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This paper is devoted to establishing exponential bounds for the probabilities of deviation of a sample sum
from its expectation, when the variables involved in the summation are obtained by sampling in a finite
population according to a rejective scheme, generalizing simple random sampling without replacement,
and by using an appropriate normalization. In contrast to Poisson sampling, classical deviation inequalities
in the i.i.d. setting do not straightforwardly apply to sample sums related to rejective schemes, due to the
inherent dependence structure of the sampled points. We show here how to overcome this difficulty, by
combining the formulation of rejective sampling as Poisson sampling conditioned upon the sample size
with the Esscher transformation. In particular, the Bennett/Bernstein type bounds thus established highlight
the effect of the asymptotic variance of the (properly standardized) sample weighted sum and are shown to
be much more accurate than those based on the negative association property shared by the terms involved in
the summation. Beyond its interest in itself, such a result for rejective sampling is crucial, insofar as it permit
to obtain tail bounds for many other sampling schemes, namely those that can be accurately approximated
by rejective plans in the sense of the total variation distance.

Keywords: coupling; Esscher transformation; exponential inequality; Poisson survey scheme; rejective
sampling; survey sampling

1. Introduction

Whereas many upper bounds for the probability that a sum of independent real-valued (inte-
grable) random variables exceeds its expectation by a specified threshold value t ∈ R are docu-
mented in the literature (see, e.g., [12] and the references therein), very few results are available
when the n ≥ 1 random variables involved in the summation are sampled from a population of
finite cardinality N ≥ n according to a given survey scheme and next appropriately normalized in
order to obtain an unbiased estimator of a total (referred to as the Horvitz–Thompson estimator,
using the related survey weights as originally proposed in [25]). The sole situation where results
in the independent setting straightforwardly carry over to survey samples (without replacement)
corresponds to the case where the variables are sampled independently with possibly unequal
weights, that is, Poisson sampling. For more complex sampling plans, the dependence struc-
ture between the sampled variables makes the study of the fluctuations of the resulting weighted
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sum estimating the total very challenging. The case of simple random sampling without replace-
ment has been first considered in [24], and refined in [31] and [3]. In contrast, the asymptotic
behavior of the Horvitz–Thompson estimator as N and n simultaneously tend to infinity is well-
documented in the literature. Following in the footsteps of the seminal contribution [23], a variety
of limit results (e.g. consistency, asymptotic normality) have been established for Poisson sam-
pling and next extended to rejective sampling viewed as conditional Poisson sampling given the
sample size and to sampling schemes that are close to the latter in a coupling sense in [29] and
[5]. Although the nature of the results established in this paper are nonasymptotic, very similar
arguments are involved in their proofs, essentially based on conditioning upon the sampling size
and coupling.

It is the major purpose of this article to extend tail bounds proved for simple random sam-
pling without replacement to the case of rejective sampling, a widely studied fixed size sampling
scheme generalizing it (see, e.g., [19,21] or [9]). The approach we develop is thus based on view-
ing rejective sampling as conditional Poisson sampling given the sample size and writing then
the deviation probability as a ratio of two quantities. The numerator is the joint probability that a
Poisson sampling-based total estimator exceeds the threshold t and the size of the cardinality of
the Poisson sample equals the (deterministic) size n of the rejective plan considered, while the
denominator is the probability that the Poisson sample size is equal to n. Whereas a sharp lower
bound for the denominator can be straightforwardly derived from a local Berry–Esseen bound
proved in [17] for sums of independent, possibly non-identically distributed, Bernoulli variables,
an accurate upper bound for the numerator can be established by means of an appropriate expo-
nential change of measure (i.e., Esscher transformation), following in the footsteps of the method
proposed in [34], a refinement of the classical argument of Bahadur–Rao’s theorem in order to
improve exponential bounds in the independent setting. The tail bounds (of Bennett/Bernstein
type) established by means of this method are shown to be sharp in the sense that they explic-
itly involve the “small” asymptotic variance of the Horvitz–Thompson total estimator based on
rejective sampling, in contrast to those proved by using the negative association property of the
sampling scheme.

The article is organized as follows. A few key concepts pertaining to survey theory are re-
called in Section 2, as well as specific properties of Poisson and rejective sampling schemes.
For comparison purpose, preliminary tail bounds in the conditional Poisson case are stated in
Section 3. The main results of the paper, sharper exponential bounds for conditional Poisson
sampling namely, are proved in Section 4, while Section 5 explains how they can be used to
establish tail bounds for other sampling schemes, sufficiently close to rejective sampling in the
sense of the total variation norm. A few remarks are finally collected in Section 6 and some
technical details are deferred to the Appendix section.

2. Background and preliminaries

As a first go, we start with briefly recalling basic notions in survey theory, together with key
properties of (conditional) Poisson sampling schemes (one may refer to [30] for instance). Here
and throughout, the indicator function of any event E is denoted by I{E}, the power set of any
set E by P(E), the covariance matrix between square integrable random vectors Y and Z of
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same dimensionality by Cov(Z,Y ), the cardinality of any finite set E by #E and the Dirac
mass at any point a by δa . For any real number x, we set x+ = max{x,0}, x− = max{−x,0},
�x� = inf{k ∈ Z : x ≤ k} and �x� = sup{k ∈ Z : k ≤ x}.

2.1. Sampling schemes and Horvitz–Thompson estimation

Consider a finite population of N ≥ 1 distinct units, say IN = {1, . . . ,N}. A survey sample
of (possibly random) size n ≤ N is any subset s = {i1, . . . , in(s)} ∈ P(IN) of size n(s) = n.
A sampling design without replacement is defined as a probability distribution RN on the set
of all possible samples s ∈ P(IN). For all i ∈ IN , the probability that the unit i belongs to a
random sample S defined on a probability space (�,F,P) and drawn from distribution RN is
denoted by πi = P{i ∈ S} = RN({i}). The πi ’s are referred to as first order inclusion probabili-
ties. The second order inclusion probability related to any pair (i, j) ∈ I2

N is denoted by πi,j =
P{(i, j) ∈ S2} = RN({i, j}) (observe that πi,i = πi ). Here and throughout, we denote by E[·] the
P-expectation and by Var(Z) the variance of any P-square integrable r.v. Z : � → R. The ran-
dom vector εN = (ε1, . . . , εN) defined on (�,F,P), where εi = I{i ∈ S} fully characterizes the
random sample S ∈P(IN). In particular, the sample size is given by n(S) = ∑N

i=1 εi , its expecta-
tion and variance by E[n(S)] = ∑N

i=1 πi and Var(n(S)) = ∑
1≤i,j≤N {πi,j − πiπj } respectively.

The 1-dimensional marginal distributions of the random vector εN are the Bernoulli distributions
Ber(πi) = πiδ1 + (1−πi)δ0, 1 ≤ i ≤ N and its covariance matrix is �N = (πi,j −πiπj )1≤i,j≤N .

We place ourselves here in the fixed-population or design-based sampling framework, meaning
that we suppose that a fixed (unknown) real value xi is assigned to each unit i ∈ IN . As originally
proposed in the seminal contribution [25], the Horvitz–Thompson estimator of the population
total SN = ∑N

i=1 xi is given by

ŜεN
πN

=
N∑

i=1

εi

πi

xi =
∑
i∈S

1

πi

xi, (1)

with 0/0 = 0 by convention. Throughout the article, we assume that the πi ’s are all strictly
positive. Hence, the expectation of (1) is E[ŜεN

πN
] = SN and, in the case where the size of the

random sample is deterministic, its variance is

Var
(
ŜεN

π

) =
∑
i<j

(
xi

πi

− xj

πj

)2

× (πiπj − πi,j ). (2)

The goal of this paper is to establish accurate bounds for tail probabilities

P
{
ŜεN

πN
− SN > t

}
, (3)

where t ∈ R, when the sampling scheme εN is rejective, a very popular sampling plan that gen-
eralizes simple random sampling without replacement and can be expressed as a conditional
Poisson scheme, as recalled in the following subsection for clarity. One may refer to [18] for
instance, for an excellent account of survey theory, including many more examples of sampling
designs.
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2.2. Poisson and conditional Poisson samplings

Undoubtedly, one of the simplest sampling plan is the Poisson survey scheme (without replace-
ment), a generalization of Bernoulli sampling originally proposed in [22] for the case of unequal
weights: the εi ’s are independent and the sampling distribution PN is thus entirely determined
by the first order inclusion probabilities pN = (p1, . . . , pN) ∈ ]0,1[N :

∀s ∈P(IN), PN(s) =
∏
i∈s

pi

∏
i /∈s

(1 − pi). (4)

We point out that the (first order) inclusion probabilities of a Poisson scheme are systematically
denoted by pi rather than πi throughout the article. Indeed, two sampling schemes are simultane-
ously considered in the subsequent analysis, a rejective scheme (defined below) with first order
inclusion probabilities πi and a Poisson scheme, which the rejective scheme appears to be a con-
ditional version of, with different inclusion probabilities, therefore denoted differently in order
to avoid confusion. Observe in addition that the behavior of the Horvitz–Thompson estimator (1)
can be investigated by means of results established for sums of independent random variables.
However, the major drawback of this sampling plan lies in the random nature of the correspond-
ing sample size, impacting significantly the variability of (1). The variance of the Poisson sample
size is given by dN = ∑N

i=1 pi(1 − pi), while the variance of (1) in this case is:

Var
(
ŜεN

pN

) =
N∑

i=1

1 − pi

pi

x2
i .

