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This article presents a limit theorem for the gaps Ĝi:n := Xn−i+1:n − Xn−i:n between order statistics
X1:n ≤ · · · ≤ Xn:n of a sample of size n from a random discrete distribution on the positive integers

(P1,P2, . . .) governed by a residual allocation model (also called a Bernoulli sieve) Pj := Hj

∏j−1
i=1 (1 −

Hi) for a sequence of independent random hazard variables Hi which are identically distributed according
to some distribution of H ∈ (0,1) such that − log(1 − H) has a non-lattice distribution with finite mean
μlog. As n → ∞ the finite dimensional distributions of the gaps Ĝi:n converge to those of limiting gaps Gi

which are the numbers of points in a stationary renewal process with i.i.d. spacings − log(1 − Hj ) between
times Ti−1 and Ti of births in a Yule process, that is Ti := ∑i

k=1 εk/k for a sequence of i.i.d. exponential

variables εk with mean 1. A consequence is that the mean of Ĝi:n converges to the mean of Gi , which
is 1/(iμlog). This limit theorem simplifies and extends a result of Gnedin, Iksanov and Roesler for the
Bernoulli sieve.

Keywords: GEM distribution; interleaving of simple point processes; residual allocation model; stars and
bars duality; stationary renewal process; Yule process

1. Introduction

Let P• := (P1,P2, . . .) be a random discrete distribution on the positive integers described by a
residual allocation or stick-breaking model (RAM), [11,23,43], also known as a Bernoulli sieve
[16,19] in which

Pj := Hj

j−1∏
i=1

(1 − Hi), (1.1)

where the Hi ∈ (0,1), called residual fractions, random discrete hazards, or factors, are inde-
pendent and identically distributed (i.i.d.) according to some distribution of H ∈ (0,1). Given
P•, let X1, . . . ,Xn be an i.i.d. sample of size n from P•, and define counting variables

Nb:n :=
n∑

i=1

1(Xi = b) (b = 1,2, . . .). (1.2)
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Study of the reversed counts, coming back from the maximum of the sample,

N̂•:n := (NMn−i:n, i = 0,1, . . .), where Mn := max{b : Nb > 0} = max
1≤i≤n

Xi (1.3)

has been motivated by a number applications in ecology, population biology, and computer sci-
ence [9,11,16,39,43]. A model of particular interest in these applications is the GEM(0, θ) model,
when it is assumed that H has the beta(1, θ) distribution with density θ(1 − u)θ−1 at u ∈ (0,1).
To provide some notation, let

μi,j := EHi(1 − H)j
θ= (1)i(θ)j

(1 + θ)i+j

, (1.4)

where
θ= indicates an evaluation for the GEM(0, θ) model with P(H > u)

θ= (1 − u)θ , and

(x)i := x(x + 1) · · · (x + i − 1) = �(x + i)

�(x)

is Pochhammer’s rising factorial function. Let

μlog := E− log(1 − H) =
∞∑

m=1

μm,0

m
=

∫ 1

0

P(H > u)

1 − u
du

θ= 1

θ
. (1.5)

The starting point of this article is the following limit theorem.

Theorem 1.1 (Gnedin, Iksanov and Roesler [17], Theorem 2.1). If

− log(1 − H) has a non-lattice distribution with finite mean μlog (1.6)

then

N̂•:n
(d)→ N• as n → ∞, (1.7)

meaning that the finite dimensional distributions of the sequence N̂•:n converge to those of a limit
sequence N•, which are determined by the formula

P(Ni = ni,0 ≤ i ≤ k) = (n0 + · · · + nk − 1)!
n0! · · ·nk!

∏k
i=0 μni,n0+···+ni−1

μlog
(1.8)

for every finite sequence of non-negative integers (n0, . . . , nk) with n0 > 0.

Formula (1.8) corrects a confusing mistake in the corresponding formula of [17], Theorem 2.1.
The proof of this result in [17] involved a construction of N• from a limiting point process,
recalled later in (3.19). This article offers a simpler approach to an extended version of The-
orem 1.1, with a simpler point process representation of the limiting sequence N•, and some
corollaries which clarify special properties of the limit for the GEM(0, θ) model.
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Let

X1:n := min
1≤i≤n

Xi ≤ X1:n ≤ X2:n ≤ · · · ≤ Xn:n = Mn := max
1≤i≤n

Xi, (1.9)

denote the order statistics of the sample X1, . . . ,Xn from the RAM P•. It was recently shown in
[39] that most known properties of GEM(0, θ) samples are consequences of the following simple
description of the sequence of gaps Ĝ•:n between order statistics, in reversed order

Ĝi:n := Xn+1−i:n − Xn−i:n (1 ≤ i ≤ n) (1.10)

with the convention X0:n := 1, so that Ĝn:n := X1:n − 1. According to the main result of [39]

in sampling from GEM(0, θ) the Ĝi:n are independent, with geometric distributions whose parameters depend
only on i and θ , and not on the sample size n ≥ i, according to the equality in distribution

(Ĝi:n,1 ≤ i ≤ n)
(d)= (Gi,1 ≤ i ≤ n), (1.11)

where G• := (Gi , i = 1,2, . . .) is an infinite sequence of independent random variables such that Gi has the

geometric(i/(i + θ)) distribution on {0,1, . . .} with EGi
θ= θ/i and

P(Gi ≥ k)
θ=

(
θ

i + θ

)k

(k = 0,1,2, . . .). (1.12)

It is an obvious consequence of (1.11) that Ĝ•:n
(d)→ G• in the GEM(0, θ) model. The aim of the

present study is to relate this limit sequence of reversed gaps G• to the limiting reversed counts
N• in (1.7), first of all for the GEM(0, θ) model, then to describe a corresponding limit sequence
of reversed gaps G• for a more general RAM.

In sampling from any random discrete distribution P•, the two sequences Ĝ•:n and N̂•:n are
related via the time-reversed tail count sequence Q̂•:n defined by the partial sums of N̂•:n. So, us-
ing the well-known balls in the box description of the sampling procedure, recalled in Section 2.1
below,

Q̂k:n :=
k∑

i=0

N̂i:n :=
k∑

i=0

NMn−i:n (k = 0,1,2, . . .) (1.13)

is the number of balls in the last k + 1 boxes when n balls are distributed, counting back from the
rightmost occupied box. The count of balls in that box is the initial reversed tail count, indexed
by k = 0:

Q̂0:n := N̂0:n := NMn:n :=
n∑

i=1

1(Xi = Mn) > 0. (1.14)

For each g ≥ 0, a value j < n appears exactly g times in the sequence Q̂•:n iff there is a corre-
sponding gap between order statistics Ĝj :n = g. Thus,

Ĝj :n =
n∑

k=0

1(Q̂k,n = j) (1 ≤ j < n). (1.15)
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For a RAM subject to (1.6), the connection (1.13)–(1.15) between the reversed gaps Ĝ•:n
and reversed counts N̂•:n shows that convergence in distribution of Ĝ•:n to a limiting sequence
of gaps G• holds jointly with the convergence in distribution (1.7) of N̂•:n to N•, with G• the
sequence of occupation times of states by the partial sums Q• of N•. The conclusion of this
argument is expressed by the following extension of Theorem 1.1.

Theorem 1.2. Suppose the common distribution of factors H in the RAM, with moments (1.4),
is such that − log(1 − H) is non-lattice with finite mean μlog. Then as n → ∞ there is the joint
convergence of finite-dimensional distributions

(Q̂•:n, N̂•:n, Ĝ•:n)
(d)→ (Q•,N•,G•) (1.16)

with limit sequences Q• and N• indexed by k = 0,1,2, . . . , and G• indexed by j = 1,2, . . . . The
joint distribution of these three limit sequences is defined as follows:

• The sequence Q• is a Markov chain with stationary transition probability matrix

pm,n :=
(

n − 1

m − 1

)
μn−m,m (1 ≤ m ≤ n), (1.17)

where μn−m,m := EHn−m(1 − H)m, and initial distribution

P(Q0 = m) = μm,0

mμlog
(m = 1,2, . . .) (1.18)

which is the limit distribution of NMn:n, the number of balls in the last occupied box, as
n → ∞.

