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Most theoretical results on the relative errors of saddlepoint approximations in the extreme tails have in-
volved placing conditions on the density/mass function. Checking the validity of such conditions is prob-
lematic when density/mass functions are intractable, as is typically the case in important practical appli-
cations involving convolved, compound, and first-passage distributions as well as for moment generating
functions MGFs that are regularly varying. In this paper, we present novel conditions which ensure the
existence of positive finite limiting relative errors for saddlepoint density/mass function and survival func-
tion approximations. These conditions, which are rather weak, are expressed entirely in terms of the MGF,
hence the description purely Tauberian. We focus mainly on the cases in which there are positive and neg-
ative gamma distributional limits (the only other non-degenerate possibility being a Gaussian limit) and we
show how to check the new conditions in important classes of models in these two settings.

Keywords: compound distribution; first-passage distribution; regular variation; saddlepoint approximation;
Tauberian arguments

1. Introduction

Suppose a random variable X has a moment generating function (MGF) M(s) = E(esX) whose
domain of convergence is S = {s ∈R : a � s < b} with −∞ ≤ a ≤ 0 < b ≤ ∞, where symbol �
stands for either < or ≤. Saddlepoint approximations are expressed most conveniently in terms
of the cumulant generating function (CGF) K(s) = lnM(s) and its derivatives.

Let an absolutely continuous X have density f (t) and survival function S(t) = 1 − F(t).
Define the quantities

ŵ = sgn(ŝ)

√
2
{
ŝt −K(ŝ)

}
and û = ŝ

√
K′′(ŝ), (1.1)

where the saddlepoint ŝ ∈ (a, b) solves saddlepoint equation K′(ŝ) = t with t ∈ (tL, tU ). The
interval (tL, tU ) is the subset of (−∞,∞) on which there is a unique solution to the saddle-
point equation and it is characterized as the interior of the convex hull of the range of X. The
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saddlepoint density approximation is given by

f̂ (t) = 1√
2πK′′(ŝ)

exp
{
K(ŝ) − ŝt

} = φ(ŵ)√
K′′(ŝ)

, (1.2)

where in the right-hand expression φ is the standard normal density and ŵ is defined in (1.1).
The Lugannani and Rice [33] approximation to the survival function S(t) is

Ŝ(t) = 1 − �(ŵ) − φ(ŵ)

(
1

ŵ
− 1

û

)
, (1.3)

where � is the standard normal cumulative distribution function (CDF), and ŵ and û are given
in (1.1).

Saddlepoint approximations are known to be highly accurate numerically and to have excellent
theoretical properties in a wide variety of examples; see, for example, the books by Jensen [30]
and Butler [13] for further details.

In this paper, we focus on the theoretical relative errors in the extreme tails: in particular, we
provide various conditions for the following limits to exist:

lim
t↑tU

f (t)

f̂ (t)
and lim

t↑tU

S(t)

Ŝ(t)
. (1.4)

We also cover the case where X is lattice- or integer-valued. Under the very weak conditions
we propose, the two limits in (1.4) turn out to be the same and the common value is either 1 or
�̂(α)/�(α) for some α > 0, where �(α) is the gamma function and

�̂(α) = √
2παα−1/2e−α (1.5)

is Stirling’s approximation for �(α). Note that there is no loss of generality in focusing on the
right tail in (1.4); for the left tail of X, we just focus on the right tail of −X.

The study of limiting relative errors of saddlepoint density approximations goes back to the
earliest work on saddlepoint approximations in applied probability and statistics; see the land-
mark paper by Daniels [18]. Daniels [18] considered four classes of examples under the asymp-
totic regime indicated in (1.4) and proved that in each class of examples the limiting relative error
converged to a positive finite limit. Since the original work of Daniels [18], the most substantial
and extensive work on relative errors of saddlepoint approximations is due to Jensen [27–29],
summarized in Chapter 6 of the book Jensen [30]. Other work on relative errors of saddlepoint
approximation includes Barndorff-Nielsen and Klüppelberg [8,9], who give conditions on the
density for the relative error of the saddlepoint approximation to go to zero in the extreme tail, in
the univariate and multivariate cases, respectively. They note that the multivariate case is much
more challenging.