Because of the variance reduction it achieves, rejective sampling, a sampling design RN of fixed
size n ≤ N , is often preferred in practice. It generalizes the simple random sampling without re-
placement, where all samples with cardinality n are equally likely to be chosen, with probability
n!(N −n)!/N !, all the corresponding first and second order probabilities being thus equal to n/N

and n(n−1)/(N(N −1)), respectively. Denoting by πR
N = (πR

1 , . . . , πR
N ) its first order inclusion

probabilities and by Sn = {s ∈ P(IN) : #s = n} the subset of all possible samples of size n, it is
defined by:

∀s ∈ Sn, RN(s) = C
∏
i∈s

pR
i

∏
i /∈s

(
1 − pR

i

)
, (5)

where C = 1/(
∑

s∈Sn

∏
i∈s pR

i

∏
i /∈s(1 −pR

i )) and the parameters pR
N = (pR

1 , . . . , pR
N) ∈ ]0,1[N

yield first order inclusion probabilities equal to the πR
i ’s and are such that

∑N
i=1 pR

i = n. Under
this latter additional condition, such a vector pR

N exists and is unique (see [19]) and the related
representation (5) is then said to be canonical. Notice incidentally that any vector p′

N ∈ ]0,1[N
such that pR

i /(1 − pR
i ) = cp′

i/(1 − p′
i ) for all i ∈ {1, . . . , n} for some constant c > 0 can be

used to write a representation of RN of the same type as (5). Comparing (5) and (4) reveals that
rejective sampling of fixed size n can be viewed as Poisson sampling given that the sample size
is equal to n. It is for this reason that rejective sampling is usually referred to as conditional
Poisson sampling. For simplicity’s sake, the superscript R is omitted in the sequel. One must
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pay attention not to get the πi ’s and the pi ’s mixed up (except in the simple random sampling
without replacement case, where these quantities are all equal to n/N ): the latter are the first
order inclusion probabilities of PN , whereas the former are those of its conditional version RN .
However they can be related by means of the results stated in [23] (see Theorem 5.1 therein, as
well as Lemma 7 in Section 4 and [9]): ∀i ∈ {1, . . . ,N},

πi(1 − pi) = pi(1 − πi) × (
1 − (π̃ − πi)/d

∗
N + o

(
1/d∗

N

))
, (6)

pi(1 − πi) = πi(1 − pi) × (
1 − (p̃ − pi)/dN + o(1/dN)

)
, (7)

where d∗
N = ∑N

i=1 πi(1 − πi), dN = ∑N
i=1 pi(1 − pi), π̃ = (1/d∗

N)
∑N

i=1 π2
i (1 − πi) and p̃ =

(1/dN)
∑N

i=1 p2
i (1 − pi).

Since the major advantage of conditional Poisson sampling lies in its reduced variance prop-
erty (compared to Poisson sampling in particular, see the discussion in Section 4), focus is next
on exponential inequalities involving a variance term, of Bennett/Bernstein type namely.

3. Preliminary results

As a first go, we establish tail bounds for the Horvitz–Thompson estimator in the case where the
variables are sampled according to a Poisson scheme. We next show how to exploit the negative
association property satisfied by rejective sampling in order to extend the latter to conditional
Poisson sampling. Of course, this approach does not account for the reduced variance property
of Horvitz–Thompson estimators based on rejective sampling, it is the purpose of the next section
to improve these first exponential bounds.

3.1. Tails bounds for Poisson sampling

As previously observed, bounding the tail probability (3) is easy in the Poisson situation insofar
as the variables summed up in (1) are independent though possibly non identically distributed
(since the inclusion probabilities are not assumed to be all equal). The following theorem thus
directly follows from well-known results related to tail bounds for sums of independent random
variables.

Theorem 1 (Poisson sampling). Assume that the survey scheme εN defines a Poisson sampling
plan with first order inclusion probabilities pi > 0, with 1 ≤ i ≤ N . Then, we have almost-surely:
∀t > 0, ∀N ≥ 1,

P
{
ŜεN

pN
− SN > t

} ≤ exp

(
−

∑N
i=1

1−pi

pi
x2
i

(max1≤i≤N
xi

pi
)2

h

(max1≤i≤N
|xi |
pi

t∑N
i=1

1−pi

pi
x2
i

))
(8)

≤ exp

( −t2

2
3 max1≤i≤N

|xi |
pi

t + 2
∑N

i=1
1−pi

pi
x2
i

)
, (9)

where h(x) = (1 + x) log(1 + x) − x for x ≥ 0.
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Bounds (8) and (9) straightforwardly result from Bennett inequality [4] and Bernstein expo-
nential inequality [6] respectively, when applied to the independent random variables (εi/pi)xi ,
1 ≤ i ≤ N . By applying these results to the variables −(εi/pi)xi ’s, the same bounds naturally
hold for the deviation probability P{ŜεN

pN
− SN < −t} (and, incidentally, for P{|ŜεN

pN
− SN | > t}

up to a factor 2). Details, as well as extensions to other deviation inequalities (see, e.g., [20]), are
left to the reader.

3.2. Exponential inequalities for sums of negatively associated random
variables

For clarity, we first recall the definition of negatively associated random variables, see [27].

Definition 1. Let Z1, . . . ,Zn be random variables defined on the same probability space, valued
in a measurable space (E,E). They are said to be negatively associated iff for any pair of disjoint
subsets A1 and A2 of the index set {1, . . . , n}

Cov
(
f

(
(Zi)i∈A1

)
, g

(
(Zj )j∈A2

)) ≤ 0, (10)

for any real valued measurable functions f : E#A1 → R and g : E#A2 → R that are both increas-
ing in each variable.

The following result provides tail bounds for sums of negatively associated random variables,
which extends the usual Bennett/Bernstein inequalities in the i.i.d. setting, see [4] and [6].

Theorem 2. Let Z1, . . . ,ZN be square integrable negatively associated real valued random vari-
ables such that |Zi | ≤ c a.s. and E[Zi] = 0 for 1 ≤ i ≤ N . Let a1, . . . , aN be non negative con-
stants and set σ 2 = (1/N)

∑N
i=1 a2

i Var(Zi). Then, for all t > 0, we have: ∀N ≥ 1,

P

{
N∑

i=1

aiZi ≥ t

}
≤ exp

(
−Nσ 2

c2
h

(
c max1≤i≤N |ai |t

Nσ 2

))
(11)

≤ exp

(
− t2

2Nσ 2 + 2c max1≤i≤N |ai |t
3

)
, (12)

where h(x) = (1 + x) log(1 + x) − x for x ≥ 0.

Before detailing the proof, observe that the same bounds hold true for the tail probability
P{∑N

i=1 aiZi ≤ −t} (and for P{|∑N
i=1 aiZi | ≥ t} as well, up to a multiplicative factor 2). Refer

also to Theorem 4 in [26] for a similar result in a more restrictive setting (i.e., tail bounds for
sums of negatively related r.v.’s) and to [32] as well.
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Proof. The proof starts off with the usual Chernoff method: for all λ > 0,

P

{
N∑

i=1

aiZi ≥ t

}
≤ exp

(−tλ + logE
[
eλ

∑N
i=1 aiZi

])
. (13)

Next, observe that, for all λ > 0, we have

E

[
exp

(
λ

n∑
i=1

aiZi

)]
= E

[
exp(λanZn) exp

(
λ

n−1∑
i=1

aiZi

)]

≤ E
[
exp(λanZn)

]
E

[
exp

(
λ

n−1∑
i=1

aiZi

)]

≤
n∏

i=1

E
[
exp(λaiZi)

]
, (14)

using (10) (with f (Zn) = exp(λanZn) and g(Z1, . . . ,Zn−1) = exp(λ
∑

i≤n aiZi)) combined
with a descending recurrence on i. The proof is finished by plugging (14) into (13), using the
bound

logE
[
exp(λaiZi)

] ≤ λ2a2
i Var(Zi)

(
eλc max1≤i≤N |ai | − 1 − λc max

1≤i≤N
|ai |

)/(
c max

1≤i≤N
|ai |

)2

and optimizing finally the resulting bound w.r.t. λ > 0, just like in the proof of the classic Ben-
nett/Bernstein inequalities, see [4] and [6]. �

The first assertion of the theorem stated below reveals that any rejective scheme ε∗
N forms a

collection of negatively associated r.v.’s, the second one appearing then as a direct consequence
of Theorem 2. We underline that many sampling schemes (e.g., Rao–Sampford sampling, Pareto
sampling, Srinivasan sampling) of fixed size are actually described by random vectors εN with
negatively associated components, see [13] or [14], so that exponential bounds similar to that
stated below can be proved for such sampling plans.