• The limit sequence of reversed counts N• is the difference sequence of Q•, with N0 := Q0

and Ni := Qi − Qi−1 for i = 1,2, . . . .
• The limit sequence of reversed gaps G• is the sequence of occupation counts of the Markov

chain Q•:

Gj :=
∞∑

k=0

1(Qk = j) (j = 1,2, . . .). (1.19)

It should be clear from the above discussion that Theorem 1.2 can easily be deduced from
Theorem 1.1, and vice versa. In particular, the formula (1.18) for the initial distribution of Q0 =
N0 is the instance k = 0 of the formula (1.8) for the limiting distribution of NMn:n, which was
first found in [20]. See also [16], Theorem 6.1. The equivalence of formula (1.8) for general
k ≥ 0 with the Markov property of Q• expressed in Theorem 1.2 is also easily checked. Further
study of the chain Q• in the GEM(0, θ) case leads to a remarkable connection to the Riemann
zeta function [10]. Theorem 1.2 will be proved in Section 3, along with the following corollaries.

Corollary 1.3. In the setting of Theorem 1.2:
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• The distribution of Gj , the limit in distribution of Ĝj :n as n → ∞, is the zero-modified
geometric distribution with parameters (hj ,1 − μ0,j ), meaning that

P(Gj ≥ k) = hjμ0,j
k−1 (j, k = 1,2, . . .), (1.20)

where

hj := P(Gj ≥ 1) = 1 − μ0,j

jμlog
(j = 1,2, . . .). (1.21)

• The conditional distribution of Gj given Gj ≥ 1 is the geometric(1 − μ0,j ) distribution on
{1,2, . . .}.

• All moments of Gj are finite, in particular

EGj = hj

1 − μ0,j

= 1

jμlog
(1.22)

and there is convergence of moments limn→∞ EĜ
p
j :n = EG

p
j for every p ≥ 0.

Corollary 1.4. In the setting of Theorem 1.2, for a RAM with i.i.d. factors, the following four
conditions are equivalent:

• the model is GEM(0, θ), meaning that H is beta(1, θ), for some θ > 0;
• distribution of Gj is geometric(pj ) on {0,1, . . .} for some pj , for all j = 1,2, . . . ;
• the limiting gaps Gj are independent random variables;
• for the prelimit gaps the probability P(Ĝ1:n ≥ 1) does not depend on n.

Then pj = j/(j + θ) and the formulas of Corollary 1.3 hold with

μlog
θ= 1

θ
, hj

θ= μ0,j
θ= θ

j + θ
. (1.23)

As discussed in [17] for a general RAM, and in [39] for GEM(0, θ), the limit sequences
N• and G• may be encoded in various ways as counts in suitable point processes. But those
studies overlooked the simple basic structure of the Markov chain Q• exposed by the next two
corollaries.

Corollary 1.5. For any distribution of H on (0,1), formula (1.17) defines the transition mech-
anism of the Markov chain Q• defined by a Galton–Watson branching process in a random
environment, in which at each generation k the offspring distribution of all individuals present
is geometric(1 − Hk) on {1,2, . . .}, with the Hk picked i.i.d. from one generation to the next
according to the distribution of H . Thus for each k ≥ 0, by conditioning on Hk ,

E
(
zQk+1−Qk | Qk = m

) = E

(
1 − H

1 − Hz

)m

(1.24)

which when expanded in powers of z is equivalent to (1.17).
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This is a mixed negative binomial(m,1 − H) distribution for the increment Qk+1 − Qk given
Qk = m. With the shift by m, the conditional distribution of Qk+1 given Qk = m is the mixed
Pascal(m,1 − H) distribution of the waiting time until the mth success in a series of trials,
which given H are i.i.d. with success probability 1 − H per trial. In particular, if H is assigned
a beta(a, b) distribution on (0,1), the distribution of Qk+1 − Qk given Qk = m is known as a
beta mixed negative binomial or inverse Polya–Eggenberger distribution [30], Section 8.4. Some
basic properties of the chain Q•, such as the formula (1.31) below for E(Qk) and asymptotic
growth of Qk for large k, can be read from general theory of branching processes in a random
environment. See, for instance, [3,24,44]. But it seems easiest to obtain results about Qk for large
k from the following simple construction:

Corollary 1.6. For k = 0,1,2, . . . let Yk := ∑k
i=1 εi/i where the εi are independent standard

exponential variables, so that 0 = Y0 < Y1 < Y2 < · · · are the times of births in a standard Yule
process NY (t) := ∑∞

k=0 1(Yk ≤ t), t ≥ 0. Independent of this Yule process, let 0 < S∗
0 < S∗

1 < · · ·
be the times of arrivals in a stationary renewal counting process N∗

S (t) := ∑∞
i=0 1(S∗

i ≤ t), t ≥ 0,
with S∗

i − S∗
i−1 for i ≥ 1 a sequence of i.i.d. copies of − log(1 − H), and S∗

0 independent of the
S∗

i − S∗
i−1 for i ≥ 1, with the stationary delay distribution

P
(
S∗

0 ∈ ds
) = P(− log(1 − H) > s)

μlog
ds = P(H > 1 − e−s)

μlog
ds (s > 0), (1.25)

where μlog := E − log(1 − H) as in (1.5). Then the limiting reversed tail count Markov chain
Q• may be constructed as

Qk := NY

(
S∗

k

)
(k = 0,1,2, . . .) (1.26)

along with a corresponding representation of the cumulative sums of gaps G•:

G1 + · · · + Gj = N∗
S (Yj ) (j = 1,2, . . .). (1.27)

These results may be summarized less formally as follows. Regard the sample from the RAM
as a pattern of n balls in an infinite row of boxes labeled by positive integers, from left to right.
Read the pattern from right to left, starting with the rightmost occupied box, as a list of n stars
and some number of bars, with a star for each ball, and each bar representing a barrier between
boxes. The pattern starts with N0:n ≥ 1 stars followed by a bar, then N1:n ≥ 0 stars, followed by
a bar, and so on. Then Gj :n for 1 ≤ j < n is the number of bars between the j th and (j + 1)th
star.

As n → ∞, the distribution of each initial finite segment of this pattern of stars and bars
converges to that of an initial segment of an infinite pattern of stars and bars. The limit pattern
starts with a star and contains both infinitely many stars and infinitely many bars almost surely.
This limit pattern is generated by the superposition of two independent simple point processes on
[0,∞), a Yule birth process of stars at times 0 = Y0 < Y1 < · · · , and a stationary renewal process
of bars at times 0 < S∗

0 < S∗
1 < · · · , by listing the stars and bars in their order of appearance,

always starting with a star from initial birth of the Yule process at time 0.
Thus the two limit sequences N• and G• provide dual encodings of the interleaving of points

of the two simple point processes S∗ and Y on [0,∞):
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• G• counts S∗ renewals between consecutive Yule birth times;
• N• counts Yule birth times between consecutive S∗ renewal points.

For instance, if the interleaving of birth times and renewal points in increasing order is(
0 = Y0, Y1, S

∗
0 , Y2, S

∗
1 , S∗

2 , S∗
3 , Y3, Y4, Y5, Y6, S

∗
4 , Y7, Y8, Y9, . . .

)
which information is fully encoded by the string YYSYSSSYYYYSYYY · · · , the two sequences
describing this interleaving are

(G1,G2, . . .) = (0,1,3,0,0,0,1,0,0, . . .) and (N0,N1, . . .) = (2,1,0,0,4,3+, . . .),

where the 3+ indicates a value which is at least 3, but which cannot be determined exactly
without examining more points of the interleaving. This is a limiting form of the classical “stars
and bars” duality of combinatorics for enumerating various kinds of integer compositions.

In the usual representation of sampling from a RAM, by the locations of n uniform sample
points in the unit interval, relative to a sequence of bins of lengths P1,P2, . . . , the two point
processes NY and N∗

S arise from an asymptotic analysis on a logarithmic scale. The structure of
the sample points on that scale, coming down from the maximum, is that of the birth times of the
Yule process, with Y0 = 0 corresponding to the maximum value in the sample of n independent
variables. The two point processes which play dual roles in this asymptotic description are

N∗
S (t) :=

∞∑
i=0

1
(
S∗

i ≤ t
)

has stationary increments with EN∗
S (t) = t/μlog; (1.28)

NY (t) :=
∞∑
i=0

1(Yi ≤ t) is a Markovian branching process with ENY (t) = et . (1.29)

The GEM(0, θ) model is by far the simplest, because of the result of Ignatov [26]:

in the GEM(0, θ) model
(
N∗

S (t), t ≥ 0
)

is a Poisson process with constant rate θ . (1.30)

See [39] for further analysis in this case.

