
Bernoulli 25(4B), 2019, 3796–3831
https://doi.org/10.3150/19-BEJ1111

Long-time heat kernel estimates and upper
rate functions of Brownian motion type for
symmetric jump processes
YUICHI SHIOZAWA1 and JIAN WANG2

1Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043,
Japan. E-mail: shiozawa@math.sci.osaka-u.ac.jp
2College of Mathematics and Informatics & Fujian Key Laboratory of Mathematical Analysis and Applica-
tions (FJKLMAA), Fujian Normal University, 350007 Fuzhou, P.R. China. E-mail: jianwang@fjnu.edu.cn

Let X be a symmetric jump process on R
d such that the corresponding jumping kernel J (x, y) satisfies

J (x, y) ≤ c

|x − y|d+2 log1+ε(e + |x − y|)

for all x, y ∈ R
d with |x − y| ≥ 1 and some constants c, ε > 0. Under additional mild assumptions on

J (x, y) for |x − y| < 1, we show that C
√

r log log r with some constant C > 0 is an upper rate function of
the process X, which enjoys the same form as that for Brownian motions. The approach is based on heat
kernel estimates of large time for the process X. As a by-product, we also obtain two-sided heat kernel
estimates of large time for symmetric jump processes whose jumping kernels are comparable to

1

|x − y|d+2+ε

for all x, y ∈R
d with |x − y| ≥ 1 and some constant ε > 0.
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1. Introduction and main results

In this paper, we are concerned with upper rate functions, which are a quantitative expression of
conservativeness, for a class of symmetric jump processes on R

d . In particular, we investigate
conditions on jumping kernels such that the corresponding upper rate functions are of the iterated
logarithm type.

It is well known that by Kolmogorov’s test (see, e.g., [16], 4.12), the function R(t) =√
ct log log t with constant c > 0 is an upper rate function for the standard Brownian motion on

R
d if and only if c > 2. This fact immediately implies Khintchine’s law of the iterated logarithm.

Similar results of this type are true even for a large class of Lévy processes. For example, earlier
Gnedenko [15] (see also [20], Proposition 48.9) showed that if a Lévy process X = ({Xt }t≥0,P)
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on R satisfies EX1 = 0 and EX2
1 < ∞, then

lim sup
t→∞

|Xt |√
2t log log t

= (
EX2

1

)1/2
, a.s.

Sirao [22] also obtained analogous results in terms of integral tests on the distribution function
of X. We note that such results as [15,22] do not hold in general for Lévy processes with the
infinite second moment, for instance, symmetric α-stable processes with α ∈ (0,2) (see [17] or
[19], Theorem 2.1).

The purpose of this paper is to establish upper rate functions of the form
√

t log log t for a class
of non-Lévy symmetric jump processes generated by regular Dirichlet forms on L2(Rd ;dx),
which we introduce later. Let J (x, y) be a non-negative measurable function on R

d × R
d , and

set

D =
{
f ∈ L2(

R
d ;dx

) ∣∣∣
∫∫

x �=y

(
f (y) − f (x)

)2
J (x, y)dx dy < ∞

}
,

E(f,f ) =
∫∫

x �=y

(
f (y) − f (x)

)2
J (x, y)dx dy, f ∈D.

Throughout this paper, we always impose the following.

Assumption 1.1. The function J (x, y) satisfies

(i) J (x, y) = J (y, x) for all x �= y;
(ii) there exist constants 0 < κ1 ≤ κ2 < ∞ and 0 < α1 ≤ α2 < 2 such that for all x, y ∈ R

d

with 0 < |x − y| < 1,

κ1

|x − y|d+α1
≤ J (x, y) ≤ κ2

|x − y|d+α2
; (1.1)

(iii)

sup
x∈Rd

∫
{|x−y|≥1}

J (x, y)dy < ∞. (1.2)

Under (1.1) and (1.2), it is obvious that

sup
x∈Rd

∫ (
1 ∧ |x − y|2)J (x, y)dy < ∞. (1.3)

Denote by C
lip
c (Rd) the set of Lipschitz continuous functions on R

d with compact support. Then,
due to (1.3), we have C

lip
c (Rd) ⊂ D. Let F be the closure of C

lip
c (Rd) with respect to the norm

‖f ‖E1 :=
√
E(f,f ) + ‖f ‖2

2 on D. Then it is easy to check that the bilinear form (E,F) is a

symmetric regular Dirichlet form on L2(Rd ;dx), see, for example, [14], Example 1.2.4. The
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function J (x, y) is called the jumping kernel corresponding to (E,F). Associated with the reg-
ular Dirichlet form (E,F) is a symmetric Hunt process X = ({Xt }t≥0, {Px}x∈Rd\N ) with state
space R

d \N , where N ⊂R
d is a properly exceptional set for (E,F).

The main result is as follows.

Theorem 1.2. Let X = ({Xt }t≥0, {Px}x∈Rd\N ) be the symmetric Hunt process generated by the
regular Dirichlet form (E,F) as above. Let J (x, y) be the jumping kernel corresponding to
(E,F) such that Assumption 1.1 holds. Then, we have the following two statements.

(1) If there exist positive constants c and ε such that for any x, y ∈R
d with |x − y| ≥ 1,

J (x, y) ≤ c

|x − y|d+2 log1+ε(e + |x − y|) , (1.4)

then there exists a constant C0 > 0 such that for all x ∈ R
d \N ,

P
x
(|Xt − x| ≤ C0

√
t log log t for all sufficiently large t

) = 1. (1.5)

(2) If there exists a positive constant c such that for any x, y ∈R
d with |x − y| ≥ 1,

J (x, y) ≤ c

|x − y|d+2
,

and

sup
x∈Rd

∫
Rd

|x − y|2J (x, y)dy < ∞, (1.6)

then there exists a constant c0 > 0 such that for all x ∈ R
d \N ,

P
x
(|Xt − x| ≤ c0

√
t log log t for all sufficiently large t

) = 0.

The condition (1.6) implies that the jumping kernel of X has the finite second moment. It
is clear that (1.6) holds true when (1.1) and (1.4) are satisfied. (1.5) indicates that the function
C0

√
t log log t is the so-called upper rate function of the process X, which describes the forefront

of the process X. As we mentioned before,
√

(2 + ε)t log log t with ε > 0 is an upper rate func-
tion for the standard Brownian motion on R

d . Therefore, Theorem 1.2 shows that if the jumping
kernel of X satisfies the condition as in Theorem 1.2(1), then X enjoys upper rate functions
of the Brownian motion type. Moreover, according to Theorem 1.2(2), these rate functions are
sharp up to constant. For instance, Theorem 1.2(1) is valid, if the jumping kernel J (x, y) satisfies
Assumption 1.1(i), (ii) and that for any x, y ∈ R

d with |x − y| ≥ 1, J (x, y) = 0 (finite range) or
J (x, y) � 1/|x − y|d+2+ε with any ε > 0 (polynomial decay).

Here it should be noted that the arguments of [15,22] heavily depend on the independent
increments property for Lévy processes (see [19], Sections 2 and 3, for more details), while in
the present setting such characterization is not available. To overcome this difficulty, we prove
Theorem 1.2 by using heat kernel estimates. The idea of obtaining rate functions via heat kernel
estimates has appeared in the literatures before, see [21] and the references therein. There are a
few differences and difficulties in the present paper.
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(1) In [21], Theorem 3.1, we used two-sided heat kernel estimates to derive the explicit prob-
ability estimates for exit times, which are crucial to obtain upper rate functions for the
process. However, for symmetric jump processes of variable order (see (1.1)), it seems
impossible to present two-sided heat kernel estimates, see [2] for details. Instead of this
approach, here we turn to consider heat kernel estimates only for large time, which is
enough to yield the rate function of the process.

(2) There are a lot of works on heat kernel estimates for symmetric jump processes on
R

d generated by non-local symmetric Dirichlet forms, see [2,3,6,7,9,13] and the ref-
erences therein. Among them, Chen, Kim and Kumagai [7] established two-sided heat
kernel estimates for symmetric jump processes such that their jumping kernels decay
(sub/super)exponentially in a explicit way, see [7], (1.6) and (1.7). On the other hand,
we can obtain nice upper bounds of heat kernel estimates for processes whose jumping
kernels decay polynomially and involve the logarithmic factor (Theorem 3.2). Moreover,
we can establish two-sided heat kernel estimates of large time for symmetric jump pro-
cesses whose jumping kernels are comparable to |x − y|−(d+2+ε) for all x, y ∈ R

d with
|x − y| ≥ 1 and some constant ε > 0 (Corollary 3.11).

By analogy with Brownian motions, one may guess that in order to prove Theorem 1.2, it
suffices to get Gaussian type upper bound estimates for the heat kernel. However, as far as we
have discussed in this paper, such upper bounds are only true for some interval of large time, not
for all large time. This is quite different from the Brownian motion case, and so we need further
considerations on the heat kernel bounds (Theorem 3.2 and the proof of Theorem 1.2 in the last
section).

Bass and Kumagai [4] proved the convergence to symmetric diffusion processes of continuous
time random walks on Z

d with unbounded range. In particular, they assumed the uniform finite
second moment condition on conductances similar to (1.6) on jumping kernels, see [4], (A3) in
page 2043. For the proof of the convergence result, they obtained sharp on-diagonal heat kernel
estimates, Hölder regularity of parabolic functions and Harnack inequalities. Our result can be
regarded as an another approach to get the diffusivity of symmetric jump processes with jumping
kernels having the finite second moment.

Remark 1.3. Recently, it is proved in [1], Theorem 5.2, that for a class of symmetric jump pro-
cesses on R

d , if their jumping kernels have the matching upper and lower bounds, then Khint-
chine’s law of the iterated logarithm holds if and only if the jumping kernels have the finite
second moment. Their approach is also based on heat kernel estimates.

The remainder of this paper is arranged as follows. In the next section, we recall some known
results for heat kernel of the process X, and then present related assumptions used in our paper.
Section 3 is devoted to establish upper bounds and lower bounds of heat kernel for large time.
In particular, Theorems 3.2 and 3.6 are interesting on their own. Then the proof of Theorem 1.2
will be presented in the last section.