Theorem 3. Let N ≥ 1 and ε∗
N = (ε∗

1 , . . . , ε∗
N) be the vector of indicator variables related to

a rejective scheme on IN with first order inclusion probabilities (π1, . . . , πN) ∈ ]0,1]N . Set
X′

N = maxi≤N |xi |/πi and s2
N = ∑

i≤N(1 −πi)x
2
i /πi . Then, the following assertions hold true.

(i) The Bernoulli random variables ε∗
1 , . . . , ε∗

N are negatively associated.
(ii) For any t ≥ 0 and N ≥ 1, we have:

P
{
Ŝ

ε∗
N

π − SN ≥ t
} ≤ 2 exp

(
− s2

N

X
′2
N

h

(
tX′

N/2

s2
N

))
≤ 2 exp

( −t2/4
2
3X′

Nt + 2s2
N

)
,

where h(x) = (1 + x) log(1 + x) − x for x ≥ 0.
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Proof. Considering the usual representation of the distribution of (ε1, . . . , εN ) as the condi-
tional distribution of a sample of independent Bernoulli variables (ε∗

1 , . . . , ε∗
N) conditioned upon

the event
∑N

i=1 ε∗
i = n (see Section 2.2), Assertion (i) is a straightforward consequence from

Theorem 2.6 in [27], see also [2]. Assertion (i) shows in particular that Theorem 2 can be
applied to the random variables {(ε∗

i /πi − 1)x+
i : 1 ≤ i ≤ N} and to the random variables

{(ε∗
i /πi − 1)x−

i : 1 ≤ i ≤ N} as well. Using the union bound, we obtain that

P
{
Ŝ

ε∗
N

π − SN ≥ t
} ≤ P

{ N∑
i=1

(
ε∗
i

πi

− 1

)
x+
i ≥ t/2

}
+ P

{ N∑
i=1

(
ε∗
i

πi

− 1

)
x−
i ≤ −t/2

}
,

and a direct application of Theorem 2 to each of the terms involved in this bound straightfor-
wardly proves Assertion (ii). Of course, if the xi ’s are all nonnegative (respectively, all negative),
the upper bounds are simpler and given by exp(−(s2

N/X
′2
N)h(tX′

N/s2
N)) ≤ exp(−t2/(2X′

Nt/3 +
2s2

N)). �

The negative association property permits to handle the dependence of the terms involved
in the summation. However, it may lead to rather loose probability bounds. Indeed, except the
factor 2, the bounds of Assertion (ii) exactly correspond to those stated in Theorem 1, as if the

ε∗
i ’s were independent, whereas the asymptotic variance σ 2

N of Ŝ
ε∗
N

π can be much smaller than∑N
i=1(1−πi)x

2
i /πi . It is the goal of the subsequent analysis to improve these preliminary results

and establish exponential bounds involving the asymptotic variance σ 2
N .

Remark 1. We point out that in the specific case of simple random sampling without replace-
ment, that is, when πi = n/N for all i ∈ {1, . . . ,N}, the inequality stated in Assertion (ii) is quite
comparable (except the factor 2) to that which can be derived from the Chernoff bound given in
[24], see Proposition 1.4 in [3].

4. Main results – exponential inequalities for rejective sampling

More accurate deviation probabilities related to the total estimator (1) based on a rejective
sampling scheme ε∗

N of (fixed) sample size n ≤ N with first order inclusion probabilities
πN = (π1, . . . , πN) and canonical representation pN = (p1, . . . , pN) are now investigated. Con-
sider εN a Poisson scheme with pN as vector of first order inclusion probabilities. As previously
recalled, the distribution of ε∗

N is equal to the conditional distribution of εN given
∑N

i=1 εi = n:

(
ε∗

1, ε∗
2, . . . , ε∗

N

) d= (ε1, . . . , εN)

∣∣∣ N∑
i=1

εi = n. (15)

Hence, we have almost-surely: ∀t > 0, ∀N ≥ 1,

P
{
Ŝ

ε∗
N

πN
− SN > t

} = P

{
N∑

i=1

εi

πi

xi − SN > t

∣∣∣ N∑
i=1

εi = n

}
. (16)
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As a first go, we shall prove tail bounds for the quantity

Ŝ
ε∗
N

pN

def=
N∑

i=1

ε∗
i

pi

xi . (17)

Observe that this corresponds to the Horvitz–Thompson (HT in abbreviated form) estimator of
the total

∑N
i=1(πi/pi)xi . Refinements of relationships (6) and (7) between the pi ’s and the πi ’s

shall next allow us to obtain an upper bound for (16). Notice that, though slightly biased (see
Assertion (i) of Theorem 5 for a control of the bias), the statistic (17) is commonly used as an
estimator of SN (see, e.g., [23]), insofar as the parameters pi ’s are readily available from the
canonical representation of ε∗

N , whereas the computation of the πi ’s is much more complicated.
One may refer to [15] for practical algorithms dedicated to this task. Hence, Theorem 4 is of
practical interest to build non-asymptotic confidence intervals for the total SN .

Asymptotic variance. Recall that dN = ∑N
i=1 pi(1 − pi) is the variance Var(

∑N
i=1 εi) of the

size of the Poisson plan εN and set

θN =
∑N

i=1 xi(1 − pi)

dN

.

As explained in [7], the quantity θN is the coefficient of the linear regression relating∑N
i=1

εi

pi
xi − SN to the sample size

∑N
i=1 εi . We may thus write

N∑
i=1

εi

pi

xi − SN = θN ×
N∑

i=1

εi + rN ,

where the residual rN is orthogonal to
∑N

i=1 εi . Hence, we have the following decomposition

Var

(
N∑

i=1

εi

pi

xi

)
= σ 2

N + θ2
NdN, (18)

where

σ 2
N = Var

(
N∑

i=1

(εi − pi)

(
xi

pi

− θN

))
(19)

is the asymptotic variance of the statistic Ŝ
ε∗
N

pN
, see [23]. In other words, the variance reduction

resulting from the use of a rejective sampling plan instead of a Poisson plan is equal to θ2
NdN , and

can be arbitrarily large in practice, depending on the values taken by the (xi,pi)’s. A Bernstein

type probability inequality for Ŝ
ε∗
N

pN
should thus involve σ 2

N rather than the Poisson variance

Var(
∑N

i=1(εi/pi)xi). Using the fact that
∑N

i=1(εi −pi) = 0 on the event {∑N
i=1 εi = n}, we may

now write

P
{
Ŝ

ε∗
N

pN
− SN > t

} = P

{
N∑

i=1

εi

pi

xi − SN > t

∣∣∣ N∑
i=1

εi = n

}
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= P{∑N
i=1(εi − pi)

xi

pi
> t,

∑N
i=1 εi = n}

P{∑N
i=1 εi = n}

= P{∑N
i=1(εi − pi)(

xi

pi
− θN) > t,

∑N
i=1 εi = n}

P{∑N
i=1 εi = n} , (20)

by virtue of (16) and the definition of ε∗
N . Based on the observation that the random variables∑N

i=1(εi − pi)(xi/pi − θN) and
∑N

i=1(εi − pi) are uncorrelated, Eq. (20) thus permits to es-

tablish directly the CLT σ−1
N (Ŝ

ε∗
N

pN
− SN) ⇒ N (0,1), provided that dN → +∞, as N → +∞,

simplifyingg asymptotically the ratio, see [23]. Hence, the asymptotic variance of Ŝ
ε∗
N

pN
− SN

is the variance σ 2
N of the quantity

∑N
i=1(εi − pi)(xi/pi − θN), which is less than that of the

Poisson HT estimator (18), since it eliminates the variability due to the sample size. We also
point out that Lemma 7 proved in the Appendix section straightforwardly shows that the “vari-
ance term”

∑N
i=1 x2

i (1 − πi)/πi involved in the bound stated in Theorem 2 is always larger than

(1 + 6/dN)−1 ∑N
i=1 x2

i (1 − pi)/pi .
The desired result here is non asymptotic and accurate exponential bounds are required for

both the numerator and the denominator of (20). It is proved in [23] (see Lemma 3.1 therein)
that, as N → +∞:

P

{
N∑

i=1

εi = n

}
= (2πdN)−1/2(1 + o(1)

)
. (21)

As shall be seen in the proof of the theorem stated below, the approximation (21) can be refined
by using the results in [17] (see Lemma 1) and we thus essentially need to establish an exponen-
tial bound for the numerator with a constant of order d

−1/2
N , sharp enough so as to simplify the

resulting ratio bound and cancel off the denominator. We shall prove that this can be achieved by
using a similar argument to that considered in [8] for establishing an accurate exponential bound
for i.i.d. 1-lattice random vectors, based on a device introduced in [34] for refining Hoeffding’s
inequality.