Corollary 1.7. In the setting of Theorem 1.2 for all j ≥ 0

lim
n→∞EQ̂j :n = EQj = (μ0,−1 − 1)μ

j

0,−1

μlog
, (1.31)

where μ0,−1 := E(1 − H)−1, along with a corresponding result for ENj by differencing,
with EQj = ENj = ∞ for all j if μ0,−1 := E(1 − H)−1 = ∞. For the GEM(0, θ) model,

μ0,−1
θ= 1/(θ − 1)+, with value ∞ iff 0 < θ ≤ 1. Also, in the setting of Theorem 1.2, the Markov

chain Q• is subject to the exponential growth

lim
k→∞Q

1/k
k = exp(μlog) almost surely. (1.32)
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The formula (1.31) for EQj is read from the branching process description of Q•, and the
convergence of expectations is easily justified, much as in [17] for the limiting counts Kj =∑∞

i=0 1(Ni = j). The limit formula (1.32) also follows easily from Corollary 1.6. The particular
case of (1.32) for the Markov chain Q• associated with the GEM(0,1) model with μlog = 1 was
first encountered by Borel [5] and Lévy [34] in connection with the representation of a number
between 0 and 1 in the so-called Engel series, see also [12] for detailed proofs.

2. Preliminaries

2.1. Stars and bars

The notion of a random sample from a random discrete distribution admits a variety of pos-
sible interpretations. See, for instance, [39] for recent review. But the balls-in-boxes metaphor
from recent studies of the Bernoulli sieve [16] seems to provide the most intuitive language
for the present analysis. Regard the sample X1, . . . ,Xn as an allocation of n balls labeled by
i = 1,2, . . . , n into an unlimited number of boxes labeled by b ∈ {1,2, . . .}. So Xi is the la-
bel of the box into which ball i is thrown. Given P• the Xi are independent allocations with
P(Xi = b | P•) = Pb . The count Nb:n is the number of balls thrown into box b, the sample maxi-
mum Xn:n = max{b : Nb > 0} is the label of the rightmost occupied box, and so on.

Represent a configuration of balls in boxes by its classical combinatorial encoding as a list of
stars and bars [45], page 15. For instance, the configurations of values and their multiplicities in
two possible samples of size 8 from positive integers may be indicated as

N•:8 = (2,0,1,2,0,3) or (0,0,0,2,0,3,0,2,1) (2.1)

which correspond to the stars and bars sequences

∗ ∗ | | ∗ | ∗ ∗ | | ∗ ∗ ∗ | | | | | · · · or | | | ∗ ∗ | | ∗ ∗ ∗ | | ∗ ∗ | ∗ | | | · · · . (2.2)

Here Nb:8 is the number of stars between the (b − 1)th and bth bar, reading from left to right,
and the sequence is terminated for convenience at the rightmost occupied box b = M8, beyond
which all the counts are 0. Each star represents a ball, and each bar a barrier between boxes.
Box 1 is the container to the left of the first bar, box 2 is between the first bar and the second bar,
and so on. The · · · represent an unlimited number of additional boxes, all of which are empty
in these configurations with only 8 balls. These configurations are just as well encoded by their
order statistics, or by the gaps between their order statistics. The sequence of gaps between order
statistics Ĝ•:8, defined from the top down as in (1.10), counts numbers of bars between stars
(barriers between balls), from right to left, starting with the rightmost ball:

Ĝ•:8 = (0,0,2,0,1,2,0,0) or (1,0,2,0,0,2,0,3). (2.3)

These two configurations illustrate for n = 8 the cases

(N1:n > 0) ⇔ (Ĝn:n = 0) or (N1:n = 0) ⇔ (Ĝn:n > 0). (2.4)
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These relations hold no matter what the sample, by the identity of events (N1:n > 0) = (X1:n = 1)

and the definition of Ĝn:n := X1:n − 1.
For sampling from any random discrete distribution, the distribution of N•:n is just a mixture

of infinitinomial(P•) distributions, as treated in [4,15,32] for a fixed sequence of probability
parameters P• on the positive integers, with the parameter sequence P• assigned some probability
distribution. Thus for every sequence of integers (n1, . . . , nk) with ni ≥ 0 for 1 ≤ i < k and
nk > 0 and

∑n
i=1 ni = n,

P
[
N•:n = (n1, . . . , nk,0,0, . . .)

] =
(

n

n1, . . . , nk

)
E

k∏
i=1

P
ni

i (2.5)

=
(

n

n1, . . . , nk

)
E

k∏
i=1

H
ni

i (1 − Hi)
ni+1+···+nk (2.6)

=
(

n

n1, . . . , nk

) k∏
i=1

μni,ni+1+···+nk
, (2.7)

where in the last expression it is assumed that P• follows a RAM with i.i.d. hazards Hk
(d)= H

with moments μi,j := E[Hi(1−H)j ]. This expression for a RAM corrects a formula of Gnedin,
Iksanov and Roesler [17], (3), in which the multinomial coefficient should be omitted, and the
order of indices reversed. Formula (2.5) also gives

P
[
Ĝ•:n = (g1, . . . , gn)

]
for (g1, . . . gn) ↔ (n1, . . . , nk,0,0, . . .) (2.8)

via the bijection (1.13)–(1.15) mediated by the stars and bars representation between the n-tuples
of non-negative integers (g1, . . . , gn) which are the possible values of the gap sequence Ĝ•:n and
the weak compositions (n1, . . . , nk,0,0, . . .) of n with nj ≥ 0 and

∑
j nj = n which are possible

values of the count sequence N•:n. In principle, formula (2.5) specifies the distribution of the gaps
Ĝ•:n for a sample of size n from any random discrete distribution P•, with some simplification
for a RAM. The distribution of the gap sequence Ĝ•:n derived from GEM(0, θ) is especially
simple, as indicated in (1.11), and far simpler than its logically equivalent description in terms of
the counts sequence N•:n, via the stars and bars bijection.

2.2. Point processes

For a random discrete distribution P• on the positive integers, assumed to be of the stick-breaking
form (1.1) for some (possibly dependent) random factors Hi ∈ [0,1], let

F0 := 0 and Fj :=
j∑

i=1

Pi = 1 −
j∏

i=1

(1 − Hi) for j = 1,2, . . . . (2.9)
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In the stick-breaking interpretation, the Fk ∈ [0,1] are called the break points. For a random
sample X1,X2, . . . from P•,

P(Xi ≤ j | P•) = Fj , (2.10)

so the sequence F• = (F0,F1,F2, . . .) gives the evaluations at j = 0,1,2, . . . of the random
discrete cumulative distribution function derived from P•. Suppose that almost surely

Pj > 0 and
∑
j

Pj = 1, or, equivalently 0 < F1 < F2 < · · · ↑ 1. (2.11)

Following the method used by Ignatov [26] for GEM(0, θ), and further developed by Gnedin
and coauthors [17] for various other models of random discrete distributions, the counts of break
points Fj , not including either end of the interval [0,1], define a simple point process NF , with

NF (a, b] :=
∞∑

k=1

1(a < Fk ≤ b) (0 ≤ a < b < 1)

the number of break points in (a, b]. It is convenient to make the change of variable from [0,1)

to [0,∞) by the map u �→ x = − log(1 − u). This is the inverse of the cumulative distribution
function x �→ 1 − e−x of a standard exponential variable ε := − log(1 − U) for U uniform on
(0,1). Let S0 := 0 and

Sj := − log(1 − Fj ) =
j∑

i=1

− log(1 − Hi) (j = 1,2, . . .).

Regard these images Sj of the break points Fj as the points of an associated point process NS

on (0,∞),

NS(s, t] :=
∞∑

j=1

1(s < Sj ≤ t) = NF

(
1 − e−s ,1 − e−t

]
(0 ≤ s < t < ∞)

and consider the spacings Sj −Sj−1 between these points. Note that the assumption (2.11) trans-
lates into 0 = S0 < S1 < S2 < · · · ↑ ∞. The following lemma is obvious from these definitions.

