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We study the problem of matrix estimation and matrix completion under a general framework. This frame-
work includes several important models as special cases such as the Gaussian mixture model, mixed mem-
bership model, bi-clustering model and dictionary learning. We establish the optimal convergence rates in
a minimax sense for estimation of the signal matrix under the Frobenius norm and under the spectral norm.
As a consequence of our general result we obtain minimax optimal rates of convergence for various special
models.
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1. Introduction

Over the past decade, there have been considerable interest in statistical inference for high-
dimensional matrices. A fundamental model in this context is the matrix de-noising model, under
which one observes a matrix θ∗ +W where θ∗ is an unknown non-random n×m matrix of inter-
est, and W is a random noise matrix. The aim is to estimate θ∗ from such observations. Often in
applications a part of elements of M is missing. The problem of reconstructing the signal matrix
θ∗ given partial observations of its entries is known as matrix completion problem. There has
been an important research in the past years devoted to accurate matrix completion methods.

In general, the signal θ∗ cannot be recovered consistently from noisy and possibly missing
observations. If we only know that θ∗ is an arbitrary n × m matrix, the guaranteed error of
estimating θ∗ from noisy observations can be prohibitively high. However, if θ∗ has an additional
structure one can expect to estimate it with high accuracy from a moderate number of noisy
observations. The algorithmic and analytical tractability of the problem depends on the type of
adopted structural model. A popular assumption in the matrix completion literature is that the
unknown matrix θ∗ is of low rank or can be well approximated by a low rank matrix. Significant
progresses have been made on low rank matrix estimation and completion problems, see, for
example, [8–10,18,22,29,31,34,35]. However, in several applications, the signal matrix θ∗ can
have other than just low rank structure. Some examples are as follows.

• Biology. The biological data are sometimes expected to have clustering structures. For ex-
ample, in the gene microarray data, a large number of gene expression levels are measured
under different experimental conditions. It has been observed in the experiments that there
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is a bi-clustering structure on the genes [14]. This means that, besides being of low rank,
the gene microarray data can be rearranged to approximately have a block structure.

• Computer Vision. To capture higher-level features in natural images, it is common to rep-
resent data as a sparse linear combination of basis elements [36] leading to sparse coding
models. Unlike the principle component analysis that looks for low rank decompositions,
sparse coding learns useful representations with number of basis vectors, which is often
greater than the dimension of the data.

• Networks. In network models, such as social networks or citation networks, the links be-
tween objects are usually governed by the underlying community structures. To capture
such structures, several block models have been recently proposed with the purpose of ex-
plaining the network data [2,25,28].

While there are some successful algorithmic advancements on adapting new structures in these
specific applications, not much is known on the fundamental limits of statistical inference for
the corresponding models. A few exceptions are the stochastic block model [20,33] and the bi-
clustering model [19]. However, many other structures of signal matrix are not analyzed.

The aim of this paper is to study a general framework of estimating structured matrices. We
consider a unified model that includes Gaussian mixture model, mixed membership model [2],
bi-clustering model [24], and dictionary learning as special cases. We first study the optimal con-
vergence rates in a minimax sense for estimation of the signal matrix under the Frobenius norm
and under the spectral norm from complete observations on the sparsity classes of matrices.
Then, we investigate this problem in the partial observations regime (structured matrix comple-
tion problem) and study the minimax optimal rates under the same norms. We also establish
accurate oracle inequalities for the suggested methods.

2. Notation

This section provides a brief summary of the notation used throughout this paper. Let A, B be
matrices in R

n×m.

• For a matrix A, Aij is its (i, j)th entry, A·j is its j th column and Ai· is its ith row.
• The scalar product of two matrices A, B of the same dimensions is denoted by 〈A,B〉 =

tr(AT B).
• We denote by ‖A‖2 the Frobenius norm of A and by ‖A‖∞ the largest absolute value of its

entries: ‖A‖∞ = maxi,j |Aij |. The spectral norm of A is denoted by ‖A‖.
• For x ∈ R

k , we denote by ‖x‖0 its l0-norm (the number of non-zero components of x), and
by ‖x‖q its lq -norm, 1 ≤ q ≤ ∞.

• We denote by ‖A‖0,∞ the largest l0-norm of the rows of A ∈ R
n×k :

‖A‖0,∞ = max
1≤i≤p

‖Ai·‖0.

• For any i ∈N, we write for brevity [i] = {1, . . . , i}.
• Given a matrix A = (Aij ) ∈ R

n×m, and a set of indices I ⊂ [n] × [m], we define the re-
striction of A on I as a matrix AI with elements (AI )ij = Aij if (i, j) ∈ I and (AI )ij = 0
otherwise.
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• The notation Ik×k and 0k×l (abbreviated to I and 0 when there is no ambiguity) stands for
the k × k identity matrix and the k × l matrix with all entries 0, respectively.

• We denote by |S| the cardinality of a finite set S, by 
x� the integer part of x ∈ R, and by
�x the smallest integer greater than x ∈ R.

• We denote by Nε(A) the ε-covering number, under the Frobenius norm, of a set A of
matrices.

3. General model and examples

Assume that we observe a matrix Y = (Yij ) ∈ R
n×m with entries

Yij = Eij

(
θ∗
ij + ξij

)
, i = 1, . . . , n, i = 1, . . . ,m, (3.1)

where θ∗
ij are the entries of the unknown matrix of interest θ∗ = (θ∗

ij ) ∈ R
n×m, the values ξij

are independent random variables representing the noise, and Eij are i.i.d. Bernoulli variables
with parameter p ∈ (0,1] such that (Eij ) is independent of (ξij ). Model (3.1) is called the matrix
completion model. Under this model, an entry of matrix θ∗ is observed with noise (independently
of the other entries) with probability p, and it is not observed with probability 1 − p. We can
equivalently write (3.1) in the form

Y/p = θ∗ + W, (3.2)

where W is a matrix with entries

Wij = θ∗
ij (Eij − p)/p + ξijEij /p.

The model with complete noisy observations is a special case of (3.1) (and equivalently of (3.3))
corresponding to p = 1. In this case, Wij = ξij .

Model (3.1) is called the matrix completion model. Under this model, an entry of matrix θ∗ is
observed with noise (independently of the other entries) with probability p, and it is not observed
with probability 1 − p. We can equivalently write (3.1) in the form

Y/p = θ∗ + W, (3.3)

where W is a matrix with entries

Wij = θ∗
ij (Eij − p)/p + ξijEij /p.

We denote by Pθ∗ the probability distribution of Y satisfying (3.1) and by Eθ∗ the correspond-
ing expectation. When there is no ambiguity, we abbreviate Pθ∗ and Eθ∗ to P and E, respectively.

We assume that ξij are independent zero mean sub-Gaussian random variables. The sub-
Gaussian property means that the following assumption is satisfied.
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Assumption 1. There exists σ > 0 such that, for all (i, j) ∈ [n] × [m],
∀λ ∈R, E exp(λξij ) ≤ exp

(
λ2σ 2/2

)
.

We assume that the signal matrix θ∗ is structured, that is, it can be factorized using sparse
factors. Specifically, let sn, kn, sm, km be integers such 0 ≤ sn ≤ kn and 0 ≤ sm ≤ km. We assume
that

θ∗ ∈ �(sn, sm) ⊂R
n×m,

where

�(sn, sm) = {
θ = XBZT : X ∈ Asn ,B ∈ R

kn×km and Z ∈ Asm

}
.

Here, for sn = 0 we assume that n = kn and the set Asn is a set containing only one element,
which is the n × n identity matrix, and for 1 ≤ sn ≤ kn,

Asn =Asn(n, kn) = {
A ∈Dn×kn

n ,‖Ai·‖0 ≤ sn, for all i ∈ [n]}, (3.4)

where the set Dn is a subset of R called an alphabet. The set Asm is defined analogously by
replacing n by m. We will also consider the class �∗(sn, sm) defined analogously to �(sn, sm),
with the only difference that the inequality in (3.4) is replaced by the equality.

Choosing different values of sn, kn, sm, km, and different alphabets we obtain several well-
known examples of matrix structures.

• Mixture Model:

�MM = {
θ ∈R

n×m : θ = XB for some B ∈R
k×m

and X ∈ {0,1}n×k with ‖Xi·‖0 = 1,∀i ∈ [n]}.
Here sn = 1 and sm = 0.

• Sparse Dictionary Learning:

�SDL = {
θ = BZT ∈R

d×n : B ∈R
d×k,Z ∈R

n×k with ‖Zi·‖0 ≤ s,∀i ∈ [n]}.
In this example, sn = 0 and sm = s.