For any two positive measurable functions f and g, f � g means that there is a constant c > 1
such that c−1f ≤ g ≤ cf .
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2. Known results and assumptions

Recall that X = ({Xt }t≥0, {Px}x∈Rd\N ) is the Hunt process associated with (E,F), which can
start from any point in R

d \N . Let P(t, x,dy) be the transition probability of X. The transition
semigroup {Pt , t ≥ 0} of X is defined for x ∈R

d \N by

Ptf (x) = E
x
(
f (Xt )

) =
∫
Rd

f (y)P (t, x,dy), f ≥ 0, t ≥ 0.

The following result has been proved in [2], Theorem 1.2, and [7], Proposition 3.1.

Theorem 2.1 ([2], Theorem 1.2, and [7], Proposition 3.1)). Under Assumption 1.1, there
are a properly exceptional set N ⊂ R

d , a non-negative symmetric kernel p(t, x, y) defined on
(0,∞) × (Rd \N ) × (Rd \N ) such that P(t, x,dy) = p(t, x, y)dy, and

p(t, x, y) ≤ c0
(
t−d/α1 ∨ t−d/2), t > 0, x, y ∈R

d \N
holds with some constant c0 > 0. Moreover, there is an E -nest {Fk : k ≥ 1} of compact subsets of
R

d so that

N = R
d

∖ ∞⋃
k=1

Fk

and that for each fixed t > 0 and y ∈ R
d \N , the map x �→ p(t, x, y) is continuous on each Fk .

To obtain upper bounds of off-diagonal estimates for p(t, x, y), we will use the following
Davies’ method, see [5]. Note that, the so-called carré du champ associated with (E,F) is given
by

�(f,g)(x) =
∫
Rd

(
f (y) − f (x)

)(
g(y) − g(x)

)
J (x, y)dy, f, g ∈F .

We can extend �(f,f ) to any non-negative measurable function f , whenever it is pointwise well
defined.

The following proposition immediately follows from Theorem 2.1 and [5], Corollary 3.28.

Proposition 2.2. Suppose that Assumption 1.1 holds. Then, there exists a constant c0 > 0 such
that for any x, y ∈ R

d \N and t > 0,

p(t, x, y) ≤ c0
(
t−d/α1 ∨ t−d/2) exp

(
E(2t, x, y)

)
,

where

E(t, x, y) := − sup
{∣∣ψ(x) − ψ(y)

∣∣ − t�(ψ) : ψ ∈ C
lip
c

(
R

d
)

with �(ψ) < ∞}
and

�(ψ) := ∥∥e−2ψ�
(
eψ, eψ

)∥∥∞.
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In the next section, we will consider the following two assumptions on the jumping kernel
J (x, y) for x, y ∈ R

d with |x − y| ≥ 1.

(A) There are a constant c > 0 and an increasing function φ : [1,∞) → (1,∞] such that for
all x, y ∈R

d with |x − y| ≥ 1,

J (x, y) ≤ c

|x − y|d+2φ(|x − y|) (2.1)

and ∫ ∞

1

dr

rφ(r)
< ∞. (2.2)

Moreover, the function

	(s) :=
(∫ ∞

s

dr

rφ(r)

)−1

, s ≥ 1

satisfies

• the function s �→ log	(s)/s is decreasing on [1,∞);
• there is a constant γ > 0 such that

sup
s≥1

	(s)

φγ (s)
< ∞. (2.3)

(B) There is a constant c > 0 such that for all x, y ∈ R
d with |x − y| ≥ 1,

J (x, y) ≤ c

|x − y|d+2
. (2.4)

It also holds that

sup
x∈Rd

∫
{|x−y|≥1}

|x − y|2J (x, y)dy < ∞. (2.5)

Because φ is increasing on [1,∞), (2.1) is stronger than (2.4). Since (2.2) implies (2.5), (A)
is stronger than (B). For instance„ φ(r) = (1 + r)θ , φ(r) = log1+θ (e + r) and φ(r) = log(e +
r) log1+θ log(ee + r) for any θ > 0 satisfy the conditions in (A). On the other hand, under (1.1)
and (2.5),

sup
x∈Rd

∫
Rd

|x − y|2J (x, y)dy < ∞.

In particular, there is a constant c1 > 0 such that for any K > 0,

sup
x∈Rd

∫
{|x−y|>K}

J (x, y)dy ≤ c1

K2
. (2.6)
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3. Heat kernel estimates

Throughout this section, we always suppose that Assumption 1.1 holds. We will derive upper
and lower bound estimates of the heat kernel for large time, respectively.

3.1. Heat kernel upper bound

Proposition 3.1. Under Assumption (B), there exist positive constants t0 and c such that for all
t ≥ t0 and x, y ∈R

d \N ,

p(t, x, y) ≤

⎧⎪⎨
⎪⎩

c

td/2
, t ≥ |x − y|2,
ct

|x − y|d+2
, t ≤ |x − y|2.

Proof. We mainly follow the proof of [3], Theorem 1.4, but here we suppose that the time pa-
rameter t is large. By Theorem 2.1, there are constants t0, c0 > 0 such that for all x, y ∈ R

d \N
and t ≥ t0,

p(t, x, y) ≤ c0t
−d/2.

Thus, we only need to verify the off-diagonal estimate for p(t, x, y).
We first introduce truncated Dirichlet forms associated with (E,F). For 0 < K < ∞, define

E (K)(u, v) =
∫∫

{0<|x−y|<K}
(
u(x) − u(y)

)(
v(x) − v(y)

)
J (x, y)dx dy, u, v ∈ F .

Then by (2.6),
∫∫

{|x−y|≥K}
(
u(x) − u(y)

)2
J (x, y)dx dy ≤ 4

∫
Rd

u(x)2
(∫

{|x−y|≥K}
J (x, y)dy

)
dx

≤ c1

K2
‖u‖2

2,

which yields that

E(u,u) = E (K)(u,u) +
∫∫

{|x−y|≥K}
(
u(x) − u(y)

)2
J (x, y)dx dy

≤ E (K)(u,u) + c1

K2
‖u‖2

2. (3.1)

In particular, (E (K),F) is a regular Dirichlet form on L2(Rd ;dx).
Let P (K)(t, x,dy) be the transition probability associated with (E (K),F). Then, by (3.1) and

the proof of [2], Theorem 1.2, (or [7], Proposition 3.1), there exist positive constants c2, c3 and
t1 such that for all t ≥ t1 and x, y ∈ R

d \N ,

P (K)(t, x,dy) = p(K)(t, x, y)dy
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and

p(K)(t, x, y) ≤ c2t
−d/2 exp

(
c3t

K2

)
. (3.2)

Next, we will obtain the off-diagonal estimate for p(K)(t, x, y), by applying Proposition 2.2 to
(E (K),F). For fixed points x0, y0 ∈ R

d , let R = |x0 − y0| and K = R/θ for some θ > 0, which
will be determined later. For λ > 0, we define the function ψ ∈ C

lip
c (Rd) by

ψ(x) = [
λ
(
R − |x − y0|

)] ∨ 0.

Then, by the inequality (er − 1)2 ≤ r2e2|r| for r ∈ R and the fact that |ψ(x) − ψ(y)| ≤ λ|x − y|
for all x, y ∈ R

d , we get

�K(ψ)(x) := e−2ψ(x)�(K)
(
eψ, eψ

)
(x)

=
∫

{0<|x−y|<K}
(
eψ(y)−ψ(x) − 1

)2
J (x, y)dy

≤
∫

{0<|x−y|<K}
(
ψ(x) − ψ(y)

)2
e2|ψ(x)−ψ(y)|J (x, y)dy

≤ e2λKλ2
∫

{0<|x−y|<K}
|x − y|2J (x, y)dy

≤ c4λ
2e2λK ≤ c5

e3λK

K2
, (3.3)

where in the third inequality we used (2.5) and the last inequality follows from the fact that
r2 ≤ 2er for all r ≥ 0. Hence,

�K(ψ) := ∥∥�K(ψ)
∥∥∞ ≤ c5

e3λK

K2
,

which implies that

E(K)(t, x0, y0) ≤ −∣∣ψ(x0) − ψ(y0)
∣∣ + �(ψ)t ≤ c5

e3λK

K2
t − λR. (3.4)

In what follows, we assume that t < K2. In (3.4), if we take

λ = 1

3K
log

(
K2

t

)
,

then

E(K)(t, x0, y0) ≤ − R

3K
log

(
K2

t

)
+ c5

K2

K2

t
t = c5 − θ

3
log

(
K2

t

)
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so that by (3.2) and Proposition 2.2,

p(K)(t, x0, y0) ≤ c6t
−d/2 exp

(
c3t

K2
+ E(K)(2t, x0, y0)

)

≤ c6t
−d/2 exp

(
c3 + c5 − θ

3
log

(
K2

2t

))

= c7t
−d/2

(
2t

K2

)θ/3

.

Hence by letting θ = 3(d + 2)/2, we have

p(K)(t, x0, y0) ≤ c7t
−d/2

(
2t

K2

)(d+2)/2

= c8t

Kd+2
= c8θ

d+2t

|x0 − y0|d+2
. (3.5)

We finally obtain the off-diagonal upper bound of p(t, x, y). In fact, by Meyer’s construction
(see, e.g., [3], Lemma 3.1(c), or [2], Lemma 3.7(b)), (3.5) and (2.4),

p(t, x0, y0) ≤ p(K)(t, x0, y0) + t sup
|x−y|≥K

J (x, y) ≤ c9t

|x0 − y0|d+2
. (3.6)

Therefore, the proof is complete. �

Theorem 3.2. Suppose that Assumption (A) holds. Then, for any κ ≥ 1, there exist positive
constants θ0 ∈ (0,1), t0 ≥ 1 and ci (i = 1,2) such that for all t ≥ t0,

p(t, x, y) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1

td/2
, t ≥ |x − y|2,

c1

td/2
exp

(
−c2|x − y|2

t

)
,

θ0|x − y|2
log	(|x − y|) ≤ t ≤ |x − y|2,

U
(
t, |x − y|, φ,	,κ

)
, t ≤ θ0|x − y|2

log	(|x − y|) ,

where

U
(
t, |x − y|, φ,	,κ

) := c1

td/2	(|x − y|/κ)κ/8
∧ c1t

|x − y|d+2
+ c1t

|x − y|d+2φ(|x − y|/κ)
.

