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We consider a p-dimensional time series where the dimension p increases with the sample size n. The re-
sulting data matrix X follows a stochastic volatility model: each entry consists of a positive random volatility
term multiplied by an independent noise term. The volatility multipliers introduce dependence in each row
and across the rows. We study the asymptotic behavior of the eigenvalues and eigenvectors of the sample
covariance matrix XX′ under a regular variation assumption on the noise. In particular, we prove Poisson
convergence for the point process of the centered and normalized eigenvalues and derive limit theory for
functionals acting on them, such as the trace. We prove related results for stochastic volatility models with
additional linear dependence structure and for stochastic volatility models where the time-varying volatil-
ity terms are extinguished with high probability when n increases. We provide explicit approximations of
the eigenvectors which are of a strikingly simple structure. The main tools for proving these results are
large deviation theorems for heavy-tailed time series, advocating a unified approach to the study of the
eigenstructure of heavy-tailed random matrices.
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1. The stochastic volatility model

Stochastic volatility models are popular in econometrics [5], mathematical finance [1,19,20]
where they are used for option and derivative securities pricing, insurance mathematics [12,
26], time series [14,29], dependence modeling [11] and many other applied research areas. In a
classical Black–Scholes framework, the volatility is assumed constant. Empirical studies, how-
ever, have shown that many observed features of implied volatility surfaces, such as the so-called
volatility smile, can only be explained by assuming a stochastic or even non-stationary volatil-
ity sequence over time; see, for example, the discussion in [37,38]. Therefore a wide variety of
stochastic volatility models has been proposed and well studied over the last few years. Stochas-
tic volatility models are heavily used within the fields of financial economics and mathematical
finance to capture the impact of time-varying volatility on financial markets and decision making.
Time-varying volatility is endemic in financial markets. This was observed early on, for example,
by Mandelbrot [28], Fama [18], and Black and Scholes [8].
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The aforementioned literature on stochastic volatility models deals with univariate or low-
dimensional multivariate time series. Here we focus on a high-dimensional stochastic volatil-
ity time series whose dimension may grow with the sample size. To be precise, we study a
p-dimensional stochastic volatility time series, and assuming that p is large, we analyze the
dependence structure of n observations from this time series via spectral properties of the sam-
ple covariance matrix. We discuss two cases: a stochastic volatility field with dependence and
whose marginal distribution does not change over time, and an iid stochastic volatility field with
time-varying marginal distribution, both under the assumption of observations coming from a
distribution with infinite fourth moment. This is quite a typical situation for financial and actuar-
ial time series; see for example the Danish fire insurance data considered in [34], Example 4.2,
emerging market stock returns [23,27] and exchange rates data [22]. For such time series it is
also common to study so–called tail risk measures to describe the impact of extreme scenarios
[9,25].

In the first part of this paper, we consider the p × n-dimensional data matrix

X = Xn = (Xit )i=1,...,p;t=1,...,n,

where (Xit ) has the structure of a stochastic volatility model, i.e.,

Xit = σitZit , i, t = 1,2, . . . , (1.1)

and (σit ) is a strictly stationary random field of non-negative random variables independent of
the i.i.d. random field (Zit ). In Section 3, we introduce additional dependence in the stochastic
volatility model. In what follows, X, σ , Z, denote generic elements of these fields. Stochastic
volatility models are common in financial time series analysis; see, for example, [1]. The present
model is an extension allowing for dependence through time and across the rows of the data
matrix. It is convenient to think of (1.1) as a model where each row stands for a time series of
log-returns of a speculative price series from a large portfolio, for example, a stock index such
as the Standard & Poor’s 500 where each of the 500 rows of X could represent the log-returns of
the stock price of a particular US-based company in a given period of time.

We will study the eigenstructure, that is eigenvalues and eigenvectors, of the p × p sample
covariance matrix S = XX′ with entries

Sij =
n∑

t=1

XitXjt , i, j = 1, . . . , p,

under the assumption that the dimension p = pn converges to infinity together with the sample
size n. In what follows, we drop the double index for the diagonal entries Sii and simply write Si .
In the model (1.1) the dependence across the rows and through time is described by the structure
of the volatility field (σit ). We will assume that the noise variable Z is heavy-tailed in the sense
that it satisfies the regular variation condition

P(Z > x) ∼ q+
L(x)

xα
and P(Z < −x) ∼ q−

L(x)

xα
, x → ∞, (1.2)
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for some α ∈ (0,4), constants q+, q− ≥ 0 such that q+ + q− = 1, and a slowly varying func-
tion L. We assume E[Z] = 0 whenever E[|Z|] < ∞ and also that the non-negative σ has a much
lighter tail than Z in the sense that all moments of σ are finite.

The considered random field (Xit ) is flexible as regards second order dependence. If α > 1,
we have cov(Xit ,Xjs) = 0 for (i, t) �= (j, s). On the other hand, cov(|Xit |r , |Xjs |r ), r > 0,
may decay arbitrarily slowly to zero when |i − j | or |t − s| goes to infinity, provided these
covariances exist. Arbitrary decay rates can be achieved, for example, by assuming that (logσit )

is a stationary Gaussian field with a suitable covariance structure. As a matter of fact, a large
part of the literature on stochastic volatility time series models deals with the case when the
log-volatility is stationary Gaussian; see [1] for surveys on the topic stochastic volatility.

Thanks to regular variation and the i.i.d.-ness of the noise (Zit ), the extremal dependence
structure of (Xit ) is characterized by the fact that the finite-dimensional distributions of (Xit )

are multivariate regularly varying with index α and have asymptotically independent marginals;
we refer to [10,34,35] for introductions to multivariate regular variation. Indeed, applications of
Breiman’s lemma (Lemma B.5.1 in [10]) imply that

P(±σitZit > x) ∼ E
[
σα
]
P(±Z > x), x → ∞. (1.3)

Thus, the marginal distributions are regularly varying with index α. Moreover, for (i, t) �= (j, s),
by another Breiman argument,

P(σit |Zit | > x,σjs |Zjs | > x)

P(|Z| > x)
= P(min(σit |Zit |, σjs |Zjs |) > x)

P(|Z| > x)

≤ P(max(σit , σjs)min(|Zit |, |Zjs |) > x)

P(|Z| > x)

∼ E
[
max(σit , σjs)

α
]
P
(|Z| > x

)→ 0, x → ∞.

This means that Xit and Xjs are asymptotically independent in the sense of extreme value theory.
Writing

X(d) = (Xit )i,t=1,...,d , Z(d) = (Zit )i,t=1,...,d , d ≥ 1,

the previous calculations on the marginals combined with standard arguments from regular vari-
ation calculus (see [10,34,35]) ensure that

P(x−1Z(d) ∈ ·)
P(|Z| > x)

v→ να(·), P(x−1X(d) ∈ ·)
P(|Z| > x)

v→ E
[
σα
]
να(·), x → ∞.

Here
v→ denotes vague convergence in R

d×d \ {0}, R = R∪ {∞,−∞}, the limiting measure να

is concentrated on the axes, and its restriction to any of the axes has Lebesgue density given by

α|x|−α−1[q+1(x > 0) + q−1(x < 0)
]
.

The fact that να is concentrated on the axes is another way of defining asymptotic independence
of the components of X.
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Since we are interested in the sample covariance matrix S in the heavy-tailed case we observe
that its diagonal entries Si =∑n

t=1 X2
it and off-diagonal entries Sij =∑n

t=1 XitXjt for i �= j

have rather distinct tails. A first indication is the fact that, on one hand, by a Breiman argument,

P
(
X2 > x

)∼ E
[
σα
]
P
(
Z2 > x

)∼ E
[
σα
]
x−α/2L(

√
x), (1.4)

while, on the other hand, by a result in Embrechts and Goldie [16], for independent copies Z1,
Z2 of Z,

P(Z1Z2 > x) ∼ q̃+
�(x)

xα
and P(Z1Z2 < −x) ∼ q̃−

�(x)

xα
, (1.5)

where � is a slowly varying function, q̃+, q̃− ≥ 0 and q̃+ + q̃− = 1. Hence by Breiman’s lemma,
for (i, t) �= (j, s),

P(±XitXjs > x) ∼ E
[
(σitσjs)

α
]
P(±Z1Z2 > x), x → ∞. (1.6)

We assume α ∈ (0,4). In this case, (1.4) and (1.6) imply that the diagonal entries (Si) of S dom-
inate all off-diagonal elements Sij in the sense that the asymptotic behavior of the eigenvalues of
S is completely determined by the diagonal diag(S) of S. This phenomenon is described in Theo-
rem 2.1. It is well known in the i.i.d. case when p = pn → ∞ (see [13,15,21]). Pioneering work
for the largest eigenvalue of S under a more restrictive growth condition on p and α ∈ (0,2) is
due to Soshnikov [39,40] and Auffinger et al. [2]. For constant p the same property was observed
for the stochastic volatility model (1.1) in Janß en et al. [24].

The diagonal elements Si are the eigenvalues of the matrix diag(S). They approximate the
eigenvalues of the sample covariance matrix S; see (2.1). Given this approximation, large devia-
tion results from Mikosch and Wintenberger [30,31] for the partial sums Si are used to derive the
convergence of the point processes of the centered and normalized eigenvalues of S towards an
inhomogeneous Poisson process; see Theorem 2.3. A similar point process convergence in the
i.i.d. case under the assumption that p and n are proportional was proved in [39,40] for α ∈ (0,2)

and later extended in [2] to α ∈ [2,4). In their proofs, the authors used truncation techniques and
a challenging combinatorial approach.