Lemma 2.1.

(i) In the representation of P• as a residual allocation model (1.1) or (2.9), the factors Hi

are independent iff the spacings Sj − Sj−1, j = 1,2, . . . are independent.
(ii) The Hi are i.i.d. iff the Sj −Sj−1 are i.i.d., in which case the Sj are the points of a renewal

process on (0,∞), with spacings distributed according to S1
(d)= − log(1 − H1).

The key simplifying property of the GEM(0, θ) model is Ignatov’s result [26] that its associ-
ated renewal process is a homogeneous Poisson process with rate θ . To analyse the process of
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sampling from a random discrete distribution P•, the sample X1,X2, . . . may be constructed in
the usual way from the discrete random cumulative values F• as

Xi := 1 + NF (0,Ui] := 1 +
∞∑

j=1

1(Fj ≤ Ui) (i = 1,2, . . .), (2.12)

where U1,U2, . . . is a sequence of i.i.d. uniform (0,1) variables, independent of the break points
F• counted by NF . Here, the parts of the stick between break points are labeled from left to right
by 1,2, . . . . Then Xi is the label of the part of the stick containing Ui . That label is conveniently
evaluated in (2.12) as 1 plus the number of break points to the left of Ui . The next lemma too
follows immediately from these definitions.

Lemma 2.2. Whatever the random discrete distribution P• subject to (2.11), let the sample
(X1, . . . ,Xn) be constructed by (2.12) from the break points F• and an i.i.d. uniform sample
(U1, . . . ,Un), with Sj := − log(1 − Fj ) the transformed break points, and εi := − log(1 − Ui)

the transformed uniforms, which are an i.i.d. standard exponential sample. Then the order statis-
tics of the X-sample, the U -sample and the ε-sample are related by

Xi:n = 1 + NF (0,Ui:n] = 1 + NS(0, εi:n] (1 ≤ i ≤ n), (2.13)

while the gaps of the X-sample in descending order Ĝi:n := Xn−i+1:n −Xn−i,n may be recovered
from counts in either of the point processes NF or NS as

Ĝi:n = NF (Un−i:n,Un−i+1:n] = NS(εn−i:n, εn−i+1:n] (1 ≤ i ≤ n). (2.14)

2.3. The Yule process

The following proposition presents a number of known characterizations of the Yule process.

Proposition 2.3. Let Y0 := 0 < Y1 < Y2 < · · · be the points of a simple point process on [0,∞),
with an initial point at 0, and associated counting process

NY (t) :=
∞∑

k=0

1(Yk ≤ t) (t ≥ 0).

The following conditions are equivalent:

• The counting process NY is a standard Yule process, that is a pure birth Markov process,
with state space {1,2, . . .}, initial state NY (0) = 1, right continuous step function paths,
constant transition rate k for transitions from k to k + 1, and all other transition rates 0.

• The counting process NY is a Markov process with stationary transition probabilities, such
that NY (0) = 1 and for s, t ≥ 0, for each m = 1,2, . . . the conditional distribution of NY (s+
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t) − NY (s) given NY (s) = m is the negative binomial(m, e−t ) distribution with generating
function

E
(
zNY (s+t)−NY (s) | NY (s) = m

) =
(

e−t

1 − (1 − e−t )z

)m

. (2.15)

• There is the representation

Yk =
k∑

i=1

εi

i
(k ≥ 0) (2.16)

for a sequence of i.i.d. standard exponential variables εi , with Y0 = 0.
• For each fixed k there is the equality of joint laws

(Yj ,0 ≤ j ≤ k)
(d)= (εn:n − εn−j :n,0 ≤ j ≤ k) for every n ≥ k, (2.17)

where ε0:n := 0 < ε1:n < · · · < εn:n is the sequence of order statistics of i.i.d. standard
exponential variables (εi,1 ≤ i ≤ n).

• There is the representation

NY (t) = 1 + Nγ

((
et − 1

)̂
ε1

)
, (2.18)

where Nγ (v) := ∑∞
i=1 1(γi ≤ v) is a rate 1 Poisson process with arrival times γk = ∑k

i=1 ε̃i

for a sequence of i.i.d. standard exponential variables ε̃i , and ε̂1 a further standard expo-
nential variable, independent of all the ε̃i , which may be identified as

ε̂1 = lim
t→∞ e−tNY (t) = lim

k→∞ ke−Yk almost surely (2.19)

while

γk = (
eYk − 1

)̂
ε1 (k = 1,2, . . .). (2.20)

• There is the representation

Yk = log(γ̂k+1/γ̂1) (k = 0,1,2, . . .), (2.21)

where γ̂k+1 = ∑k+1
i=1 ε̂i for a sequence of i.i.d. standard exponential variables ε̂i , which may

be identified as γ̂1 = ε̂1 as in (2.19) for k = 0, and γ̂k+1 = ε̂1 + γk as in (2.20) for k ≥ 1.

The equivalence of the first two descriptions can be found in Feller [14], Section XVII.3.
The representation (2.16) of the pure birth process in terms of independent exponential holding
times is well known, as is the equivalence of (2.16) and the representation (2.17) in terms of the
order statistics of a sequence of i.i.d. exponential variables, which is due to Sukhatme [46] and
Rényi [42]. The representation (2.18) is due to Kendall [33], Theorem 1. See also [2], page 127,
Theorem 2, [31], Theorem 3.12, [36], and [21], Theorem 4.3, for a more general characterization
due to Lundberg [35] of when a mixed Poisson process can be time-changed to a Markovian
birth process with stationary birth rates. See also [22], [40], Lemma 6, [8], page 532, [6,13] for
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variations and applications of the representation (2.18) of the Yule process. The identification
(2.19) follows immediately from (2.18) and the strong law of large numbers for the Poisson
process Nγ . Then (2.20) follows, because the random time t = Yk when NY first reaches k + 1,
corresponds to the random time v = (eYk −1)̂ε1 when Nγ first reaches k, that is v = γk . The final
representation (2.21) is just a rearrangement of (2.20), with the indicated change of variables, as
given in [48], (5.3). The equivalence of the two very different looking representations (2.16) and
(2.21) of (Y1, Y2, . . .) can be quickly checked as follows. By well-known beta-gamma algebra
(see, e.g., [7]), in the construction (2.21) the random variables γ̂1/γ̂2, γ̂2/γ̂3, . . . , γ̂i/γ̂i+1 are
independent, with

γ̂i/γ̂i+1
(d)= 1 − β1,i and − log(1 − β1,i )

(d)= εi/i

as required. Tracing back through the definitions, this calculation also implies Kendall’s repre-
sentation (2.18).

3. Proofs

In a sample X1, . . . ,Xn from P• defined by the RAM (1.1), the number of values Xi strictly
greater than 1 has the mixed binomial(n,p) distribution with p assigned the distribution of
1 − H . That is

P

(
n∑

i=1

1(Xi > 1) = m

)
= q∗(n,m) :=

(
n

m

)
μn−m,m, (3.1)

where μn−m,m := EHn−m(1 − H)m. This q∗(�,m) is the transition probability function of each
of the tail count Markov chains Q∗•:n := (Q∗

k:n, k = 0,1, . . .) which describe the sequences of tail
counts obtained when n balls are distributed according to the RAM with i.i.d. factors distributed
like H :

Q∗
k:n :=

n∑
i=1

1(Xi > k) (k = 0,1, . . .). (3.2)

So Q∗•:n is the Markov chain with transition matrix (3.1) and initial state Q∗
0:n = n. The ∗ is used

here to match notation with the overview [16], Section 2, where W := 1 − H so that μn−m,m :=
E(1−W)n−mWm, and to distinguish q∗ from the decrement matrix q that appears in Gnedin [19]
and Gnedin and Pitman [18]. Those articles are concerned with the composition of n generated
by the configuration of n balls in boxes, that is the list of counts of non-empty boxes. For that
purpose, the chain with transition matrix q∗ is watched only when it moves. By renormalizing
the off-diagonal elements of q∗, the resulting transition matrix q with zero diagonal entries is
given by

q(n,m) := q∗(n,m)1(n > m)

1 − q∗(n,n)
=

(
n

m

)
μn−m,m1(n > m)

1 − μ0,n

(3.3)