• Stochastic Block Model:

�SBM = {
θ = ZBZT ∈ R

n×n : B ∈ [0,1]k×k,Z ∈ {0,1}n×k with ‖Zi·‖0 = 1,∀i ∈ [n]}.
Here sn = sm = 1.

• Mixed Membership Model:

�MMM = {
θ = ZBZT ∈R

n×n : B ∈ [0,1]k×k,Z ∈ [0,1]n×k,

with ‖Zi·‖1 = 1,‖Zi·‖0 ≤ s, for all i ∈ [n]}.
In this example, sn = sm = s.
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• Bi-clustering Model:

�Bi = {
θ = XBZT ∈R

n×m : B ∈ [0,1]kn×km,X ∈ {0,1}n×kn,Z ∈ {0,1}m×km

with ‖Xi·‖0 = 1,∀i ∈ [n],‖Zi·‖0 = 1,∀i ∈ [m]}.
Here sn = sm = 1.

Note that the classes �SBM and �MMM are not exactly equal to but rather subclasses of �(1,1)

and �(s, s), respectively.
Statistical properties of inference methods under the general model (3.1) are far from being

understood. Some results were obtained in particular settings such as the Mixture Model and
Stochastic Block Model.

Gaussian mixture models provide a useful framework for several machine learning problems
such as clustering, density estimation and classification. There is a quite long history of research
on mixtures of Gaussians. We mention only some of this work including methods for estimating
mixtures such as pairwise distances [15,16], spectral methods [26,40] or the method of mo-
ments [5,13]. Most of these papers are concerned with construction of computationally efficient
methods but do not address the issue of statistical optimality. In [3] authors provide precise infor-
mation theoretic bounds on the clustering accuracy and sample complexity of learning a mixture
of two isotropic Gaussians in high dimensions under small mean separation.

The Stochastic Block Model is a useful benchmark for the task of recovering community
structure in graph data. More generally, any sufficiently large graph behaves approximately like
a stochastic block model for some k, which can be large. The problem of estimation of the
probability matrix θ∗ in the stochastic block model under the Frobenius norm was considered
by several authors [6,11,12,41,42] but convergence rates obtained there are suboptimal. More
recently, minimax optimal rates of estimation were obtained by Gao et al. [20] in the dense case
and by Klopp et al. [33] in the sparse case.

Recently, a related problem to ours was studied by Soni et al. [38]. These authors consider the
case when the matrix to be estimated is the product of two matrices, one of which, called a sparse
factor, has a small number of non-zero entries (in contrast to this, we assume row-sparsity). The
estimator studied in [38] is a sieve maximum likelihood estimator penalized by the l0-norm of
the sparse factor where the sieve is chosen as a specific countable set.

4. Results for the case of finite alphabets

We start by considering the case of finite alphabets Dn and Dm and complete observations, that
is p = 1. In this section, we establish the minimax optimal rates of estimation of θ∗ under the
Frobenius norm and we show that they are attained by the least squares estimator

θ̂ ∈ arg min
θ∈�

‖Y − θ‖2
2, (4.1)

where � is a suitable class of structured matrices. We first derive an upper bound on the risk
of this estimator uniformly over the classes � = �(sn, sm). The following theorem provides an
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oracle inequality for the Frobenius risk of θ̂ . Here and in what follows, we adopt the convention
that 0 log x

0 = 0 for any x > 0. We also set for brevity

d = n + m, rn = n ∧ kn, rm = m ∧ km.

Theorem 1. Let Assumption 1 hold, and let p = 1. If the sets Dn and Dm are finite, there exists
a constant C > 0 depending only on the cardinalities of Dn and Dm such that, for all θ∗ ∈ R

n×m

and all ε > 0, the risk of the estimator (4.1) satisfies

Eθ∗
{∥∥θ̂ − θ∗∥∥2

2

} ≤ (1 + ε) inf
θ̄∈�(sn,sm)

∥∥θ̄ − θ∗∥∥2
2 + Cσ 2

ε
(RX + RB + RZ),

where RX = nrm ∧ nsn log ekn

sn
, RB = rnrm, RZ = mrn ∧ msm log ekm

sm
.

This theorem is proved in Appendix A.
Note that if the set Asn and/or Asm in the definition of �(sn, sm) contains only the identity

matrix, the corresponding term RX and/or RZ disappears from the upper bound of Theorem 1.
In Theorem 1, the true signal θ∗ can be arbitrary. By assuming that θ∗ ∈ �(sn, sm), we imme-

diately deduce from Theorem 1 that the following bound holds.

Corollary 2. Under the assumptions of Theorem 1,

sup
θ∈�(sn,sm)

Eθ

{‖θ̂ − θ‖2
2

} ≤ Cσ 2(RX + RB + RZ)

for a constant C > 0 depending only on the cardinalities of Dn and Dm.

The next theorem provides a lower bound showing that the convergence rate of Corollary 2
is minimax optimal. This lower bound is valid for the general matrix completion model (3.1).
In what follows, the notation inf

ϑ̂
stands for the infimum over all estimators ϑ̂ taking values in

R
n×m.

Theorem 3. Let the entries Wij of matrix W in model (3.3) be independent random variables
with Gaussian distribution N (0, σ 2), and let the alphabets Dn and Dm contain the set {0,1}.
There exists an absolute constant C > 0 such that

inf
ϑ̂

sup
θ∈�(sm,sn)

Pθ

{
‖ϑ̂ − θ‖2

2 ≥ Cσ 2

p
(RX + RB + RZ)

}
≥ 0.1, (4.2)

and

inf
ϑ̂

sup
θ∈�(sm,sn)

Eθ‖ϑ̂ − θ‖2
2 ≥ Cσ 2

p
(RX + RB + RZ). (4.3)

Furthermore, the same inequalities hold with �∗(sm, sn) in place of �(sm, sn) if sn ∈ {0,1} and
sm ∈ {0,1}.
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The proof of Theorem 3 is given in Appendix B.1.
The three ingredients RX , RB , and RZ of the optimal rate are coming from the ignorance of

X, B and Z respectively. Note that when sn = kn ≤ (n ∧ m) and sm = 0 we obtain σ 2

p
kn(n + m)

which coincides with the classical minimax rates in low-rank matrix de-noising problems.
The proof is based on constructing subsets of � by fixing two of these parameters to get

each of the three terms. The choice of B when fixing the pairs (X,B) and (Z,B) is based on a
probabilistic method, namely, Lemma 17. Similar techniques have been used in [33] to prove the
lower bounds for sparse graphon estimation, and in [20].

Remark 1. Formally, the lower bounds established in Theorem 3 do not apply directly to
Stochastic Block and Mixture Membership Models as these sets are sub-classes of �(1,1) and
�(s, s). But, by a closer inspection of the proof of Theorem 3, we can see that it also covers the
case of SBM and (with a slight modification) it can be applied to the Mixed Membership Model.

Remark 2. Theorem 3 can be extended to more general sub-Gaussian distributions under an
additional Kullback–Leibler divergence assumption. Assume that there is a constant c such that
the distribution of Y in model (3.1) satisfies

KL(Pθ ,Pθ ′) ≤ cp

2σ 2

∥∥θ − θ ′∥∥2
2.

Let the alphabets Dn and Dm contain the set {0,1}. Then there exists an absolute constant C > 0
such that

inf
ϑ̂

sup
θ∈�(sm,sn)

Pθ

{
‖ϑ̂ − θ‖2

2 ≥ Cσ 2

p
(RX + RB + RZ)

}
≥ 0.1,

and

inf
ϑ̂

sup
θ∈�(sm,sn)

Eθ‖ϑ̂ − θ‖2
2 ≥ Cσ 2

p
(RX + RB + RZ).

The proof of this result is similar to that of Theorem 3 and only needs to replace the equality in
(B.3) by inequality. In addition, the lower bounds hold with �∗(sm, sn) in place of �(sm, sn) if
sn ∈ {0,1} and sm ∈ {0,1}.

Remark 3. We summarize the minimax rates for some examples introduced in Section 3 in
Table 1. The case of �SBM is due to [20].

Table 1. Minimax rates

�MM min{n log(ek) + km,nm}
�SDL min{ns log(ek/s) + kd,nd}
�SBM n log(ek) + k2

�Bi min{n log(ekn) + m log(ekm) + knkm,nkm + m log(ekm),mkn + n log(ekn), nm}
�MMM sn log( ek

s ) + k2
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5. Optimal rates in the spectral norm

In this section, we derive the optimal rates of convergence of estimators of θ∗ when the error is
measured in the spectral norm. Interestingly, our results imply that these optimal rates coincide
with those obtained for estimation of matrices with no structure. That is, the additional structure
that we consider in the present paper does not have any impact on the rate of convergence of the
minimax risk when the error is measured in the spectral norm.