This paper was motivated principally by the desire to study limits of the type (1.4) in various
classes of models, of which the following two classes are the most important:

(i) first-passage distributions in semi-Markov processes, which are of key importance in elec-
trical engineering, reliability theory and multi-state survival analysis, with the first-passage dis-
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tribution representing the failure time of a stochastic system or the survival time of a random
patient modelled by the process;

(ii) compound distributions, which are of great importance in many areas, especially queueing
theory and insurance.

However, the conditions formulated in all previous work on relative errors of saddlepoint ap-
proximations are not able to cover most of the interesting cases in (i) and (ii). Indeed, Jensen
[30], Ex. 8.2.3, p. 237, provides an example which illustrates some of the technical difficulties
that arise in this type of problem.

In this paper, we formulate conditions of a completely novel character which enable the de-
velopment of a comprehensive theory of saddlepoint relative errors in models of type (i) and (ii),
along with some other types of models, assuming the relevant MGF exists. See in particular con-
dition (4.2) and Theorem 3. Moreover, we provide auxiliary results which facilitate the checking
of condition (4.2) in models of type (i) and (ii), and other classes of models; see Corollaries
1–4. We also provide other results in the paper including parallel developments for continuous
distributions whose support has a finite end-point and for lattice distributions.

A novel feature of most of the results in this paper is that they are purely Tauberian in charac-
ter; in other words they only require conditions that are expressed entirely in terms of the MGF.
[See Korevaar [32] for a treatise on Tauberian theory.] This is in contrast to nearly all theoret-
ical results in the saddlepoint literature on limiting relative errors, where some conditions have
been imposed on the density. We say purely Tauberian rather than Tauberian as the latter termi-
nology has traditionally not excluded placing some quite restrictive assumptions on a density or
mass function about which we are trying the draw some conclusions. For example, when using
“Tauberian” Theorems 4 and 5 of Feller [23], Section XIII.5, in order to reach conclusions about
the exponential/geometric decay rate to 0 for the tail of a density and mass function, one must
assume that the density/mass function itself is ultimately decreasing in its tail.

The work of Balkema et al. [3–5], who identify what distributional limits can arise for the
standardized tilted distribution as s ↑ b (see Section 2 for definitions), has provided a helpful
starting point for the work of this paper. They give a number of useful necessary and sufficient
conditions for these limits to occur that we have integrated into our development.

Before moving on, we offer a few words on notation and assumptions. Throughout, we deal
with regular exponential families in the sense that S = {s ∈ R : M(s) < ∞} is an interval (a, b)

or [a, b) and does not include b, i.e. b /∈ S . Regularity of the exponential family at b implies
steepness in the right tail, which in turn guarantees that the saddlepoint equation K′(ŝ) = t

has a unique solution ŝ ≡ ŝ(t) ∈ (0, b) for all t ∈ (μ, tU ) where μ = E(X); see, for example,
Barndorff-Nielsen [6] for background on exponential families. Whenever “hats” are used, we
should think of the relevant quantities as being functions of t ; when we view quantities as being
functions of s, as in t ≡ t (s) = K′(s), then hats are not used. For many purposes in this paper, it
will be equivalent to work with functions of t and functions of s and we shall switch from time
to time when convenient. Throughout the paper, the variables s, t , u and y will be real and z and
ω will be complex. When we wish to consider the MGF as a function of a real variable, we shall
write M(s), and when we write M(z), it means the MGF is being considered as a function of a
complex variable; this convention will be helpful to us. Proofs of all theorems and corollaries are
given in Butler and Wood [16] along with some further auxiliary results and additional examples.
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2. Domains of attraction for tilted distributions

Define Xs for s ∈ (0, b) to be a random variable associated with the s-tilted distribution of X. For
X absolutely continuous with density f , Xs has density fs(t) = estf (t)/M(s), and for integer-
valued X with mass function p(n), Xs has mass function ps(n) = esnp(n)/M(s). In either case,
let Zs = (Xs − μs)/σs denote the standardized tilted variable with μs = K′(s) = E(Xs) and
σs = √

K′′(s) = √
Var(Xs), where K is the cumulant generating function of X.