3636 J. Pitman and Y. Yakubovich

which explains the factor 1 − μ0,n in the denominator of formulas of [19] and [18], Example 2.
Beware that the decrement matrix of [19] and [18], (11), is the matrix with entries q(n,n − m)

rather than q(n,m) as in (3.3).
By definition,

Mn := max
1≤i≤n

Xi = min
{
k : Q∗

k:n = 0
}
, (3.4)

is the almost surely finite random time at which the transient Markov chain Q∗•:n is absorbed in
state 0. Theorem 1.2 is concerned with the time reversal of this Markov chain, with time counted
back from the step before the absorption time, that is

Q̂k:n := Q∗
Mn−1−k:n (k ≥ 0) (3.5)

with the convention that Q̂k:n := ∞ for k ≥ Mn, meaning that Q̂•:n reaches an absorbing state
∞ at time Mn, just as Q∗•:n reaches its absorbing state 0 at time Mn. The initial state of Q̂•:n is
Q̂0:n := Q∗

Mn−1:n = NMn:n, the number of balls in the rightmost occupied box after n balls have
been thrown. Also, the last state of Q̂•:n before absorption at ∞ is Q̂Mn−1:n = Q∗

0:n = n. Hunt
[25] showed that the time reversal of a Markov chain with stationary transition probabilities such
as (3.5) is another Markov chain with stationary transition probabilities, say q̂n(�,m), which may
be described as follows. For n,m ≥ 1 let

gm:n :=
∞∑

k=0

P
(
Q∗

k:n = m
) =

∞∑
k=0

P(Q̂k:n = m) (3.6)

be the potential function giving the expected number of times that either Q∗•:n or its time reversal
Q̂•:n hits state m. Then for positive integers m and � the expected number of m to � transitions
of the original tail count chain Q∗•:n can be computed in two different ways as

gm:nq∗(m,�) = g�:nq̂n(�,m) (3.7)

which rearranges to give

q̂n(�,m) = gm:n
g�:n

q∗(m,�). (3.8)

A proof of Theorem 1.2 will combine the following two lemmas.

Lemma 3.1. Let Q∗•:n be a sequence of Markov chains, each with the same transition probability
function q∗(m,�) on the set {0,1,2, . . .}, such that P(Mn < ∞) = 1 for every n, where Mn is
the time Q∗•:n first hits state 0, assumed to be an absorbing state. Suppose further that for every
m = 1,2, . . .

lim
n→∞P

(
Q∗

0:n = m
) = 0 and

lim
n→∞gm:n = gm with 0 < gm < ∞ and

∞∑
m=1

gmq∗(m,0) = 1.
(3.9)
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Let Q̂•:n be the chain Q∗•:n reversed back from time Mn − 1 as in (3.5). Then, as n → ∞,
the finite-dimensional distributions of Q̂•:n converge to those of a limit process Q̂•:∞, which is
a transient Markov chain with state space {1,2, . . .}, transition probability matrix q̂(�,m) :=
gmq∗(m, �)/g�, initial probability distribution

P(Q̂0:∞ = m) = gmq∗(m,0) (m = 1,2, . . .) (3.10)

and potential function
∑∞

k=0 P(Q̂k:∞ = m) = gm for all m = 1,2, . . . .

Proof. By decomposing over values of Mn, formula (3.10) holds with Q̂0:n instead of Q̂0:∞
and gm:n instead of gm for each n. The assumptions (3.9) ensure that the initial state Q̂0:n of
Q̂•:n converges in distribution to Q̂0:∞ with distribution (3.10). Together with the well-known
equation (A.5) recalled in the Appendix, which is satisfied by the potential function

g�:n = P
(
Q∗

0:n = �
) +

∞∑
m=1

gm:nq∗(m,�) (3.11)

for every n, these assumptions imply that a stochastic matrix q̂(�,m) is obtained as the n → ∞
limit of q̂n(�,m) in (3.8). The probability of any particular finite sequence of values of (Q̂i:n,0 ≤
i ≤ k), say (m0, . . . ,mk) is

gm0:nq∗(m0,0)

k−1∏
i=0

q̂n(mi,mi+1) → gm0q
∗(m0,0)

k−1∏
i=0

q̂(mi,mi+1) as n → ∞

and the conclusion follows. �

Lemma 3.1 also applies to the theory of random walks conditioned to stay positive. For in-
stance, for Q∗•:n a simple symmetric random walk with increments of ±1 stopped when it first
reaches 0, the time reversed limit chain Q̂•:∞ is the random walk started at 1 and conditioned
never to hit 0, as discussed in [41].

That the assumptions of Lemma 3.1 are satisfied by the particular sequence of tail count
Markov chains Q∗•:n derived from a RAM is a consequence of the next lemma.

Lemma 3.2. In the setting of Theorem 1.2, for a RAM such that − log(1 − H) has a non-lattice
distribution with finite mean μlog, the limit of the potential function (3.6) of the chain Q∗•:n as
n → ∞ is

lim
n→∞gm:n = 1

mμlog
. (3.12)

Proof. From the transition matrix (3.1), given that the chain Q∗•:n ever hits state m, the expected
number of times it stays there is 1/(1 − q∗(m,m)) = (1 − μ0,m)−1. So

gm:n = P
(
Q∗

k:n = m for some k ≥ 0
)
(1 − μ0,m)−1
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and (3.12) is equivalent to the result of Gnedin [19], Proposition 5, that under the above assump-
tions

lim
n→∞P

(
Q∗

k:n = m for some k ≥ 0
) = 1 − μ0,m

mμlog
. (3.13)

Gnedin’s proof of (3.13) can be simplified to obtain (3.12) directly as follows. Let Sk :=∑k
i=1 − log(1 − Hi) so the Sk with S0 = 0 are the times of renewals in a renewal point pro-

cess on [0,∞), with associated counts NS(s, t] := ∑∞
k=1 1(Sk ∈ (s, t]) for 0 ≤ s < t < ∞. Note

that this renewal point process has zero delay as in Section 2.2, rather than the stationary delay
as in Corollary 1.6. Let ε1:n < · · · < εn:n be the order statistics of n i.i.d. exponential variables
ε1, . . . , εn, so that the tail count chains may be constructed according to Lemma 2.2 as

Q∗
k:n :=

n∑
i=1

1(εi > Sk) =
n∑

i=1

1(εi:n > Sk). (3.14)

Then for 1 ≤ m < n and k ≥ 0, there is the almost sure identity of events(
Q∗

k:n = m
) = (εn−m:n < Sk ≤ εn−m+1:n) (3.15)

and hence as n → ∞

gm:n := E

∞∑
k=0

1
(
Q∗

k:n = m
) = ENS(εn−m:n, εn−m+1:n] → 1

mμlog
(3.16)

by application of Blackwell’s renewal theorem and the representation (2.17) of exponential order
statistics, which together with (2.16) gives E(εn−m+1:n − εn−m:n) = 1/m. �

Proof of Theorem 1.2. Lemma 3.2 gives the convergence of potential functions required in (3.9)
for application of the time reversal Lemma 3.1 to conclude that Q̂•:N converges in distribution
to Q• := Q̂•:∞ as in the lemma. Since Q∗

0:n = n the first condition in (3.9) is satisfied, and so is
the last condition, because switching the order of summation and integration shows that the limit
distribution (1.18) of Q0 sums to 1 for any distribution of H with μlog < ∞. Formula (1.17)
comes from combination of (3.1) and (3.12). The joint convergence in distribution of Q, N and
G sequences as in (1.16) follows easily from the result for the Q sequences, using the explicit
formulas for N and G in terms of Q, both before and after passage to the limit, which are also
summarized in the claim. �

Proof of Corollary 1.5. This is clear by inspection of formula (1.17) for the transition mecha-
nism of Q•. �

Proof of Corollary 1.6. This follows by comparison of Corollary 1.5 with the transition mech-
anism of the Yule process described in Proposition 2.3. A more insightful argument can be given
as follows, by further development of the argument around (3.14). Blackwell’s renewal theorem
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gives limt→∞ ENS(t, t + h] = h/μlog, as well as convergence in distribution as t → ∞ of the
shifted counting process (NS(t, t + h], h ≥ 0) to that of the stationary renewal process

N∗
S (0, h] :=

∞∑
i=0

1
(
S∗

i ≤ h
)

(h ≥ 0), (3.17)

where (S∗
z , z ∈ Z) is the collection of points of the two-sided stationary renewal point process

with spacing distribution that of − log(1−H) and the stationary start S∗
0 assigned the distribution

(1.25). Together with the well known reversibility property of N∗
S and the Yule representation

(2.17) of the order statistics of exponential variables, this gives the description of Corollary 1.6
for the limit in distribution of the G-sequence in Theorem 1.2. The corresponding results for the
N - and Q-sequences follow easily using the duality between the N - and G-sequences described
in the introduction, in terms of interleaving the points of the two point processes. �

The convergence part of the above argument glosses over a few details, but they are technically
easier than those dealt with in [17] in a quite similar proof. The present method of looking
down from the maximum of exponential order statistics means it is only necessary to deal with
convergence in distribution of counts of a one-sided renewal process, looking back from a large
random time, which is easily done. Moreover, the limit comes out simply expressed in terms of
just one side of the two-sided stationary renewal process, rather than involving both sides of the
two-sided process, as in [17].