Proof. We use the same notations as in those of Proposition 3.1. By Theorem 2.1, we only need
to consider off-diagonal estimates, that is, the case that t ≤ |x − y|2. We split the proof into two
parts. Even though the proof below is based on the Davies method, the argument is much more
delicate than that of Proposition 3.1.

Let K ≥ 1. For fixed points x0, y0 ∈ R
d with |x0 −y0| ≥ 1, let R = |x0 −y0|. For λ > 0, define

the function ψ ∈ C
lip
c (Rd) by

ψ(x) = [
λ
(
R − |x − y0|

)] ∨ 0.
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Then by the same argument as in (3.3), and by Assumption 1.1(ii) and Assumption (A),

�K(ψ)(x) =
∫

{0<|x−y|<K}
(
eψ(y)−ψ(x) − 1

)2
J (x, y)dy

≤ λ2
∫

{0<|x−y|<K}
|x − y|2e2λ|x−y|J (x, y)dy

= λ2
∫

{0<|x−y|<1}
|x − y|2e2λ|x−y|J (x, y)dy

+ λ2
∫

{1≤|x−y|<K}
|x − y|2e2λ|x−y|J (x, y)dy

≤ λ2e2λ sup
x∈Rd

∫
{0<|x−y|<1}

|x − y|2J (x, y)dy

+ c1λ
2
∫

{1≤|x−y|<K}
e2λ|x−y|

|x − y|dφ(|x − y|) dy

=: (I) + (II). (3.7)

(1) We first derive the desired Gaussian upper bound. For any θ > 0, let η be a positive constant
such that η/θ < 1/4. Assume that K = R and t ≥ θK2/ log	(K). We set λ = ηK/t . Since
K ≥ 1 and the function s �→ log	(s)/s is decreasing on [1,∞) by Assumption (A),

e2λ = e2ηK/t ≤ exp

(
2η

log	(K)

θK

)
≤ e2η log	(1)/θ = 	(1)2η/θ ,

and so

(I) ≤ c2	(1)2η/θλ2 ≤ c2
(
1 + 	(1)

)2η/θ
λ2 ≤ c2

(
1 + 	(1)

)1/2
λ2 =: c3λ

2.

If 1 ≤ r ≤ K , then, also due to the decreasing property of the function s �→ log	(s)/s,

e2λr = e2ηKr/t ≤ exp

(
2ηr

log	(K)

θK

)
≤ exp

(
2ηr

log	(r)

θr

)
= 	(r)2η/θ ,

which implies that

(II) ≤ c1λ
2
∫

{|x−y|≥1}
	(|x − y|)2η/θ

|x − y|dφ(|x − y|) dy = c4λ
2
∫ ∞

1

	(r)2η/θ

rφ(r)
dr

= c4λ
2
∫ ∞

1

1

rφ(r)

(∫ ∞

r

1

sφ(s)
ds

)−2η/θ

dr = c4λ
2

1 − (2η/θ)

(∫ ∞

1

1

sφ(s)
ds

)1−(2η/θ)

≤ 2c4λ
2
(

1 +
∫ ∞

1

1

sφ(s)
ds

)
=: c5λ

2.
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Hence by (3.7),

�K(ψ) = ∥∥�K(ψ)
∥∥∞ ≤ (c3 + c5)λ

2 =: C∗λ2.

In particular, we have

E(K)(t, x0, y0) ≤ �K(ψ)t − ∣∣ψ(x0) − ψ(y0)
∣∣ ≤ C∗λ2t − λR = −η(1 − ηC∗)

K2

t
.

This along with Proposition 2.2 yields that there is a constant c6 > 0 such that for all t ≥
θK2/ logφ(K),

p(K)(t, x0, y0) ≤ c6t
−d/2 exp

{
c0t

K2
− η(1 − ηC∗)

2

K2

t

}
. (3.8)

We note that the constants c6 and C∗ above are independent of η and θ .
In what follows, we assume that

θK2

log	(K)
≤ t ≤ K2.

Since t/K2 ≤ 1, we have by (3.8),

p(K)(t, x0, y0) ≤ c7t
−d/2 exp

{
−η(1 − ηC∗)

2

K2

t

}
.

Then by the first inequality in (3.6) and (2.1),

p(t, x0, y0) ≤ p(K)(t, x0, y0) + t sup
|x−y|≥K

J (x, y)

≤ c7t
−d/2 exp

{
−η(1 − ηC∗)

2

K2

t

}
+ c8t

Kd+2φ(K)
. (3.9)

Let η∗ be a positive constant such that

η∗(1 − η∗C∗)
2θ

∈
(

0,1 ∧ 1

γ

)
,

where γ is the constant in Assumption (A). Then by (2.3), there is a constant c9 > 0 such that

exp

{
−η∗(1 − η∗C∗)

2

K2

t

}
≥ exp

{
−η∗(1 − η∗C∗)

2

log	(K)

θ

}

= 1

	(K)η∗(1−η∗C∗)/(2θ)
≥ c9

φ(K)
.

By noting that

1

td/2
= t

t (d+2)/2
≥ t

(
1

K2

)(d+2)/2

= t

Kd+2
,
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we get

t

Kd+2φ(K)
≤ c−1

9 t−d/2 exp

{
−η∗(1 − η∗C∗)

2

K2

t

}
.

Hence if we take η = η∗ in (3.9), then

p(t, x0, y0) ≤ c7t
−d/2 exp

{
−η∗(1 − η∗C∗)

2

K2

t

}

+ c10t
−d/2 exp

{
−η∗(1 − η∗C∗)

2

K2

t

}

=: c∗t−d/2 exp

{
−η∗(1 − η∗C∗)

2

|x0 − y0|2
t

}
.

Namely, for each fixed θ > 0, we get the desired Gaussian bound for any t > 0 and x, y ∈ R
d

such that

θ |x − y|2
log	(|x − y|) ≤ t ≤ |x − y|2.

(2) Let κ ≥ 1. Here we let K = R/κ . Since we can choose t0 in the statement large enough, we
may and do assume that |x0 − y0| is large enough such that |x0 − y0| ≥ κ , and so K ≥ 1. Below
we assume that

t ≤ θ0R
2

log	(R)

for some θ0 > 0 small enough, which will be determined later.
Let

λ = log	(K)

4K
.

Since the function s �→ log	(s)/s on [1,∞) is decreasing by Assumption (A),

e2λr = exp

(
r

log	(K)

2K

)
≤ exp

(
r

log	(r)

2r

)
= 	(r)1/2, 1 ≤ r ≤ K.

Hence by (3.7),

�K(ψ) ≤ c0λ
2,

where c0 > 0 is independent of θ0, κ and λ. In particular, by choosing θ0 ∈ (0,1) so small that
c0κθ0 ≤ 2, we have

E(K)(t, x0, y0) ≤ �K(ψ)t − ∣∣ψ(x0) − ψ(y0)
∣∣

≤ c0λ
2t − λR
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≤ c0

16

(
log	(K)

K

)2
θ0R

2

log	(R)
− log	(K)

4K
R

= κ

4
log	(K)

(
−1 + c0κθ0

4

log	(K)

log	(κK)

)

≤ −κ

8
log	(K),

where we used κ ≥ 1 and the increasing property of the function 	(r) in the last inequality. We
then have by Proposition 2.2,

p(K)(t, x0, y0) ≤ c1t
−d/2 1

	(K)κ/8
,

which yields that by the same way as in (3.9),

p(t, x0, y0) ≤ c1t
−d/2 1

	(|x0 − y0|/κ)κ/8
+ c2t

|x0 − y0|d+2φ(|x0 − y0|/κ)
.

Noting that Assumption (B) is weaker than Assumption (A), we know from Proposition 3.1
that for any x0, y0 ∈ R

d \N and t ≥ t0 with t ≤ |x0 − y0|2,

p(t, x0, y0) ≤ c3t

|x0 − y0|d+2
.

Since φ is an increasing function on [1,∞) and |x0 − y0| ≥ κ , we have φ(|x0 − y0|/κ) ≥ φ(1)

so that
t

|x0 − y0|d+2φ(|x0 − y0|/κ)
≤ t

φ(1)|x0 − y0|d+2
.

Therefore, we finally obtain

p(t, x0, y0) ≤ c4

td/2	(|x − y|/κ)κ/8
∧ c4t

|x − y|d+2
+ c4t

|x − y|d+2φ(|x − y|/κ)
.

Combining the conclusions in (1) and (2) above, we get the desired assertion. �

Remark 3.3. (i) According to Theorem 3.2, we can obtain [7], Theorem 3.3, when φ(r) =
exp(crβ) for some constants c > 0 and β ∈ (0,1]. By [7], (1.14) in Theorem 1.2, we know that
upper bound estimates in Theorem 3.2 are sharp up to constants in this case.

(ii) By part (1) of the argument for Theorem 3.2, we indeed prove that for any θ > 0, there are
constants ci = ci(θ) > 0 (i = 1,2) such that for all t ≥ t0 and x, y ∈R

d with

θ |x − y|2
log	(|x − y|) ≤ t ≤ |x − y|2,

it holds that

p(t, x, y) ≤ c1

td/2
exp

(
−c2|x − y|2

t

)
.
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As a consequence of Theorem 3.2, we have the following statement about upper bound esti-
mates of the heat kernel for a new class of symmetric jump processes.

Corollary 3.4. Assume that there are positive constants ε, c0 such that for all x, y ∈ R
d with

|x − y| ≥ 1,

J (x, y) ≤ c0

|x − y|d+2+ε
.

Then, there exist positive constants t0 ≥ 1, θ0 > 0 and ci (i = 1,2) such that for all t ≥ t0,

p(t, x, y) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c1

td/2
, t ≥ |x − y|2,

c1

td/2
exp

(
−c2|x − y|2

t

)
,

θ0|x − y|2
log(1 + |x − y|) ≤ t ≤ |x − y|2,

c1t

|x − y|d+2+ε
, t ≤ θ0|x − y|2

log(1 + |x − y|) .