The weak convergence of Zs to Z (denoted Zs
w→ Z) as s ↑ b was studied and characterized

in Balkema et al. [3–5] when S does not include its least upper bound b and Z has a non-
degenerate distribution. We shall see in Section 3 that the limiting relative error ratios in (1.4) for
saddlepoint procedures are intimately connected to this weak convergence and to the distribution
of Z. Generally, the weak convergence Zs

w→ Z as s ↑ b does not imply convergence of the
corresponding MGFs. However, it does in the present context, as was shown by Balkema et al.
[3], Theorem 3.6. Thus, Zs

w→ Z if and only if the MGF function of Zs converges pointwise to
MZ(u), the MGF function of Z, in its convergence region {u ∈ R : MZ(u) < ∞}, that is, for
each fixed u,

M(s + u/σs)

M(s)
exp(−μsu/σs) → MZ(u) s ↑ b. (2.1)

When b /∈ S , Balkema et al. [5] showed that Z can only assume one of the following three dis-
tributions: a standard normal N , a standardized gamma G(α,1), or a standardized minus gamma
−G(α,1) distribution. If Z has a standardized gamma G(α,1) distribution, then we say that (the
right tail of) X is in the domain of attraction of Gα and write X ∈ D(Gα). Likewise, we define
X ∈ D(−Gα) and X ∈ D(N ). Proposition 1 below specifies necessary and sufficient conditions
for weak convergence Zs

w→ Z to occur and, in addition, determines the limiting distribution in
both the absolutely continuous and integer-valued settings.

The theory of regular variation also plays an important role in characterizing the weak limit.
A function h : R→ R that varies regularly at s ∈R∪{±∞}, with index α satisfying 0 �= α ∈ R, is
said to belong to the class RVs(α); to indicate this we sometimes write h ∈RVs(α). For s < ∞,
this means that h(s − tx)/h(s − t) → xα as t ↓ 0 for all x > 0, and for s = ∞, this means that
h(tx)/h(t) → xα as t ↑ ∞ for all x > 0. If either assertion holds with α = 0, resulting in a limit
of 1, then we say that h belongs to SVs , the class of functions which are slowly varying at s, and
sometimes we denote this by h ∈ SVs .

Proposition 1 characterizes the settings in which weak convergence can occur (finite limit β)

and cannot occur (infinite limit β = ∞ or no limit).

Proposition 1 (Domains of convergence). Suppose b /∈ S , where b and S are defined Section 1.

(a) Zs
w→ Z as s ↑ b ≤ ∞ for some random variable Z if an only if E(Z3

s ) → β for some

β ∈ (−∞,∞). If Zs
w→ Z then

X ∈D(Gα) if and only if β = 2/
√

α > 0

X ∈D(N ) if and only if β = 0
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X ∈ D(−Gα) if and only if β = −2/
√

α < 0.

(b) If b < ∞, then the following three statements are equivalent as s ↑ b:

(i) X ∈D(Gα); (ii) (b − s)μs → α ∈ (0,∞); (iii) M(s) ∈RVb(−α).

(c) If tU < ∞, then the following three statements are equivalent as s ↑ b:

(i) X ∈D(−Gα); (ii) s(tU − μs) → α ∈ (0,∞); (iii) e−stUM(s) ∈RV∞(−α).

Parts (a)–(c) are given in Theorems 3.1, 4.3, and 4.7 of Balkema et al. [5], respectively.

From the proposition, it is apparent that the finite/infinite dichotomies for b and tU determine
which of the three domains of convergence are possible. Proposition 2 in Section 8.1.1 of Butler
and Wood [16] provides a detailed account of which limits are possible under this cross classi-
fication. Which domain of convergence can occur when approaching b is also related to what
sort of singularity type M(z) has at b when viewed as a function of complex variable z. The
singularity can be a pole, algebraic or logarithmic branch point, or an essential singularity and
Section 8.1.2 of Butler and Wood [16] details the possibilities for each type of singularity.

3. Limiting saddlepoint error ratios

Here we focus on the absolutely continuous setting and consider lattice/integer-valued mass and
survival functions in Section 6. First, we consider limiting ratios for the saddlepoint survival
function. Theorem 1 below obviates the need to consider the survival ratio S(t)/Ŝ(t) separately
in the continuous case; under the conditions of the theorem it has the same limiting behavior as
the density ratio f (t)/f̂ (t) as t ↑ tU . Recall the definitions of f̂ (t) and Ŝ(t) in (1.2) and (1.3).