Based on Theorem 2.3, the convergence of the point process of the eigenvalues in the case
α ∈ (0,4) allows one to derive limit theory for the largest eigenvalues of S and functionals acting
on them. In particular, the centered and normalized largest eigenvalue of S converges to a Fréchet
distributed random variable with parameter α/2. In [21], this was shown for an i.i.d. random field
(Xit ).

In Section 3, we introduce additional dependence in the stochastic volatility model. We con-
sider the p × p matrix Y = A1/2X where A = An are deterministic positive definite p × p

matrices with uniformly bounded spectra. In Theorem 3.4, it is essentially shown that the eigen-
values of YY′ are approximated by those of the matrix diag(S)diag(A) and Theorem 3.7 yields
an approximation for the eigenvectors of YY′.

In Section 4, we consider another modification of the stochastic volatility model (1.1). We
assume that the distribution of σ is a function of n and write σ (n) for a generic random variable
from the i.i.d. random field (σ

(n)
it ), n ≥ 1. The possible values of σ (n), n ≥ 1, are 0 = s0 <

s1 · · · < sm for some m ≥ 1 and we assume that q
(n)
0 = P(σ (n) = 0) → 1 and that the limits
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limn→∞ nP(σ (n) = sj ) > 0, j = 1, . . . ,m, exist (finite or infinite). This means that there is a

large probability of extinction of the i.i.d. entries X
(n)
it = σ

(n)
it Zit of the data matrix Xn when n

is large. This model was introduced in [3] for m = 1, 1 − q
(n)
0 = n−v for some v ∈ (0,1] and

p/n → γ ∈ (0,∞). In Theorem 4.3, we again show that the eigenvalues of S are asymptotically
given by diag(S). The main difference to Theorem 2.1 is that the normalization needed for the
eigenvalues of S is of significantly smaller magnitude depending on the speed at which q

(n)
0

approaches 1. The method of proof of our results is different from those in [3] and works for more
general growth rates of p; we again use large deviation techniques and exploit the approximation
of the eigenvalues of S by those of diag(S). We also derive the point process convergence of the
eigenvalues of S, find approximations for the eigenvectors and we derive results for Y = A1/2X
where A is a deterministic positive definite matrix.

In Sections 5–8, we provide the proofs of the aforementioned results.

Some basic notation

Eigenvalues and eigenvectors

For any p × p positive semidefinite matrix C, we denote its ordered eigenvalues by

λ1(C) ≥ · · · ≥ λp(C).

If, for k ≤ p, the multiplicity of λk(C) is 1, then there exists a unique unit eigenvector vk(C)

associated with λk(C), i.e. ‖vk(C)‖�2 = 1 (Euclidean norm) and

Cvk(C) = λk(C)vk(C),

such that the first non-zero coordinate of vk(C) is positive. We will use the latter orientation
convention throughout this paper for eigenvectors.

Spectral norm and diagonal matrix

For any p × p matrix C, the spectral norm ‖C‖2 is
√

λ1(CC′). Moreover, diag(C) denotes the
diagonal matrix which has the same diagonal as C. Sometimes we will simply refer to diag(C)

as the diagonal of C.

Normalization

Typically, we use a sequence (ak) satisfying kP(|Z| > ak) → 1 as k → ∞ for the normalization
of eigenvalues.

2. Convergence results for the stochastic volatility model

We start with a fundamental approximation of the sample covariance matrix S in spectral norm.
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Theorem 2.1. Consider the stochastic volatility model (1.1). We assume the following condi-
tions:

(1) A growth condition for the integer sequence p = pn → ∞:

p = pn = nβ�(n), n ≥ 1, (Cp(β))

where � is a slowly varying function and β ∈ (0,1].
(2) The regular variation condition (1.2) on Z for some α ∈ (0,2) ∪ (2,4) and E[Z] = 0 if

E[|Z|] < ∞.
(3) Finiteness of all moments E[σ r ] for r > 0.

Then

a−2
np

∥∥S − diag(S)
∥∥

2
P→ 0, n → ∞.

This theorem provides a first indication that the spectral properties of S might be similar to
those of diag(S) which has a simple structure. The normalizing sequence is of the form a2

np =
(np)2/α�1(np) for some slowly varying function �1. Note that the provided approximation of S
does not hold for α > 4 when the fourth moment of X is finite. In fact, one obtains completely
different types of limit results for the eigenstructure of S; see [13,21] and the monograph [4] for
a detailed overview and more references. The approximation of the sample covariance matrix by
its diagonal is featured in the heavy-tailed case only.

The proof of Theorem 2.1 is provided in Section 5.

Remark 2.2. Assume β > 1 in (Cp(β)). If we keep the remaining assumptions of Theorem 2.1,
the same proof as for the latter result yields

a−2
np

∥∥X′X − diag
(
X′X
)∥∥

2
P→ 0, n → ∞.

On the other hand, the non-zero eigenvalues of S = XX′ and X′X are the same. This observation
is useful when determining the asymptotic behavior of the eigenvalues of S in the case β > 1.

In view of Weyl’s inequality (see [6]), we may conclude from Theorem 2.1 that

a−2
np max

i=1,...,p

∣∣λi(S) − λi

(
diag(S)

)∣∣≤ a−2
np

∥∥S − diag(S)
∥∥

2
P→ 0, n → ∞. (2.1)

Using (2.1), it is possible to study the asymptotic behavior of the point process of the scaled
eigenvalues (a−2

np λi(S))i=1,...,p , as formulated in the next theorem.

Theorem 2.3. Assume the conditions of Theorem 2.1. In addition, we assume the following con-
ditions.

(4) (σit ) is a strictly stationary ergodic field and the sequence (σ 2
1t ) is strongly mixing with

rate function αj ≤ cj−a for some constants c > 0 and a > 1.
(5) σ 2 ≤ M a.s. for some constant M > 0.
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Then we have the following weak convergence result for the point processes with state space
R \ {0}:

Nn =
p∑

i=1

ε
a−2
np (λi (S)−cn)

d→ N, n → ∞,

where N is a Poisson process on R \ {0} with mean measure μα(x,∞) = E[σα]x−α/2 and
μα(−∞,−x) = 0 for x > 0. Furthermore, εx denotes the Dirac measure in the point x and

cn =
{

0, if α ∈ (0,2),

nE
[
X2], if α ∈ (2,4).

(2.2)

The proof will be given in Section 6. We notice that this result is the same as for the iid
field ((E[σα])1/αZit ); see [21], Theorem 3.10 and Lemma 3.8. This means that dependence
within the light-tailed σ -field influences the limiting point process only through a multiplicative
factor.

Remark 2.4. In view of Remark 2.2, an analogous result holds if β > 1 in (Cp(β)).

The limiting process in Theorem 2.3 has representation

N =
∞∑
i=1

ε(
i/E[σα])−2/α , (2.3)

where 
i = E1 +· · ·+Ei for i.i.d. standard exponential random variable s (Ei). From this result,
it follows that

a−2
np

(
E
[
σα
])2/α(

λ1(S) − cn, . . . , λk(S) − cn

) d→ (
−2/α

1 , . . . ,

−2/α
k

)
(2.4)

for fixed k ≥ 1. In particular,

a−2
np

(
E
[
σα
])2/α(

λ1(S) − cn

) d→ 

−2/α

1 ,

and the limiting variable has a Fréchet distribution with parameter α/2. Now one can apply
the folklore from extreme value theory to derive limit theory for continuous functionals of
(λ1(S), . . . , λk(S)). Moreover, a continuous mapping argument also shows that

a−2
np

p∑
i=1

(
λi(S) − cn

)= a−2
np

(
trace(S) − pcn

)
converges in distribution to a totally skewed to the right α/2-stable limit; see [13,15,21].
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3. Introducing more dependence in the stochastic volatility
model

In this section, we will extend our stochastic volatility model by including some additional de-
pendence between the entries of X.

To this end, let A = An be a sequence of deterministic, positive definite p × p matrices with
bounded spectrum, that is (‖An‖2) is uniformly bounded. If the entries of X are independent
with mean 0 and variance 1, then the columns of

Y = A1/2X (3.1)

have covariance matrix A. Here A1/2 is the symmetric, positive definite square root of A.

Remark 3.1. The positive definite A can be diagonalized: A = OTO′ where O is an orthogonal
matrix and T is diagonal and positive definite. By assumption, T1/2 exists and we get A1/2 =
OT1/2O′.

The transformation (3.1) is very important in multivariate statistics since it creates a sample
with dependence structure A from an i.i.d. sample and vice versa.

Now assume that X follows the stochastic volatility model (1.1). While the dependence among
the (Xit ) is only due to the dependence among the light-tailed (σit ), the dependence of the heavy-
tailed components in the entries of Y = (Yit ) is determined by A. Our main goal in this section
is to approximate the eigenvalues and eigenvectors of

YY′ = A1/2XX′A1/2 = A1/2SA1/2.

As regards eigenvalues, we note that the spectra of A1/2SA1/2 and SA coincide. Matrices, such
as SA, which are a product of a sample covariance matrix and the inverse of another covariance
matrix are called multivariate F -matrices [4]. The limiting spectral distribution of F -matrices
was studied among others in [42]. F -matrices also play an important role in MANOVA. Wachter
[41] analyzed the generalized eigenvalue problem

det
(
S − λA−1)= 0, (3.2)

where A can be stochastic but is independent of X. Since A is positive definite its inverse can be
interpreted as a covariance matrix. Solutions λ of (3.2) are eigenvalues of A1/2SA1/2, see [4,32].