The lower bound under the spectral norm can be obtained as a corollary of the lower bound
under the Frobenius norm given by Theorem 3.

Corollary 4. Under the assumptions of Theorem 3, there exists a absolute constant C′ > 0 such
that

inf
ϑ̂

sup
θ∈�(sm,sn)

Pθ

{
‖ϑ̂ − θ‖2 ≥ C′σ 2

p
(n ∨ m)

}
≥ 0.1,

and

inf
ϑ̂

sup
θ∈�(sm,sn)

Eθ‖ϑ̂ − θ‖2 ≥ C′σ 2

p
(n ∨ m).

The proof of this corollary is given in Appendix B.2.
To get matching upper bounds we can use the soft thresholding estimator introduced in [34] or

the hard thresholding estimator proposed in [30]. These papers deal with the completion problem
for low rank matrices in the context of trace regression model, which is a slightly different setting.

Here, we consider the hard thresholding estimator. Set

Y ′ = Y/p.

The singular value decomposition of matrix Y ′ has the form

Y ′ =
rank(Y ′)∑

j=1

σj

(
Y ′)uj

(
Y ′)vj

(
Y ′)T

, (5.1)

where rank(Y ′) is the rank of Y ′, σj (Y
′) are the singular values of Y ′ indexed in the decreasing

order, and uj (Y
′) (respectively, vj (Y

′)) are the left (respectively, the right) singular vectors of Y ′.
The hard thresholding estimator is defined by the formula

θ̃ =
∑

j :σj (Y ′)≥λ

σj

(
Y ′)uj

(
Y ′)vj

(
Y ′)T

, (5.2)

where λ > 0 is the regularization parameter. In this section, we assume that the noise variables
Wij are bounded as stated in the next assumption.
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Assumption 2. For all i, j we have E(Wij ) = 0, E(W 2
ij ) = σ 2 and there exists a positive constant

b > 0 such that

max
i,j

|Wij | ≤ b.

A more general case of sub-Gaussian noise can be treated as well; in this case, we can work
on the event Eb where ‖W‖∞ is bounded by a suitable constant b and show that the probability
of the complement of Eb is small.

The following theorem gives the upper bound on the estimation error of the hard thresholding
estimator (5.2).

Theorem 5. Assume that ‖θ∗‖∞ ≤ θmx and let Assumption 2 hold. Let λ = c(b + θmx)
√

n∨m
p

where c > 0 is a sufficiently large absolute constant. Assume that p ≥ log(n + m)/(n ∨ m).
Then, with Pθ∗ probability at least 1 − 2/(n + m), the hard thresholding estimator θ̃ satisfies

‖θ̃ − θ∗‖2 ≤ C(b + θmx)
2 n ∨ m

p
,

where C > 0 is an absolute constant.

The proof of Theorem 5 is close to the argument in [30]. It is given in Appendix C.

6. A general oracle inequality under incomplete observations

The aim of this section is to present a general theorem about the behavior of least squares estima-
tors in the setting with incomplete observations. This theorem will be applied in the next section
to obtain an analog of the upper bound of Theorem 1 for general alphabets. To state the theorem,
it does not matter whether we consider a vector or matrix setting. Therefore, in this section, we
will deal with the vector model. Assume that we observe a vector Y = (Y1, . . . , YN) with entries

Yi = Ei

(
θ∗
i + ξi

)
, i = 1, . . . ,N, (6.1)

for some unknown θ∗ = (θ∗
1 , . . . , θ∗

N). Our goal is to estimate θ∗. Here, ξi are independent ran-
dom noise variables, and Ei are i.i.d. Bernoulli variables with parameter p ∈ (0,1] such that
(E1, . . . ,EN) is independent of (ξ1, . . . , ξN ).

When p is known we can equivalently write (6.1) in the form

Y ′ = θ∗ + W, (6.2)

where now W is a vector with entries

Wi = θ∗
i (Ei − p)/p + ξiEi/p,

and Y ′ = Y/p. In this section, we denote by Pθ∗ the probability distribution of Y ′ satisfying
(6.2).
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Consider the least squares estimator of θ∗:

θ̂ ∈ arg min
θ∈�

∥∥Y ′ − θ
∥∥2

2, (6.3)

where � is a subset of RN . For some element θ0 of arg minθ∈� ‖θ − θ∗‖2
2 we set �1 = {θ ∈ � :

‖θ − θ0‖2 ≤ 1}.
Set

ε0 = 1

2

(
inf

{
ε ∈ (0,1] : Nε2 > logNε(�1)

} + sup
{
ε ∈ (0,1] : Nε2 < logNε(�1)

})
.

Since Nε(�1) is a decreasing left-continuous function of ε ∈ (0,1], we have

1

2
logNε0(�1) ≤ Nε2

0 ≤ logNε0(�1). (6.4)

Theorem 6. Let ξi be independent random variables satisfying Eeλξi ≤ eλ2σ 2/2 for some σ > 0
and all λ ∈ R. Assume that there exists a constant θmx such that ‖θ‖∞ ≤ θmx for all θ ∈ �. Then,
for any θ∗ ∈ R

N , with Pθ∗ -probability at least 1 − 4/Nε0(�1) − exp(−pN/6), the least squares
estimator (6.3) satisfies the oracle inequality∥∥θ̂ − θ∗∥∥2

2 ≤ 3 inf
θ∈�

∥∥θ − θ∗∥∥2
2 + C

θ2
mx + σ 2

p
Nε2

0,

where C > 0 is an absolute constant.

The proof of this theorem is given in Appendix D.
Note that Theorem 6 has no assumption on the true signal θ∗. Using Theorem 6 with θ∗ ∈ �

we immediately deduce that

inf
θ∈�

Pθ

(
‖θ̂ − θ‖2

2 ≤ C
θ2

mx + σ 2

p
Nε2

0

)
≥ 1 − 4/Nε0(�1) − exp(−pN/6),

where C > 0 is an absolute constant.
Theorem 6 shows that the rate of convergence of the least squares estimator is determined by

the value of ε0 satisfying the global entropy condition (6.4). This quantity is the critical covering
radius that appeared in the literature in different contexts, see, for example, [43]. In particular,
this critical radius has been shown to determine the minimax optimal rates in nonparametric
estimation problems. However, it may lead to slightly suboptimal rates (with deterioration by a
logarithmic factor) for parametric estimation problems.

7. Structured matrix completion with general alphabets

For the structured matrix completion over infinite alphabets we consider the following parameter
spaces:

�̃(sn, sm) = {
θ = XBZT : X ∈ Ãn,‖B‖∞ ≤ Bmax,Z ∈ Ãm,‖θ‖∞ ≤ θmx

}
.
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Here, Bmax and θmx are positive constants, and for 1 ≤ sn ≤ kn,

Ãn = {
A ∈Dn×kn

n : ‖Ai·‖0 ≤ sn, for all i ∈ [n] and ‖A‖∞ ≤ 1
}
.

If sn = 0, we assume that n = kn and we define Ãsn as the set containing only one element, which
is the n × n identity matrix.

The difference from the class �(sn, sm) is only in the fact that the elements of matrix θ ∈
�̃(sn, sm) and those of the corresponding factor matrices X, B , Z are assumed to be uniformly
bounded. This assumption is natural in many situations, for example, in the Stochastic Block
Model or in recommendation systems, where the entries of the matrix are ratings. We introduce
the bounds of the entries of the factor matrices in order to fix ambiguities associated with the
factorization structure.

A key ingredient in applying Theorem 6 to this particular case is to find the covering number
logNε(�1) when � = �̃(sn, sm). For any � ⊂R

n×m, any θ0 ∈ �, and any u > 0, set

�u = {
θ ∈ � : ‖θ − θ0‖2 ≤ u

}
.

The following result is proved in Appendix E.

Proposition 7. For any θ0 ∈ �̃(sn, sm), 0 < ε < 1, and u ≤ 1 we have

logNε

(
�̃u(sn, sm)

) ≤ R1(ε) ∧ R2(ε) ∧ R3(ε) ∧ R4(ε),

where

R1(ε) = nsn log
ekn

sn
+ msm log

ekm

sm

+ (nsn + msm) log
6Bmax

√
mnsmsn

ε
+ rnrm log

9u

ε
,

R2(ε) = nrm log
6u

ε
+ msm log

ekm

sm
+ msm log

2Bmax
√

mnsmsn

ε
,

R3(ε) = mrn log
6u

ε
+ nsn log

ekn

sn
+ nsn log

2Bmax
√

mnsmsn

ε
,

R4(ε) = mn log
3u

ε
.