Theorem 1 (Limiting saddlepoint survival ratios). Suppose b /∈ S and

lim
t↑tU

f (t)

f̂ (t)
∈ (0,∞)

exists (see, e.g., Theorems 2 and 3).

(a) If X ∈D(Gα) or X ∈D(−Gα), then

lim
t↑tU

S(t)

Ŝ(t)
= lim

t↑tU

f (t)

f̂ (t)
. (3.1)

(b) If X ∈ D(N ) and û/ŵ3 → 0 as ŝ → b (see (1.1) for definitions of ŵ and û), then (3.1)
holds.

The proof of Theorem 1 makes use of the limiting properties for ŵ, û, and û/ŵ3 as t ↑ tU
or equivalently as s ↑ b; see Proposition 5 of Section 8.1.3 of Butler and Wood [16] for the
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details. Proposition 5(c) shows that û/ŵ3 → 0 as ŝ → b when it is assumed that X ∈ D(Gα) or
X ∈D(−Gα). This is the reason that this assumption is not needed in part (a) of Theorem 1 and,
accordingly, the conditions for part (a) are very mild. In part (b), the assumption of this condition
does not appear restrictive since it holds in the great majority of known cases where X ∈ D(N ).
It fails in the case of the right tail of the inverse Gaussian distribution, but in this case b ∈ S and
none of the theory applies. We do not know of any cases where b /∈ S but û/ŵ3 → 0 fails.

In Theorem 2 below, we assume weak convergence of the standardized tilted random variable
Zs as s ↑ b, as well as the existence of a dominating function, plus a very basic assumption on
the density f which guarantees that the inversion formula applies. In Theorems 3 and 4 below,
where X ∈ D(Gα) and X ∈ D(−Gα) respectively, we prove the same result under substantially
weaker new conditions which are also easier to check.

Theorem 2 (Limiting saddlepoint error ratios). Suppose b /∈ S and the following two condi-
tions hold:

(i) A dominating function D exists such that, for b− = b − ε for some ε > 0,

sup
s∈[b−,b)

∣∣∣∣M(s + iy/σs)

M(s)

∣∣∣∣ ≤ D(y) ∀y ∈ R with
∫ +∞

−∞
D(y)dy < ∞, (3.2)

where σs = √
K′′(s) = √

Var(Xs) (see Section 2).
(ii) f (t) is locally of bounded variation and continuous for sufficiently large t .

Then the limiting density ratio is

lim
t↑tU

f (t)

f̂ (t)
=

{
�̂(α)/�(α) if X ∈D(Gα) or X ∈D(−Gα)

1 if X ∈D(N ),
(3.3)

where �̂(α), defined in (1.5), is Stirling’s approximation to �(α).

The role of b− in (3.2) is simply to ensure that we only need to consider an interval of s values
which is bounded on the left. This is sometimes helpful when seeking a dominating function.
The usefulness of Theorem 2 hinges on whether a dominating function D satisfying (3.2) can be
found. There are many important examples where, even though (3.3) holds, a suitable dominating
function cannot be found and may not exist.

3.1. Saddlepoint error ratios with no limit

In Section 8.7 of Butler and Wood [16], two continuous examples are provided in which stan-
dardized tilted distributions do not converge weakly as s ↑ b. In Example 6 of Section 8.7, the
lack of convergence can be attributed to b being a logarithmic branch point. Subject to additional
assumptions, the saddlepoint relative errors are not bounded as s ↑ b.

In the second of these examples, Example 9 of Section 8.7, the density has a dampened os-
cillatory form and there is again no weak convergence. However, the saddlepoint relative errors
remain bounded as s ↑ b but do not converge and are ultimately oscillatory.
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4. The case X ∈D(Gα)

Assume that

M(z) = (b − z)−αg(z) (4.1)

for α > 0 where g is analytic on {z ∈ C : 0 < Re(z) < b} and (b − z)−α assumes principal values
using a branch cut on [b,∞] if α is not a positive integer. Note that g need not be proportional
to an MGF. Indeed, in the most interesting classes of examples considered in Section 4.1, g will
usually not be proportional to an MGF. In the case that α is integer-valued so b is a pole, then
g(z) = (b − z)αM(z) represents a function without a singularity at b so that often g may be
analytically continued to the right of b.