The entries of the matrix Y possess a quite general dependence structure. Nevertheless the
approximation of the eigenvalues of the associated sample covariance matrix YY′ is straightfor-
ward.

Theorem 3.2. We consider the matrix Y = A1/2X, where X follows the stochastic volatility
model (1.1). We assume the following conditions:

• The growth condition (Cp(β)) with β ∈ (0,1].
• The regular variation condition (1.2) on Z for some α ∈ (0,2) ∪ (2,4) and E[Z] = 0 if
E[|Z|] < ∞.
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• Finiteness of all moments E[σ r ] for r > 0.
• A = An constitutes a sequence of deterministic, positive definite p × p matrices with uni-

formly bounded spectra.

Then

a−2
np max

i=1,...,p

∣∣λi

(
A1/2SA1/2)− λi

(
diag(S)A

)∣∣ P→ 0.

Proof. By Weyl’s inequality (see [6]), Theorem 2.1 and the uniform boundedness of (‖A‖2), we
have

a−2
np max

i=1,...,p

∣∣λi

(
A1/2SA1/2)− λi

(
diag(S)A

)∣∣
≤ a−2

np

∥∥SA − diag(S)A
∥∥

2 ≤ a−2
np

∥∥S − diag(S)
∥∥

2‖A‖2
P→ 0, n → ∞. �

In applications involving high-dimensional data sets, it is common to only allow for depen-
dence between certain key variables, which corresponds to many entries of A being zero. There-
fore, we introduce a sparseness condition on A under which we can derive asymptotic spectral
properties of diag(S)A.

We say that A = (Aij ) ∈ R
p×p is a band matrix with bandwidth m if Aij = 0 whenever

|i − j | > m. If A1•, . . . ,Ap• ∈R
1×p denote the rows of A, we have

diag(S)A = (S1A
′
1•, . . . , SpA′

p•
)′
.

For 1 ≤ k ≤ p, there are
(
p
k

)
ways to choose k of the p rows of A. Each choice is uniquely

described by an element of the set

�k,p = {a = (a1, . . . , ak) ∈ {1, . . . , p}k : a1 < · · · < ak

}
,

where the coordinates of a contain the indices of the selected Ai•. For a ∈ �k,p define

Jk,p(a,A) =

⎧⎪⎪⎨⎪⎪⎩
1, if

k∑
i=1

p∑
j=1;|j−ai |>k

|Aai,j | > 0,

0, otherwise.

Remark 3.3. In other words, Jk,p(a,A) is 0 if, after inspection of the rows Aa1•, . . . ,Aak• and
no further information about A, it is still possible that A is a band matrix with bandwidth k. In
fact, A is a band matrix with bandwidth k if and only if Jk,p(a,A) = 0 for all a ∈ �k,p . Also
note that Aii > 0 for all i since A is symmetric and positive definite.

For ã ∈ �k,p chosen uniformly at random, the probability P(Jk,p(̃a,A) = 1) is given by

Pn(A, k) :=
(

p

k

)−1 ∑
a∈�k,p

Jk,p(a,A).
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The following condition holds if the matrices (An) are “nearly banded”.

Condition (NB): For the sequence of matrices (An)

there exists a sequence k = kp → ∞, k3
p = o(p) such that lim

n→∞Pn(A, k) = 0. (NB)

By construction, a sequence of band matrices (A) with bandwidths (k) such that k3
p = o(p)

satisfies condition (NB) since Pn(A, k) = 0 for all n. Roughly speaking, Pn(A, k) is small if
only a small number of rows relative to the dimension p violate the band matrix structure. In
particular, a change of finitely many rows does not influence the validity of condition (NB).

Under condition (NB), we can simplify λi(diag(S)A) which appeared as approximation of the
eigenvalues of YY′ in Theorem 3.2. We have the following result.

Theorem 3.4 (Eigenvalues of YY′). Consider the setting and the conditions of Theorem 3.2. In
addition, we assume the following:

• (An) satisfies condition (NB).
• The rows of (σit )i,t≥1 are i.i.d., strictly stationary ergodic sequences. Moreover, they are

strongly mixing with rate function αj ≤ cj−a for some constants c > 0 and a > 1.

1. If α ∈ (0,2), then

a−2
np max

i=1,...,p

∣∣λi

(
A1/2SA1/2)− λi

(
diag(S)diag(A)

)∣∣ P→ 0. (3.3)

2. If α ∈ (2,4), then

a−2
np max

i=1,...,p

∣∣λi

(
A1/2(S − cnI)A1/2)− λi

(
diag(S − cnI)diag(A)

)∣∣ P→ 0,

with centering cn defined in (2.2).

While YY′ = A1/2SA1/2 is a product of large matrices with complicated eigenstructure, the
eigenvalues of diag(S)diag(A) are very easy to find.

Remark 3.5. In the case α ∈ (2,4) we note that A1/2(S − cnI)A1/2 = YY′ − E[YY′]. If A =
diag(A) then the centering is not needed and (3.3) also holds for α ∈ (2,4); compare with [21],
Theorem 3.11.

Proof. We start with the case α ∈ (0,2). Let (k) be the integer sequence from condition (NB).

Since k → ∞, we have a−2
np λk(diag(S))

P→ 0 which implies

a−2
np λk+1

(
diag(S)A

)≤ a−2
np λk+1

(
diag(S)

)‖A‖2
P→ 0.

Therefore, it is sufficient to prove

a−2
np max

i=1,...,k

∣∣λi

(
diagk(S)A

)− λi

(
diagk(S)diag(A)

)∣∣ P→ 0, (3.4)
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where diagk(S) is created from diag(S) by only keeping its k largest entries and setting the others
to 0.

Define the random indices L1, . . . ,Lp via

SL1 = λ1
(
diag(S)

)
> · · · > SLp = λp

(
diag(S)

)
a.s. (3.5)

In other words, SLi
is the ith order statistic of S1, . . . , Sp . We have

diagk(S)A = (0p, . . . ,0p,Sπ1A
′
π1•,0p, . . . ,0p,Sπ2A

′
π2•, . . . , Sπk

A′
πk•,0p, . . . ,0p

)′
,

where π1 < · · · < πk are the order statistics of L1, . . . ,Lk and 0p is the p-dimensional zero
vector. Since the Si ’s are i.i.d., L1, . . . ,Lk have a uniform distribution on the set of distinct k-
tuples from (1, . . . , p). Therefore, the k-tuple π = (π1, . . . , πk) is uniformly distributed on �k,p .

Define the set Bn = {Jk,p(π,A) = 0}. From condition (NB) and the fact that π is uniformly
distributed on �k,p , we see that P(Bn) → 1. On Bn, we have for 1 ≤ i ≤ k,

Sπi
Aπi• = (0, . . . ,0, Sπi

Aπi,πi−k, Sπi
Aπi,πi−k+1, . . . , Sπi

Aπi,πi+k,0, . . . ,0).

Consider the set

Cn = {|Li − Lj | > 2k, i, j = 1, . . . , k, i �= j
}
. (3.6)

Since L1, . . . ,Lk are uniformly distributed on the set of distinct k-tuples from (1, . . . , p) we
have

lim
n→∞P

(
Cc

n

)≤ lim
n→∞ k(k − 1)

2pk(p − 2) . . . (p − k + 1)

p(p − 1) . . . (p − k + 1)
≤ lim

n→∞
2k3

p − 1
= 0,

where condition (NB) was used for the last equality.
On Bn ∩Cn, the matrix diagk(S)A is block diagonal with (2k +1)× (2k +1) blocks Qi , i ≤ k.

The matrix Qi is zero everywhere except for its (k + 1)st row which is

(Sπi
Aπi,πi−k, Sπi

Aπi,πi−k+1, . . . , Sπi
Aπi,πi+k), i ≤ k.

The (k + 1, k + 1) entry of Qi is at position (πi,πi) of diagk(S)A. Therefore, the only non-zero
eigenvalue of Qi is Sπi

Aπi,πi
. We conclude that on Bn ∩ Cn

λi

(
diagk(S)A

)= λi

(
diagk(S)diag(A)

)
, 1 ≤ i ≤ k. (3.7)

This finishes the proof of (3.4).
In the case α ∈ (2,4), we replace S, Si by S − cnI, Si − cn, respectively, and use the same

proof as for α ∈ (0,2). �

Define L̃i , i = 1, . . . , p via

(SL̃i
− cn)AL̃i ,L̃i

= λi

(
diag(S − cnI)diag(A)

)
.

The random variable L̃i encodes the location of the ith largest value of the entries of diag(S −
cnI)diag(A).
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Remark 3.6. As a by-product of the proof of Theorem 3.4 we get that, with probability tending
to 1, {L̃1, . . . , L̃k} = {L1, . . . ,Lk} for any fixed k ≥ 1.

Next we approximate the eigenvectors of YY′. To this end, let ej = (0, . . . ,0,1,0, . . . ,0)′,
j = 1, . . . , p, denote the canonical basis vectors of Rp . We define sign(A1/2eL̃j

) as the sign of
the first non-zero coordinate of the vector A1/2eL̃j

.
From the point process convergence in Theorem 2.3, one can deduce that the largest eigen-

values of S are separated. Indeed they converge in distribution to the (

−2/α
i ) in the represen-

tation of the limiting point process N ; see (2.3) and (2.4). Combining this with Theorem 3.4,
the aforementioned separation property is inherited by the eigenvalues of YY′ which simplifies
the identification of associated eigenvectors. It turns out that the unit eigenvectors of YY′ are
approximated by the properly normalized (A1/2ej ) as shown in the next theorem.