Theorem 4. Let N ≥ 1. Suppose that ε∗
N is a rejective scheme of size n ≤ N with canonical

parameter pN = (p1, . . . , pN) ∈ ]0,1[N . Set XN = 2 max1≤j≤N |xj |/pj . Then, there exist a uni-
versal constant D0 > 0 such that we have, as soon as min{dN,d∗

N } ≥ 1 and dN ≥ D where D

denotes any constant strictly larger than D0, for all t > 0 and for all N ≥ 1,

P
{
Ŝ

ε∗
N

pN
− SN > t

} ≤ C exp

(
− σ 2

N

X2
N

h

(
tXN

σ 2
N

))

≤ C exp

(
− t2

2
3XNt + 2σ 2

N

)
,

where C > 0 is a constant depending only on D, dN = ∑N
i=1 pi(1 − pi), d∗

N = ∑N
i=1 πi(1 − πi)

and h(x) = (1 + x) log(1 + x) − x for x ≥ 0.
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The form of the constant C as a function of D > D0 as well as an overestimated value of
the constant D0 can be deduced by a careful examination of the proof given below, see the
discussion in the Appendix section. Before we detail it, we point out that the exponential bound in
Theorem 4 involves the asymptotic variance of (17), in contrast to bounds obtained by exploiting
the negative association property of the ε∗

i ’s.

Remark 2. We underline that, in the particular case of sampling without replacement (i.e., when
pi = πi = n/N for 1 ≤ i ≤ N ), the Bernstein type exponential inequality stated above provides
a control of the tail similar to that obtained in [3], see Theorem 2 therein, with k = n. In this
specific situation, we have dN = n(1 −n/N) and θN = SN/n, so that formula (19) then becomes

σ 2
N =

(
1 − n

N

)
N2

n

{
1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2}
.

The proof technique we consider here is very different from the (forward/backward) martingale
methods used in [3], which consists in conditioning sequentially upon ε∗

1 , . . . , ε∗
k (respectively,

upon ε∗
k , . . . , ε∗

N ), k increasing from 1 to n (respectively, decreasing from n to 1), and in contrast
applies to more general sampling schemes, with non-uniform weights. The control induced by
Theorem 4 obtained this way is actually slightly better than that given by Theorem 3.5 in [3] when
n ≤ N/2 (which situation is of particular interest in the context of survey sampling), insofar as
the factor (1 − n/N) is involved in the variance term, rather than (1 − (n − 1)/N). However,
whereas the bound obtained in [3] holds true for any n ≤ N , that stated in Theorem 4 is valid
only when dN = n(1 − n/N) ≥ D (and thus, as soon as dN > 2 × 923.12 exp(1/4)/π using the
results of the computations related to the evaluation of the constant C made in the Appendix
section).

Proof. We first introduce additional notations. Set Zi = (εi −pi)(xi/pi − θN) and mi = εi −pi

for 1 ≤ i ≤ N and, for convenience, consider the standardized variables given by

ZN = n1/2 1

N

∑
1≤i≤N

Zi and MN = d
−1/2
N

∑
1≤i≤N

mi. (22)

As previously announced, the proof technique is based on (20). Equipped with the notations
introduced above, one may indeed write

P
{
Ŝ

ε∗
N

pN
− SN > t

} = P{ZN ≥ t
√

n/N,MN = 0}
P{MN = 0} .

The proof then relies on the combination of two intermediary results: Lemma 1 which provides
a lower bound for the denominator P{MN = 0} and Lemma 2 that gives an upper bound for the
numerator P{ZN ≥ t

√
n/N,MN = 0}. They are established in the Appendix section.
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Lemma 1. Suppose that Theorem 4’s assumptions are fulfilled. Then, there exists a universal
constant D0 such that, for all N ≥ 1, we have as soon as dN ≥ D:

P{MN = 0} ≥ C1
1√
dN

, (23)

where D is any constant strictly larger than D0 and C1 = (1 − √
D0/D) exp(−1/8)/

√
2π .

As shown in the proof given in the Appendix section, it can be obtained by applying the local
Berry–Esseen bound established in [17] for sums of independent (and possibly non identically)
Bernoulli random variables. For completeness, an alternative lower bound (see Lemma 4), based
on a binomial approximation result in [16] and involving a constant that can be evaluated much
more easily, is also proved.

Lemma 2. Suppose that Theorem 4’s assumptions are fulfilled. Set d∗
N = ∑

1≤i≤N πi(1 − πi).
Then, we have for all x ≥ 0, and for all N ≥ 1 such that min{dN,d∗

N } ≥ 1:

P{ZN ≥ x,MN = 0} ≤ C2
1√
dN

exp

(
−Var(

∑N
i=1 Zi)

X2
N

h

(
N√
n

xXN

Var(
∑N

i=1 Zi)

))

≤ C2
1√
dN

exp

(
− N2x2/n

2(Var(
∑N

i=1 Zi) + 1
3

N√
n
xXN)

)
,

where C2 < +∞ is a universal constant and h(x) = (1 + x) log(1 + x) − x for x ≥ 0.

The proof, which can be found in the Appendix section, relies on an appropriate exponential
change of probability measure (originally used in [34] to refine Hoeffding’s inequality) in order
to make appear the factor 1/

√
dN . The bound stated in Theorem 4 now directly results from Eq.

(20) combined with Lemmas 1 and 2, with x = t
√

n/N , by simplifying the factor 1/
√

dN . Due
to this proof technique, the impact of an overestimation of the constant C1 involved in Lemma 1
can be considerable, the constant in Theorem 4 being equal to C2/C1. �

Even if the computation of the biased statistic (17) is much more tractable from a practical
perspective, we now come back to the study of the HT total estimator (1). The first part of the
result stated below provides an estimation of the bias that replacement of (1) by (17) induces,
whereas its second part finally gives a tail bound for (1).

Theorem 5. Suppose that the assumptions of Theorem 4 are fulfilled and set MN = (4/dN) ×∑N
i=1 |xi |/πi and XN = 2 max1≤j≤N |xj |/pj . The following assertions hold true.

(i) For all N ≥ 1, we have almost-surely:∣∣Ŝε∗
N

πN
− Ŝ

ε∗
N

pN

∣∣ ≤ MN.
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(ii) There exists a universal constant D0 > 0 such that, for all t > MN and for all N ≥ 1, we
have, as soon as d∗

N ≥ 1 and dN > max{4,D} where D is any constant strictly larger than
D0,

P
{
Ŝ

ε∗
N

πN
− SN > t

} ≤ C exp

(
− σ 2

N

X2
N

h

(
N√
n

(t − MN)XN

σ 2
N

))

≤ C exp

(
− N2(t − MN)2/n

2(σ 2
N + 1

3
N√
n
(t − MN)XN)

)
,

where C is a constant depending only on D and h(x) = (1 + x) log(1 + x) − x for x ≥ 0.

The proof is given in the Appendix section. We point out that, when c1n/N ≤ πi ≤ c2n/N for
all i ∈ {1, . . . ,N} with 0 < c1 ≤ c2 < +∞, if there exists K < +∞ such that max1≤i≤N |xi | ≤ K

for all N ≥ 1, then the bias term MN is of order o(N), provided that
√

N/n → 0 as N → +∞.
On practical application. We point out that, as the (unknown) asymptotic variance involved

in the bounds stated in Theorems 4 and 5 (essentially responsible for the refinement of the prob-
ability bounds obtained, compared with the results established in Section 3.2) can be expressed
as

σ 2
N = 1

2

∑
i,j

pj (1 − pj )pi(1 − pi)

dN

(
Xi

pi

− Xj

pj

)2

, (24)

which quantity can be straightforwardly estimated with a controlled error, as suggested in [3].
One may thus obtain confidence bounds for the total SN by replacing it in the theoretical bounds
deriving from Theorems 4 and 5 with the estimate thus computed, like in Theorem 4.3 of [3].
Indeed, we have

σ 2
N ≤ 1

32dN

∑
i,j

(
Xi

pi

− Xj

pj

)2

. (25)

Considering a sample uniformly drawn from the population without replacement of size n1 (pos-
sibly different from n) with inclusion variables η1, . . . , ηN such that

∑N
i=1 ηi = n1, an estimator

of the bound on the right hand side of (25) is given by the empirical variance

b2
n1

= N2

16dN

(
1

n1

N∑
i=1

ηi

(
Xi

pi

)2

−
(

1

n1

∑
j=1

ηj

Xj

pj

)2
)

.