Theorem 6, together with Proposition 7, imply implies the following upper bound on the esti-
mation error in structured matrix completion.

Corollary 8. Consider model (3.1). Let Assumption 1 hold. Then, for any θ∗ ∈ R
n×m, the least

squares estimator (4.1) with � = �̃(sn, sm) satisfies the inequality

∥∥θ̂ − θ∗∥∥2
2 ≤ 3 inf

θ∈�̃(sn,sm)

∥∥θ − θ∗∥∥2
2 + C

θ2
mx + σ 2

p

(
R1(ε0) ∧ R2(ε0) ∧ R3(ε0) ∧ R4(ε0)

)
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with Pθ∗ -probability at least

1 − exp
(−c

(
R1(ε0) ∧ R2(ε0) ∧ R3(ε0) ∧ R4(ε0)

)) − exp(−pmn/18),

where, C,c > 0 are absolute constants.

Note that Proposition 7 and (6.4) imply that ε0 ≥ c′√(m + n)/mn for some numerical con-
stant c′. Then, we have that for the general scheme of matrix completion and general alphabets
the upper bound given by Corollary 8 departs from the lower bound of Theorem 3 by a logarith-
mic factor:

Corollary 9. Let the assumptions of Corollary 8 be satisfied. Then the least squares estimator
(4.1) with � = �̃(sn, sm) satisfies the inequality

inf
θ∈�̃(sn,sm)

Pθ

(
‖θ̂ − θ‖2

2 ≤ C
θ2

mx + σ 2

p

[
log(n + m) + log(snsm)

]
(RX + RB + RZ)

)
≥ 1 − exp

(−c
[
log(n + m) + log(snsm)

]
(RX + RB + RZ)

) − exp(−pmn/18),

where C,c > 0 are absolute constants.

Remark 4. Comparing the upper bound provided by Corollary 9 to the lower bound of Theo-
rem 3 we see that, in addition to the logarithmic factor, we have θ2

mx + σ 2 instead of σ 2.

Remark 5. When sn = kn = k and sm = 0, the estimator defined in (4.1) reduces to the top-k
SVD of the noisy observation Y and the estimator defined in (6.3) becomes the top-k SVD of the
matrix Y ′. This estimator was largely studied in the literature for low-rank matrix denoising and
low-rank completion problems (see, e.g., [7,17,21,23]). Corollary 8 implies that it is minimax op-
timal up to the logarithmic factor log(nm), see [34]. In the case of bounded noise (Assumption 2),
proceeding as in the proof of Theorem 5 we can get rid of this logarithmic factor. Note also that
Corollary 9 does not imply exact recovery when σ → 0. Exact matrix completion requires so
called “incoherence conditions” (see, e.g., [10]). When such conditions are not imposed, exact
recovery might not be possible with a few observed entries.

8. Adaptation to unknown sparsity

The estimators considered above require the knowledge of the degrees of sparsity sn and sm of
θ∗. In this section, we suggest a method that does not require such a knowledge and thus it is
adaptive to the unknown degree of sparsity. Our approach will be to estimate θ∗ using a sparsity
penalized least squares estimator. Let

X =
kn⋃

sn=1

km⋃
sm=1

�̃(sn, sm) (8.1)
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and set

R(sn, sm) = [
nrm log(6

√
n ∧ m)

] ∧ [
nsn log

(
knsm(n ∧ m)

)]
+ [

mrn log(6
√

n ∧ m)
] ∧ [

msm log
(
knsm(n ∧ m)

)]
+ rnrm log(9

√
n ∧ m). (8.2)

For any θ = XBZT ∈ X let

R(θ) = R
(‖X‖0,∞,‖Z‖0,∞

)
. (8.3)

In the following, 	 denotes the random set of observed indices (i, j) in model (3.1). In this
section, we denote by θ̂ the following estimator

θ̂ ∈ arg min
θ=XBZT ∈X

{‖Y − θ	‖2
2 + λR(θ)

}
, (8.4)

where λ > 0 is a regularization parameter. Note that this estimator does not require the knowledge
of p. The following theorem proved in Appendix F gives an upper bound on the estimation error
of θ̂ .

Theorem 10. Assume that nm log(3
√

n ∧ m) ≥ 6 log(knkm) and d ≥ 10. Let λ = 8(σ ∨ θmx)
2.

Then, for any θ∗ ∈ R
n×m, with Pθ∗ -probability at least 1 − 5 exp(−d/10) − 2 exp(−pnm) the

estimator (8.4) satisfies

∥∥θ̂ − θ∗∥∥2
2 ≤ C inf

θ∈X

{∥∥θ − θ∗∥∥2
2 + (σ ∨ θmx)

2

p
R(θ)

}
,

where C > 0 is an absolute constant.

Theorem 10 implies that for the general scheme of matrix completion and general alphabets
we obtain the following upper bound which departs from the lower bound of Theorem 3 by a
logarithmic factor:

inf
θ∈X

Pθ

(
‖θ̂ − θ‖2

2 ≤ C
(σ ∨ θmx)

2

p

[
log(n ∧ m) + log(snsm)

]
(RX + RB + RZ)

)
≥ 1 − 5 exp(−d/6) − 2 exp(−pnm),

where C > 0 is an absolute constant.
We finish this section by two remarks.

1. Structured matrix estimation. In the case of complete observations, that is p = 1, the esti-
mator (8.4) coincides with the following estimator

θ̂ ∈ arg min
θ=XBZT ∈X

{‖Y − θ‖2
2 + λR(θ)

}
. (8.5)
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Then, one can show that, with high probability, the following upper bound on the estimation
error holds ∥∥θ̂ − θ∗∥∥2

2 ≤ Cσ 2[log(n ∧ m) + log(snsm)
]
(RX + RB + RZ).

Here we do not need an upper bound on ‖θ∗‖∞. At the same time, the estimator (8.5) is
adaptive to the sparsity parameter (sn, sm).

2. Sparse Factor Model. Sparse Factor Model is studied in [38]. With our notation, it corre-
sponds to a particular case of n = kn and X being the identity matrix with the difference
that we consider row-sparse matrix Z while Z is assumed component-wise sparse in [38].
Convergence rates obtained in [38] are of the order p−1(nkm + kmm) (up to a logarithmic
factor). This is greater then the upper bound given by Theorem 10 which, in this setting, is
of the order p−1[n(km ∧ m) + smm].

Appendix A: Proof of Theorem 1

Set

R̄1(n,m) = nsn log

(
ekn|Dn|

sn

)
+ rnm,

R̄2(n,m) = nsn log

(
ekn|Dn|

sn

)
+ msm log

(
ekm|Dm|

sm

)
+ rnrm.

Since θ̂ is the least squares estimator on �(sn, sm), and Y = θ∗ + W , we have that for any
θ̄ ∈ �(sn, sm), ∥∥θ̂ − θ∗∥∥2

2 ≤ ∥∥θ̄ − θ∗∥∥2
2 + 2〈θ̂ − θ̄ ,W 〉. (A.1)

Now we use the following lemma proved in Appendix G.1.

Lemma 11. Let W ∈ R
n×m be a random matrix with independent σ -sub-Gaussian entries. In-

troduce the notation

U ∗̄
θ

= sup
θ∈�(sn,sm),θ �=θ̄

〈θ − θ̄ ,W 〉2

‖θ − θ̄‖2
2

.

For any t > 0, the following inequalities hold, where C > 0 is an absolute constant:

(i)

sup
θ̄∈�(sn,sm)

P
{
U ∗̄

θ
≥ 3σ 2(R̄1(n,m) + t

)} ≤ e−t , sup
θ̄∈�(sn,sm)

E
(
U ∗̄

θ

) ≤ Cσ 2R̄1(n,m),

(ii)

sup
θ̄∈�(sn,sm)

P
{
U ∗̄

θ
≥ 3σ 2(R̄2(n,m) + t

)} ≤ e−t , sup
θ̄∈�(sn,sm)

E
(
U ∗̄

θ

) ≤ Cσ 2R̄2(n,m),
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(iii)

sup
θ̄∈�(sn,sm)

P
{
U ∗̄

θ
≥ 3σ 2(nm + t)

} ≤ e−t , sup
θ̄∈�(sn,sm)

E
(
U ∗̄

θ

) ≤ Cσ 2nm.