Proof. By adjusting the constant c in Assumption (A) properly, we can take φ(r) = (1+ r)ε and
so c1(1 + r)ε ≤ 	(r) ≤ c2(1 + r)ε for all r ≥ 1. Hence by Theorem 3.2, there exists t0 ≥ 1 such

that for any t ≥ t0, we have the desired assertion if t ≥ |x − y|2 or if θ0|x−y|2
log(1+|x−y|) ≤ t ≤ |x − y|2.

Next, we assume that t0 ≤ t ≤ θ0|x−y|2
log(1+|x−y|) . Since there exists c5 > 0 such that |x − y| ≥ c5, by

taking κ ≥ 1 so large enough that εκ/8 ≥ d + 2 + ε in Theorem 3.2, we find that

U
(
t, |x − y|, φ,	,κ

) ≤ c3

td/2|x − y|d+2+ε
∧ c3t

|x − y|d+2
+ c3t

|x − y|d+2+ε

≤ c4

td/2|x − y|d+2+ε
+ c3t

|x − y|d+2+ε

≤ c5t

|x − y|d+2+ε
.

At the last inequality, we again used the fact that t ≥ t0 ≥ 1. Combining all conclusions above,
we prove the desired assertion. �

To study rate functions of the process X corresponding to the test function φ(r) = log1+ε r ,
we also need the following.

Proposition 3.5. Suppose that Assumption (A) is satisfied. Then for any δ ∈ (0,1), there exist
positive constants t0, θ0 and c1, c2 such that

p(t, x, y) ≤ c1t

|x − y|d+2 log(d+2)δ/2 log(e + 	(c2|x − y|))
for all t ≥ t0 and x, y ∈ R

d \N with

t0 ≤ t ≤ θ0|x − y|2
log	(|x − y|) .
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Proof. For fixed points x0, y0 ∈ R
d and θ > 0, we let R = |x0 − y0| and K = R/θ . Since t0

can be large enough, we may and do assume that R is large enough. We use the approach of
Proposition 3.1 and start from the estimate (3.4). Taking

λ = 1

3K
log

(
K2 logδ log	(K)

t

)
,

we have

E(K)(t, x0, y0) ≤ −θ

3
log

(
K2 logδ log	(K)

t

)
+ c∗ logδ log	(K),

where c∗ is the constant c5 in (3.4). If

t ≤ c0K
2

log	(K)

for some c0 > 0, then for K ≥ 1 large enough,

θ

6
log

(
K2 logδ log	(K)

t

)
≥ θ

6
log

(
log	(K) logδ log	(K)

c0

)
≥ c∗ logδ log	(K),

due to the fact that δ ∈ (0,1). Hence, for K ≥ 1 large enough, we have

E(K)(t, x0, y0) ≤ −θ

6
log

(
K2 logδ log	(K)

t

)
,

which along with Proposition 2.2 yields that

p(K)(t, x0, y0) ≤ c1t
−d/2 exp

(
−θ

6
log

(
K2 logδ log	(K)

2t

))

= c1t
−d/2

(
2t

K2 logδ log	(K)

)θ/6

.

Setting θ = 3(d + 2), we get

p(K)(t, x0, y0) ≤ c2
t

Kd+2 log(d+2)δ/2 log	(K)
.

This along with the first inequality in (3.6), (2.1) and (2.3) in Assumption (A) and the fact that
|x0 − y0| = θK gives us that

p(t, x0, y0) ≤ p(K)(t, x0, y0) + t sup
|x−y|≥K

J (x, y)

≤ c3t

|x0 − y0|d+2 log(d+2)δ/2 log	(c4|x0 − y0|)
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+ c5t

|x0 − y0|d+2	1/γ (c4|x0 − y0|)
≤ c6t

|x0 − y0|d+2 log(d+2)δ/2 log	(c4|x0 − y0|)
.

The proof is complete. �

3.2. Heat kernel lower bound

In this subsection, we establish the following lower bound estimates for the heat kernel.

Theorem 3.6. Under Assumption (B), there exist positive constants t0 and ci (i = 1,2,3) such
that for all t ≥ t0 and x, y ∈R

d \N ,

p(t, x, y) ≥
⎧⎨
⎩

c1t
−d/2, |x − y|2 ≤ t,

c1t
−d/2 exp

(
−c2|x − y|2

t

)
, c3|x − y| ≤ t ≤ |x − y|2.

We first explain the main idea of the proof of Theorem 3.6. Following the approach of [2], we
introduce a class of modifications for the jumping kernel J (x, y). Let κ2 be the constant in (1.1).
For δ ∈ (0,1), define

J (δ)(x, y) := J (x, y)1{|x−y|≥δ} + κ2

|x − y|d+α2
1{0<|x−y|<δ} (3.10)

and

Dδ :=
{
u ∈ L2(

R
d;dx

) ∣∣∣
∫∫

x �=y

(
u(x) − u(y)

)2
J (δ)(x, y)dx dy < ∞

}
.

Then by Assumption 1.1, we have for any δ ∈ (0,1)

∫∫
{|x−y|≥δ}

(
u(x) − u(y)

)2
J (x, y)dx dy ≤ 4

∫
u(x)2

(∫
{|x−y|≥δ}

J (x, y)dy

)
dx

≤ c1(δ)

∫
u(x)2 dx

and so ∫∫
x �=y

(
u(x) − u(y)

)2
J (δ)(x, y)dx dy + ‖u‖2

L2(Rd ;dx)

�
∫∫

x �=y

(u(x) − u(y))2

|x − y|d+α2
dx dy + ‖u‖2

L2(Rd ;dx)
. (3.11)
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Therefore, for all δ ∈ (0,1),

Dδ =
{
u ∈ L2(

R
d;dx

) ∣∣∣
∫∫

x �=y

(u(x) − u(y))2

|x − y|d+α2
dx dy < ∞

}
;

that is, Dδ is independent of δ ∈ (0,1).
Let (Eδ,Dδ) be a bilinear form on L2(Rd ;dx) given by

Eδ(u, v) =
∫∫

Rd×Rd

(
u(x) − u(y)

)(
v(x) − v(y)

)
J (δ)(x, y)dx dy, u, v ∈Dδ,

and let F δ be the closure of C
lip
c (Rd) with respect to the norm ‖f ‖Eδ

1
:=

√
Eδ(f, f ) + ‖f ‖2

2 in

Dδ . Then, (Eδ,F δ) is a regular Dirichlet form on L2(Rd ;dx). Moreover, according to (3.11) and
the argument of [2], Lemma 2.5, we have F δ =Dδ .

Associated with the regular Dirichlet form (Eδ,F δ) is a symmetric Hunt process Y δ =
({Y δ

t }t≥0, {Px}x∈Rd\N ) with state space R
d \ Nδ , where Nδ ⊂ R

d is a properly exceptional set
for (Eδ,F δ). By [18], Main result, the process Y δ is conservative. We also see from Theorem 2.1
that there exists a non-negative kernel qδ(t, x, y) on (0,∞) × (Rd \Nδ) × (Rd \Nδ) such that
for any non-negative function f on R

d ,

E
xf

(
Y δ

t

) =
∫
Rd

qδ(t, x, y)f (y)dy, t > 0 and x ∈ R
d \Nδ

and there is a constant c2 > 0 such that

qδ(t, x, y) ≤ c2
(
t−d/2 ∨ t−d/α1

)
, t > 0 and x, y ∈ R

d \Nδ. (3.12)

Moreover, there exists an Eδ-nest {Fδ
k }k≥1 of compact sets such that

Nδ =R
d

∖ ∞⋃
k=1

Fδ
k

and for each fixed t > 0 and y ∈ R
d \ Nδ , the map x �→ qδ(t, x, y) is continuous on each Fδ

k .
Here we should note that the constant c2 in (3.12) can be chosen to be independent of δ ∈ (0,1).
Indeed, by the definition of J (δ)(x, y),

J (δ)(x, y) ≥ κ1

|x − y|d+α1
1{|x−y|<1} + J (x, y)1{|x−y|≥1} =: Jl(x, y)

for any δ ∈ (0,1) and x, y ∈ R
d . Then by following the argument of [2], Theorem 1.2, and [7],

Proposition 3.1, we see that c2 can be determined by Jl(x, y), which is independent of δ.
Actually, under Assumption (B), we can also get the following near-diagonal lower bound of

qδ(t, x, y), which is the key to Theorem 3.6.
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Proposition 3.7. Under Assumption (B), there exist constants t0 > 0 and c0 = c0(t0) > 0, which
are independent of δ ∈ (0,1), such that for any t ≥ t0 and x, y ∈ R

d \Nδ with |x − y|2 ≤ t ,

qδ(t, x, y) ≥ c0t
−d/2.

We will prove Proposition 3.7 later, and present the proof of Theorem 3.6 first.

Proof of Theorem 3.6. (1) We first claim that there exist an E -properly exceptional set N and
constants t0, c0 > 0 such that for any t ≥ t0 and x, y ∈ R

d \N with |x − y|2 ≤ t ,

p(t, x, y) ≥ c0t
−d/2.

Indeed, let {δn}∞n=1 be a decreasing sequence in (0,1) such that δn → 0 as n → ∞. Then, by [2],
page 1969, Theorem 2.3, (Eδn ,F δn) converges to (E,F) in the sense of Mosco as n → ∞. Since
J (δ)(x, y) ≥ J (x, y) by definition, we have F δ ⊂F and

Eδ(u,u) ≥ E(u,u) for any u ∈F δ.

Therefore, any Eδ-exceptional set can be regarded as an E -exceptional set. Namely, we can
choose an E -exceptional set N so that

⋃∞
n=1 Nδn ⊂ N . On account of this, the desired asser-

tion follows from Proposition 3.7 and [2], pages 1990–1991, Proof of Theorem 1.3.
(2) Next, we prove Theorem 3.6 by following the argument of [6], Theorem 3.6. Note that

if t ≥ t0 and |x − y|2 ≤ t , then our assertion follows from (1). In what follows, we assume that√
t0|x − y| ≤ t ≤ |x − y|2.
Let l be the maximum of positive integers such that

t

l
≤

( |x − y|
l

)2

.