Theorem 3 (X ∈ D(Gα)). For an absolutely continuous distribution with moment generating
function M of the form (4.1), suppose X ∈ D(Gα) and that the following condition holds for
either j = 1 or j = 2: for some ε > 0, g in (4.1) satisfies

sup
s∈[b−,b)

∣∣∣∣ 1

σ
j
s

g(j)(s + iy/σs)

g(s)

∣∣∣∣ ≤ cj

(
1 + |y|)α−1−ε

, (4.2)

where g(j) denotes the j th complex derivative of g, b− ∈ (0, b) is arbitrary but fixed, σs is defined
as in Theorem 2 and cj is a constant. Then

lim
t↑tU

f (t)

f̂ (t)
= lim

t↑tU

S(t)

Ŝ(t)
= �̂(α)

�(α)
. (4.3)

In (4.2), any choice b− ∈ (0, b) will do. When applying the theorem, it is best to try to check
condition (4.2) with j = 1 first, and if it fails to hold with j = 1, then try to check condition (4.2)
with j = 2.

Apart from the assumption of absolute continuity, no assumptions are made in Theorem 3
about the density function f or survival function S. The avoidance of assumptions on f plus
the novel nature of condition (4.2) sets Theorem 3 apart from all previous results on saddlepoint
relative errors in the literature; cf. Daniels [18] and Jensen [30]. The assumptions which are made,
that the MGF takes the form (4.1) and satisfies (4.2) with either j = 1 or j = 2, are expressed
entirely in terms of the MGF M.

The condition X ∈ D(Gα) can also be based entirely on the form of M. From part (b) of
Proposition 1, it follows that g(s), when viewed as a function of real variable s, must be slowly
varying as s ↑ b and M must be regularly varying at b. This holds if g(z) is analytic at z = b

and is the case in many practical settings such as when b is an isolated pole for M. For g not
easily recognizable as slowly varying, then verification follows from part (a) of Proposition 1 if
the third standardized tilted moment is shown to have a positive finite limit.

Although condition (4.2) with j = 1 suffices in nearly all the cases we have seen, it does in
fact fail in some cases of Example 1 below. However, in this example (4.2) holds in all cases
when j = 2.
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Example 1 (Generalized inverse Gaussian distribution, GIG(p,β, γ )). The GIG(p,β, γ ) has
density function and MGF given by, respectively,

f (t) = (β/γ )p/2

2Kp(
√

βγ )
tp−1 exp

(
−βt + γ /t

2

)
,

M(s) =
(

β

β − 2s

)p/2 Kp(
√

γ (β − 2s))

Kp(
√

γβ)
,

(4.4)

where t > 0, Kp(·) is a modified Bessel function, p ∈ R, β > 0 and γ ≥ 0 if p > 0, β ≥ 0 and
γ > 0 if p < 0, and β > 0 and γ > 0 if p = 0. See Abramowitz and Stegun [1] for details of Kp

and Jorgensen [31] for details of the GIG distribution. The GIG family exhibits some diversity
of behavior in terms of limiting saddlepoint relative errors. We first focus on the two cases for
which the results of this paper are relevant: the right tail when p > 0 and the left tail when γ > 0
(note that if γ = 0 we must have p > 0 for the density to be proper, in which case we recover the
gamma distribution). We then briefly explain what happens in the third case, the right tail when
p ≤ 0.

When p > 0, it turns out that the right tail of GIG(p;β,γ ) is in D(Gp). However, it is shown
in Section 8.7 of Butler and Wood [16] that (4.2) with j = 1 holds when p > 1/2 and fails when
p ∈ (0,1/2], while condition (4.2) with j = 2 is satisfied for all p > 0 (with α = p) so that the
limits in (4.3) hold for all p = α > 0. This is the only example we know of where (4.3) holds but
(4.2) with j = 1 fails to hold.