Applying Lemma 11(i) to (A.1), for any ε > 0, we get that

E
{∥∥θ̂ − θ∗∥∥2

2

} ≤ (1 + ε)
∥∥θ∗ − θ̄

∥∥2
2 + Cσ 2

ε
R̄1(n,m). (A.2)

On the other hand, applying Lemma 11(i) to 〈θ̂ − θ̄ ,W 〉 = 〈(θ̂ − θ̄ )T ,WT 〉 with n replaced by
m, for all ε > 0, we get

E
{∥∥θ̂ − θ∗∥∥2

2

} ≤ (1 + ε)
∥∥θ∗ − θ̄

∥∥2
2 + Cσ 2

ε
R̄1(m,n). (A.3)

Finally using Lemma 11(ii) and (iii) we get

E
{∥∥θ̂ − θ∗∥∥2

2

} ≤ (1 + ε)
∥∥θ∗ − θ̄

∥∥2
2 + Cσ 2

ε
R̄2(n,m) (A.4)

and

E
{∥∥θ̂ − θ∗∥∥2

2

} ≤ (1 + ε)
∥∥θ∗ − θ̄

∥∥2
2 + Cσ 2

ε
nm. (A.5)

Inequalities (A.2)–(A.5) imply that for all ε > 0 and all θ̄ ∈ �(sn, sm)

E
{∥∥θ̂ − θ∗∥∥2

2

} ≤ (1 + ε)
∥∥θ∗ − θ̄

∥∥2
2 + Cσ 2

ε
R̄3(n,m),

where R̄3(n,m) = min{R̄1(n,m), R̄1(m,n), R̄2(n,m),nm}. Taking the supremum over θ̄ ∈
�(sn, sm) and simplifying the expression for R̄3(n,m), we obtain the result of Theorem 1.

Appendix B: Proof of lower bounds

B.1. Proof of Theorem 3

Lower bound with the terms RX and RZ . We only prove the lower bound with the term RZ by
fixing X = X0 and B = B0, where X0 and B0 are matrices specified below. The bound with RX

is analogous. Fix

X0 =
{

[Ikn×kn,0]T , if n ≥ kn,

[In×n,0], otherwise.

By Lemma 16, for km ≥ 2, we can find S0 ⊆ {0,1}km with the following properties:

(i) log |S0| ≥ c∗
1sm log ekm

sm
,
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(ii) c∗
2sm ≤ ‖a‖0 ≤ sm for all a ∈ S0, and ‖a‖0 = sm for all a ∈ S0 if sm ≤ km/2,

(iii) ‖a − b‖2
2 ≥ c∗

3sm for all a, b ∈ S0 such that a �= b,

where c∗
j > 0, j = 1,2,3, are absolute constants.

Assume first that km ≥ 2 and min{ rn
97 , c∗

1sm log ekm

sm
} ≥ log 8. Then, choose an arbitrary subset

S ⊆ S0 of cardinality |S| = 
exp(min{ rn
97 , c∗

1sm log ekm

sm
})� where rn = n ∧ kn and we denote by


x� the integer part of x. Since log |S| ≤ rn/96, Lemma 17 implies that there exists a matrix
Q ∈ {−1,1}rn×km such that, for any a, b ∈ S ,

rn

2
‖a − b‖2

2 ≤ ‖Qa − Qb‖2
2 ≤ 3rn

2
‖a − b‖2

2. (B.1)

For this Q, let

B0 = [δQ,0(kn−rn)×km ]T
with δ > 0 to be specified below. Define Z = {Z ∈ {0,1}m×km,Zi· ∈ S for all i ∈ [m]} and TZ =
{θ = X0B0Z

T ,Z ∈Z}. We have TZ ⊆ �(sn, sm) and log |TZ| = log |Z| = m log |S|.
For any matrices θ = X0B0Z

T ∈ TZ , and θ̄ = X0B0Z̄
T ∈ TZ we have

‖θ − θ̄‖2
2 = δ2

∥∥QZT − QZ̄T
∥∥2

2 = δ2
m∑

i=1

∥∥QZT
i· − QZ̄T

i·
∥∥2

2.

Using (B.1) and property (iii) of S0, we find

‖θ − θ̄‖2
2 ≥ rnδ

2

2

m∑
i=1

‖Zi· − Z̄i·‖2
2 ≥ c∗

3rnδ
2msm

2
. (B.2)

On the other hand, Lemma 15 together with (B.1) implies that the Kullback–Leibler divergence
between Pθ and Pθ̄ satisfies

KL(Pθ ,Pθ̄ ) = p

2σ 2
‖θ − θ̄‖2

2 ≤ 3prnδ
2

4σ 2

m∑
i=1

‖Zi· − Z̄i·‖2
2 ≤ 3prnδ

2msm

2σ 2
. (B.3)

If we choose now δ2 = C0σ
2

prnsm
log |S| for some absolute constant C0 > 0 small enough, then (B.2),

(B.3), Theorem 2.5 in [39] and the fact that |S| ≥ 8 imply that

inf
ϑ̂

sup
θ∈TZ

Pθ

{
‖ϑ̂ − θ‖2

2 ≥ C1
σ 2

p

(
mrn ∧ msm log

ekm

sm

)}
≥ 0.7 (B.4)

for some absolute constant C1 > 0. This yields the term of the lower bound containing RZ in the
case when km ≥ 2 and min{ rn

97 , c∗
1sm log ekm

sm
} ≥ log 8. In the complementary case, when km = 1

or min{ rn
97 , c∗

1sm log ekm

sm
} < log 8, the value RZ is smaller than Cσ 2m/p for an absolute constant

C > 0. Thus, in this case, it suffices to prove the lower bound of order m/p. To do this, let the
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matrices X0 and B0 be such that their (1,1)th entry is equal to 1 and all other entries are 0, and
consider the set of matrices Z such that their first column is a binary vector in {0,1}m and all
other columns are 0. This defines a set of matrices θ = X0B0Z

T contained in �(sn, sm), which
is isometric, under the Frobenius norm, to the set of binary vectors {0,1}m equipped with the
Euclidean norm. Therefore, a lower bound of order m/p follows in a standard way as for vector
estimation problem. We omit further details.

Analogously, by permuting n and m, we obtain that

inf
ϑ̂

sup
θ∈�(sn,sm)

Pθ

{
‖ϑ̂ − θ‖2

2 ≥ C1
σ 2

p

(
nrm ∧ nsn log

ekn

sn

)}
≥ 0.7, (B.5)

which yields the term of the lower bound containing RX .

Lower bound with the term RB . To obtain the term containing RB in the lower bound (4.2), we
fix X = X0 and Z = Z0 where

X0 =
{

[Ikn×kn,0]T , if n ≥ kn,

[In×n,0], otherwise,
and Z0 =

{
[Ikm×km,0]T , if m ≥ km,

[Im×m,0], otherwise.

We first note that if rnrm < 16, the lower bound with term RB is trivially obtained by distinguish-
ing between two matrices. For rnrm ≥ 16, by vectorizing a rn×rm matrix into a rnrm dimensional
vector, and applying the Varshamov–Gilbert bound [39], Lemma 2.9, we obtain that there exists
a subset B ⊆ {0,1}rn×rm such that for any Q,Q̄ ∈ B,

‖Q − Q̄‖2
2 =

∑
i,j

1{Qij �= Q̄ij } ≥ rnrm

8

and log |B| ≥ rnrm
8 . We define

TB =
{
θ = X0BZT

0 ,B = δ

[
Q 0
0 0

]
,Q ∈ B

}
.

Clearly, TB ⊆ �(sn, sm). For any θ = X0BZT
0 ∈ TB , θ̄ = X0B̄ZT

0 ∈ TB , we have

‖θ − θ̄‖2
2 = ‖B − B̄‖2

2 = δ2‖Q − Q̄‖2
2 ≥ rnrmδ2

8
.

Lemma 15 implies that KL(Pθ ,Pθ̄ ) = p

2σ 2 ‖θ − θ̄‖2
2 ≤ pδ2rnrm

2σ 2 . Choosing δ2 = C′
0σ

2/p for some
constant C′

0 > 0 small enough and using Theorem 2.5 in [39] we obtain

inf
ϑ̂

sup
θ∈TB

P

{
‖ϑ̂ − θ‖2

2 ≥ C2
σ 2

p
rnrm

}
≥ 0.7 (B.6)

for some absolute constant C2 > 0.
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Combining (B.4), (B.5) and (B.6) proves the lower bound (4.2). The bound (4.3) follows from
(4.2) and Markov’s inequality.