Since

|x − y|2
t

− 1 ≤ l ≤ |x − y|2
t

, (3.13)

we have

1

2

( |x − y|
l

)2

≤ t

l
≤

( |x − y|
l

)2

(3.14)

and

t

l
≥ t2

|x − y|2 ≥ t0. (3.15)

Let {xi}0≤i≤6l be a sequence on the line segment joining x0 = x and x6l = y such that

|xk − xk−1| = |x − y|
6l

for any k = 1, . . . ,6l. (3.16)
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Take a sequence {yi}0≤i≤6l such that y0 = x, y6l = y and yk ∈ B(xk, (6l)−1|x − y|) for all 1 ≤
k ≤ 6l − 1. Then, (3.16) and (3.14) imply that for any 1 ≤ k ≤ 6l,

|yk − yk−1| ≤ |yk − xk| + |xk − xk−1| + |xk−1 − yk−1| ≤ 3 · |x − y|
6l

= |x − y|
2l

≤
√

t

l
.

Hence by (3.15) and (1), there exists a constant C = C(t0) ∈ (0,1) such that

p

(
t

l
, yk−1, yk

)
≥ C

(
t

l

)−d/2

, 1 ≤ k ≤ 6l.

This, together with the Chapman–Kolmogorov equation implies that

p(t, x, y)

=
∫
Rd

· · ·
∫
Rd

p(t/ l, x, y1) · · ·p(t/ l, y6l−1, y)dy1 · · · dy6l−1

≥
∫

B(x1,(6l)−1|x−y|)
· · ·

∫
B(x6l−1,(6l)−1|x−y|)

p(t/ l, x, y1) · · ·p(t/ l, y6l−1, y)dy1 · · · dy6l−1

≥ C

(
t

l

)−d/2 6l−1∏
k=1

{
C

(
t

l

)−d/2∣∣B(
xk, (6l)−1|x − y|)∣∣

}

≥ c1

(
t

l

)−d/2

C6l ,

where in the second inequality | · | denotes the d-dimensional Lebesgue measure, and the last
inequality follows from (3.14). Note that, by (3.13), we have

C6l ≥ e−c2l ≥ exp

(
−c2

|x − y|2
t

)
,

which, along with the estimate above, yields the desired assertion. �

The remainder of this subsection is devoted to the proof of Proposition 3.7. For this, we need
Lemmas 3.9 and 3.10 below. These two lemmas are concerned with a class of scaled processes
for the subprocess of Y δ on a ball.

We begin with some results which are due to [2,6,9,13]. Let B(x, r) be an open ball with
radius r > 0 centered at x ∈ R

d , and Br = B(0, r). Denote by Y δ,Br the subprocess of Y δ on Br .
Let qδ,Br (t, x, y) and (Eδ,Br ,F δ,Br ) be the heat kernel (also called Dirichlet heat kernel in the
literature) and the regular Dirichlet form associated with Y δ,Br , respectively.

For a fixed r > 0, define

Y
δ,(r)
t := r−1Y δ

r2t
.
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Then Y δ,(r) = ({Y δ,(r)
t }t≥0, {Px}x∈Rd\Nδ

) is a symmetric Hunt process on R
d \Nδ such that the

associated Dirichlet form (Eδ,(r),F δ,(r)) on L2(Rd;dx) is given by

Eδ,(r)(u, v) =
∫∫

Rd×Rd

(
u(x) − u(y)

)(
v(x) − v(y)

)
rd+2J (δ)(rx, ry)dx dy

and

F δ,(r) =
{
u ∈ L2(

R
d;dx

) ∣∣∣
∫∫

Rd×Rd

(u(x) − u(y))2

|x − y|d+α2
dx dy < ∞

}
.

Moreover, the associated heat kernel qδ
r (t, x, y) satisfies

qδ
r (t, x, y) = rdqδ

(
r2t, rx, ry

)
. (3.17)

Let Y δ,(r),B1 be the subprocess of Y δ,(r) on B1. Then the associated Dirichlet heat kernel
q

δ,B1
r (t, x, y) is given by

qδ,B1
r (t, x, y) = rdqδ,Br

(
r2t, rx, ry

)
, t > 0 and x, y ∈ B1 \Nδ.

We denote by (Eδ,(r),B1,F δ,(r),B1) the associated regular Dirichlet form on L2(B1;dx).
In the following, let

	(x) = C	

(
1 − |x|2) 12

2−α2 1B1(x), x ∈R
d

for some constant C	 > 0 so that
∫
B1

	(x)dx = 1. For each fixed x1 ∈ B1 \ N , r ≥ 1 and
ε ∈ (0,1), define

ur(t, x) := qδ,B1
r (t, x, x1), uε

r (t, x) := ur(t, x) + ε

and

Hε(t) :=
∫

B1

	(y) loguε
r (t, y)dy.

Proposition 3.8. Under Assumption (B), the next two assertions hold.

(i) For each t > 0, the function 	(·)/uε
r (t, ·) belongs to F δ,(r),B1 .

(ii) The function Hε(t) is differentiable on (0,∞) and for each t > 0,

H ′
ε(t) = −Eδ,(r),B1

(
ur(t, ·), 	(·)

uε
r (t, ·)

)
. (3.18)

Proof. (i) For any x, y ∈ B1,

	(x)

uε
r (t, x)

≤ 1

ε
	(x)
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and

∣∣∣∣ 	(x)

uε
r (t, x)

− 	(y)

uε
r (t, y)

∣∣∣∣ ≤ 1

uε
r (t, x)

∣∣	(x) − 	(y)
∣∣ + 	(y)

∣∣∣∣ 1

uε
r (t, x)

− 1

uε
r (t, y)

∣∣∣∣
= 1

uε
r (t, x)

∣∣	(x) − 	(y)
∣∣ + 	(y)

uε
r (t, x)uε

r (t, y)

∣∣uε
r (t, x) − uε

r (t, y)
∣∣

≤ 1

ε

∣∣	(x) − 	(y)
∣∣ + C	

ε2

∣∣ur(t, x) − ur(t, y)
∣∣.

Then our assertion follows by the strong version of the normal contraction property (e.g., see the
proof of [14], Theorem 1.4.2(ii)).

(ii) By (i), the right hand side of (3.18) is finite for any t > 0. Then our assertion follows by
the same way as in [2], Lemmas 4.1 and 4.7, and [13], Proposition 3.7. �

Lemma 3.9. Under Assumption (B), there exist positive constants c1 and c2 such that for any
ε ∈ (0,1), δ ∈ (0,1), x1 ∈ B1 \Nδ , t > 0 and r ≥ 1,

H ′
ε(t) ≥ −c1 + c2

∫
B1

(
loguε

r (t, y) − Hε(t)
)2

	(y)dy. (3.19)

Proof. We mainly follow the argument of [2], Lemma 4.7. By Proposition 3.8(ii),

H ′
ε(t) = −Eδ,(r),B1

(
ur(t, ·), 	(·)

uε
r (t, ·)

)

= −
∫∫

B1×B1

(
uε

r (t, y) − uε
r (t, x)

)uε
r (t, x)	(y) − uε

r (t, y)	(x)

uε
r (t, x)uε

r (t, y)

× rd+2J (δ)(rx, ry)dx dy

− 2
∫

B1

	(x)

(
rd+2

∫
Bc

1

J (δ)(rx, ry)dy

)
ur(t, x)

uε
r (t, x)

dx. (3.20)

Let a = uε
r (t, y)/uε

r (t, x) and b = 	(y)/	(x). Since s + 1/s − 2 ≥ (log s)2 for any s > 0, we
have

(
uε

r (t, y) − uε
r (t, x)

)uε
r (t, x)	(y) − uε

r (t, y)	(x)

uε
r (t, x)uε

r (t, y)

= 	(x)

(
1 − a + b − b

a

)

= 	(x)

[
(1 − √

b)2 − √
b

(
a√
b

+
√

b

a
− 2

)]
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≤ 	(x)

[
(1 − √

b)2 − √
b

(
log

a√
b

)2]

= (√
	(x) − √

	(y)
)2 − √

	(x)	(y)

[
log

(
uε

r (t, y)√
	(y)

)
− log

(
uε

r (t, x)√
	(x)

)]2

.

Using this inequality with 0 ≤ ur(t, x)/uε
r (t, x) ≤ 1, we obtain by (3.20),

H ′
ε(t) ≥ −

∫∫
B1×B1

(√
	(x) − √

	(y)
)2

rd+2J (δ)(rx, ry)dx dy

+
∫∫

B1×B1

√
	(x)	(y)

[
log

(
uε

r (t, y)√
	(y)

)
− log

(
uε

r (t, x)√
	(x)

)]2

rd+2J (δ)(rx, ry)dx dy

− 2
∫

B1

	(x)

(
rd+2

∫
Bc

1

J (δ)(rx, ry)dy

)
dx

= −
∫∫

Rd×Rd

(√
	(x) − √

	(y)
)2

rd+2J (δ)(rx, ry)dx dy

+
∫∫

B1×B1

√
	(x)	(y)

[
log

(
uε

r (t, y)√
	(y)

)
− log

(
uε

r (t, x)√
	(x)

)]2

rd+2J (δ)(rx, ry)dx dy

=: −(I) + (II).

To give a lower bound of the last expression above, we first show that there exists a constant
C1 > 0, which is independent of δ ∈ (0,1) and ε ∈ (0,1), such that

(I) ≤ C1

(∫
Rd

∣∣∇√
	(x)

∣∣2 dx +
∫

B1

	(x)dx

)
. (3.21)

To do so, we write

(I) =
∫∫

{0<|x−y|<1/r}
(√

	(x) − √
	(y)

)2
rd+2J (δ)(rx, ry)dx dy

+
∫∫

{1/r≤|x−y|<1}
(√

	(x) − √
	(y)

)2
rd+2J (δ)(rx, ry)dx dy

+
∫∫

{|x−y|≥1}
(√

	(x) − √
	(y)

)2
rd+2J (δ)(rx, ry)dx dy

=: (I)1 + (I)2 + (I)3.

By Assumption 1.1(ii) and [6], (3.9), there exists a positive constant c1, which is independent of
δ ∈ (0,1) and r ≥ 1, such that

(I)1 ≤ κ1r
d+2

∫∫
{0<|x−y|<1/r}

(
√

	(x) − √
	(y))2

|rx − ry|d+α2
dx dy ≤ c1

∫
Rd

∣∣∇√
	(x)

∣∣2 dx.
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Since 6/(2 −α2) > 1, the function
√

	(x) = √
C	(1 −|x|2) 6

2−α2 1B1(x) is Lipschitz continuous;
that is, there exists a positive constant c	 such that

∣∣√	(x) − √
	(y)

∣∣ ≤ c	|x − y| for any x, y ∈R
d .