Alternative proof of Corollary 1.6. As indicated already in the introduction, it is quite easy to
pass algebraically between the alternate formulations of Theorems 1.1 and 1.2. Gnedin, Iksanov
and Roesler already gave an interpretation of their Theorem 1.1 in terms of an interleaving of
points of two point processes. However, their point process interpretation of the limiting N• se-
quence is not obviously equivalent to the much simpler point process description of Corollary 1.6.
So it seems worth indicating how Corollary 1.6 can nonetheless be derived from the construction
of N• given in [17]. In [17], Theorem 2.1, and the proof of [17], Lemma 3.4, the limit sequence
N• was constructed by first exponentiating the two-sided stationary renewal process S∗

z , z ∈ Z on
the logarithmic scale to create a scale-invariant (self-similar) point process ξ∗

z := exp(S∗
z ), z ∈ Z

with

0 < · · · < ξ∗−2 < ξ∗−1 < 1 < ξ∗
0 < ξ∗

1 (3.18)

together with an independent homogeneous Poisson rate 1 sampling process, with points at say
0 < γ1 < γ2 < · · · with independent standard exponential spacings. The informal description
from [17] is to regard the γk as the locations of balls thrown into a doubly infinite array of boxes
(ξ∗

z , ξ∗
z+1) indexed by z ∈ Z, then let (N0,N1, . . .) be the counts of balls in consecutive boxes,

starting with N0 the count of balls in the first occupied box, that is the box (ξ∗
Z, ξ∗

Z+1) with
ξ∗
Z < γ1 < ξ∗

Z+1 for the random integer index Z determined by this condition, ignoring the event
of probability zero that there might be any ties between the ξz and γk . That is to say

Ni :=
∞∑

k=1

1(ξi < γk < ξi+1), where ξi := ξ∗
Z+i (i = 0,1,2, . . .). (3.19)
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As argued in the proof of [17], Lemma 3.4, the ξk , k ≥ 1 may be constructed directly as

ξk = γ1

W0

k−1∏
i=1

(1 − Hi)
−1, (3.20)

where the Hi are i.i.d. copies of the basic hazard variable, 1/W0 with 1/W0
(d)= exp(S∗

0 ) is a
further independent multiplicative version of the stationary delay variable, and the Poisson points
γk are assumed to be independent of all these variables. Note that the precise value of ξ0 is of no
importance in (3.19), except for the fact that ξ0 < γ1 < ξ1, so that (3.19) for i = 0 reduces to

N0 := 1 +
∞∑

k=2

1(γk < ξ1). (3.21)

This formula states that count of balls in the leftmost occupied box is 1 for γ1 plus however many
following γk are to the left of the first split ξ1 between boxes. This construction is made difficult
by the way the definition of the break points between boxes involves one of the Poisson sample
points γ1, which then affects the distribution of the other Poisson sample points which are all
conditioned to be greater than γ1. However, the construction can be simplified by remarking that
the dual sequence G• counting box dividers between balls is

Gi :=
∞∑

k=1

1(γi < ξk < γi+1) = N∗
S (logγi, logγi+1)

(d)= N∗
S

(
log(γi/γ1), log(γi+1/γ1)

)
by stationarity of N∗

S

(d)= N∗
S (Yi−1, Yi) (3.22)

according to the representation (2.21) of the birth times Yi of a Yule process. Moreover, it is
clear that this identity in distribution holds jointly as i varies. Thus the point process description
of N• in [17], implies the characterization of G• provided in Corollary 1.6, hence also the dual
description of N• in terms of the Yule process. �

The proof of Corollaries 1.4 and 1.3 is based on theory of increasing Markov chains recalled
in the Appendix.

Proof of Corollary 1.3. This follows easily from Proposition A.1. �

Proof of Corollary 1.4. That the limiting gaps G• for the GEM(0, θ) model are independent
with the indicated geometric distributions can be read from the exact result (1.11) for a sample
of size n, as explained in the introduction. As for the converse assertions, suppose first that the
limiting gaps G• are geometrically distributed. Then

hj := P(Gj ≥ 1) = 1 − pj,j = 1 − μ0,j .
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On the other hand, (3.13) gives hj = (1 − μ0,j )/(jμlog). Equating these two expressions for hj

gives for j = 1,2, . . . .

E(1 − H)j = μ0,j = θ

θ + j
= E(1 − β1,θ )

j ,

where θ := 1/μlog and β1,θ has the beta(1, θ) distribution with density θ(1−u)θ−1 at 0 < u < 1.

Hence H
(d)= β1,θ .

Suppose next that P(Ĝ1:n ≥ 1) does not depend on n. Given P•, the conditional probability

P(Ĝ1:n ≥ 1 | P•) = n

∞∑
m=1

Pm(P1 + · · · + Pm−1)
n−1

by the decomposition over the maximal value m which appears only once iff Ĝ1:n ≥ 1. This gives
for a RAM with i.i.d. factors H1,H2, . . .

P(Ĝ1:n ≥ 1) = n

∞∑
m=1

E

[
Hm

m−1∏
i=1

(1 − Hi)

(
1 −

m−1∏
i=1

(1 − Hi)

)n−1]

= nμ1,0

∞∑
m=1

n−1∑
k=0

(
n − 1

k

)
(−1)k(μ0,k+1)

m−1

= nμ1,0

n−1∑
k=0

(
n − 1

k

)
(−1)k

1

1 − μ0,k+1
. (3.23)

By a simple algebra, the equality P(Ĝ1:n ≥ 1) = P(Ĝ1:n+1 ≥ 1) translates into the following
recursion

n + 1

1 − μ0,n+1
=

n−1∑
k=0

(
n

k

)
(−1)n−k−1 k + 1

1 − μ0,k+1
(3.24)

which allows to define μ0,n one by one starting from arbitrary μ0,1 ∈ (0,1). Since the moments
μ0,n determine the distribution of H , and in GEM(0, θ) model satisfy (3.24) as follows from
(1.11) or can be easily verified directly using (1.23), the claim follows.

Finally, suppose that the limiting gaps Gj are independent as j varies. According to Propo-
sition A.2, the jumping chain derived from Q• is the strict record chain derived from the initial
distribution p0,j := μj,0/(jμlog). This implies that the transition matrix p of Q• must satisfy
the identity

pm,n

1 − pm,m

= p0,n

1 − p0,1 − · · · − p0,m

for 1 ≤ m ≤ n. (3.25)
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Plugging in the formula (1.17) for p, this becomes(
n−1
m−1

)
μn−m,m

1 − μ0,m

= μn,0/n

μlog − μ1,0/1 − · · · − μm,0/m
. (3.26)

Consider now a distribution of H on (0,1) with E(H) = μ1 and E − log(1 − H) = μlog for
some specified values of μ1 and μlog subject to 0 < μ1 < μlog < ∞. Let θ := μ1/(μlog − μ1)

and μn := μn,0 = EHn. Then (3.26) for m = 1 yields easily

μn = nμn−1

θ + n
(n ≥ 2)

and hence by induction on n

μn = (1 + θ)μ1
(1)n

(1 + θ)n
= (1 + θ)μ1Eβn

1,θ (n ≥ 1).