For the left tail, any member of the GIG family (4.4) with γ > 0 is in D(N ). It is shown
in Section 8.7 of Butler and Wood [16] that condition (3.2) of Theorem 2 holds with dom-
inating function D(y) = c1 exp(−c2y

1/2) for some sufficiently large positive constant c1 and
sufficiently small positive constant c2. It can be checked that û/ŵ3 → 0 as t → 0 so Theo-
rem 1 also holds. Thus, for any parametrization of the GIG (p;β,γ ) distribution, the limit-
ing saddlepoint density and survival ratios are 1 as t → 0. For a GIG(2;1,1) distribution, at
t0 = 1.11×10−8 the saddlepoint density ratio is 1−10−17. For the survival ratio at t1 = 0.00319,
F(t1) = 1.453 × 10−76 and F̂ (t1) = 1.455 × 10−76 which gives the ratio 0.9984. For a GIG
(−2;1,1) distribution, at t2 = 1.12 × 10−8, the saddlepoint density ratio is 1 − 10−17 and at
t3 = 0.00352, F(t3) = 3.165 × 10−60 and F̂ (t3) = 3.171 × 10−60 for a ratio of 0.9981.

The third case consists of the right tail when p ≤ 0. Here, b ∈ S , so this is outside the domain
of the Balkema et al. [3,5] results. When p < 0 it turns out that the standardized tilted distribution
Zs is degenerate in the limit s ↑ b = β/2. The case p = 0 is intriguing as it is at the boundary
of p < 0 and p > 0. As s ↑ b, there is no weak convergence and the saddlepoint density ratio is
unbounded as shown in Section 8.7 of Butler and Wood [16].

There is, however, an interesting twist to the third case. The inverse Gaussian distribution is the
special case GIG(−1/2;β,γ ) and steepness holds at b = β/2, despite the fact that M(β/2) < ∞
and the distributional limit of Zs is degenerate. The saddlepoint density for the inverse Gaussian
density is exact (Daniels [19]) and the limiting survival ratio differs by assuming the value 2
rather than 1; see Barndorff-Nielsen [7], p. 491, and Booth [11]. In the left tail, X ∈ D(N ) and
the limiting relative CDF error is 1 in agreement with Barndorff-Nielsen [7], p. 491.
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Irregular saddlepoint cases (p < 0). Right tail saddlepoint approximations in this setting for
which X ∼ GIG(p;β,γ ) can be realized by working with the left tail of 1/X ∼ GIG(−p;γ,β)

where −p > 0 and now 1/X ∈D(N ).

The limiting relative error in (4.3) can also be shown to hold subject to other conditions. For
example, it suffices that M(z) is complex regularly varying at b for z ∈ C; see Section 8.6 and
Corollary 9 of Butler and Wood [16].

Our next example has two purposes: first, to exhibit a case where weak convergence of the
standardized tilted distribution for Zs occurs as s ↑ b, and the relative error stays bounded, yet
the limits (4.3) do not hold; and secondly to show that condition (4.2) of Theorem 3 is strictly
weaker than the sufficient conditions of Corollary 9 in (8.91) of Section 8.6 of Butler and Wood
[16] which assume M(z) is complex regularly varying.

Example 2 (Wobbly density). The density f (t; θ) = c(θ){1+ sin(θt)}e−t , for t ≥ 0 and c(θ) =
(1 + θ2)/(1 + θ + θ2), has MGF

Mθ (z) = c(θ)
(1 − z)2 + θ2 + θ(θ + 1 − z)

(1 − z)(1 + θi − z)(1 − θi − z)
, Re(z) < 1 = b, (4.5)

with simple poles at 1 and 1 ± θi, which “interfere” with one another to create a wobbly density.
The poles at 1±θi do not affect the domain of attraction, and using Proposition 1 it can be shown
that X ∈ D(G1) in the right tail and X ∈ D(−G1) in the left tail. These poles, however, do affect
the relative error; direct computation shows that

f (t)

f̂ (t)
∼ 1 + sin(θt)

�̂(1)
, t → ∞,

and the relative error is ultimately θ/(2π)-periodic, so it is bounded but without a limit.
We now show how the wobbly density can be used to construct a distribution for which (4.2)

holds with j = 1 yet the assumptions of Corollary 9 in (8.91) fail. Let Mθ (z) be the wobbly
density MGF in (4.5), and consider the mixture distribution with MGF

M(z) = 1

2

1

(1 − 2z)
+ 1

2

∞∑
θ=1

(
1

2

)θ

Mθ (z)

with simple poles at b = 1/2 and at {1 ± θi : θ = 0,1, . . .}. It is a simple but tedious exercise to
show that this distribution satisfies (4.2) with j = 1; however, its MGF cannot be in the complex
regularly varying class CRVb(−1, ϑ) for some ϑ ∈ (π/2,π). The infinite sequence of poles
along the line {Re(z) = 1} prevents g from being analytic on any sector centered at b = 1/2 and
including an angular portion of the analytic continuation. Hence, the requirement of Corollary 9
that ϑ ∈ (π/2,π) fails.