Now applying the results of [3] (Lemma 4.1 namely) to the Xi/pi ’s, one obtains that, for any
0 < δ < 1, we have with probability larger than 1 − δ:

σ 2
N ≤ b2

n1
+ N2

16dN

max
1≤i≤N

( |Xi |
pi

)
(1 + √

1 + ρn1)

√
ln(3/δ)

2n1
= V 2

N,n1
(δ),
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where ρn1 = (1 − n1/N) when n1 < N/2 (which is typically the relevant situation in survey
sampling). Hence, if we replace σ 2

N by V 2
N,n1

, one gets an empirical Bernstein version of the
Bernstein bound given in Theorem 4: for any 0 < δ < 1,

P
{
Ŝ

ε∗
N

pN
− SN > t

} ≤ C exp

(
− t2

2(V 2
N,n1

(δ) + 1
3 tXN)

)
+ δ. (26)

Of course, replacing σ 2
N by a surrogate bound deteriorates the probability inequality. Depending

on the application considered, one may however try to calibrate δ and the size n1 in order to build
reasonable confidence intervals.

A numerical illustration. We now present numerical results related to the bounds obtained in
Theorems 3, 4 and the bound (26) in a specific case. They illustrate that using the true vari-
ance rather than the Poisson like variance yield significant improvements. They also show that,
although it deteriorates the theoretical bounds given in Theorems 4–5, the empirical Bernstein
bound can yield much more accurate estimations than the bound stated in Theorem 3. Here,
we consider an informative sampling plan based on inclusion probabilities pi = nWi/

∑N
i=1 Wi

that are proportional to the random variables Wi = 1 + γi , where the γi ’s are i.i.d. exponential
variables with mean 1. The lower bound in Lemma 4 is close to 0.5n/N for the corresponding
scheme, as can be shown by an immediate application of the law of large numbers. It follows that
the constant C that can be computed explicitly given the p′

i ’s is of order 8.356. The X′
i ’s and the

Wi ’s are linked through a linear model

Xi = βWi + σεi, εi
i.i.d.∼ N (0,1),

the εi ’s being in addition independent from the Wi ’s. The parameters β and σ permit to tune the
linear correlation between the variables Xi and Wi . The true tails of the Horvitz–Thompson esti-
mator (17) are obtained by simulating 1999 samples according to respectively a Poisson scheme,
a negatively associated sampling plan with fixed size (a pivotal sampling namely), a rejective
sampling plan and a Rao–Sampford sampling plan. For this purpose, we used the R package
“sampling” available at https://CRAN.R-project.org/package=sampling, see [36]. A simple box
plot reveals that sampling with a an informative scheme and a fixed sample size considerably im-
proves the variance of the HT-estimator. Figure 1 depicts such a boxplot for a correlation equal
to 0.9. The results obtained are very similar when n < N/2, whatever the choice of large sizes
N and n such that n/N > 5 (our bounds are not evaluated for N close to n, a situation that is not
relevant in survey sampling). For a correlation of order 0.4, the Poisson plan still yields a very
large variance and, when it is less than 0.2, the rejective sampling plan gives results very close
the simple random sampling without replacement plan and the Poisson sampling plan.

Since the results are very similar for the three other sampling plans, only the tail of the HT
estimator under the rejective sampling plan is plotted below and compared to the bounds we ob-
tained. The bounds for the optimal constant C (equal to 1 here) are plotted as well for complete-
ness. The graphic in Figure 2 displays the comparisons for a moderate sampling size N = 300
and n = 30 (with a true sum of order 600) and that in Figure 3 depicts the results for a large
sampling size N = 104 and n = 103 (with a true sum equal to 20,000). All the simulations we

https://CRAN.R-project.org/package=sampling


Bernstein-type exponential inequalities in survey sampling 3541

Figure 1. Box plots of the HT estimates for several sampling plans.

performed are in accordance with those presented here. The green curve on the left corner cor-
respond to the true tail. The Bernstein bounds with C = 1 (in pink) are of course the best ones,
then come the “rejective” bounds in blue (here the constant in our theorem is of order 8.6), the
empirical Bernstein bounds (in black) with n1 = 2n are less accurate but still slightly better than
the Poisson type bounds (in red).

Figure 2. Comparisons between the true tail if the HT-estimator of the sum with the Bernstein bounds
(resp. The optimal bound (green), the Rejective type bound (blue), the empirical Bernstein bound (black),
the Poisson or NA bound (red), N = 300, n = 30).
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Figure 3. Comparisons between the true tail if the HT-estimator of the sum with the Bernstein bounds
(resp. The optimal bound (green), the Rejective type bound (blue), the empirical Bernstein bound (black),
the Poisson or NA bound (red), N = 104, n = 103).

5. Extensions to more general sampling schemes

We finally explain how the results established in the previous section for rejective sampling
may permit to control tail probabilities for more general sampling plans. A similar argument is
used in [5] to derive CLT’s for HT estimators based on complex sampling schemes that can be
approximated by more simple sampling plans, see also [7] and [10]. Let R̃N and RN be two
sampling plans on the population IN and consider the total variation metric

‖R̃N − RN‖1
def=

∑
s∈P(IN)

∣∣R̃N (s) − RN(s)
∣∣,

as well as the Kullback–Leibler divergence

DKL
(
RN ||R̃N

) def=
∑

s∈P(IN)

RN(s) log

(
RN(s)

R̃N(s)

)
.

Equipped with these notations, we can state the following result.

Lemma 3. Let εN and ε̃N be two schemes defined on the same probability space and drawn
from plans RN and R̃N respectively and let wN ∈ ]0,1]N . Then, we have: ∀N ≥ 1, ∀t ∈ R,∣∣P{

ŜεN
wN

− SN > t
} − P

{
Ŝ ε̃N

wN
− SN > t

}∣∣ ≤ ‖R̃N − RN‖1 ≤
√

2DKL
(
RN ||R̃N

)
.

Proof. The first bound immediately results from the following elementary observation:

P
{
ŜεN

wN
− SN > t

} − P
{
Ŝ ε̃N

wN
− SN > t

}
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=
∑

s∈P(IN)

I

{∑
i∈s

xi/wi − SN > t

}
× (

RN(s) − R̃N (s)
)
,

while the second bound is the classical Pinsker’s inequality. �

In practice, RN is typically the rejective sampling plan investigated in the previous subsection
(or eventually the Poisson sampling scheme), wN corresponds to its first order inclusion probabil-
ities πN or to the Poisson weights pN and R̃N is a sampling plan for which the Kullback–Leibler
divergence to RN asymptotically vanishes as N → ∞, e.g. the rate at which DKL(RN ||R̃N )

decays to zero has been investigated in [5] when R̃N corresponds to Rao–Sampford, succes-
sive sampling or Pareto sampling under appropriate regular conditions (see also [11]). Lemma 3
combined with Theorem 5 permits then to obtain the upper bound

P
{
Ŝ ε̃N

πN
− SN > t

} ≤ DKL
(
RN ||R̃N

) + C exp

(
− N2(t − MN)2/n

2(σ 2
N + 1

3
N√
n
(t − MN)XN)

)
.

A similar bound can be obtained for P{Ŝ ε̃N
pN

− SN > t} using Theorem 4. As the first term on
the right hand side is independent from t , it is essentially useful in situations where N is large,
which is the typical framework for survey sampling. Denoting by π̃N the first order inclusion
probabilities of R̃N , one may straightforwardly deduce an upper bound for P{Ŝ ε̃N

π̃N
− SN > t},

as soon as |Ŝ ε̃N

π̃N
− Ŝ

ε̃N
πN

| can be controlled like in Assertion (i) of Theorem 5 by bounding the
deviations |1/πi − 1/π̃i | as in Lemma 7. One may refer to [5] for bounds of this type in the case
of Rao–Sampford sampling or successive sampling.

6. Conclusion

In this article, we proved Bernstein-type tail bounds to quantify the deviation between a total and
its Horvitz–Thompson estimator when based on conditional Poisson sampling, extending (and
even slightly improving) results proved in the case of basic sampling without replacement. The
original technique used to establish these inequalities is not based on coupling but relies on ex-
pressing the deviation probabilities related to a conditional Poisson scheme as conditional prob-
abilities related to a Poisson plan. This permits to recover tight exponential bounds, involving
the exact asymptotic variance of the Horvitz–Thompson estimator. Beyond the fact that rejective
sampling is of prime importance in the practice of survey sampling (see, e.g., [1,21] or [35]), this
result may also yield tail bounds for sampling schemes that can be accurately approximated by
rejective sampling in the total variation sense.