Thus EHn = cEβn
1,θ for every n ≥ 1 for a constant factor c := (1 + θ)μ1. To complete the

argument, it only remains to show that c = 1, which achieved by the following lemma. �

Lemma 3.3. Let H̃ and H be two random variables with

P(0 < H̃ < 1) = P(0 < H < 1) = 1 and (3.27)

EH̃ n = cEHn for some constant c and all n = 1,2, . . . . (3.28)

Then c = 1 and H̃
(d)= H .

Proof. By switching the roles of H and H̃ if c > 1, it is enough to consider the case when
0 < c < 1. Let Bc denote a Bernoulli(c) variable independent of H . Then

E(BcH)n = E
(
Bn

c Hn
) = E

(
BcH

n
) = E(Bc)EHn = cEHn (n ≥ 1).

Because a distribution on [0,1] is uniquely determined by its moments, it follows from (3.28)

that H̃
(d)= BcH , the distribution of which has an atom of magnitude 1 − c > 0 at 0. Thus (3.28)

for 0 < c < 1 violates (3.27), and the conclusion follows. �

Remark. An alternative proof that the limiting gaps G• derived from GEM(0, θ) are both inde-
pendent and geometrically distributed is obtained via Proposition A.2. According to that propo-
sition, it is enough to check that the transition matrix p of Q• satisfies (3.25) for all 1 ≤ m ≤ n,
that is to check (3.26) for the various moments derived from H with beta(1, θ) distribution. But
using the evaluations (1.4) of beta(1, θ) moments, after cancelling common factors, the identity
(3.26) reduces to the summation formula

m∑
i=1

(1)i−1θ

(1 + θ)i
= 1 − (1)m

(1 + θ)m
(m = 1,2, . . .). (3.29)
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This is easily checked by induction on m, along with its probabilistic interpretation

P(Q0 > m)
θ= (1)m

(1 + θ)m
(m = 1,2, . . .). (3.30)

The limit case
∞∑
i=1

(1)i−1θ

(1 + θ)i
= 1 (θ > 0) (3.31)

is the evaluation of 2F1(1,1;2 + θ; z)θ/(1 + θ) at z = 1 using Gauss’s hypergeometric summa-
tion formula 2F1(a, b; c;1) = �(c)�(c−a−b)

�(c−a)�(c−b)
(Re(c − b − a) > 0), for a = b = 1 and c = 2 + θ .

4. Further remarks

4.1. Checking the entrance law

Implicit in Theorem 1.2 is the fact that for any distribution of H on (0,1) such that μlog :=
E− log(1 − H) < ∞ and − log(1 − H) is non-lattice, and for the Markov chain Q• with mixed
negative binomial transition matrix (1.17) derived from moments of H , with initial distribution

p0,n := μn,0

nμlog

as in (1.18), the hitting probabilities hn := P(Qk = n for some k ≥ 0) are given by the formula

hn = 1 − μ0,n

nμlog
(n ≥ 1).

In fact, this is the case whenever μlog < ∞, even if − log(1 − H) has a lattice distribution. For,
by the theory of increasing Markov chains recalled in Proposition A.1, the sequence hn is the
unique solution of the system of last exit equations

hn = p0,n +
n−1∑
m=1

hmpm,n

1 − pm,m

(n = 1,2, . . .)

which for the particular mixed negative binomial transition matrix (1.17) expands to

1 − μ0,n

nμlog
= μn,0

nμlog
+

n−1∑
m=1

1

mμlog

(
n − 1

m − 1

)
μn−m,m.

After writing
(
n−1
m−1

) = m
n

(
n
m

)
, cancelling common factors, and some rearrangement of terms, this

reduces to

1 =
n∑

m=0

(
n

m

)
μn−m,m = E

[
H + (1 − H)

]n
which is true for any distribution of H on [0,1] by the binomial theorem.
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4.2. Some checks for N0 and N1

According to Corollary 1.6, the distribution of N0 = Q0, representing the limit distribution of
the number of balls NMn:n in the last box as n → ∞, and the probability of corresponding events
in terms of the limiting gaps Gi , can be evaluated as

P(N0 > k) = P(Gi = 0,1 ≤ i ≤ k) = P
[
N∗

S (Yk) = 0
] = P

(
Yk < S∗

0

)
(4.1)

for k = 1,2, . . . . This probability can be computed by conditioning on S∗
0 , and using the repre-

sentation Yk
(d)= max1≤i≤k εi of (2.17), which makes P(Yk ≤ s) = (1 − e−s)k . Thus,

P(N0 > k) = 1

μlog

∫ ∞

0
P
(− log(1 − H) > s

)(
1 − e−s

)k
ds

= 1

μlog

∫ 1

0
P(H > u)

uk

1 − u
du, (4.2)

by the change of variables u = 1 − e−s , ds = du/(1 −u). In the special case of GEM(0, θ), with

μlog
θ= θ−1 and P(H > u)

θ= (1 − u)θ , this gives easily

P(N0 > k)
θ= θ

∫ 1

0
uk(1 − u)θ−1 du

θ= (1)k

(1 + θ)k
. (4.3)

But for the general case it is easier to work with the complementary event. The same change of
variables gives

P(N0 ≤ k) = 1

μlog

∫ ∞

0
P
(− log(1 − H) > s

)(
1 − (

1 − e−s
)k)

ds

= 1

μlog

∫ 1

0
P(H > u)

1 − uk

1 − u
du

= 1

μlog

∫ 1

0
P(H > u)

(
1 + u + · · · + uk−1)du

= 1

μlog

(
EH

1
+ EH 2

2
+ · · · EHk

k

)
(4.4)

in agreement with formula (1.18) for P(N0 = k) = P(Q0 = k).
Next, consider the joint limit law of N0 and N1 for a general RAM, given N0 := NY (S∗

0 ) =
m ≥ 1 say, meaning that the event Ym−1 < S∗

0 < Ym has occurred. The case m = 1 is easiest.
Then, as in the previous computation, except that the increment NY (S∗

1 ) − NY (S∗
0 ) involves

S∗
1 − S∗

0
(d)= − log(1 − H) instead of the stationary delay, for k ≥ 1

P(N1 ≥ k | N0 = 1) =
∫ ∞

0
P
(− log(1 − H) ∈ ds

)(
1 − e−s

)k = EHk (4.5)
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by the now familiar change of variable. That is to say, the distribution of N1 given N0 = 1 is
mixed geometric(1 − H). Given N0 = m instead of N0 = 1, the situation is similar, except that
there are m independent lines of descent in the Yule process, and the total number of births in
the Yule process in all m lines of descent must be counted before the next renewal time. Now
the mixing variable 1 − H = e−(S∗

1 −S∗
0 ) is the same for all lines of descent, so conditional on

H and N0 = m the distribution of N1 is the sum of m independent geometric(1 − H) variables.
That is to say, N1 given N0 = m has the mixed negative binomial(m,1 − H) distribution, as in
Corollary 1.5.

4.3. Results when μlog = ∞
It is known that

if μlog = ∞ then Ĝi:n converges in probability to 0 for every i, (4.6)

corresponding to a piling up of values at the sample maximum Mn, so the number N̂0:n := NMn:n
of ties with the maximum converges in probability to ∞. See [20,27–29] for further treatment of
limit theorems in this case.