4.1. Applications for X ∈D(Gα)

We now consider four important classes of applications of Theorem 3. The first three classes
have a common structure in which M(z), the MGF of interest, is analytic on {0 < Re(z) < b}
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and may be be expressed as a function of a finite number of input MGFs {Mj }pj=1, that is, for
a suitable function F , M(z) = F{M1(z), . . . ,Mp(z)}. The following condition will often be
placed on input MGFs in order to ensure that (4.2) holds with j = 1.

For some ε > 0, let the moment generating function M0(z) be analytic on {z ∈ C : 0 <

Re(z) < b + ε}. Also, for some δ > 0 and constant c0 ∈ (0,∞), assume that

sup
s∈[b−,b)

∣∣M′
0(s + iy)

∣∣ ≤ c0
(
1 + |y|)−1−δ

, (4.6)

where M′
0(z) is the complex derivative of M0(z).

In the situations of interest here, M0 will automatically be analytic up to Re(z) < b + ε

due to the nature of the transformation F , as we shall see below. Almost all of the commonly
used families of probability densities which possess the relevant exponential moments satisfy
condition (4.6), including for example, all gamma distributions, all generalized inverse Gaussian
distributions which have some finite exponential moments, finite mixtures of these distributions
and infinite mixtures which have some finite exponential moments.

4.1.1. Class 1: Convolutions of moment generating functions

Here, the function g in (4.1) is g(z) = bαM0(z), where M0 is itself an MGF.

Corollary 1 (Convolutions). Suppose X has moment generating function M as in (4.1) and
g(z) = bαM0(z), where M0 is a moment generating function. If M0 satisfies condition (4.6)
then condition (4.2) with j = 1 holds, X ∈D(Gα), and the saddlepoint limits in (4.3) hold.

Corollary 1 is satisfied by members of the Daniels’ [21] class discussed in Jensen [30], Sec-
tion 10.2. The class includes the asymptotic null distributions for various normal goodness-of-fit
tests including the Kolmogorov–Smirnov test. The class consists of convolutions of independent
and non-identically distributed gamma variables Xn ∼ Gamma (γn, bn) for which

∑
n≥1 Xn con-

verges a.s. and b1 < infn≥2 bn. The component X1 dominates and
∑

n≥2 Xn contributes MGF

M0. By Corollary 1, the limiting ratios are �̂(γ1)/�(γ1).

4.1.2. Class 2: First-passage moment generating functions in semi-Markov processes

Semi-Markov processes generalize Markov processes by replacing the exponential and geomet-
ric holding time distributions in states with very general distributions. Additionally, and unlike
Markov processes, these holding time distributions are allowed to depend on destination states
during the holding as, for example, would occur in first-passage distributions for a GI/M/1 or
M/G/1 queue (Butler [13], Section 13.2.5). In an m-state semi-Markov process with state space
S = {1, . . . ,m}, the dynamics can be explained as they would for a Markov chain: an m × m

jump chain P = {pij } determines 1-step transitions in states and an m × m matrix of holding
time CDFs {Fij (t)} specifies destination dependent holding times. However, rather than working
with {Fij (t)}, we consider the corresponding matrix of MGFs M(z) = {Mij (z)}. Together, P,
M(z), and a starting state characterize the semi-Markov process. Equivalently, the transmittance
matrix T(s) = P � M(z) = {pijMij (z)} and a starting state characterize the process.
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Let X be any first-passage time in such a process which can be specified as first passage from
state 1 → m �= 1 with an appropriate relabelling of the states. The first-passage transmittance
E{ezX1{X<∞}} from 1 → m �= 1 is given in Butler [12], Section 4.1, as

F1m(z) := E
{
ezX1{X<∞}

} = (m,1) cofactor of Im − T(z)

