]))(
λi − μ[λi]

)
. (8.8)

Here, gx , gy etc. denote partial derivatives. For instance, if g(x, y) = xy, QN has the form

QN(λ) =
∑
j �=k

((
λj − μ[λj ]

)(
λk − μ[λk]

) − μ
[(

λj − μ[λj ]
)(

λk − μ[λk]
)])

.

In particular, this demonstrates that it is natural to remove a “linear” term in this context (also
recall the discussion at the beginning of Section 1).

Proposition 8.5. Let μ be the joint distribution of the ordered eigenvalues of � or the β-
ensemble distribution defined in (8.5). Let g : R2 → R be a C2-smooth function with first order
derivatives in L1(μ) and second order derivatives bounded by some constant γ > 0. Consider
QN as defined in (8.8). Then, for some constant c = c(γ ) > 0,

∫
exp

(
c

N1/2
|QN |

)
dμ ≤ 2. (8.9)

In the special case of g(x, y) := xy, we have

∫
exp

(
c|QN |)dμ ≤ 2. (8.10)

If μ is the eigenvalue distribution of �, c moreover depends on the Sobolev constant σ 2, and if
μ is the β-ensemble distribution (8.5), c also depends on the quantity a from (8.6).

Proof. To check the conditions of Theorem 1.4, note that the Hessian of QN has entries

(
Q′′

N

)
ij

= gxy(λi, λj ) + gyx(λj , λi), i �= j,(
Q′′

N

)
ii

=
∑
k:k �=i

(
gxx(λi, λk) + gyy(λk, λi)

)
.

Using the boundedness of the second derivatives of g it follows easily that ‖Q′′
N‖Op ≤ cN . Here,

c = c(γ ) denotes a numerical constant which will vary from line to line throughout the proof.
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On the other hand, we have

∫ ∥∥Q′′
N

∥∥2
HS dμ =

∑
i �=j

∫ (
gxy(λi, λj ) + gyx(λj , λi)

)2
dμ

+
N∑

i=1

∫ ( ∑
k:k �=i

(
gxx(λi, λk) + gyy(λk, λi)

))2

dμ.

Here, the sum corresponding to the off-diagonal terms can clearly be bounded by cN2, while
the sum corresponding to the diagonal terms can only be bounded by cN3 in general. Therefore,∫ ‖Q′′

N‖2
HS dμ ≤ cN3.

Finally, if g(x, y) := xy, we have gxx ≡ gyy ≡ 0, and consequently
∫ ‖Q′′

N‖2
HS dμ ≤ cN2.

Applying Theorem 1.4 finishes the proof. �

In case of g(x, y) := xy, by (8.10), QN has fluctuations of order OP (1), which can be regarded
as an extension of the self-normalizing property to a second order situation at least on the level
of the fluctuations of QN .

Unfortunately, this property does not seem to hold in full strength for general kernels g. To
explain this, note that QN may be decomposed into a “pure” quadratic part DN and a remainder
term QN − DN , where DN = DN(λ) is given by

DN = 1

2

N∑
i=1

μ[∂iiQN ](λ2
i − 2μ[λi]λi + 2μ[λi]2 − μ

[
λ2

i

])
. (8.11)

Arguing similarly as in the proof of Proposition 8.5, for an arbitrary kernel g, QN − DN has
fluctuations of order OP (1), while the fluctuations of DN are of a larger order OP (N1/2). There-
fore, we obtain a factor of 1/N1/2 in (8.9). If g(x, y) = xy, we have DN ≡ 0, and hence we
arrive at a different result (8.10). On the other hand, considering the case of g(x, y) = f (x) for
some function f with bounded second order derivatives, we arrive at Proposition 8.4 again. In
particular, this shows that in general, the additional factor 1/N1/2 in (8.9) cannot be removed.
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