We note that for any δ ∈ (0,1), J (δ)(rx, ry) = J (rx, ry) for x, y ∈ R
d and r > 1 with |rx −

ry| ≥ 1. Therefore, there exist positive constants c2i (i = 1,2,3), which are independent of r ≥ 1
and δ ∈ (0,1), such that

(I)2 ≤ c21r
d+2

∫∫
{1/r≤|x−y|<1}

(√
	(x) − √

	(y)
)2

J (rx, ry)dx dy

≤ c22r
d+2

∫
B2

(∫
{1/r≤|x−y|<1}

|x − y|2J (rx, ry)dy

)
dx

≤ c22

rd

∫
B2r

(∫
{|x−y|≥1}

|x − y|2J (x, y)dy

)
dx

≤ c23 = c23

∫
B1

	(x)dx,

where we used Assumption (B) in the last inequality. We also have

(I)3 ≤ c31r
d+2

∫
B1

(∫
{|x−y|≥1}

J (rx, ry)dy

)
dx

= c31r
2

rd

∫
Br

(∫
{|x−y|≥r}

J (x, y)dy

)
dx

≤ c32 = c32

∫
B1

	(x)dx

for some positive constants c3i (i = 1,2), which are independent of r ≥ 1 and δ ∈ (0,1). We thus
arrive at (3.21).

We next show that there exist positive constants c and c′, which are independent of ε ∈ (0,1),
δ ∈ (0,1), x1 ∈ B1 \Nδ , t > 0 and r ≥ 1, such that

(II) ≥ −c + c′
∫

B1

(
loguε

r (t, x) − Hε(t)
)2

	(x)dx. (3.22)

To do so, we first prove that

∫
B1

[
log

(
uε

r (t, x)√
	(x)

)]2

dx < ∞. (3.23)

Since (3.12) implies that

ur(t, x) = qδ,B1
r (t, x, x1) = rdqδ,Br

(
r2t, rx, rx1

) ≤ c′′rd
[(

r2t
)−d/2 ∨ (

r2t
)−d/α1

]
,
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we have

ε ≤ uε
r (t, x) = ur(t, x) + ε ≤ c′′rd

[(
r2t

)−d/2 ∨ (
r2t

)−d/α1
] + ε

so that

0 ≤ (
loguε

r (t, x)
)2 ≤ [| log ε| ∨ ∣∣log

(
c′′rd

((
r2t

)−d/2 ∨ (
r2t

)−d/α1
) + ε

)∣∣]2
.

Hence,
∫

B1

(
loguε

r (t, x)
)2 dx < ∞.

Noting that

[
log

(
uε

r (t, x)√
	(x)

)]2

= (
loguε

r (t, x) − log
√

	(x)
)2

≤ 2
(
loguε

r (t, x)
)2 + 2

(
log

√
	(x)

)2

and ∫
B1

(
log

√
	(x)

)2 dx < ∞,

we get (3.23).
We next give a lower bound of (II). By (1.1) and (3.10), we have for all r ≥ 1 and x, y ∈R

d ,

rd+2J (δ)(rx, ry) ≥ rd+2 κ1

|rx − ry|d+α1
1{|x−y|<1/r} = r2−α1

κ1

|x − y|d+α1
1{|x−y|<1/r}.

Then by (3.23) and the weighted Poincaré inequality ([12], Corollary 6, see also the argument in
[7], Theorem 4.1, and [6], Proposition 3.2), we obtain

(II) ≥ r2−α1

∫∫
B1×B1

√
	(x)	(y)

(
log

(
uε

r (t, y)√
	(y)

)
− log

(
uε

r (t, x)√
	(x)

))2

× κ1

|x − y|d+α1
1{|x−y|<1/r} dx dy

≥ c4

∫
B1

[
log

(
uε

r (t, x)√
	(x)

)
−

(∫
B1

log

(
uε

r (t, y)√
	(y)

)
	(y)dy

)]2

	(x)dx

= c4

∫
B1

[
log

(
uε

r (t, x)√
	(x)

)
−

(
Hε(t) − 1

2

∫
B1

	(y) log	(y)dy

)]2

	(x)dx (3.24)
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for some positive constant c4 = c4(κ1, d,α1,	), which is independent of δ ∈ (0,1), x1 ∈ B1 \Nδ ,
t > 0, r ≥ 1 and ε ∈ (0,1). Moreover, since

(
loguε

r (t, x) − Hε(t)
)2 ≤ 2

[
log

(
uε

r (t, x)√
	(x)

)
−

(
Hε(t) − 1

2

∫
B1

	(y) log	(y)dy

)]2

+ 2

(
1

2
log	(x) − 1

2

∫
B1

	(y) log	(y)dy

)2

,

the last expression in (3.24) is greater than

c4

2

∫
B1

(
loguε

r (t, x) − Hε(t)
)2

	(x)dx − c5

for

c5 = c4

4

∫
B1

(
log	(x) −

∫
B1

	(y) log	(y)dy

)2

	(x)dx,

whence (3.22) follows.
Combining (3.21) with (3.22), we have (3.19). The proof is complete. �

Lemma 3.10. Under Assumption (B), there exist constants t0 ∈ (0,1) small enough and c∗ =
c∗(t0) ≥ 1 such that the following assertions hold.

(i) For all δ ∈ (0,1), r ≥ c∗, t ∈ [t0/8,2t0] and x ∈ R
d \Nδ ,

P
x

(∣∣Y δ,(r)
t − Y

δ,(r)
0

∣∣ >
1

4

)
≤ 1

12
.

(ii) For all δ ∈ (0,1), r ≥ c∗, t ∈ [t0/8, t0] and x1 ∈ B1/2 \Nδ ,

∫
B(x1,1/4)

ur (t, x)dx ≥ 3

4
.

Proof. (i) By (3.17) and the change of variables, we have for all t > 0 and x ∈R
d \Nδ ,

P
x

(∣∣Y δ,(r)
t − Y

δ,(r)
0

∣∣ >
1

4

)
=

∫
{|y−x|≥1/4}

qδ
r (t, x, y)dy

= rd

∫
{|y−x|≥1/4}

qδ
(
r2t, rx, ry

)
dy

=
∫

{|y−rx|≥r/4}
qδ

(
r2t, rx, y

)
dy

=
∫

{|y−rx|≥r/4,|y−rx|2≥r2t}
qδ

(
r2t, rx, y

)
dy
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+
∫

{|y−rx|≥r/4,r2t>|y−rx|2}
qδ

(
r2t, rx, y

)
dy

=: (I) + (II).

Since the jumping kernel J (δ)(x, y) fulfills Assumption (B), we see by Proposition 3.1 that there
are constants ci (i = 1,2) > 0 and t1 > 0 (both are independent of δ ∈ (0,1)) such that for all
r2t ≥ t1 and x ∈ R

d \Nδ ,

(I) ≤
∫

{|y−rx|≥r/4,|y−rx|2≥r2t}
c1r

2t

|y − rx|d+2
dy ≤ c1r

2t

∫
{|y−rx|≥r/4}

dy

|y − rx|d+2
= c2t.

On the other hand, if t ≤ 1/16, then r2t ≤ r2/16, and so (II) = 0. Therefore, if we choose t2 > 0
small enough such that

t2 ≤ 1

32
and c2t2 ≤ 1

24
,

then for any r ≥ √
8t1/t2 and t ∈ [t2/8,2t2],

P
x

(∣∣Y δ,(r)
t − Y

δ,(r)
0

∣∣ >
1

4

)
≤ 1

12
.

The desired assertion follows by taking t0 = t2 and c∗ = 1 ∨ √
8t1/t2.

(ii) For an open subset D of R
d , let τY δ,(r)

D be the exit time of Y δ,(r) from D. Since

q
δ,B1
r (t, x, x1) = q

δ,B1
r (t, x1, x),
∫

B(x1,1/4)

ur (t, x)dx =
∫

B(x1,1/4)

qδ,B1
r (t, x, x1)dx

=
∫

B(x1,1/4)

qδ,B1
r (t, x1, x)dx

= P
x1

(∣∣Y δ,(r),B1
t − x1

∣∣ < 1/4
)

= P
x1

(∣∣Y δ,(r)
t − x1

∣∣ < 1/4, t < τYδ,(r)

B1

)
. (3.25)

Noting that

1 = P
x1

(∣∣Y δ,(r)
t − x1

∣∣ < 1/4, t < τYδ,(r)

B1

) + P
x1

(∣∣Y δ,(r)
t − x1

∣∣ < 1/4, τY δ,(r)

B1
≤ t

)
+ P

x1
(∣∣Y δ,(r)

t − x1
∣∣ ≥ 1/4

)
≤ P

x1
(∣∣Y δ,(r)

t − x1
∣∣ < 1/4, t < τYδ,(r)

B1

) + P
x1

(
τY δ,(r)

B1
≤ t

) + P
x1

(∣∣Y δ,(r)
t − x1

∣∣ ≥ 1/4
)
,

we get by (3.25),
∫

B(x1,1/4)

ur (t, x)dx ≥ 1 − P
x1

(
τY δ,(r)

B1
≤ t

) − P
x1

(∣∣Y δ,(r)
t − x1

∣∣ ≥ 1/4
)
. (3.26)
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Let X = ({Xt }t≥0, {Px}x∈Rd ) be the strong Markov process on R
d and τD the exit time of X

from D. Then by the same way as in [3], (2.18), the strong Markov property implies that for any
x ∈R

d , t > 0 and r > 0,

P
x(τB(x,r) ≤ t) ≤ P

x
(
τB(x,r) ≤ t, |X2t − x| ≤ r/2

) + P
x
(|X2t − x| ≥ r/2

)
≤ P

x
(
τB(x,r) ≤ t, |X2t − XτB(x,r)

| ≥ r/2
) + P

x
(|X2t − x| ≥ r/2

)
≤ sup

s≤t,|z−x|≥r

P
z
(|X2t−s − z| ≥ r/2

) + P
x
(|X2t − x| ≥ r/2

)

≤ 2 sup
s∈[t,2t],z∈Rd

P
z
(|Xs − z| ≥ r/2

)
. (3.27)

Applying it to {Y δ,(r)
t }t≥0, we see that for any x1 ∈ B1/2 \Nδ ,

P
x1

(
τY δ,(r)

B1
≤ t

) ≤ P
x1

(
τY δ,(r)

B(x1,1/2) ≤ t
) ≤ 2 sup

s∈[t,2t],z∈Rd

P
z
(∣∣Y δ,(r)

s − z
∣∣ ≥ 1/4

)
.