Theorem 3.7 (Eigenvectors of YY′). Consider the setting and the conditions of Theorem 3.4.
In addition, we assume σ 2 ≤ M a.s. for some constant M > 0.

1. If α ∈ (0,2), then∥∥vj

(
A1/2SA1/2)− cA,j A1/2eL̃j

∥∥
�2

P→ 0, n → ∞, j ≥ 1, (3.8)

with the normalization and orientation constants

cA,j = ∥∥A1/2eL̃j

∥∥−1
�2

sign
(
A1/2eL̃j

)
.

2. If α ∈ (2,4), then∥∥vj

(
A1/2(S − cnI)A1/2)− cA,j A1/2eL̃j

∥∥
�2

P→ 0, n → ∞, j ≥ 1.

Proof. We focus on the case α ∈ (0,2). Recall that A1/2SA1/2 and SA have the same eigenval-
ues. For any eigenvalue λ of SA with associated eigenvector v, that is, SAv = λv, we have

A1/2SA1/2(A1/2v
)= λ
(
A1/2v
)
.

In words, v is an eigenvector of SA if and only if A1/2v is an eigenvector of A1/2SA1/2; and
both eigenvectors are associated with the same eigenvalue. For the proof of (3.8), it is therefore
enough to show ∥∥vj (SA) − eL̃j

∥∥
�2

P→ 0, n → ∞, j ≥ 1. (3.9)

Fix j ≥ 1 and let (k) be the integer sequence from condition (NB). We will follow the lines of
the proof of Theorem 3.11 in [21].

By Theorem 2.1 and the observation a−2
np ‖diag(S) − diagk(S)‖2

P→ 0, we see that

a−2
np max

i=1,...,p

∥∥SAei − diagk(S)Aei

∥∥
�2

≤ a−2
np

∥∥SA − diagk(S)A
∥∥

2
P→ 0, n → ∞, (3.10)
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and consequently

ε(n) := a−2
np ‖SAeL̃j

− SL̃j
AL̃j ,L̃j

eL̃j
‖�2

P→ 0. (3.11)

Before we can apply Proposition A.7 in [21] we need to show that, with probability converging
to 1, there are no other eigenvalues in a suitably small interval around λj (SA).

Let ξ > 1. We define the set

�n = �n(j, ξ) = {a−2
np

∣∣λj (SA) − λi(SA)
∣∣> ξε(n) : i �= j = 1, . . . , p

}
.

Using (3.11) and Theorem 2.3, we obtain

lim
n→∞P

(
�c

n

)= lim
n→∞P

(
a−2
np min

{
λj−1(SA) − λj (SA), λj (SA) − λj+1(SA)

}≤ ξε(n)
)= 0.

From the proof of Theorem 3.4 recall the definitions of the sets Bn and Cn. By Proposition A.7
in [21], the unit eigenvector vj (SA) and the projection ProjeL̃j

(vj (SA)) of the vector vj (SA)

onto the linear space generated by eL̃j
satisfy for fixed δ > 0:

lim sup
n→∞

P
(∥∥vj (SA) − ProjeL̃j

(
vj (SA)

)∥∥
�2

> δ
)

≤ lim sup
n→∞

P
({∥∥vj (SA) − ProjeL̃j

(
vj (SA)

)∥∥
�2

> δ
}∩ �n ∩ Bn ∩ Cn

)
+ lim sup

n→∞
P
(
(�n ∩ Bn ∩ Cn)

c
)

≤ lim sup
n→∞

P
({

2ε(n)/
(
ξε(n) − ε(n)

)
> δ
}∩ �n ∩ Bn ∩ Cn

)
≤ lim sup

n→∞
P
({

2/(ξ − 1) > δ
})= 1{2/(ξ−1)>δ}.

The right-hand side is zero for sufficiently large ξ . Since both vj (SA) and eL̃j
are unit vectors

and ‖ProjeL̃j

(vj (SA))‖�2 ≤ 1, this means that ‖vj (SA) − eL̃j
‖�2

P→ 0. This finishes the proof of

(3.9).
For α ∈ (2,4), the proof is identical after replacing S, Si by S − cnI, Si − cn, respectively. �

4. A stochastic volatility model with thinning

In this section, we consider a modification of the stochastic volatility model Xit = σitZit in-
troduced in (1.1). We keep the i.i.d. structure of the random field (Zit ), the regular variation
condition (1.2) on Z and the independence of (σit ) and (Zit ) but we allow that σit varies with n:

X
(n)
it = σ

(n)
it Zit , n = 1,2, . . . . (4.1)
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Here (σ
(n)
it )i,t∈N is a field of i.i.d. non-negative random variables with a generic element σ (n)

whose distribution may change with n. To be precise, we assume the following condition.

Assumption (Aσ ). For given 0 = s0 < s1 < · · · < sm < ∞ and m ≥ 1,

P
(
σ (n) = si

)= q
(n)
i , i = 0, . . . ,m,n = 1,2, . . . , (Aσ )

limn→∞ q
(n)
0 = 1 and the limits limn→∞ nq

(n)
i > 0, i = 1, . . . ,m, exist.

Remark 4.1. The restriction to positive si , i = 1, . . . ,m, is for notational convenience only. Also

the assumption limn→∞ q
(n)
0 = 1 which implies σ (n) P→ 0 is for simplicity of presentation only.

It implies that the matrix X is sparse. If E[(σ (n))α] had a positive limit w, the asymptotic spectral
behavior of S = XX′ constructed from X = (σ

(n)
it Zit ) and X = (w1/αZit ), respectively, would be

the same and one could work with the normalizing sequence a2
np . However, if E[(σ (n))α] → 0,

one needs to take this decay into account and adjust the normalizing sequence to obtain non-
trivial asymptotic results.

We will assume the condition (Cp(β)) for some β ∈ (0,1] and use a normalizing sequence
(bn) such that

npE
[(

σ (n)
)α]

P
(|Z| > bn

)→ 1, n → ∞.

Since q
(n)
0 → 1 we have E[(σ (n))α] → 0. The additional condition limn→∞ nq

(n)
i > 0 means

that the expected number of non-zero σ ’s in a row of X is positive. It ensures that
limn→∞ npE[(σ (n))α] = ∞, hence bn → ∞. An alternative way of defining (bn) would be

bn = a[npE[(σ (n))α]]. (4.2)

Remark 4.2. We observe that for any v > 0,

min
i=1,...,m

sv
i

(
1 − q

(n)
0

)≤ E
[(

σ (n)
)v]≤ max

i=1,...,m
sv
i

(
1 − q

(n)
0

)
,

hence all moments E[(σ (n))v] are of the same order as 1 − q
(n)
0 .

For fixed n, relations (1.3) and (1.6) remain valid but we will need results for these tails when
x = xn → ∞ as n → ∞. By the uniform convergence theorem for regularly varying functions,
we have (see (1.2), (1.3) and (1.5) for the definitions of q± and q̃±)

P(±σ (n)Z > xn)

P(|Z| > xn)
∼ q±E

[(
σ (n)
)α]

, (4.3)

P(±σ
(n)
1 σ

(n)
2 Z1Z2 > xn)

P(|Z1Z2| > xn)
∼ q̃±E

[(
σ

(n)
1 σ

(n)
2

)α]
. (4.4)
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The following result asserts that in the thinned stochastic volatility model (4.1) the sample
covariance matrix is approximated by its diagonal under the new normalization bn. It is an analog
of Theorem 2.1.

Theorem 4.3. Consider the stochastic volatility model (4.1). We assume the following condi-
tions:

• The regular variation condition (1.2) for some α ∈ (0,2) ∪ (2,4) and E[Z] = 0 if E[|Z|] <

∞.
• The growth condition (Cp(β)) for p = pn → ∞ for some β ∈ (0,1].
• Condition (Aσ ) on the distribution of σ (n).

Then

b−2
n

∥∥S − diag(S)
∥∥

2
P→ 0, n → ∞. (4.5)

Theorem 2.1 and Theorem 4.3 show that neither the dependence structure in the σ -field nor
a time-dependent distribution of σ change the core structure of S, which is solely determined
by the dependence in the heavy-tailed Z-field. Linear dependence among the Zit ’s, for instance,
was studied in [13]. The resulting approximation of S in this case is block diagonal.

The proof of Theorem 4.3 is given in Section 7.
By an application of Weyl’s inequality, we may conclude from (4.5) that

b−2
n max

i=1,...,p

∣∣λi(S) − λi

(
diag(S)

)∣∣≤ b−2
n

∥∥S − diag(S)
∥∥

2
P→ 0, n → ∞. (4.6)

Using (4.6) and a continuous mapping argument, we can derive the limit of the point processes
of the eigenvalues of the sample covariance matrix S.

Theorem 4.4. Assume the conditions of Theorem 4.3 and, in addition to (Aσ ), for those j ∈
{1, . . . ,m} for which limn→∞ nq

(n)
j = ∞,

pe −cnq
(n)
j → 0, n → ∞, for each c > 0. (4.7)

Then we have the following weak convergence of the point processes with state space R \ {0}:

Nn =
p∑

i=1

ε
b−2
n (λi (S)−cn)

d→ N, n → ∞.