4.4. Limits for small counts

The simple formula (1.22) for the limiting mean EGj is a companion of similar limit results for

counts Kj :n := ∑Mn

b=1 1(Nb = j) = ∑Mn−1
i=0 1(N̂i = j), which were derived in [17], Lemma 3.2

and Theorem 3.4, and are checked again here:

lim
n→∞EKj :n = EKj = 1

jμlog
for j = 1,2, . . . , (4.7)

lim
n→∞EK0:n = EK0 = E(− logH)

μlog
, (4.8)

where the limit variables Kj are encoded in N• as

Kj :=
∞∑
i=0

1(Ni = j) (j = 0,1, . . .). (4.9)

It is known [1] that in the GEM(0, θ) model the Kj for j ≥ 1 are independent Poisson variables
with means θ/j for j = 1,2, . . . . It would be interesting to have converses of these properties,
similar to Corollary 1.4. It is also known [28] that for a general RAM subject to (1.6) the dis-

tribution of K0 is always mixed Poisson, that is K0
(d)= N(τ) for N a rate one Poisson process

independent of some non-negative random variable τ , with τ
θ= θ | logβ1,θ | in the GEM(0, θ)

case with H
θ= β1,θ .
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4.5. Examples

Even without detailing the bijection between the limiting N and G sequences, it is easy to express
the limits in distribution of various statistics of interest in terms of either of these sequences. Most
obviously, the number Ln of ties with the maximum and the number K0:n of missing values are
encoded in the counts and gaps as

Ln = min{i : Gi:n > 0} = NMn:n and

K0:n =
n∑

i=1

(Gi:n − 1)+ =
Mn−1∑
r=0

1(NMn−r:n = 0)
(4.10)

and it follows from Theorem 1.2 that

(Ln,K0:n)
(d)→

(
min{i : Gi > 0},

∞∑
i=1

(Gi − 1)+

)
=

(
N0,

∞∑
r=0

1(Nr = 0)

)
. (4.11)

Here the convergence in distribution of Ln follows immediately from either of the sequence limit
theorems. The convergence in distribution of Ln to N0, and the description (1.18) of its limit
law, was given in [17], Theorem 2.1, as well as in [20], Theorem 2.4. The result for K0:n takes
more work, because it is not immediately obvious that its limit can be read as indicated just from
convergence of finite dimensional distributions in (1.16). Also, according to [17], Proposition 3.3,
unlike the case for Ln, the limit of K0:n can be infinite almost surely, and is so iff E[− logH ] =
∞. These issues were taken care of in [17] for the representation in terms of the Ni , and a similar
discussion can be provided for the representation above in terms of the Gi . This G-representation
of K0:n and its limit in distribution can also be seen in the special case of GEM(0, θ) in [20],
(19).

Appendix: Increasing Markov chains

Consider a Markov chain Q• with state space {1,2, . . .} and stationary transition matrix (pi,j ).
Call Q• weakly increasing if pi,j = 0 for j < i, so that

P(Q0 ≤ Q1 ≤ · · · ) = 1

and call Q• strictly increasing if pi,j = 0 for j ≤ i, so that

P(Q0 < Q1 < · · · ) = 1.

The following proposition recalls some standard facts about such Markov chains [38].

Proposition A.1. Let Q• be a weakly increasing Markov chain with state space {1,2, . . .}, initial
distribution

p0,j := P(Q0 = j) (A.1)
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and stationary transition matrix (pi,j ). Suppose that Q• has no absorbing states, that is pj,j < 1
for all j . Let Gj := ∑∞

k=0 1(Qk = j) be the number of visits to state j . Then

(i) Gj has the zero-modified geometric distribution with parameters (hj ,1−pj,j ), meaning
that

P(Gj ≥ k) = hjp
k−1
j,j (k = 1,2, . . .), (A.2)

where

hj := P(Gj ≥ 1) = P(Qk = j for some k ≥ 0); (A.3)

(ii) the conditional distribution of Gj given Gj ≥ 1 is the geometric(1 − pj,j ) distribution
on {1,2, . . .}, so

gj := EGj =
∞∑

k=1

P(Gj ≥ k) = hj

1 − pj,j

; (A.4)

(iii) the potential sequence (gj , j ≥ 1) is the unique non-negative solution of the system of
equations

gj = p0,j +
∞∑
i=1

gipi,j (j ≥ 1); (A.5)

(iv) equivalently, the sequence of hitting probabilities (hj , j ≥ 1) is the unique non-negative
solution of the system of equations

hj = p0,j +
∞∑
i �=j

hipi,j

1 − pi,i

(j ≥ 1). (A.6)

Proof. For transient Markov chains, it is well known (e.g., [38], Lemma 1.5.2) that claim (ii)
holds with the probability to ever return back from state j instead of pj,j ; that this probability
is pj,j for weakly increasing Markov chains is obvious. Then (A.2) follows directly from the
definitions and implies (A.4) by summation. The mean number of visits to state j satisfies (A.5)
because one can either start with Q0 = j , which happens with probability p0,j , or come to j

from some state i, and the mean number of such transitions is gipi,j , so equation (A.5) holds for
arbitrary Markov chains with countable state space. The uniqueness of its solution is evident for
weakly increasing Markov chains with pi,j = 0 for j < i. Finally, the change of variables (A.4)
implies (A.6) by rearranging terms. �

Let p0,• := (p0,j , j = 1,2, . . .) be a fixed probability distribution with p0,j > 0 for infinitely
many j . Then there is the following well-known construction of two Markov chains derived
from p0,•. The weak record chain generated by p0,• is the sequence of weak upper record values
generated by an i.i.d. sequence with distribution p0,•. The strict record chain generated by p0,•
is similarly generated sequence of strict upper record values, which is the sequence of values of
the weak record chain watched only when there is a change of value. It is known [47] and easily
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verified that the weak record chain is Markov with initial distribution p0,• and transition matrix

p
≤
i,j = p0,j 1(i ≤ j)

p0,i + p0,i+1 + · · · (A.7)

while the strict record chain is Markov with initial distribution p0,• and transition matrix

p<
i,j = p0,j 1(i < j)

p0,i+1 + p0,i+2 + · · · . (A.8)

It is also well known [37], Theorems 16.1, 16.8, that each of these Markov chains derived from
p0,• has the special property that

the counts Gj :=
∞∑

k=0

1(Qk = j) are independent as j varies, (A.9)

where the distribution of Gj is

• geometric(1 − p
≤
j,j ) for the weak record chain, and

• Bernoulli(p≤
j,j ) for the strict record chain.

The following proposition offers a converse:

Proposition A.2. Let Q• be a weakly increasing Markov chain with transition matrix (pi,j ) on
the set of positive integers, with initial distribution p0,• such that p0,j > 0 for infinitely many j .
Suppose that the occupation times Gj defined by (A.9) satisfy P(Gj < ∞) = 1 and P(Gj = 0) <

1 for every j , and are independent. Then

hj := P(Gj ≥ 1) = p
≤
j,j (A.10)

is derived from p0,• as in (A.7), which implies

∞∏
j=1

(1 − hj ) = 0. (A.11)

Moreover, the transition matrix (pi,j ) of Q• is of the form

pi,j = 1(j = i)pi,i + 1(j > i)(1 − pi,i)hj

j−1∏
k=i+1

(1 − hk) (A.12)

= 1(j = i)pi,i + 1(j > i)(1 − pi,i)p
<
i,j (A.13)

for some arbitrary sequence of self-transition probabilities pi,i with pi,i < 1, where p<
i,j is de-

fined by (A.8). In particular, continuing to assume that the Gj are independent, the following
three conditions are equivalent:
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• pi,i = hi for all i;
• each of the Gj ’s is geometrically distributed on {0,1,2, . . .};
• Q• is the weak record chain derived from p0,•;

and so too are the following three conditions

• pi,i = 0 for all i;
• each of the Gj ’s has a Bernoulli distribution on {0,1};
• Q• is the strict record chain derived from p0,•.

In any case, whatever the self-transition probabilities pi,i , the chain Q• watched only when it
changes state is a copy of the strict record chain derived from p0,•.

Proof. By the general theory of transient Markov chains reviewed in Proposition A.1, the dis-
tribution of G• is that of a sequence of random variables with zero-modified geometric(hj ,1 −
pj,j ) distributions, as displayed in (A.2). The assumed independence of the counts G• implies
that for j ≥ 1

P(Q0 > j) = P(G1 = 0, . . . ,Gj−1 = 0,Gj = 0) (A.14)

=
j∏

i=1

(1 − hi). (A.15)

The assumption that P(Q0 < ∞) then gives (A.11). On the other hand, it is clear that the en-
tire path of the weakly increasing Markov chain Q• can be recovered with probability one from
its sequence of occupation times G•. So the transition matrix of Q• is a function of the two
sequences (hj ) and (pj,j ) which should be chosen consistently with the initial distribution to
make counts G• independent. If the chain jumps from i to j > i it means that it does not stay at
i, which happens with probability 1 − pi,i , and given this event that Gi+1 = · · · = Gj−1 = 0 and
Gj > 0, so (A.12) follows from independence of the counts G•. Then a tedious but straightfor-
ward calculation shows by induction on j that hj = p

≤
j,j provides a solution for (A.6), so (A.10)

holds and gives (A.13) after some algebra. Finally, both assertions about equivalence of three
conditions and the last assertion of the proposition now follow easily from comparison of (A.2),
(A.7) and (A.8). �
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