Then by (i), we obtain for any x1 ∈ B1/2 \Nδ and t ∈ [t0/8, t0],

P
x1

(
τY δ,(r)

B1
≤ t

) + P
x1

(∣∣Y δ,(r)
t − x1

∣∣ ≥ 1/4
)

≤ 2 sup
s∈[t,2t],z∈Rd

P
z
(∣∣Y δ,(r)

s − z
∣∣ ≥ 1/4

) + P
x1

(∣∣Y δ,(r)
t − x1

∣∣ ≥ 1/4
)

≤ 2 · 1

12
+ 1

12
= 1

4
.

Hence the proof is complete by (3.26). �

Now, we are in position to give the proof of Proposition 3.7.

Proof of Proposition 3.7. Let t0 ∈ (0,1) and c∗ ≥ 1 be the same constants as in Lemma 3.10.
We first prove that there exists a positive constant c = c(t0) such that for all δ ∈ (0,1), r ≥ c∗,
x1 ∈ B1/2 \Nδ and t1 ∈ [t0/4, t0],∫

B1

	(y) logqδ,B1
r (t1, y, x1)dy ≥ −c.

Our approach here is similar to that of [11], Lemmas 3.3.1–3.3.3, and [13], Proof of Theo-
rem 2.5. Fix ε ∈ (0,1), δ ∈ (0,1), x1 ∈ B1/2 \Nδ , r ≥ c∗ and t ∈ [t0/8, t0]. Let K be a constant
such that |B(x1,1/4))|e−K = 1/4, and define

Dε
t := {

x ∈ B(x1,1/4) | uε
r (t, x) ≥ e−K

}
.

Then ∫
B(x1,1/4)\Dε

t

ur (t, x)dx ≤
∫

B(x1,1/4)\Dε
t

uε
r (t, x)dx ≤ e−K

∣∣B(x1,1/4)
∣∣ = 1

4
.
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Since r ≥ 1 and t ≤ 1 by assumption, we get from (3.12) that

ur(t, x) = rdqδ,Br
(
r2t, rx, rx1

) ≤ rdqδ
(
r2t, rx, rx1

)
≤ c1r

d
((

r2t
)−d/2 ∨ (

r2t
)−d/α1

) ≤ c1t
−d/α1, (3.28)

where c1 is a positive constant independently of δ ∈ (0,1), r ≥ 1 and x, x1 ∈ B1/2 \Nδ . Then

∫
Dε

t

ur (t, x)dx ≤ c1

td/α1

∣∣Dε
t

∣∣.

Combining all the estimates above with Lemma 3.10(ii), we have

3

4
≤

∫
B(x1,1/4)

ur (t, x)dx =
∫

Dε
t

ur (t, x)dx +
∫

B(x1,1/4)\Dε
t

ur (t, x)dx ≤ c1

td/α1

∣∣Dε
t

∣∣ + 1

4
;

that is,

∣∣Dε
t

∣∣ ≥ td/α

2c1
≥ 1

2c1

(
t0

8

)d/α

for all t ∈ [t0/8, t0].

Furthermore, by following the argument in [6], pages 851–852, and using Lemma 3.9, there
exists a positive constant c2 = c2(t0), which is independent of ε ∈ (0,1), δ ∈ (0,1), r ≥ c∗ and
x1 ∈ B1/2 \Nδ , such that for any t1 ∈ [t0/4, t0],

Hε(t1) =
∫

B1

	(y) loguε
r (t1, y)dy ≥ −c2. (3.29)

Note that if 0 < ε < 1 ∧ (2c1/t
d/α1
0 ), then by (3.28),

εt
d/α1
1

2c1
≤ t

d/α1
1

2c1
uε

r (t1, y) = t
d/α1
1

2c1

(
ur(t1, y) + ε

) ≤ 1

2
+ t

d/α1
0 ε

2c1
≤ 1.

Therefore, by the monotone convergence theorem,

∫
B1

	(y) log

(
t
d/α1
1

2c1
uε

r (t1, y)

)
dy →

∫
B1

	(y) log

(
t
d/α1
1

2c1
ur(t1, y)

)
dy (ε ↓ 0).

Then by letting ε ↓ 0 in (3.29), we get

∫
B1

	(y) logqδ,B1
r (t1, y, x1)dy =

∫
B1

	(y) logur(t1, y)dy ≥ −c2,

which is the desired inequality.
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We next discuss the lower bound of qδ(t, x, y). By Jensen’s inequality, there exists a positive
constant c3 = c3(t0,	) such that for all δ ∈ (0,1), r ≥ c∗, t1 ∈ [t0/4, t0] and x0, x1 ∈ B1/2 \Nδ ,

logqδ,B1
r (2t1, x0, x1) = log

(∫
B1

qδ,B1
r (t1, x0, y)qδ,B1

r (t1, y, x1)dy

)

≥ log

(∫
B1

qδ,B1
r (t1, x0, y)qδ,B1

r (t1, y, x1)	(y)dy

)
− log‖	‖∞

≥
∫

B1

log
(
qδ,B1
r (t1, x0, y)qδ,B1

r (t1, y, x1)
)
	(y)dy − log‖	‖∞

=
∫

B1

	(y) logqδ,B1
r (t1, x0, y)dy +

∫
B1

	(y)qδ,B1
r (t1, y, x1)dy

− log‖	‖∞
≥ −c3;

that is,

qδ,B1
r (t, x0, x1) ≥ e−c3 for all t ∈ [t0/2,2t0]. (3.30)

As we see from the proof of Lemma 3.10, the positive constant t0 can be arbitrary small. In
what follows, without loss of generality, we may and can assume that 0 < t0 < 1/4. Then for any
t ∈ [1/2,2], there exists a positive integer kt ≥ 1 such that t − kt t0/2 ∈ [t0/2,2t0]. In fact,

0 <
1

t0
− 4 ≤ t − 2t0

t0/2
≤ kt ≤ t − t0/2

t0/2
≤ 4

t0
− 1 (3.31)

and

t − t0/2

t0/2
− t − 2t0

t0/2
= 3.

By the semigroup property and (3.30), we have for any t ∈ [1/2,2] and x0, x1 ∈ B1/2 \Nδ ,

rdqδ,Br
(
r2t, rx0, rx1

) = qδ,B1
r (t, x0, x1)

=
∫

B1

qδ,B1
r (t − t0/2, x0, z1)q

δ,B1
r (t0/2, z1, x1)dz1

≥
∫

B1/2

qδ,B1
r (t − t0/2, x0, z1)q

δ,B1
r (t0/2, z1, x1)dz1

≥ e−c3

∫
B1/2

qδ,B1
r (t − t0/2, x0, z1)dz1.
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By the same way, the last term above is equal to

e−c3

∫
B1/2

(∫
B1

qδ,B1
r (t − 2 · t0/2, x0, z2)q

δ,B1
r (t0/2, z2, z1)dz2

)
dz1

≥ e−2c3

∫
B1/2

(∫
B1/2

qδ,B1
r (t − 2 · t0/2, x0, z2)dz2

)
dz1.

By repeating this procedure and using (3.31), there exists a positive constant c4 = c4(t0,	) such
that for all δ ∈ (0,1), r ≥ c∗, t ∈ [1/2,2] and x0, x1 ∈ B1/2 \Nδ ,

rdqδ,Br
(
r2t, rx0, rx1

) ≥ e−kt c3

∫
B1/2

· · ·
∫

B1/2

qδ,B1
r (t − kt t0/2, x0, zkt )dzkt · · · dz1

≥ e−(kt+1)c3 |B1/2|kt ≥ c4, (3.32)

where c4 is independent of t .
By taking t = 1 in (3.32), we find that for all δ ∈ (0,1), r ≥ c∗ and x0, x1 ∈ B1/2 \Nδ ,

qδ,Br
(
r2, rx0, rx1

) ≥ c4

rd
.

Letting r = √
t in the estimate above, we have for any for t ≥ c2∗ and x0, x1 ∈ B1/2 \Nδ ,

q
δ,B√

t (t,
√

tx0,
√

tx1) ≥ c4

td/2
;

that is,

q
δ,B√

t (t, x0, x1) ≥ c4

td/2
, x0, x1 ∈ B√

t/2 \Nδ.

By the space-uniformity of Rd , we can replace the center of any ball by z0 ∈ R
d in the argument

above. Hence for any t ≥ c2∗, z0 ∈R
d and x, y ∈ B(z0,

√
t/2) \Nδ ,

qδ(t, x, y) ≥ qδ,B(z0,
√

t)(t, x, y) ≥ c4

td/2
.

Note that for any x, y ∈ R
d with |x − y|2 ≤ t , there exists a point z0 ∈ R

d such that x, y ∈
B(z0,

√
t/2). Therefore, our assertion is valid for t ≥ c2∗. �

At the end of this section, we present two-sided heat kernel estimates for jump processes,
upper bounds of which have been established in Corollary 3.4.

Corollary 3.11. Assume that there is a constant ε > 0 such that for all x, y ∈R
d with |x − y| ≥

1,

J (x, y) � 1

|x − y|d+2+ε
.
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Then, there exist positive constants t0 ≥ 1, θ0 > 0 and c0 such that for all t ≥ t0,

p(t, x, y) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

td/2
, t ≥ |x − y|2,

1

td/2
exp

(
−c0|x − y|2

t

)
,

θ0|x − y|2
log(1 + |x − y|) ≤ t ≤ |x − y|2,

1

|x − y|d+2+ε
, t ≤ θ0|x − y|2

log(1 + |x − y|) .