Here N is a Poisson process on R \ {0} with mean measure μα(x,∞) = x−α/2 and μα(−∞,

−x) = 0 for x > 0, and

cn =
{

0, if α ∈ (0,2),

nE
[(

X(n)
)2]

, if α ∈ (2,4).
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The proof is given in Section 8. This theorem generalizes the results in Auffinger and Tang
[3] who considered the case p/n → γ ∈ (0,∞), m = 1 and 1 − q

(n)
0 = n−v for some v ∈ [0,1].

Condition (4.7) ensures that nq
(n)
j → ∞ sufficiently fast. For example, if p = nβ for some β ∈

(0,1] and q
(j)
n ≥ n−v for some v ∈ (0,1) then for any fixed c > 0,

pe −cnq
(n)
j ≤ nβe −cn1−v → 0.

Theorem 4.4 shows that the limiting point processes of the thinned stochastic volatility model
and the original one (see Theorem 2.3) are the same. Typically, thinning decreases the magnitude
of the eigenvalues λi(S − cn) which is accounted for by a smaller normalization bn compared
with a2

np used in Theorem 2.3. Indeed, from (4.2) one sees that bna
−2
np → 0.

Next, we study the matrix Y = A1/2X and the corresponding sample covariance matrix YY′
under thinning.

Theorem 4.5. We consider the matrix Y = A1/2X, where X follows the model (4.1). We assume
the following conditions:

• The regular variation condition (1.2) for some α ∈ (0,2) ∪ (2,4) and E[Z] = 0 if E[|Z|] <

∞.
• The growth condition Cp(β) for p = pn → ∞ for some β ∈ (0,1].
• Condition (Aσ ) on the distribution of σ (n).
• A = An constitutes a sequence of deterministic, positive definite p × p matrices with uni-

formly bounded spectra.

Then

b−2
n max

i=1,...,p

∣∣λi

(
A1/2SA1/2)− λi

(
diag(S)A

)∣∣ P→ 0.

The proof of this result is identical to the proof of Theorem 3.2, using Theorem 4.3 instead of
Theorem 2.1.

Moreover the same arguments that proved Theorems 3.4 and 3.7, using Theorems 4.3 and 4.5
instead of Theorems 2.1 and 3.2, respectively, show the following result.

Theorem 4.6 (Eigenvalues and eigenvectors of YY′). Consider the setting and the conditions
of Theorem 4.5. In addition, we assume that (An) satisfies condition (NB).

1. If α ∈ (0,2), we have for the eigenvalues of YY′,

b−2
n max

i=1,...,p

∣∣λi

(
A1/2SA1/2)− λi

(
diag(S)diag(A)

)∣∣ P→ 0,

and for the eigenvectors of YY′,∥∥vj

(
A1/2SA1/2)− cA,j A1/2eL̃j

∥∥
�2

P→ 0, n → ∞, j ≥ 1,
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with the normalization and orientation constants

cA,j = ∥∥A1/2eL̃j

∥∥−1
�2

sign
(
A1/2eL̃j

)
.

2. If α ∈ (2,4), the eigenvalues of YY′ −E[YY′] satisfy

b−2
n max

i=1,...,p

∣∣λi

(
A1/2(S − cnI)A1/2)− λi

(
diag(S − cnI)diag(A)

)∣∣ P→ 0,

and for the eigenvectors of YY′ −E[YY′] we have

∥∥vj

(
A1/2(S − cnI)A1/2)− cA,j A1/2eL̃j

∥∥
�2

P→ 0, n → ∞, j ≥ 1.

In view of Remark 2.2, one can easily extend the results in this section to the case β > 1 in
(Cp(β)).

5. Proof of Theorem 2.1

The proof is similar to the one of Theorem 3.5 in [21]: one has to replace a−2
np Zit by a−2

np Zitσit

and solve a few additional technical difficulties stemming from the dependence in the σ -field. By
assumption E[Z] = E[X] = 0 whenever these expectations are finite. Since the Frobenius norm
‖ · ‖F is an upper bound of the spectral norm we have

a−4
np

∥∥S − diag(S)
∥∥2

2 ≤ a−4
np

∥∥S − diag(S)
∥∥2

F

= a−4
np

p∑
i,j=1;i �=j

n∑
t=1

X2
itX

2
j t + a−4

np

p∑
i,j=1;i �=j

n∑
t1,t2=1;t1 �=t2

Xi,t1Xj,t1Xi,t2Xj,t2

= a−4
np

p∑
i,j=1;i �=j

n∑
t=1

X2
itX

2
j t

[
1
(|ZitZjt | > a2

np

)+ 1
(|ZitZjt | ≤ a2

np

)]+ I
(n)
2

= I
(n)
11 + I

(n)
12 + I

(n)
2 .

Thus it suffices to show that each of the expressions on the right-hand side converges to zero in
probability. We have by Markov’s inequality for any ε > 0 and sufficiently small δ ∈ (0,1),

P
(
I

(n)
11 > ε

)≤ p∑
i,j=1,i �=j

nP
(|Z1Z2| > a2

np

)≤ c
np2

a
2α(1−δ)
np

→ 0.

Here we also used (1.5).
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The case α ∈ (0,2). An application of Markov’s inequality, finiteness of all moments of σ and
Karamata’s theorem for α < 2 show that for ε > 0

P
(
I

(n)
12 > ε

) ≤ c
n

a4
np

p∑
i,j=1,i �=j

E
[|Z1Z2|21

(|Z1Z2| ≤ a2
np

)]
≤ cnp2

P
(|Z1Z2| > a2

np

)→ 0, n → ∞.

The probability P(I
(n)
2 > ε) can be handled in a similar way by applying a Karamata argument.

The case α ∈ (2,4). Before we proceed we provide an auxiliary result. Consider the following
decomposition [

S − diag(S)
]2 = D + F + R,

where

D = (Dij )i,j=1,...,p = diag
([

S − diag(S)
]2)

.

The p × p matrix F has a zero-diagonal and

Fij =
p∑

u=1;u�=i,j

n∑
t=1

XitXjtX
2
ut , 1 ≤ i �= j ≤ p.

The p × p matrix R has a zero-diagonal and

Rij =
p∑

u=1;u�=i,j

n∑
t1=1

n∑
t2=1;t2 �=t1

Xi,t1Xj,t2Xu,t1Xu,t2, 1 ≤ i �= j ≤ p.

The following is the analog of Lemma 4.1 in [21].

Lemma 5.1. Assume the conditions of Theorem 2.1 and α ∈ (2,4). Then a−4
np (‖D‖2 + ‖F‖2 +

‖R‖2)
P→ 0.

In view of this lemma, we have

a−4
np

∥∥S − diag(S)
∥∥2

2 = a−4
np

∥∥[S − diag(S)
]2∥∥

2 = a−4
np ‖D + F + R‖2

P→ 0.

This finishes the proof of Theorem 2.1. Our final goal is to prove Lemma 5.1.

Proof of the D-part. We have for i = 1, . . . , p,

Dii =
p∑

u=1

n∑
t=1

X2
itX

2
ut1(i �= u) +

p∑
u=1

n∑
t1=1

n∑
t2=1

Xi,t1Xu,t1Xu,t2Xi,t21(i �= u)1(t1 �= t2)

= Mii + Nii.
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We write M and N for diagonal matrices constructed from (Mii) and (Nii) such that D =
M + N. First bounding ‖N‖2 by the Frobenius norm and then applying Markov’s inequal-

ity and using the fact that the Z’s are centered, one can prove that a−4
np ‖N‖2

P→ 0. Writing

Ai,u = {|∑n
t=1 X2

itX
2
ut | > a2

np}, we have for i = 1, . . . , p,

Mii =
p∑

u=1,u �=i

n∑
t=1

X2
itX

2
ut [1Ai,u

+ 1Ac
i,u

] = M
(1)
ii + M

(2)
ii .

On one hand, ‖M(2)‖2 ≤ pa2
np . Hence a−4

np ‖M(2)‖2
P→ 0. On the other hand, we obtain with

Markov’s inequality for ε > 0 and r > 0,

P
(∥∥M(1)

∥∥
2 > εa4

np

)
= P

(
max

i=1,...,p

∣∣M(1)
ii

∣∣> εa4
np

)
≤ P

(
max

i=1,...,p

∣∣∣∣∣
p∑

u=1,u �=i

n∑
t=1

σ 2
it σ

2
ut1
(

max
1≤j≤p,1≤s≤n

σjs > (np)1/(4r)
)
Z2

itZ
2
ut1Ai,u

∣∣∣∣∣> εa4
np

)

+ P

(
max

i=1,...,p

∣∣∣∣∣
p∑

u=1,u �=i

n∑
t=1

σ 2
it σ

2
ut1
(

max
1≤j≤p,1≤s≤n

σjs ≤ (np)1/(4r)
)
Z2

itZ
2
ut1Ai,u

∣∣∣∣∣> εa4
np

)

≤ npP
(|σ | > (np)1/(4r)

)
+ P

(
max

i=1,...,p

∣∣∣∣∣
p∑

u=1,u �=i

n∑
t=1

Z2
itZ

2
ut1

(
n∑

t=1

Z2
itZ

2
ut > a4

np/(np)1/r

)∣∣∣∣∣> εa4
np/(np)1/r

)

= J1 + J2.