Appendix: Technical proofs

Proof of Lemma 1

For clarity, we first recall the following result. An estimation of the constant C involved in the
bound it provides is given at the end of the appendix.
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Theorem 6 ([17], Theorem 1.3). Let (Yj,n)1≤j≤n be a triangular array of independent Bernoulli
random variables with means q1,n, . . . , qn,n in (0,1), respectively. Denote by σ 2

n = ∑n
i=1 qi,n(1−

qi,n) the variance of the sum �n = ∑n
i=1 Yi,n and by νn = ∑n

i=1 qi,n its mean. Considering the
cumulative distribution function (cdf) Fn(x) = P{σ−1

n (�n − νn) ≤ x}, we have: ∀n ≥ 1,

sup
k∈Z

∣∣∣∣Fn(xn,k) − �(xn,k) − 1 − x2
n,k

6σn

φ(xn,k)

{
1 − 2

∑n
i=1 q2

i,n(1 − qi,n)

σ 2
n

}∣∣∣∣ ≤ C0

σ 2
n

,

where xn,k = σ−1
n (k−νn+1/2) for any k ∈ Z, �(x) = (2π)−1/2

∫ x

−∞ exp(−z2/2) dz is the cdf of
the standard normal distribution N (0,1), φ(x) = �′(x) and C0 < +∞ is a universal constant.

Recall first that the εi ’s denote the independent Bernoulli variables with parameters p1, . . . , pN

related to the Poisson scheme and, given the definition of the quantity MN in Eq. (22), observe
that we can write:

P{MN = 0} = P

{
N∑

i=1

(εi − pi) ∈ ]−1/2,1/2]
}

= P

{
d

−1/2
N

N∑
i=1

mi ≤ 1

2
d

−1/2
N

}
− P

{
d

−1/2
N

N∑
i=1

mi ≤ −1

2
d

−1/2
N

}
.

Applying Theorem 6 to bound the first term of this decomposition (with k = νn and xn,k =
1/(2

√
dN)) directly yields that

P

{∑N
i=1 mi√
dN

≤ 1

2
√

dN

}
≥ �

(
1

2
√

dN

)

+ 1 − 1
4dN

6
√

dN

φ

(
1

2
√

dN

){
1 − 2

∑n
i=1 p2

i (1 − pi)

dN

}
− C0

dN

.

For the second term, its application with k = νn − 1 entails that:

−P

{
1√
dN

N∑
i=1

mi ≥ − 1

2
√

dN

}
≥ −�

(
− 1

2
√

dN

)

− 1 − 1
4dN

6
√

dN

φ

(
− 1

2
√

dN

){
1 − 2

∑n
i=1 p2

i (1 − pi)

dN

}
− C0

dN

.

If dN ≥ 1, it follows that

P{MN = 0} ≥ �

(
1

2
√

dN

)
− �

(
− 1

2
√

dN

)
− 2C0

dN

= 2
∫ 1

2
√

dN

0
φ(t) dt − 2C0

dN

≥
(

φ(1/2) − 2C0√
dN

)
1√
dN

.
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We thus obtain the desired result for dN ≥ D, where D is any constant strictly larger than D0 =
4C2

0/φ2(1/2), and C1 = φ(1/2) − 2C0/
√

D = φ(1/2)(1 − √
D0/D).

For completeness, we state an alternative lower bound result, based on [16]. As claimed in the
lemma below, the constant involved can be straightforwardly evaluated.

Lemma 4. Suppose that Theorem 4’s assumptions are fulfilled and that there exists c > 0 such
that pi ≥ cn/N for all i ∈ {1, . . . ,N}. Then, we have: ∀N ≥ 1, ∀n < N ,

P{MN = 0} ≥ e−1/6√c√
2πdN

. (27)

Proof. The argument relies on the binomial approximation of the distribution of the number of
successes in independent and possibly non identically distributed Bernoulli trials. Denote by BN

a binomial r.v. of size N and parameter
∑N

i=1 pi/N = n/N . Applying Theorem A in [16] twice
and next Stirling’s formula (i.e., for all k ≥ 1,

√
2πk(k/e)k ≤ k! ≤ √

2πk(k/e)k exp(1/(12k))),
one obtains that: ∀n < N ,

P{MN = 0} = P

{
N∑

i=1

εi ≤ n

}
− P

{
N∑

i=1

εi ≤ n − 1

}
≥ P{BN = n}

≥
(

N

n

)
×

(
n

N

)n

×
(

1 − n

N

)n

≥ exp(− 1
12n

− 1
12(N−n)

)√
2πn(1 − n/N)

≥ e−1/6

√
2πdN

×
√

dN

n(1 − n/N)
≥ e−1/6√c√

2πdN

. �

Remark 3. The constant C1 obtained above is valid for any sampling distribution but is clearly
not optimal in specific cases. In the case when all the inclusion probabilities are equal to n/N ,
an estimate of PN {MN = 0} can be obtained by Stirling formula

1√
2πn

1√
1 − n

N

exp

(
− 1

12n
− 1

12(N − n)

)
≤ PN {MN = 0} ≤ 1√

2πn

1√
1 − n

N

exp

(
1

12N

)
.

The constant C appearing in the bounds of Theorems 4 and 5 is precisely equal to the ratio
between the bounds due to the technic of the proof. In this case it is equal to exp(1/(12N) +
1/(12n) + 1/(12(N − n))) which is less than 1.24 (for N = 2 and n = 1) and its is very close
to 1.001 for large N and n ≥ 10. Under the more general assumption that there exists constants
0 < c < 1 < c′ < ∞ such that cn/N ≤ pi ≤ c′n/N < 1, then for all i ∈ {1, . . . ,N} a bound for
PN {MN = 0} can be obtained by means of results of [28] and our estimate in Lemma 6

e−1/6√c√
2πdN

≤ PN {MN = 0} ≤ min

((
N

n

)
�N

i=1(1 − pi)

(
1

N

N∑
i=1

pi/(1 − pi)

)n

,
4.838√
2πdN

)
.
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A.1. Proof of Lemma 2

Recall first that we set Zi = (εi −pi)(xi/pi − θN) for 1 ≤ i ≤ N with θN = ∑N
i=1 xi(1−pi)/dN

and observe that

Var

(
N∑

i=1

Zi

)
=

N∑
i=1

Var(Zi) = Var

(
N∑

i=1

ε∗
i

xi

pi

)
= Var

(
Ŝ

ε∗
N

pN

)
. (28)

Let ψN(u) = logE[exp(〈u, (ZN,MN)〉)], u = (u1, u2) ∈ R
+ × R, be the log-Laplace of the 1-

lattice random vector (ZN,MN), where 〈·, ·〉 is the usual scalar product on R
2. Recall that, as

the logarithm of a moment-generating function, ψN is convex. Denote by ψ
(1)
N (u) and ψ

(2)
N (u) its

gradient and its Hessian matrix respectively. Consider now the probability measure Pu,N defined
by the Esscher transform

dPu,N = exp
(〈
u, (ZN,MN)

〉 − ψN(u)
)
dP. (29)

The Pu,N -expectation is denoted by Eu,N [·], the covariance matrix of a Pu,N -square integrable
random vector Y under Pu,N by Varu∗,N (Y ). With x = t

√
n/N , by exponential change of prob-

ability measure, we can rewrite the numerator of (20) as

P{ZN ≥ x,MN = 0} = Eu,N

[
eψN(u)−〈u,(ZN ,MN)〉

I{ZN ≥ x,MN = 0}]
= H(u)Eu,N

[
e−〈u,(ZN−x,MN )〉

I{ZN ≥ x,MN = 0}],
where we set H(u) = exp(−〈u, (x,0)〉 + ψN(u)). Now, as ψN is convex, the point defined by

u∗ = (
u∗

1,0
) = arg sup

u∈R+×{0}
{〈

u, (x,0)
〉 − ψN(u)

}
is such that ψ

(1)
N (u∗) = (x,0). Since E[exp(< u, (ZN,MN) >)] = exp(ψN(u)), by differentiat-

ing w.r.t. u one gets

E
[
e〈u,(ZN ,MN )〉(ZN,MN)

] = ψ
(1)
N (u)eψN(u).