Here we note that the constants c0 and θ0 in the formula above should be different for upper and
lower bounds.

Proof. The upper bound estimates have been proved in Corollary 3.4, so we need verify lower
bounds. According to Theorem 3.6, we have got the first two cases, that is, t ≥ |x − y|2 and

θ0|x−y|2
log(1+|x−y|) ≤ t ≤ |x − y|2. Then, the proof is complete, if we prove that there exist constants

t0 ≥ 1 and c1, c2 > 0 such that for all t0 ≤ t ≤ c1|x − y|2,

p(t, x, y) ≥ c2

|x − y|d+2+ε
. (3.33)

(1) First, we claim that there are positive constants c0 and t0 such that for all t ≥ t0 and
x ∈R

d \N ,

P
x(τB(x,c0

√
t) ≤ t) ≤ 1/2. (3.34)

Indeed, we recall (3.27): for any x ∈R
d \N and t, r > 0,

P
x(τB(x,r) ≤ t) ≤ 2 sup

s≤t,z∈Rd

P
z
(|X2t−s − z| ≥ r/2

)
. (3.35)

Now, according to upper bound estimates for p(t, x, y) in Corollary 3.4, there is a constant t0 > 0
such that for all t ≥ t0, r2 ≥ t and x ∈R

d \N ,

P
x
(|Xt − x| ≥ r

) ≤ c1

(∫
{|y−x|≥r}

t−d/2 exp
(−c2|x − y|2/t

)
dy +

∫
{|y−x|≥r}

t

|x − y|d+2+ε
dy

)

≤ c3

(∫ ∞

r2/t

e−c2ssd/2−1 ds +
∫ ∞

r

t

s3+ε
ds

)

≤ c4

(
e−c5r

2/t + t

r2+ε

)
.

In particular, taking r ≥ c6t
1/2 for some c6 large enough, we find that

P
x
(|Xt − x| ≥ r

) ≤ 1/4.

This along with (3.35) yields (3.34).
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(2) Next, we will use the approach of [10], Section 4.4. Fix t ≥ t0 and x, y ∈ R
d \ N with

|x − y| ≥ 4c0t
1/2, where c0 is the constant in (3.34). It follows from the Chapman–Kolmogorov

equation and Theorem 3.6 that

p(2t, x, y) =
∫
Rd

p(t, x, z)p(t, z, y)dz

≥
(

inf
|z−y|≤2c0t1/2

p(t, z, y)
)∫

{|y−z|≤2c0t
1/2}

p(t, x, z)dz

≥c1t
−d/2

P
x
(
Xt ∈ B

(
y,2c0t

1/2)).
For any x ∈R

d and r > 0, define

σB(x,r) = inf
{
t > 0 : Xt ∈ B(x, r)

}
.

By the strong Markov property,

P
x
(
Xt ∈ B

(
y,2c0t

1/2))

≥ P
x
(
σB(y,c0t

1/2) ≤ t/2; sup
s∈[σ

B(y,c0t1/2)
,t]

|Xs − Xσ
B(y,c0t1/2)

| ≤ c0t
1/2

)

≥ P
x(σB(y,c0t

1/2) ≤ t/2) inf
z∈B(y,c0t

1/2)
P

z(τB(z,c0t
1/2) > t)

≥ 1

2
P

x(σB(y,c0t
1/2) ≤ t/2),

where we used (3.34) in the last inequality. Furthermore, by the Lévy system formula (see [3],
page 151, and [8], Appendix A) and the fact that |x − y| ≥ 4c0t

1/2,

P
x(σB(y,c0t

1/2) ≤ t/2) ≥ P
x
(
X(t/2)∧τ

B(x,c0 t1/2)
∈ B

(
y, c0t

1/2))

≥ c2E
x

(∫ (t/2)∧τ
B(x,c0 t1/2)

0

∫
B(y,c0t

1/2)

dz

|Xs − z|d+2+ε
ds

)

≥ c3t
d/2+1

P
x(τB(x,c0t

1/2) ≥ t/2)
1

|x − y|d+2+ε

≥ c4t
d/2+1 1

|x − y|d+2+ε
,

where in the third inequality we used the facts that |x − y| ≥ 4c0t
1/2, and for all s ∈ (0, (t/2) ∧

τB(x,c0t
1/2)) and z ∈ B(y, c0t

1/2),

|Xs − z| ≤ |Xs − x| + |x − y| + |y − z| ≤ 2c0t
1/2 + |x − y| ≤ 2|x − y|;
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and the last inequality follows from (3.34). Combining all the inequalities above, we find that
t ≥ t0 and x, y ∈R

d \N with |x − y| ≥ 4c0t
1/2,

p(2t, x, y) ≥ c4t

|x − y|d+2+ε
,

which proves (3.33). �

4. Proof of Theorem 1.2

Proof of Theorem 1.2. Throughout this proof, we set ψ(r) = √
r log log r . Recall that τB(x,r) =

inf{t > 0 : Xt /∈ B(x, r)} for any x ∈R
d and r > 0.

(1) In this case, φ(s) = log1+ε(e + s) and so c−1∗ logε(e + s) ≤ 	(s) ≤ c∗ logε(e + s) for some
constant c∗ ≥ 1. We follow the proof of [21], Theorem 3.1(1), first. Setting tk = 2k , we have for
any c > 0, k ≥ 2 and x ∈R

d \N ,

P
x
(|Xs − x| ≥ cψ(s) for some s ∈ [tk−1, tk]

)

≤ P
x
(

sup
s∈[tk−1,tk]

|Xs − x| ≥ cψ(tk−1)
)

≤ P
x(τB(x,cψ(tk−1)) ≤ tk)

≤ 2 sup
s≤tk,z∈Rd

P
z
(|Xtk+1−s − z| ≥ cψ(tk−1)/2

)
, (4.1)

where in the last inequality we used (3.27).
For any κ ≥ 1, let θ0 be the constant in Theorem 3.2. In the following, let C := C(κ) > 0 which

is chosen later. We first take θ∗
0 > C large enough such that, if r ≥ θ∗

0 ψ(t), then t ≤ θ0r
2

log	(r)
; if

r ≤ θ∗
0 ψ(t), then t ≥ θ ′

0r
2

log	(r)
for some constant θ ′

0 ∈ (0,1). Below, we fix this κ and θ∗
0 , and let

δ > 0 be arbitrarily first. For any x ∈ R
d \N and t > 1 large enough, according to Theorem 3.2,

Remark 3.3(ii) and Proposition 3.5 (with δ = 1/2),

P
x
(|Xt − x| ≥ Cψ(t)

)

=
∫

{|y−x|≥Cψ(t)}
p(t, x, y)dy

≤ c1

td/2

∫
{Cψ(t)≤|y−x|≤θ∗

0 ψ(t)}
exp

(
−c2|x − y|2

t

)
dy

+ c3

∫
{θ∗

0 ψ(t)≤|y−x|≤c4

√
t log1+δ t}

(
t−d/2 1

logκε/8 |x − y| + t

|x − y|d+2 log1+ε |x − y|
)

dy

+ c5

∫
{|y−x|≥c4

√
t log1+δ t}

t

|x − y|d+2 log(d+2)/4 log log(1 + |x − y|) dy

=: I1 + I2 + I3,
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where the constants ci (i = 1, . . . ,5) may depend on κ and δ. First, it holds that

I2 ≤ c21

[(
t log1+δ t

)d/2(
t−d/2 log−κε/8 t

) +
∫ ∞

θ∗
0 ψ(t)

t

r3 log1+ε r
dr

]

≤ c22

[
log−((κε/8)−((1+δ)d/2)) t + 1

log1+ε t

]
.

Taking κ ≥ 1 large enough such that κε/8 ≥ (1 + δ)d/2 + 1 + ε, we find that

I2 ≤ c23

log1+ε t
.

Second, we fix κ as above. We find that

I1 ≤ c11

td/2

∫
{|y−x|≥Cψ(t)}

exp

(
−c2|x − y|2

t

)
dy

≤ c12

∫ ∞

C2 log log t

exp(−c2s)s
d/2−1 ds ≤ c13(log t)−C2c2/2,

where c2 depends on κ above. Choosing C > 1 large enough such that C2c2/2 ≥ 1 + ε, we get
that

I1 ≤ c14

log1+ε t
.

Third, it is easy to see that

I3 ≤ c31

log1+δ t
.

In particular, letting δ = ε,

I3 ≤ c32

log1+ε t
.

Below, we fix C chosen above. By all the estimates above, we obtain that there is a constant
C1 > 0 such that for any x ∈R

d \N and t > 1 large enough,

P
x
(|Xt − x| ≥ Cψ(t)

) ≤ C1

log1+ε t
. (4.2)

According to (4.1) and (4.2), we know that there are constants C0,C2 > 0 such that for all
k ≥ 2 and x ∈R

d \N ,

P
x
(|Xs − x| ≥ C0ψ(s) for some s ∈ [tk−1, tk]

) ≤ C2

k1+ε
.

This together with the Borel–Cantelli lemma proves the first desired assertion.
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(2) For any c > 0 and k ≥ 1, set tk = 2k and

Bk = {|Xtk+1 − Xtk | ≥ cψ(tk−1)
}
.

Denote by (Ft )t≥0 the natural filtration of the process X. Then, for every x ∈ R
d \N and k ≥ 1,

by the Markov property and Theorem 3.6,

P
x(Bk|Ftk ) ≥ min

z∈Rd\N
P

z
(|Xtk − z| ≥ cψ(tk−1)

)

≥ min
z∈Rd\N

∫
{cψ(tk−1)≤|y−z|≤tk}

p(tk, z, y)dy

≥c1t
−d/2
k min

z∈Rd\N

∫
{cψ(tk−1)≤|y−z|≤tk}

exp

(
−c2|z − y|2

tk

)
dy

≥c3

∫ tk

c2 log log(tk−1)/2
e−c2ssd/2−1 ds

≥c4k
−c2c2 .

Choosing c > 0 small enough such that c2c2 ∈ (0,1], we have

∞∑
k=1

P
x(Bk|Ftk ) = ∞.

Then by the second Borel–Cantelli lemma,

P
x(lim supBk) = 1.

This yields the desired assertion, see e.g. the proof of [21], Theorem 3.1(2). �
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