Finally, the lower bounds for the classes �∗(sn, sm) with sn, sm ∈ {0,1} are proved analo-
gously. It suffices to note that, if sm = 0, there is no matrix Z in the definition of the class and
thus there is no term RZ . If sm = 1, we follow the above argument corresponding to RZ with the
only difference that, by (ii) of Lemma 16, we can grant the exact equality ‖a‖0 = 1 for all a ∈ S0
and km ≥ 2. We omit further details.

B.2. Proof of Corollary 4

Define

�2 = {
θ = XBZT : X ∈Asn(n,2),B ∈ R

2×2 and Z ∈Asm(m,2)
}
.

For any θ = XBZT ∈ �2, let

X̃ = [X,0n×(kn−2)], Z̃ = [Z,0m×(km−2)], B̃ =
[

B 02×(km−2)

0(kn−2)×2 0

]
.

We have θ = XBZT = X̃B̃Z̃T ∈ �(sn, sm), which implies that �2 ⊆ �(sn, sm). Thus, for any
t > 0, and any estimator ϑ̂ ∈R

n×m we have

sup
θ∈�(sn,sm)

Pθ

(‖ϑ̂ − θ‖2 ≥ t
) ≥ sup

θ∈�2

Pθ

(‖ϑ̂ − θ‖2 ≥ t
)
. (B.7)

For an estimator ϑ̂ ∈ R
n×m, let ϑ̂2 ∈ R

n×m be the closest matrix to ϑ̂ in the Frobenius norm
among all matrices of rank at most 2. Since θ ∈ �2 is of rank at most 2, we have ‖ϑ̂ − ϑ̂2‖ ≤
‖ϑ̂ − θ‖ and

‖θ − ϑ̂2‖2
2 ≤ 4‖θ − ϑ̂2‖2 ≤ 8

(‖θ − ϑ̂‖2 + ‖ϑ̂ − ϑ̂2‖2) ≤ 16‖θ − ϑ̂‖2.

Thus,

Pθ

(‖ϑ̂ − θ‖2 ≥ t
) ≥ Pθ

(‖ϑ̂2 − θ‖2
2 ≥ 16t

)
for any θ ∈ �2 and any estimator ϑ̂ . The last inequality and (B.7) imply

inf
ϑ̂

sup
θ∈�(sn,sm)

Pθ

(‖ϑ̂ − θ‖2 ≥ t
) ≥ inf

ϑ̂

sup
θ∈�2

Pθ

(‖ϑ̂ − θ‖2
2 ≥ 16t

)
.

The result of Corollary 4 follows now by choosing t = C3
σ 2

p
(n + m) for some constant C3 > 0

and using Theorem 3 with km = kn = 2.

Appendix C: Proof of Theorem 5

Note that Y ′ − θ∗ = Y/p − θ∗ = W . It is straightforward to see that if λ ≥ ‖W‖, then∥∥θ̃ − θ∗∥∥ ≤ 2λ.
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Thus, to prove the theorem, it suffices to show that for λ = c(b + θmx)
√

n∨m
p

with c > 0 large

enough we have λ ≥ ‖W‖ with high probability.
Since Wij = θij (Eij − p)/p + ξijEij /p, we have

‖W‖ ≤ p−1(‖�1‖ + ‖�2‖
)
, (C.1)

where �1 ∈ R
n×m is a matrix with entries ξijEij and �2 ∈ R

n×m is a matrix with entries
θij (Eij − p). The second term in (C.1) is controlled using the following bound on the spectral
norms of random matrices.

Proposition 12 ([4]). Let A be an n × m matrix whose entries Aij are independent centered
bounded random variables. Then, for any 0 < ε ≤ 1/2 there exists an absolute constant cε de-
pending only on ε such that, for every t > 0,

P
{‖A‖ ≥ (1 + ε)2

√
2(σ1 ∨ σ2) + t

} ≤ (n ∧ m) exp

(
− t2

cεσ 2∗

)
,

where

σ1 = max
i

√∑
j

E
[
A2

ij

]
, σ2 = max

j

√∑
i

E
[
A2

ij

]
, σ∗ = max

ij
|Aij |.

We now apply Proposition 12 with Aij = (Eij − p)θij . Then

σ1 ≤ θmx
√

np, σ2 ≤ θmx
√

mp and σ∗ ≤ θmx.

Using these bounds and taking in Proposition 12 the values ε = 1/2 and t = √
c1/2θmx log(n+m)

we obtain that there exists an absolute constant c∗ > 0 such that

‖�2‖ ≤ 3θmx
√

2(n ∨ m)p + c∗θmx
√

2 log(n + m)

with probability at least 1 − 1/(n + m). Similarly, there exists an absolute constants c∗ > 0 such
that, with probability at least 1 − 1/(n + m),

‖�1‖ ≤ 3σ
√

2(n ∨ m)p + c∗b
√

2 log(n + m).

Using these remarks, the assumption p ≥ log(n+m)/(n∨m), and (C.1) we obtain that the choice

λ = c(b + θmx)
√

n∨m
p

with c > 0 large enough implies the inequality λ ≥ ‖W‖ with probability

at least 1 − 2/(n + m).

Appendix D: Proof of Theorem 6

Let R =
√

3(θ2
mx+σ 2)

p
Nε2

0. We consider two cases separately.
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Case 1: θ̂ ∈ G � {θ ∈ �,‖θ − θ0‖2 ≤ 2s∗
R}. Then the desired result follows from the fact that

‖θ̂ − θ0‖2 ≤ 2s∗
R and from the inequality∥∥θ̂ − θ∗∥∥2

2 ≤ 2
∥∥θ0 − θ∗∥∥2

2 + 2‖θ̂ − θ0‖2
2.

Case 2: θ̂ /∈ G. The definition of the least squares estimator (6.3) implies ‖Y ′ − θ̂‖2
2 ≤ ‖Y ′ −θ0‖2

2.
Writing Y ′ as θ∗ + W and rearranging, we obtain∥∥θ̂ − θ∗∥∥2

2 ≤ ∥∥θ0 − θ∗∥∥2
2 + 2〈θ̂ − θ0,W 〉.

Since θ̂ ∈ Gc, Lemma 18 yields

〈θ̂ − θ0,W 〉 ≤ 1

8
‖θ − θ0‖2

2 + 96R2 (D.1)

with probability greater than 1 − 4 exp(−αR2/2)− 2 exp(−pN/6) where α = p

6(θ2
mx+σ 2)

. On the

event where (D.1) holds,∥∥θ̂ − θ∗∥∥2
2 ≤ ∥∥θ0 − θ∗∥∥2

2 + 1

4
‖θ − θ0‖2

2 + 192R2

≤ 3

2

∥∥θ0 − θ∗∥∥2
2 + 1

2

∥∥θ̂ − θ∗∥∥2
2 + 192R2.

This yields ‖θ̂ −θ∗‖2
2 ≤ 3‖θ0 −θ∗‖2

2 +384R2 with probability greater than 1−4 exp(−αR2/2)−
exp(−pN/6).

Appendix E: Proof of Proposition 7

We start by proving the upper bound corresponding to R1(ε). Let Ān(δ) denote the δ-covering
set of Ãn under the �∞ norm. For any given θ = XBZT ∈ �̃u(sn, sm), there exist X0 ∈ Ān(δ1)

and Z0 ∈ Ām(δ2) such that ‖X − X0‖∞ ≤ δ1 and ‖Z − Z0‖∞ ≤ δ2. For such X0 and Z0, let
T (X0,Z0) be the ε/3-covering set of Tu(X0,Z0) defined in Lemma 7 from the Supplementary
Material [32]. For any B ∈ Tu(X0,Z0), there exists B0 ∈ T (X0,Z0) such that∥∥XBZT − X0B0Z

T
0

∥∥
2

≤ ∥∥XBZT − X0BZT
∥∥

2 + ∥∥X0BZT − X0BZT
0

∥∥
2 + ∥∥X0BZT

0 − X0B0Z
T
0

∥∥
2

≤ 2sn
√

nm‖X − X0‖∞‖BZ‖∞ + 2sm
√

nm‖X0B‖∞‖Z − Z0‖∞ + ε

3

≤ 2Bmax
√

nmsnsm(δ1 + δ2) + ε

3
,

where in the second inequality we have used Lemma 9 from the Supplementary Material [32]
and the last inequality is due to the assumptions that ‖B‖∞ ≤ Bmax, ‖X‖∞ ≤ 1 and ‖Z‖∞ ≤ 1.
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Choosing δ1 = δ2 = ε/(6Bmax
√

nmsnsm), we get that the set

�u :=
⋃

X0∈An(δ1),Z0∈Am(δ2)

T (X0,Z0)

is an ε-covering set of �̃u(sn, sm). Then, Lemmas 7 and 8 from the Supplementary Material [32]
imply

logNε

(
�̃u(sn, sm)

) ≤ log
∣∣An(δ1)

∣∣ + log
∣∣Am(δ2)

∣∣ + max
X0,Z0

log
∣∣T (X0,Z0)

∣∣
≤ nsn log

ekn

sn
+ nsn log

6Bmax
√

mnsmsn

ε
+ rnrm log

9u

ε

+msm log
ekm

sm
+ msm log

6Bmax
√

mnsmsn

ε
.