Taking next u = u∗ yields

E
[
e〈u∗,(ZN ,MN)〉(ZN,MN)

] = (x,0)eψN(u∗). (30)

Since u∗ = (u∗
1,0) with u∗

1 ≥ 0, we have, under the condition ZN ≥ x, e−〈u∗,(ZN−x,MN 〉 ≤ 1 and
the straightforward bound

Eu∗,N
[
e−〈u∗,(ZN−x,MN )〉

I{ZN ≥ x,MN = 0}] ≤ Pu∗,N {MN = 0}.
Hence, we have the bound:

P{ZN ≥ x,MN = 0} ≤ H
(
u∗) × Pu∗,N {MN = 0}. (31)

We shall bound each factor involved in (31) separately. We start with bounding H(u∗), which
essentially boils down to bounding E[e〈u∗,(ZN ,MN)〉].
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Lemma 5. Under Theorem 4’s assumptions, we have:

H
(
u∗) ≤ exp

(
−Var(

∑N
i=1 Zi)

X2
N

h

(
N√
n

xXN

Var(
∑N

i=1 Zi)

))
(32)

≤ exp

(
− N2x2/n

2(Var(
∑N

i=1 Zi) + 1
3

N√
n
xXN)

)
, (33)

where h(x) = (1 + x) log(1 + x) − x for x ≥ 0.

Proof. Recall first that we set ZN = (n1/2/N)
∑

1≤i≤N Zi . Using the standard argument leading
to the Bennett–Bernstein bound, observe that: ∀i ∈ {1, . . . ,N}, ∀u1 > 0,

E
[
eu1Zi

] ≤ exp

(
Var(Zi)

exp(u1XN) − 1 − u1XN

X2
N

)
.

since we almost-surely have |Zi | ≤ 2 max1≤j≤N |xj |/pj = XN for all i ∈ {1, . . . ,N}. Using the
independence of the Zi ’s, we obtain that: ∀u1 > 0,

E
[
eu1ZN

] ≤ exp

(
Var

( N∑
i=1

Zi

)
exp(

√
n

N
u1XN) − 1 −

√
n

N
u1XN

X2
N

)
.

The resulting upper bound for H((u1,0)) being minimized for

u1 = N√
n

log(1 + N√
n

xXN

Var(
∑N

i=1 Zi)
)

XN

,

this yields

H
(
u∗) ≤ exp

(
−Var(

∑N
i=1 Zi)

X2
N

h

(
N√
n

xXN

Var(
∑N

i=1 Zi)

))
. (34)

Using the classical inequality

h(x) ≥ x2

2(1 + x/3)
for x ≥ 0,

we also get that

H
(
u∗) ≤ exp

(
− N2x2/n

2(Var(
∑N

i=1 Zi) + 1
3

N√
n
xXN)

)
. �

We now prove the lemma stated below, which provides an upper bound for Pu∗,N {MN = 0}.
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Lemma 6. Under Theorem 4’s assumptions, there exists a universal constant C′ ≤ 4.838 such
that: ∀N ≥ 1,

Pu∗,N {MN = 0} ≤ C′ 1√
2πdN

. (35)

Proof. Under the probability measure Pu∗,N , the εi ’s are still independent Bernoulli variables,
with means given by

π∗
i

def=
∑

s∈P(IN)

e〈u∗,(ZN(s),MN(s))〉−ψN(u∗)
I{i ∈ s}RN(s) > 0,

for i ∈ {1, . . . ,N}. Since Eu∗,N [MN ] = 0, we have
∑N

i=1 π∗
i = n and thus

dN,u∗ def= Varu∗,N

(
N∑

i=1

εi

)
=

N∑
i=1

π∗
i

(
1 − π∗

i

) ≤ n.

Now, applying twice the Berry–Esseen bound to the sum of centered independent (and possi-
bly non-identically) Bernoulli random variables

∑N
i=1 mi yields

Pu∗,N {MN = 0} = Pu∗,N

{
d

−1/2
N,u∗

N∑
i=1

mi ≤ 0

}
− Pu∗,N

{
d

−1/2
N,u∗

N∑
i=1

mi ≤ −d
−1/2
N,u∗

}

≤ 2C′′ ∑N
i=1 Eu∗,N [|εi − π∗

i |3]
d

3/2
N,u∗

+ 1√
2πdN,u∗

≤
(

1√
2π

+ 2C′′
)

1√
dN,u∗

,

where C′′ ≤ 0.7655, see [33]. Finally, observe that

dN,u∗ = Eu∗,N

[(
N∑

i=1

mi

)2]
= E

[(
N∑

i=1

mi

)2/
H

(
u∗)] ≥ E

[(
N∑

i=1

mi

)2]
= dN,

since we proved that H(u∗) ≤ 1. Combined with the previous bound and the fact that we assumed
dN ≥ 1, this yields the desired result. �

Lemmas 5 and 6 combined with Eq. (31) leads to the bound stated in Lemma 2.

Proof of Theorem 5

We start with proving the preliminary result below.

Lemma 7. Let π1, . . . , πN be the first order inclusion probabilities of a rejective sampling of
size n with canonical representation characterized by the Poisson weights p1, . . . , pN . Provided
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that dN = ∑N
i=1 pi(1 − pi) > 4, we have: ∀i ∈ {1, . . . ,N},∣∣∣∣ 1

πi

− 1

pi

∣∣∣∣ ≤ 4

dN

× 1 − πi

πi

.

Proof. The proof is based on the representation (5.14) on page 1509 of [23]. For all i ∈
{1, . . . ,N}, we have:

πi

pi

1 − pi

1 − πi

=
∑

s∈P(IN):i∈IN\{s} PN(s)
∑

h∈s
1−ph∑

j∈s (1−pj )+(ph−pi)∑
s∈P(IN):i∈IN\{s} PN(s)

=

∑
s:i∈IN\{s} PN(s)

∑
h∈s

1−ph∑
j∈s (1−pj )(1+ (ph−pi )∑

j∈s (1−pj )
)∑

s:i∈IN\{s} PN(s)
.

Now recall that for any x ∈ ]−1/2,1[, we have:

1 − x ≤ 1

1 + x
≤ 1 − x + 2x2.

Applying this to x = (ph − pi)/
∑

j∈s(1 − pj ) for all h ∈ s, which can be seen to belong to
] − 1/2,+1[ by noticing that

∑
j∈s(1 − pj ) ≥ dN/2 > 2 as soon as dN > 4 by virtue of

Lemma 2.2 in [23], we obtain that

πi

pi

1 − pi

1 − πi

≤ 1 −
( ∑

s:i∈IN\{s}
PN(s)

)−1 ∑
s:i∈IN\{s}

PN(s)
∑
h∈s

(1 − ph)(ph − pi)

(
∑

j∈s(1 − pj ))2

+ 2

( ∑
s:i∈IN\{s}

PN(s)

)−1 ∑
s:i∈IN\{s}

PN(s)
∑
h∈s

(1 − ph)(ph − pi)
2

(
∑

j∈s(1 − pj ))3
.

Following now line by line the proof on p. 1510 in [23] and using the fact that
∑

j∈s(1 − pj ) ≥
dN/2, we get ∣∣∣∣∑

h∈s

(1 − ph)(ph − pi)

(
∑

j∈s(1 − pj ))2

∣∣∣∣ ≤ 1

(
∑

j∈s(1 − pj ))
≤ 2

dN

,

and similarly

∑
h∈s

(1 − ph)(ph − pi)
2

(
∑

j∈s(1 − pj ))3
≤ 1

(
∑

j∈s(1 − pj ))2
≤ 4

d2
N

.

This yields: ∀i ∈ {1, . . . ,N},

1 − 2

dN

≤ πi

pi

1 − pi

1 − πi

≤ 1 + 2

dN

+ 8

d2
N
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and

pi(1 − πi)

(
1 − 2

dN

)
≤ πi(1 − pi) ≤ pi(1 − πi)

(
1 + 2

dN

+ 8

d2
N

)
,

leading then to

− 2

dN

(1 − πi)pi ≤ πi − pi ≤ pi(1 − πi)

(
2

dN

+ 8

d2
N

)
and finally to

− (1 − πi)

πi

2

dN

≤ 1

pi

− 1

πi

≤ (1 − πi)

πi

(
2

dN

+ 8

d2
N

)
.

Since 1/d2
N ≤ 4/dN as soon as dN ≥ 4, the lemma is proved. �

By virtue of Lemma 7, we obtain that:

∣∣Ŝε∗
N

πN
− Ŝ

ε∗
N

pN

∣∣ ≤ 4

dN

N∑
i=1

1

πi

|xi | = MN.

It follows that

P
{
Ŝ

ε∗
N

πN
− SN > x

} ≤ P
{∣∣Ŝε∗

N
πN

− Ŝ
ε∗
N

pN

∣∣ + Ŝ
ε∗
N

pN
− SN > x

} ≤ P
{
MN + Ŝ

ε∗
N

pN
− SN > x

}
.