Since E[σ 4r ] < ∞ we have J1 → 0. We also have for large n, sufficiently large r > 0, by the von
Bahr and Esséen inequality (see Petrov [33], 2.6.20 on page 82) for q < α/2 close to α/2,

J2 ≤ p2
P

(
n∑

t=1

Z2
1tZ

2
2t > a4

np/(np)1/r

)
∼ p2

P

(
n∑

t=1

(
Z2

1tZ
2
2t − (E[Z2])2)> a4

np/(np)1/r

)

≤ cp2 (np)q/r

a
4q
np

E

[∣∣∣∣∣
n∑

t=1

(Z2
1tZ

2
2t − (E[Z2])2∣∣∣∣∣

q]
≤ c

p2n(np)q/r

a
4q
np

→ 0, n → ∞.
�

Proof of the F- and R-parts. The key observation is that X = Zσ is regularly varying with
index α. Choose ãn such that P(X > ãn) ∼ n−1. The sequences an and ãn only differ by a
slowly varying function which is negligible for the techniques in [21]. These techniques also
work under the dependence stemming from the σ -field. Therefore, the proofs of the F- and R-
parts are identical to [21]. �
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6. Proof of Theorem 2.3

In view of (2.1) a continuous mapping argument shows that the points (λi(S) − cn)/a
2
np in Nn

may be replaced by the points (Si − cn)/a
2
np . We denote the resulting point process by

Ñn =
p∑

i=1

ε
a−2
np (Si−cn)

.

We intend to use Kallenberg’s theorem for proving Ñn
d→ N ; see Resnick [35], Proposition 3.22.

For this reason, we have to show the following relations as n → ∞,

E
[
Ñn(x,∞)

]→ E
[
N(x,∞)

]= E
[
σα
]
x−α/2, x > 0, (6.1)

E
[
Ñn(−∞,−x)

]→ E
[
N(−∞,−x)

]= 0, x > 0, (6.2)

P
(
Ñn(ei, di] = 0, i = 1, . . . ,m

)→ P
(
N(ei, di] = 0, i = 1, . . . ,m

)
, (6.3)

where 0 < e1 < d1 < · · · < em < dm < ∞, m ≥ 1, are any positive numbers. We observe that for
S = S1,

E
[
Ñn(x,∞)

] = pP
(
S > a2

npx + cn

)
, (6.4)

E
[
Ñn(−∞,−x)

] = pP
(
S < −a2

npx + cn

)
. (6.5)

Then (6.1) and (6.2) will be a consequence of the following large deviation result which is a
straightforward application of Theorem 4.2 in Mikosch and Wintenberger [30].

Lemma 6.1. Assume the conditions of Theorem 2.3. Write γn = n2/α+ε for any ε > 0.

1. If α ∈ (0,2) we have

sup
y≥γn

∣∣∣∣ P(S > y)

nP(X2 > y)
− 1

∣∣∣∣→ 0. (6.6)

2. If α ∈ (2,4) we also assume that (σt ) = (σit ) is strongly mixing with rate (αj ) such that
αj ≤ cj−a for some a > 1, c > 0. Then we have

sup
y≥γn

∣∣∣∣P(
∑n

t=1 σ 2
it (Z

2
it −E[Z2]) > y)

nP(X2 > y)
− 1

∣∣∣∣→ 0,

sup
y≥γn

P(
∑n

t=1 σ 2
it (Z

2
it −E[Z2]) ≤ −y)

nP(X2 > y)
→ 0.

Then (6.1) and (6.2) follow for α ∈ (0,2) in view of (6.4), (6.5) and by choosing y = a2
npx in

(6.6). Indeed, in view of Breiman’s lemma,

pP
(
S > a2

npx
)∼ npP

(
X2 > a2

npx
)∼ E
[
σα
]
npP
(|Z| > anp

√
x
)→ E

[
σα
]
x−α/2. (6.7)
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The case α ∈ (2,4) follows in the same way but we also have to show that the right-hand side in

p
P(a−2

np |∑n
t=1(σ

2
t −E[σ 2])| > x)

nP(X2 > a2
np)

∼ cp2
P

(
a−2
np

∣∣∣∣∣
n∑

t=1

(
σ 2

t −E
[
σ 2])∣∣∣∣∣> x

)

converges to zero. By Markov’s inequality, the right-hand expression is bounded by

cx−4 (np)2

a8
np︸ ︷︷ ︸

→0

E

[(
n−1/2

n∑
t=1

(
σ 2

t −E
[
σ 2]))4]

.

In view of the growth rate of (αj ) and the fact that σ 2 ≤ M a.s., Theorem 2.5 in [36] shows that
the moments on the right-hand side converges to a constant, hence (6.7) converges to zero for
α ∈ (2,4).

Write Fσ for the σ -algebra generated by (σit ). In what follows, we use the notation Pσ (·) :=
P(· | Fσ ) and Eσ [·] := E[· | Fσ ] for conditional probabilities and expectations with respect to
Fσ . By independence between (σit ) and (Zit ) we have

P
(
Ñn(ei, di] = 0, i = 1, . . . ,m

)= E

[
m∏

i=1

Pσ

(
Ñn(ei, di] = 0

)]
.

We intend to show that Ñn(ei, di] d→ Pois(μα(ei, di]) given Fσ . Then (6.3) follows. By Poisson’s
limit theorem (see Billingsley [7], Theorem 23.2), the latter limit holds if

Eσ

[
Ñn(ei, di]

]→ μα(ei, di].

Lemma 6.2. Assume the conditions of Theorem 2.3. For α ∈ (0,2) ∪ (2,4) and x > 0, we have

Eσ

[
Ñn(x,∞)

] = p∑
i=1

Pσ

(
(Si − cn)/a

2
np > x

)→ μα(x,∞), (6.8)

Eσ

[
Ñn(−∞,−x)

] = p∑
i=1

Pσ

(
(Si − cn)/a

2
np < −x

)→ 0. (6.9)

Proof. We only show (6.8), the relation (6.9) can be proved in a similar way. We start with the
case α ∈ (0,2) and briefly comment on the case α ∈ (2,4) at the end of this proof. We will show
that

sup
i=1,...,p

∣∣∣∣ Pσ (Si/a
2
np > x)∑n

t=1 σα
itP(Z2 > a2

npx)
− 1

∣∣∣∣→ 0, n → ∞. (6.10)
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Then by definition of (a2
np) and the ergodic theorem for (σit ),

p∑
i=1

Pσ

(
Si/a

2
np > x

) ∼ npP
(
Z2 > a2

npx
)( 1

np

p∑
i=1

n∑
t=1

σα
it

)

→ E
[
σα
]
x−α/2 = μα(x,∞).

For ease of presentation, in the proof of (6.10) we assume that x = 1. Let i ∈ {1, . . . , p}. For
small ε > 0 we have

Pσ

(
Si/a

2
np > 1

)
≤

n∑
t=1

Pσ

(
σ 2

itZ
2
it > a2

np(1 − ε)
)+ Pσ

(
Si − max

s=1,...,n
σ 2

isZ
2
is > εa2

np

)
= Ii1 + Ii2.

In view of the uniform convergence theorem for regularly varying functions and since we assume
σ to be bounded we have

lim
ε↓0

lim sup
n→∞

sup
i=1,...,p

Ii1∑n
t=1 σα

itP(Z2 > a2
np(1 − ε))

≤ 1 a.s. (6.11)

For δ > 0, we define the counting variable Ti(δ) =∑n
t=1 1(σ 2

itZ
2
it > δa2

np) and consider the
disjoint partition {

Ti(δ) ≥ 2
}
,

{
Ti(δ) = 1

}
,

{
Ti(δ) = 0

}
.

We have by the same argument as for Ii1,

lim sup
n→∞

sup
i=1,...,p

Pσ (Ti(δ) ≥ 2)

(
∑n

t=1 σα
itP(Z2 > δa2

np))2
= c(δ) a.s.,

for some constant c(δ) and therefore the contribution of the set {Ti(δ) ≥ 2} is negligible. More-
over,

Pσ

(
Ti(δ) = 1, Si − max

t=1,...,n
σ 2

itZ
2
it > εa2

np

)
≤

n∑
t=1

Pσ

(
σ 2

itZ
2
it > δa2

np, Si − σ 2
itZ

2
it > εa2

np

)
=

n∑
t=1

Pσ

(
σ 2

itZ
2
it > δa2

np

)
Pσ

(
Si − σ 2

itZ
2
it > εa2

np

)= o(1)cP
(
Z2 > a2

np

) n∑
t=1

σα
it ,
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where o(1) does not depend on i. Here we used the same argument as for (6.11). As regards the
set {Ti(δ) = 0}, we have

Pσ

(
Ti(δ) = 0, Si − max

t=1,...,n
σ 2

itZ
2
it > εa2

np

)
≤ Pσ

(
max

t=1,...,n−1
σ 2

itZ
2
it ≤ δa2

np, Si − σ 2
inZ

2
in > εa2

np

)
≤ Pσ

(
a−2
np

n∑
t=1

σ 2
itZ

2
it1
(
σ 2

itZ
2
it ≤ δa2

np

)
> ε

)
= Ii3.

Since σ 2 ≤ M and p → ∞ we have by Karamata’s theorem

a−2
np

n∑
t=1

Eσ

[
σ 2

itZ
21
(
σ 2

itZ
2
it ≤ δa2

np

)]≤ a−2
np nME

[
Z21
(
MZ2 ≤ δa2

np

)]→ 0. (6.12)

Hence for large n,

Ii3 ≤ Pσ

(
a−2
np

n∑
t=1

(
σ 2

itZ
2
it1
(
σ 2

itZ
2
it ≤ δa2

np

)−Eσ

[
σ 2

itZ
21
(
σ 2

itZ
2 ≤ δa2

np

)])
> ε/2

)
.