To get upper bounds corresponding to R2(ε), R3(ε) and R4(ε) we define

�1
u = {

θ = AZT ,A ∈ [−snBmax, snBmax]n×km,Z ∈ Ãm,‖θ − θ0‖2 ≤ u
}
,

�2
u = {

θ = XGT ,X ∈ Ãn,G ∈ [−smBmax, smBmax]kn×m,‖θ − θ0‖2 ≤ u
}
,

and

�3
u = {

θ ∈ [−snsmBmax, snsmBmax]n×m,‖θ − θ0‖2 ≤ u
}
.

It is easy to verify that �̃u(sn, sm) ⊆ �1
u, �̃u(sn, sm) ⊆ �2

u and �̃u(sn, sm) ⊆ �3
u. Using the same

techniques as above, we obtain

logNε

(
�̃u(sn, sm)

) ≤ nrm log
6u

ε
+ msm log

ekm

sm
+ msm log

2Bmax
√

mnsmsn

ε
,

logNε

(
�̃u(sn, sm)

) ≤ mrn log
6u

ε
+ nsn log

ekn

sn
+ nsn log

2Bmax
√

mnsmsn

ε
,

and

logNε

(
�̃u(sn, sm)

) ≤ mn log
3u

ε
.

Combining these bounds completes the proof of Proposition 7.

Appendix F: Proof of Theorem 10

Let I = min(sn,sm) R(sn, sm) and ν2 = (σ∨θmx)
2

p
I . By the definition of R(sn, sm) in (8.2) we have

I ≥ d . Note first that if ‖θ̂ − θ∗‖2 ≤ 27ν, then Theorem 10 holds trivially. So, without loss of
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generality, we can assume that θ̂ ∈ Xν � {θ ∈ X : ‖θ − θ∗‖2 > 27ν}. By the definition (8.4) of
the estimator θ̂ = X̂B̂ẐT we have that for any θ = XBZT ∈X

‖Y − θ̂	‖2
2 + λR(θ̂) ≤ ‖Y − θ	‖2

2 + λR(θ)

which implies∥∥θ̂	 − θ∗
	

∥∥2
2 ≤ ∥∥θ	 − θ∗

	

∥∥2
2 − 2

〈
ξ	, θ − θ∗〉 + λR(θ) + 2

〈
ξ	, θ̂ − θ∗〉 − λR(θ̂), (F.1)

where we set ξ = (ξij ). We will bound each term in (F.1) separately. Lemma 4 from the Supple-
mentary Material [32] implies that with probability at least 1 − exp(−pnm) − 2 exp(−d/10),〈

ξ	, θ̂ − θ∗〉 ≤ 2(σ ∨ θmx)
2R(θ̂) + p

8

∥∥θ̂ − θ∗∥∥2
2. (F.2)

To control 〈ξ	, θ − θ∗〉, we use Lemma 5 from the Supplementary Material [32] with t = p‖θ −
θ∗‖2

2 + (σ ∨ θmx)
2R(θ). It follows that, with probability at least 1 − exp(−d/2),〈

ξ	, θ − θ∗〉 ≤ (σ ∨ θmx)
2R(θ) + p

∥∥θ − θ∗∥∥2
2, (F.3)

where we have used that R(θ) ≥ d . On the other hand, Lemma 1 from the Supplementary Mate-
rial [32] implies that, with probability at least 1 − exp(−pnm) − 2 exp(−d/6),∥∥θ̂	 − θ∗

	

∥∥2
2 + 4θ2

mxR(θ̂) ≥ p

2

∥∥θ̂ − θ∗∥∥2
2. (F.4)

Finally, using Lemma 3 from the Supplementary Material [32] with aij = (θ − θ∗)2
ij and t =

p
2 ‖θ − θ∗‖2

2 + 4θ2
mxd we get that, with probability at least 1 − exp(−d),

∥∥θ	 − θ∗
	

∥∥2
2 ≤ 4θ2

mxR(θ) + 3p

2

∥∥θ − θ∗∥∥2
2, (F.5)

where we have used that R(θ) ≥ d . Plugging (F.2)–(F.5) in (F.1) we get

p

4
‖θ̂ − θ∗‖2

2 ≤ 5p

2
‖θ − θ∗‖2

2 + 8(σ ∨ θmx)
2R(θ̂) + 6(σ ∨ θmx)

2R(θ)

+ λR(θ) − λR(θ̂)

with probability larger then 1 − 5 exp(−d/10) − 2 exp(−pnm) where we have used that d ≥ 10.
Taking here λ = 8(σ ∨ θmx)

2 finishes the proof.

Appendix G: Proofs of the lemmas

G.1. Lemmas for Theorem 1

Proof of Lemma 11. We start by proving (i). Note that for any fixed X ∈ An, θ = XBZT

belongs to a linear space of dimension not greater than nm ∧ knm = rnm as BZT belongs to
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a linear space of dimension not greater than knm. Thus, θ − θ∗ belongs to a linear space of
dimension not greater than rnm + 1, which we denote by Wrnm(X). We have

sup
θ∈�(sn,sm),θ �=θ∗

〈θ − θ∗,W 〉2

‖θ − θ∗‖2
2

≤ max
X∈An

UX,

where, for a fixed X ∈An, we define

UX = sup
θ∈�(sn,sm),θ �=θ∗,θ=XBZT

〈θ − θ∗,W 〉2

‖θ − θ∗‖2
2

≤ sup
u∈Wrnm(X):‖u‖2=1

〈u,W 〉.

It follows from Lemma 13 that

P
{
UX ≥ σ 2(2(rnm + 1) + 3v

)} ≤ e−v, ∀v > 0.

Note that, for any A ∈ An, there are at most sn non-zero entries in each row of A. This implies
that the number of different supports of matrix A is at most

(
kn

sn

)n
. For those nsn non-zero entries,

there are at most |Dn|nsn choices. Then, we have

log |An| ≤ n log

(
kn

sn

)
+ nsn log |Dn| ≤ nsn log

(
ekn|Dn|

sn

)
. (G.1)

Applying the union bound and using (G.1) we get

P

{
max
X∈An

UX ≥ σ 2(2(rnm + 1) + 3v
)} ≤

(
ekn|Dn|

sn

)snn

e−v, ∀v > 0,

which yields the first result of Lemma 11. To get the bound on the expectation, we use the fact
that for any non-negative random variable ξ and any a > 0

P(ξ ≥ a + t) ≥ e−t , ∀t > 0

implies Eξ ≤ a + 1. The proof of (ii) follows the same lines fixing both X and Z. To prove (iii)
we use that θ = XBZT belongs to a linear space of dimension not greater than nm. �

Lemma 13. Let ξ be a σ -sub-Gaussian random vector in R
n, and let W be a linear subspace of

R
n with dim(W) = d . Consider the Euclidean ball B(0,1) = {u ∈ W : ‖u‖2 ≤ 1}. Then, for any

t > 0,

P

(
max

u∈B(0,1)

(
uT ξ

)2 ≥ σ 2(d + 2
√

dt + 2t)
)

≤ e−t .

Proof. We have

max
u∈B(0,1)

(
uT ξ

)2 = max
u∈B(0,1)

(
uT PWξ

)2 = ‖PWξ‖2
2,

where PW is the orthogonal projector onto W . Applying the following lemma with A = PW

yields the result.
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Lemma 14 (Hsu et al. [27]). Let ξ be a σ -sub-Gaussian random vector in R
n, and let A ∈R

n×n

be a matrix. Set � = AT A. Then, for any t > 0,

P
(‖Aξ‖2

2 ≥ σ 2(tr(�) + 2
√

tr
(
�2

)
t + 2λmax(�)t

)) ≤ e−t ,

where tr(�) and λmax(�) denote the trace and the maximal eigenvalue of �. �

G.2. Lemmas for Theorem 3

Lemma 15. Assume that the noise variables Wij in model (3.1) are i.i.d. Gaussian with distri-
bution N (0, σ 2). Then, the Kullback–Leibler divergence between Pθ and Pθ ′ has the form

KL(Pθ ,Pθ ′) = p

2σ 2

∥∥θ − θ ′∥∥2
2.