A direct application of Theorem 4 finally gives the desired result.

On the constant C0 in Theorem 6

As an examination of the proof of Theorem 4 shows, an evaluation of the constants appearing
in the tail bounds we establish here can be deduced from that of the constant C0 involved in
Theorem 6 (Theorem 1.3 in [17]). Precisely, we prove below that one may choose the value

C0 = 923.12.

For clarity, we use exactly the same notations and numbering as those in [17]. Observe first that
one may choose α = 0.61 in Lemma 3.2 of [17] and that, in Lemma 3.3, the crude asymptotic
expansion can be replaced by the more accurate bound

sup
x

∣∣�(γ x) − �(x)
∣∣ ≤ |γ − 1|.

In order to see this, differentiate w.r.t. γ , so as to establish that: ∀γ ∈ [1/2,1], supx |�(γ x) −
�(x)| ≤ 2|γ − 1|/√2πe. Similarly, differentiating w.r.t. x yields

sup
x

γ φ(xγ ) − φ(x)

γ − 1
≤ 2√

2π
and sup

x

x2|γ 3φ(xγ ) − φ(x)|
γ − 1

≤ 2√
2π

.
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These inequalities imply that one may choose M1 = 1 and M2 = 2/(6
√

2π) in Lemma 3.4 of
[17], so that taking c = 0.61 and d = 1 as constants in the beginning of the proof of Corollary 1.3
is fair.

Considering now the constants in Theorem 1.3 (see the proof on p. 290 of [17]), notice that
a straightforward computation, that is, computing the derivatives of �n(x) = �(x) + ((1 −
x2)/(6σ 3

n ))φ(x)
∑n

j=1 E[(Yj , n − qj,n)
3], shows that, In Lemma 4.1, we can take

ρ = 1√
2πe

and E = ρ

24
,

since we have for all n ≥ 2:

sup
x

�′′
n(x) ≤ 1√

2πe
(1 + 1/σn).

In Lemma 4.2, by computing the second order derivative, we obtain that

sup
x

�′′
n(x) ≤ 1√

2π
+ 1

6σn

× k1

with

exp
(
(−3 + √

6)/2
)√3(3 − √

6)

π
≤ 0.051.

Hence, one can take K = 1/
√

2π in order to control the term I2 on p. 292 in [17]. We prove now
that a crude evaluation of L in Lemma 4.3 is given by

L ≤ 698.786 < 699.

In order to see this, take q = 1/2 in Lemma 4.4 (notice incidentally that this value is by no means
optimal but permits to carry out all the calculations explicitly). Following the proof line by line,
one can take M = e4/(

√
2π(1 − q)) ≤ 43.57. In this case, on p. 294 we can choose any δ such

that

δ ≤ 0.0305637 � min

{
e−1

2
,

1

4(1/6 + e4e−1/
√

2π)

}
,

yielding a crude evaluation of R = 2141.1 and the bound

An ≤ 2141.1/σn.

A straightforward integral computation shows that

αn

∫ ∞

αn

t2e−t2/2 ≤ 1.05,
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so that we can take R = 1.05 in (4.20), which leads to

Bn ≤ 1.05

0.0305
σ−2

n ≤ 34.355σ−2
n .

We can now evaluate the terms in (4.22) by noticing that

δ−1 + 1

4π

∞∑
i=1

l−2 ≤ 1070,505 + π

24
≤ 1070.64.

Taking now M = e4√
2π

1
1−q

in (4.25) and choosing d = δ = 0.0305637 yields

En ≤ 2.74

σ 2
n

in (4.28), by observing that∫ 2π

0
sin(y/2) dy = 4 and

∫ ∞

0
v exp

(−v2/4
)
dv = 2.

Next, by combining (4.21)–(4.29) with the constants above, we get Q = 2181 in Lemma 4.5. In
their turn, these estimates permit to get

I2 ≤ 9.58σ−2
n (1 + 1/σn)

and, by combining (4.14)–(4.17) with (4.13),

I11 ≤ σ−2
n 2(8/9 + 8M) ≤ 699σ−2

n .

Using Lemma 4.5, we then obtain

I1 ≤ I11 + I12 ≤ (2181 + 699)σ−2
n = 2880σ−2

n ,

that gives

I1 + I2 ≤ 2900σ−2
n .

From these estimates, we next deduce that, in (4.3),∣∣F̃n(x) − �̃n(x)
∣∣ ≤ 2900

π
σ−2

n

and finally that∣∣F̃n(x) − �n(x)
∣∣ ≤ 2900

π
σ−2

n + 1

24
√

2πe
σ−2

n

(
1 + σ−1

n

) ≤ 923.12σ−2
n ,

which is the desired result.
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[19] Dupačová, J. (1979). A note on rejective sampling. In Contributions to Statistics 71–78. Dordrecht-
Boston, Mass.-London: Reidel. MR0561260

[20] Fuk, D.H. and Nagaev, S.V. (1971). Probabilistic inequalities for sums of independent random vari-
ables. Theory Probab. Appl. 16 643–660.

[21] Fuller, W.A. (2009). Some design properties of a rejective sampling procedure. Biometrika 96 933–
944. MR2564501

[22] Goodman, L.A. (1949). On the estimation of the number of classes in a population. Ann. Math. Stat.
20 572–579. MR0032165

[23] Hájek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite
population. Ann. Math. Stat. 35 1491–1523. MR0178555

[24] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc. 58 13–30. MR0144363

[25] Horvitz, D.G. and Thompson, D.J. (1952). A generalization of sampling without replacement from a
finite universe. J. Amer. Statist. Assoc. 47 663–685. MR0053460

[26] Janson, S. (1994). Large deviation inequalities for sums of indicator variables. Unpublished
manuscript. Available at www2.math.uu.se/~svante/papers/sj107.ps.

[27] Joag-Dev, K. and Proschan, F. (1983). Negative association of random variables, with applications.
Ann. Statist. 11 286–295. MR0684886

[28] Percus, O.E. and Percus, J.K. (1985). Probability bounds on the sum of independent nonidentically
distributed binomial random variables. SIAM J. Appl. Math. 45 621–640. MR0796099

[29] Robinson, P.M. (1982). On the convergence of the Horvitz–Thompson estimator. Aust. J. Stat. 24
234–238. MR0678263

[30] Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer
Series in Statistics. New York: Springer. MR1140409

[31] Serfling, R.J. (1974). Probability inequalities for the sum in sampling without replacement. Ann.
Statist. 2 39–48. MR0420967

[32] Shao, Q.-M. (2000). A comparison theorem on moment inequalities between negatively associated
and independent random variables. J. Theoret. Probab. 13 343–356. MR1777538

[33] Shiganov, I.S. (1986). Refinement of the upper bound of the constant in the central limit theorem.
J. Sov. Math. 35 2545–2550.

[34] Talagrand, M. (1995). The missing factor in Hoeffding’s inequalities. Ann. Inst. Henri Poincaré
Probab. Stat. 31 689–702. MR1355613

[35] Tan, Z. (2013). Simple design-efficient calibration estimators for rejective and high-entropy sampling.
Biometrika 100 399–415. MR3068442

[36] Tillé, Y. (2006). Sampling Algorithms. Springer Series in Statistics. New York: Springer. MR2225036

Received July 2017 and revised September 2018

http://www.ams.org/mathscinet-getitem?mr=0561260
http://www.ams.org/mathscinet-getitem?mr=2564501
http://www.ams.org/mathscinet-getitem?mr=0032165
http://www.ams.org/mathscinet-getitem?mr=0178555
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=0053460
http://www2.math.uu.se/~svante/papers/sj107.ps
http://www.ams.org/mathscinet-getitem?mr=0684886
http://www.ams.org/mathscinet-getitem?mr=0796099
http://www.ams.org/mathscinet-getitem?mr=0678263
http://www.ams.org/mathscinet-getitem?mr=1140409
http://www.ams.org/mathscinet-getitem?mr=0420967
http://www.ams.org/mathscinet-getitem?mr=1777538
http://www.ams.org/mathscinet-getitem?mr=1355613
http://www.ams.org/mathscinet-getitem?mr=3068442
http://www.ams.org/mathscinet-getitem?mr=2225036

	Introduction
	Background and preliminaries
	Sampling schemes and Horvitz-Thompson estimation
	Poisson and conditional Poisson samplings

	Preliminary results
	Tails bounds for Poisson sampling
	Exponential inequalities for sums of negatively associated random variables

	Main results - exponential inequalities for rejective sampling
	Extensions to more general sampling schemes
	Conclusion
	Appendix: Technical proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 5
	On the constant C0 in Theorem 6

	Acknowledgements
	References