An application of the Fuk–Nagaev inequality (see Petrov [33], page 78, 2.6.5) yields for r ≥ 2,
c1, c2 > 0,

Ii3 ≤ a−2r
np c1

n∑
t=1

Eσ

[|σitZ|2r1
(
σ 2

itZ
2 ≤ δa2

np

)]

+ exp

(
−c2a

4
np

/ n∑
t=1

var
(
σ 2

itZ
2
it1
(
σ 2

itZ
2
it ≤ δa2

np

) |Fσ

))
.

An argument similar to (6.12) shows that

lim sup
n→∞

sup
i=1,...,p

Ii3∑n
t=1 σα

itP(Z2 > a2
np)

= 0 a.s.

Summarizing the previous bounds and observing that all of them are uniform in i, we proved for
given ε and sufficiently large n that, with probability 1,

p∑
i=1

Pσ

(
Si/a

2
np > x

)≤ (1 + ε)P
(
Z2 > a2

np

) p∑
i=1

n∑
t=1

σα
it .

Next, we show the corresponding lower bound. In view of the uniform convergence theorem
for regularly varying functions and since we assume σ to be bounded we have for x = 1 and
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ε > 0,

Pσ

(
Si/a

2
np > x

) ≥ Pσ

(
max

t=1,...,n
σ 2

itZ
2
it > (1 + ε)a2

np

)
≥

n∑
t=1

Pσ

(
σ 2

itZ
2
it > (1 + ε)a2

np

)
−
∑

1≤s<t≤n

Pσ

(
σ 2

itZ
2 > (1 + ε)a2

np

)
Pσ

(
σ 2

isZ
2 > (1 + ε)a2

np

)

=
n∑

t=1

σα
itP
(
Z2 > a2

np

)
(1 + ε)−α/2(1 + o(1)

)
.

Since this bound is uniform in i, we conclude that, for given ε > 0 and sufficiently large n,

p∑
i=1

Pσ

(
Si/a

2
np > x

)≥ (1 − ε)P
(
Z2 > a2

np

) p∑
i=1

n∑
t=1

σα
it .

This proves the lemma in the case α ∈ (0,2).
In the case α ∈ (2,4), first replace the points (Si − cn)/a

2
np by a−2

np

∑n
t=1 σ 2

it (Z
2
it − E[Z2]).

The argument is similar to the one after Lemma 6.1. Now one can follow the lines of the proof
in the case α ∈ (0,2). We omit details. �

7. Proof of Theorem 4.3

The proof is similar to the proof of Theorem 3.5 in [21] and to the proof of Theorem 2.1. We will
sketch the proof, illustrating the differences one has to pay attention to. We restrict ourselves to
the case α ∈ (0,8/3) \ {2}; the case α ∈ [8/3,4) can be handled in a way similar to Theorem 2.1.
Indeed, the proof is even simpler because the field (σ

(n)
it ) is i.i.d.

Since the Frobenius norm ‖ · ‖F is an upper bound of the spectral norm we have

b−4
n

∥∥S − diag(S)
∥∥2

2

≤ b−4
n

∥∥S − diag(S)
∥∥2

F

= b−4
n

p∑
i,j=1;i �=j

n∑
t=1

(
X

(n)
it

)2(
X

(n)
jt

)2 + b−4
n

p∑
i,j=1;i �=j

n∑
t1,t2=1;t1 �=t2

X
(n)
i,t1

X
(n)
j,t1

X
(n)
i,t2

X
(n)
j,t2

= b−4
n

p∑
i,j=1;i �=j

n∑
t=1

(
X

(n)
it

)2(
X

(n)
jt

)2[1((X(n)
it

)2(
X

(n)
jt

)2
> b4

n

)+ 1
((

X
(n)
it

)2(
X

(n)
jt

)2 ≤ b4
n

)]
+ I

(n)
2

= I
(n)
11 + I

(n)
12 + I

(n)
2 .
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Thus it suffices to show that each of the expressions on the right-hand side converges to zero in
probability. By (4.4) and the Potter bounds for regularly varying functions we have for any ε > 0
and n → ∞,

P
(
I

(n)
11 > ε

)≤ p2nP
((

X
(n)
1

)2(
X

(n)
2

)2
> b4

n

)∼ p2n
(
E
[(

σ (n)
)α])2

P
(|Z1Z2| > b2

n

)→ 0.

Here we also used that P(|Z1Z2| > x) is regularly varying with index α.
Assume first α ∈ (0,2). Applications of Markov’s inequality, Karamata’s theorem and the

Potter bounds yield

P
(
I

(n)
12 > ε

)
≤ c

p2n

b4
n

E
[∣∣X(n)

1 X
(n)
2

∣∣21
(∣∣X(n)

1 X
(n)
2

∣∣≤ b2
n

)]
= cp2n

m∑
i,j=1

q
(n)
i q

(n)
j

s2
i s2

jE[(Z1Z2)
21(sisj |Z1Z2| ≤ b2

n)]
b4
nP(sisj |Z1Z2| > b2

n)
P
(
sisj |Z1Z2| > b2

n

)

∼ cp2n

m∑
i,j=1

q
(n)
i q

(n)
j sα

i sα
j P
(|Z1Z2| > b2

n

)
= cp2n

(
E
[(

σ (n)
)α])2

P
(|Z1Z2| > b2

n

)→ 0, n → ∞.

If α ∈ (2,8/3), we have E[Z2] < ∞. Hence,

P
(
I

(n)
12 > ε

)≤ c
p2n

b4
n

E
[∣∣(X(n)

1 X
(n)
2

)∣∣2]= c
p2n

b4
n

(
E
[(

σ (n)
)2])2 → 0.

Here we also used the fact that all moments of σ (n) are of the same size; see Remark 4.2.
For α ∈ (0,2), the probability P

(n)
2 = P(I

(n)
2 > ε) can be handled analogously; we omit details.

We turn to P
(n)
2 in the case α ∈ (2,8/3). In particular, we have E[Z] = 0 and E[Z2] < ∞. With

Čhebychev’s inequality, also using the independence and the fact that E[X(n)] = 0, we find that

P
(n)
2 ≤ c

1

b8
n

E

[(
p∑

i,j=1;i �=j

n∑
t1,t2=1;t1 �=t2

X
(n)
i,t1

X
(n)
j,t1

X
(n)
i,t2

X
(n)
j,t2

)2]

≤ c
(pn)2

b8
n

(
E
[(

σ (n)
)2])4 → 0, n → ∞.

This finishes the proof.
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8. Proof of Theorem 4.4

In what follows, we will write S for a generic element of the sequence of diagonal entries (Si).
Since we have

b−2
n max

i=1,...,p

∥∥(λi(S) − cn

)− (λi

(
diag(S)

)− cn

)∥∥
2

P→ 0, n → ∞,

a continuous mapping argument shows that it suffices to show the point process convergence

Ñn =
p∑

i=1

ε
b−2
n (Si−cn)

d→ N, n → ∞.

Since the points (Si) are independent it suffices to show that for x > 0,

E
[
Ñn(x,∞)

] = pP
(
S > xb2

n + cn

)→ E
[
N(x,∞)

]= x−α/2, (8.1)

E
[
Ñn(−∞, x)

] = pP
(
S < −xb2

n + cn

)→ E
[
N(−∞,−x)

]= 0. (8.2)

We restrict ourselves to prove (8.1); the proof of (8.2) is analogous. For generic sequences (Zt )

and (σ
(n)
t ), we have the representation

S =
m∑

j=1

s2
j

n∑
t=1

Z2
t 1
(
σ

(n)
t = sj

)= m∑
j=1

s2
j

∑
t∈Aj

Z2
t ,

where Aj = A
(n)
j = {1 ≤ t ≤ n : σ (n)

t = j}. Write Mj for the cardinality of Aj . Then we have the
representation

S
d=

m∑
j=1

s2
j Tj , where Tj =

Mj∑
t=1

Z2
j t ,

and (Mj ) and (Zjt )t=1,2,...;j=1,...,m are independent. We observe that Mj is binomially dis-

tributed with mean E[Mj ] = nq
(n)
j . The next lemma concludes the proof of Theorem 4.4.

Lemma 8.1. Assume the conditions of Theorem 4.4. Then (8.1) holds.

Proof. Define τj = limn→∞ nq
(n)
j , j = 1, . . . ,m. We will consider two cases:

1. At least one τj is infinite.
2. All τj are finite.

Throughout we assume α ∈ (0,2); the case α ∈ (2,4) is analogous, taking into account the cen-
tering cn for S.

We start with the case that τk = ∞. If 0 < τj < ∞ for some j �= k we will show that s2
j Tj

does not contribute to limn→∞ pP(S > xb2
n). In this case, Mj

d→ Yj ∼ Pois(τj ) and E[e hMj ] →
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E[e hYj ], h > 0. We have by Markov’s inequality for positive h, ε,

pP
(
s2
j Tj > εb2

n

) = pP
(
Z2 > b2

n

) ∞∑
k=1

P(Mj = k)
P(
∑k

t=1 Z2
t > εb2

n)

P(Z2 > b2
n)

≤ pP
(
Z2 > b2

n

)
E
[
e hMj
] ∞∑

k=1

e −hk P(
∑k

t=1 Z2
t > εb2

n)

P(Z2 > b2
n)

∼ ε−α/2 1

nE[(σ (n))α] pnE
[(

σ (n)
)α]

P
(
Z2 > b2

n

)︸ ︷︷ ︸
∼1

E
[
e hYj
] ∞∑

k=1

ke −hk → 0.