Proof of this lemma is straightforward and it is therefore omitted.

Lemma 16. Let k ≥ 2 and s ≥ 1 be integers, s ≤ k. There exists a subset S0 of the set of binary
sequences {0,1}k such that

(i) log |S0| ≥ c∗
1s log ek

s
,

(ii) c∗
2s ≤ ‖a‖0 ≤ s for all a ∈ S0, and ‖a‖0 = s for all a ∈ S0 if s ≤ k/2,

(iii) ‖a − b‖2
2 ≥ c∗

3s for all a, b ∈ S0 such that a �= b,

where c∗
j > 0, j = 1,2,3, are absolute constants.

Proof. For s ≤ k/2 the result follows from Lemma A.3 in [37]. For k/2 < s ≤ k and k ≥ 32,
we restrict the consideration only to binary sequences in {0,1}k such that the first m = �k/4
elements can be either 0 or 1, the last s − m elements are 1 and the remaining elements are 0.
Then, (i)–(iii) follow from the Varshamov–Gilbert bound [39], Lemma 2.9, applied to the set of
binary sequences of length m. For k/2 < s ≤ k and k < 32, the result is obvious. �

Lemma 17. Let {a1, a2, . . . , aN } ⊆ {0,1}k . Let r be an integer satisfying r > 96 logN . Then,
there exists a matrix Q ∈ {−1,1}r×k such that for any u,v ∈ [N ],

r

2
‖au − av‖2

2 ≤ ‖Qau − Qav‖2
2 ≤ 3r

2
‖au − av‖2

2.

Proof. The result follows immediately from Johnson–Lindenstrauss lemma as stated in [1], The-
orem 2, by taking there β = 1 and ε = 1/2. �
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G.3. Lemmas for Theorem 6

Lemma 18. Let R =
√

3(θ2
mx+σ 2)

p
Nε2

0 and �R = {θ ∈ �,‖θ − θ0‖2 ≥ 2s∗
R}. Then we have

P

{
sup

θ∈�R

(
〈θ − θ0,W 〉 − 1

8
‖θ − θ0‖2

2

)
> 96R2

}
≤ 4 exp

(
−αR2

2

)
+ exp(−pN/6),

where α = p

6(θ2
mx+σ 2)

.

Proof of Lemma 18. Let E = {‖W‖2 ≤
√

N
2α

} and for s ≥ 2 let �R
s = {θ ∈ �R,2sR ≤ ‖θ −

θ0‖2 ≤ 2s+1R}. Then we have that �R = ⋃∞
s=s∗ �R

s . The union bound yields

P

{
sup

θ∈�R

(
〈θ − θ0,W 〉 − 1

8
‖θ − θ0‖2

2

)
> 96R2,E

}

≤
∞∑

s=s∗
P

{
sup

θ∈�R
s

(
〈θ − θ0,W 〉 − 1

8
‖θ − θ0‖2

2

)
> 96R2,E

}

≤
∞∑

s=s∗
P

{
sup

θ∈�R
s

〈θ − θ0,W 〉 ≥ (
22s−3 + 96

)
R2,E

}

≤
∞∑

s=s∗
P

{
sup

θ∈�2s+1R

〈θ − θ0,W 〉 ≥ (
22s−3 + 96

)
R2,E

}
,

where the last step is due to the fact that �R
s ⊆ �2s+1R . Now we are going to apply Lemma 19

with D = 2s+1R, ε = Dε0 and t = (22s−4 + 48)R2. It is easy to check that t ∈ [DR,D2] for all
s ≥ s∗. Then (G.2) yields

∞∑
s=s∗

P

{
sup

θ∈�2s+1R

〈θ − θ0,W 〉 ≥ (
22s−3 + 96

)
R2,E

}
≤

∞∑
s=2

2e− αsR2
4 ≤ 4e− αR2

2 .

The last inequality holds when αR2 ≥ 4. By Lemma 20, P(Ec) ≤ exp(−pN/6), and therefore
we obtain the desired result. �

Lemma 19. Suppose ε satisfies
√

Nε ≤ 2D
√

logNε(�D). Then, for D ≥ √
2 logNε(�D)/α

and for any t ∈ [D√
2 logNε(�D)/α,D2], we have

P

{
sup

θ∈�D

〈θ − θ0,W 〉 ≥ 2t,E
}

≤ 2 exp

(
− αt2

2D2

)
, (G.2)

where E = {‖W‖2 ≤
√

N
2α

}.
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Proof of Lemma 19. Let CD be an ε-covering set of �D under the Frobenius norm. That is, for
any θ ∈ �D , there exists θ ∈ CD such that ‖θ − θ‖2 ≤ ε. Denote by N �Nε(�D) the minimum
cardinality of such CD . This yields

〈θ − θ0,W 〉 = 〈θ − θ0,W 〉 + 〈θ − θ,W 〉
≤ max

θ∈CD

〈θ − θ0,W 〉 + ε‖W‖2,

where we use Cauchy–Schwarz for the last inequality. On the event E , we have that ε‖W‖2 ≤
ε

√
N
2α

≤ D
√

2 log(Nε(�D))/α. It implies

P

{
sup

θ∈�D

〈θ − θ0,W 〉 ≥ 2t,E
}

≤ P

{
max
θ∈CD

〈θ − θ0,W 〉 ≥ t
}

for t ≥ D
√

2 logNε(�D)/α. By union bound and Lemma 20, the right hand side of the above
inequality can be bounded from above by∑

θ∈CD

P
{〈θ − θ0,W 〉 ≥ t

} ≤ exp
(−α min

{
t2/D2, t

} + logNε(�D)
)
.

Then the desired result (G.2) holds when D
√

2 logN/α ≤ t ≤ D2. �

Lemma 20. Let α = p

6(θ2
mx+σ 2)

. Then, for any t > 0 and a ∈R
n, we have

P
{〈a,W 〉 > t

} ≤ exp

(
−α min

{
t2

‖a‖2
,

θmxt

‖a‖∞

})
, (G.3)

and

P

{
‖W‖2 ≥

√
N

2α

}
≤ exp(−pN/6). (G.4)

Proof of Lemma 20. Since Wi = θ∗
i

Ei−p
p

+ ξi
Ei

p
, for λ(σ ∨ 2θmx)‖a‖∞ ≤ p, we have

E
(
eλaiWi

) ≤ E
(
e
λaiθ

∗
i

Ei−p

p e

λ2a2
i
σ2Ei

2p2
) ≤ e

λ2a2
i
σ2

2p e
(

λai θ
∗
i

p
+ λ2a2

i
σ2

2p2 )2p ≤ e
3λ2a2

i
(θ2

mx+σ2)

2p .

Here the second inequality is due to the fact that Eeλ(Ei−p) ≤ eλp for |λ| ≤ 1. Now, following
the Chernoff argument as in the proof of Lemma 5 from the Supplementary Material [32] we get
(G.3).

To prove (G.4) note first that the variance of Wi satisfies

EW 2
i = θ2

i

1 − p

p
+ Eξ2

i

p
≤ θ2

mx + σ 2

p
.
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Then we have

W 2
i −EW 2

i = (
θ∗
i

)2 (Ei − p)(1 − 2p)

p2
+ Ei

p2

(
ξ2
i −Eξ2

i

) + Ei − p

p2
Eξ2

i + Ei(Ei − p)

p2
2θ∗

i ξi .

When λ(θ2
mx + √

2σ 2)/p2 ≤ 1, we obtain

E
(
eλ(W 2

i −EW 2
i )

) ≤ E
(
e
λ(θ∗

i )2 (Ei−p)(1−2p)

p2 e
2λ2σ4Ei

p4 e
λσ2(Ei−p)

p2 e
2λ2θ2

mxσ2

p4 Eij (Eij −p)2)
≤ e

6λ2(θ4
mx+σ4)

p3 .

The Chernoff argument yields

P

{
N∑

i=1

(
W 2

i −EW 2
i

) ≥ t

}
≤ exp

{
−λt + 6λ2(θ4

mx + σ 4)

p3
N

}
.

For t = 2(θ2
mx+σ 2)

p
N , we choose λ = p2

6(θ2
mx+σ 2)

to get the desired result. �
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