Here we also used the subexponential property of the distribution of Z2 (see Theorem A3.20 in
Embrechts et al. [17]).

Therefore, we assume for the rest of the proof of case (1) that τj = ∞ for all 1 ≤ j ≤ m.
We have for small ε > 0,

P
(
S > xb2

n

)≤ m∑
j=1

P
(
s2
j Tj > xb2

n(1 − ε)
)+ P

(
m⋂

k=1

∣∣S − s2
k Tk

∣∣> εxb2
n

)
= I1 + I2. (8.3)

First, we deal with I1. We notice that b2
n/(nq

(n)
j )2/α → ∞. Our goal is to apply classical large

deviation results (see Theorem A.1 in [21]) after replacing Mj by E[Mj ]. We have for small δ,

Jj = P
(
s2
j Tj > xb2

n(1 − ε)
)

= P
(
s2
j Tj > xb2

n(1 − ε),
∣∣Mj −E[Mj ]

∣∣≤ δE[Mj ]
)

+ P
(
s2
j Tj > xb2

n(1 − ε),
∣∣Mj −E[Mj ]

∣∣> δE[Mj ]
)= Jj1 + Jj2.

We have

Jj2 ≤ P
(∣∣Mj −E[Mj ]

∣∣> δE[Mj ]
)= P
(
Mj > (1 + δ)E[Mj ]

)+ P
(
Mj < (1 − δ)E[Mj ]

)
.

An application of Markov’s exponential inequality yields for h = log(1 + δ) and small δ > 0,

P
(
Mj > (1 + δ)E[Mj ]

) ≤ e −h(1+δ)nq
(n)
j
(
1 − q

(n)
j

(
1 − e h

))n
≤ e −nq

(n)
j (h(1+δ)+(1−e h))

= e −nq
(n)
j ((1+δ) log(1+δ)−δ)

≤ e −0.5δ2nq
(n)
j .

A similar argument shows that for small δ > 0,

P
(
Mj < (1 − δ)E[Mj ]

)≤ e −0.5δ2nq
(n)
j .
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In view of condition (4.7), we have

pJj2 ≤ 2pe −0.5δ2nq
(n)
j → 0, n → ∞.

We also have in view of Theorem A.1 in [21]

Jj1 ≤ P

(
s2
j

(1+δ)E[Mj ]∑
t=1

Z2
t > xb2

n(1 − ε)

)
∼ (1 + δ)E[Mj ]P

(
s2
j Z2 > xb2

n(1 − ε)
)

∼ x−α/2 1 + δ

(1 − ε)α/2
nsα

j q
(n)
j P
(|Z| > bn

)
,

Jj1 ≥ P

(
s2
j

(1−δ)E[Mj ]∑
t=1

Z2
t > xb2

n(1 − ε)

)
∼ x−α/2 1 − δ

(1 − ε)α/2
nsα

j q
(n)
j P
(|Z| > bn

)
.

Letting δ ↓ 0 and recalling the definition of bn, we conclude that

lim
ε→0

lim sup
n→∞

pI1 = lim
ε→0

lim sup
n→∞

p

m∑
j=1

Jj = x−α/2.

Our next goal is to show that pI2 → 0. Consider a disjoint partition for small δ > 0 and j =
1, . . . ,m,

B1 =
⋃

1≤i<j≤m

{
s2
i Ti > δb2

n, s
2
j Tj > δb2

n

}
,

B2 =
m⋃

j=1

{
s2
j Tj > δb2

n, s
2
i Ti ≤ δb2

n, i �= j, i = 1, . . . ,m
}
,

B3 =
{

max
j≤m

s2
j Tj ≤ δb2

n

}
.

We have

pP(B1) ≤ p
∑

1≤i<j≤m

P
(
s2
i Ti > δb2

n, s
2
j Tj > δb2

n

)
.

To show that the right-hand side converges to 0, we proceed as for Jj . For i < j we replace the
random indices Mi and Mj in Ti and Tj by their corresponding expectations. We omit further
details. Abusing notation here and in what follows, we denote the resulting modified quantities
by the same symbols Ti and Tj . After this operation, Ti and Tj are independent and we can treat
their tail probabilities in the same way as for Jj , yielding limn→∞ pP(B1) = 0.

Next, we observe that

P
({∣∣S − s2

j Tj

∣∣> εb2
n, j ≤ m

}∩ B2
)≤ m∑

j=1

P
(∣∣S − s2

j Tj

∣∣> εb2
n, s

2
j Tj > δb2

n

)
.
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Now proceed as for Jj : replace all Mj by E[Mj ] in each probabilit y in the sum. Then the
modified sums S − s2

j Tj and s2
j Tj become independent. Using the independence, we see that

lim sup
n→∞

pP
({∣∣S − s2

j Tj

∣∣> εb2
n, j ≤ m

}∩ B2
)

= lim sup
n→∞

1

p

m∑
j=1

(
pP
(∣∣S − s2

j Tj

∣∣> εb2
n

))(
pP
(
s2
j Tj > δb2

n

))= 0.

Finally, we deal with

P
({∣∣S − s2

j Tj

∣∣> εb2
n, j ≤ m

}∩ B3
) ≤ P

(
b−2
n

m∑
j=1

s2
j Tj 1
(
s2
j Tj ≤ δb2

n

)
> ε

)

≤
m∑

j=1

P
(
b−2
n s2

j Tj 1
(
s2
j Tj ≤ δb2

n

)
> ε/m

)
.

Since we can choose δ independently from ε, we can take δ < ε/m, making the right-hand side
vanish. Combining all the previous bounds, we finally arrived at

lim sup
n→∞

pP
(
S > xb2

n

)≤ x−α/2, x > 0,

in the case α ∈ (0,2). In the case α ∈ (2,4) we have to center the quantities S and Tj . Then the
same ideas of the proof apply, in particular the large deviations results of Theorem A.1 in [21].
We omit details.

Next consider, for α ∈ (0,2),

P
(
S > xb2

n

) ≥ P
(
s2
j Tj > xb2

n(1 + ε),
∣∣S − s2

j Tj

∣∣≤ εb2
n for some j ≤ m

)
≥

m∑
j=1

P
(
s2
j Tj > xb2

n(1 + ε),
∣∣S − s2

j Tj

∣∣≤ εb2
n

)
−
∑

1≤i<j≤m

P
(
s2
i Ti > xb2

n(1 + ε), s2
j Tj > xb2

n(1 + ε)
)
. (8.4)

We proceed as before: we replace the numbers Mj by their expectations. After this operation the
modified sums s2

j Tj , S −s2
j Tj and s2

i Ti for i �= j become independent. Moreover, P(|S −s2
j Tj | ≤

εb2
n) → 1. Hence for fixed small δ > 0 and large n,

P
(
S > xb2

n

)≥ (1 − δ)

m∑
j=1

P
(
s2
j Tj > xb2

n(1 + ε)
)
.

Applying Theorem A.1 in [21] and letting ε, δ go to zero, we proved that

lim inf
n→∞ pP

(
S > xb2

n

)≥ x−α/2, x > 0.
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Our next goal is to consider case (2) in which 0 < τj < ∞ for all j . We will show that

pP
(
S > xb2

n

) ∼ p

m∑
j=1

P
(
s2
j Tj > xb2

n

)

∼ p

m∑
j=1

sα
j E[Mj ]P

(
Z2 > xb2

n

)
= pnE

[(
σ (n)
)α]

P
(
Z2 > xb2

n

)→ x−α/2. (8.5)

We have Mj
d→ Yj ∼ Pois(τj ) as n → ∞, in particular P(Mj = k) → π

(j)
k = P(Yj = k) and

P(Mj = k) ≤ ce −hk , k ≥ 1, h > 0; see [17] page 41, equation (1.31). Keeping this in mind,
subexponentiality of the distribution of Z2 yields

P(s2
j Tj > xb2

n)

P(Z2 > b2
n)

=
∞∑

k=1

P(Mj = k)
P(s2

j

∑k
t=1 Z2

t > xb2
n)

P(Z2 > b2
n)

→ sα
j

∞∑
k=1

π
(j)
k k = sα

j E[Mj ], n → ∞. (8.6)

For the upper bound in (8.5) we recall the inequality (8.3). In view of (8.6) and regular variation
of Z2, for the upper bound it remains to show that

P(s2
j Tj > b2

n, j = 1, . . . ,m)

P(Z2 > b2
n)

→ 0. (8.7)

We show (8.7) only for m = 2. We have

P
(
s2

1T1 > b2
n, s

2
2T2 > b2

n

)
=

∞∑
k,l=1

P(M1 = k,M2 = l)P

(
s2

1

k∑
t=1

Z2
t > b2

n

)
P

(
s2

2

l∑
t=1

Z2
t > b2

n

)

≤
∞∑

k=1

√
P(M1 = k)P

(
k∑

t=1

Z2
t > b2

n

) ∞∑
l=1

√
P(M2 = l)P

(
l∑

t=1

Z2
t > b2

n

)
.

The same arguments which established (8.6) show that the right-hand side is of the order
O((P(Z2 > b2

n))
2). This proves (8.7).

The lower bound in (8.5) follows by similar arguments, taking into account the inequality
(8.4). �
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