(m,m) cofactor of Im − T(z)
=: (−1)m+1|�m1(z)|

|�mm(z)| (4.7)

for Re(z) < b, where Im is the m × m identity matrix. If all states in S communicate and
Mij has convergence boundary bij > 0 for all i, j ∈ S, then it can be shown that 0 < b <

min(i,j)∈S\m×S\m bij where S\m = S\{m}; additionally, if we assume b < mini∈S\m bim, then
together b < bij for all the Mij which appear in the ratio (4.7) (the mth row of M(z) does not ap-
pear in (4.7)). More recently, Butler [15] has shown that if S consists of an irreducible subchain
along with all transients states that are possible intermediate states during the sojourn 1 → m,
then b is a simple zero of |�mm(z)| and a dominant pole of the MGF M(z) = F1m(z)/F1m(0).
By dominant, we mean no other singularities exist on the boundary {z ∈ C : Re(z) = b}. In this
context,

g(z) = (−1)m+1|�m1(z)|
F1m(0)

b − z

|�mm(z)| , (4.8)

where g(z) has a removable singularity at z = b.
Our main result in this subsection can now be stated for limiting saddlepoint ratios related to

approximating the first-passage density and survival functions.

Corollary 2 (First-passage distributions). For a semi-Markov process as described above, sup-
pose a first-passage distribution has moment generating function given in (4.7). If Mij (z) satis-
fies condition (4.6) for all (i, j) ∈ S\m × S, then g in (4.8) satisfies condition (4.2) with j = 1
and therefore the limiting saddlepoint ratios are given in (4.3) as �̂(1), where �̂(·) is defined in
(1.5).

4.1.3. Class 3: Compound distributions

Suppose X1,X2, . . . is an independent and identically distributed sequence and, independent
of the sequence, N is a positive integer-valued random variable. The focus of our interest in
this subsection is the random sum SN = ∑N

i=1 Xi with a compound distribution. Suppose X1
has density f0 and MGF M0(z), N has probabilities {pn : n = 1,2, . . .} and for each fixed
integer n ≥ 1, f

(n)
0 is the density of the sum X1 + · · · + Xn. Then it follows from elementary

considerations that the density of SN and its MGF are

f (t) =
∞∑

n=1

pnf
(n)
0 (t), M(z) =

∞∑
n=1

pnMn
0(z) =P

{
M0(z)

}
,

where P(ω) = ∑
n≥1 pnω

n denotes the probability generating function (PGF) for N . Our aim
now is to find conditions on M0 and P under which the saddlepoint density and survival function
approximations of f (t) and S(t), respectively, satisfy (4.3).
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We suppose P has radius of convergence r > 1 and has a pole of order α > 0 at r so P(ω)

may be written as

P(ω) = (r − ω)−αG(ω).

Assume M0(z) is convergent on at least {0 < Re(z) < c} with r < M0(c) ≤ ∞. Let b > 0 be the
unique solution to M0(s) = r with multiplicity 1 (since M0(s) is strictly increasing in s ∈ R).
We may define C(z) such that r −M0(z) = (b − z)C(z), in which case

M(z) = (b − z)−αg(z), g(z) = G
{
M0(z)

}{
C(z)

}−α
.

Our main result for compound MGFs is now stated.

Corollary 3 (Compound distributions). For such a distribution as described above, if M0

satisfies condition (4.6) then condition (4.2) with j = 1 is satisfied and the limiting saddlepoint
ratios are given by (4.3).

Jensen [30], Chapter 7, also considers relative errors for compound distributions though he
takes a somewhat different perspective than that used here. Important subclasses of such com-
pound distributions include the Pollaczek-Khintchine MGF in queuing theory and the Cramér–
Lundberg model in insurance mathematics. The latter was also considered in Jensen [30], The-
orem 10.3.2, whose approach to dealing with the relative error of S(t)/Ŝ(t) is direct in that the
Cramér–Lundberg expansion for S(t) is compared to an expansion for Ŝ(t). By contrast, the
approach taken in this paper is indirect as it does not use the Cramér–Lundberg expansion but
rather deals with relative error through inversion formulas. The approach used here also provides
relative errors for the saddlepoint density ratio, that is, the first expression in (4.3).

4.1.4. Class 4: M varies regularly at s = b

In this case, we assume that M has the form (4.1) where now

g(z) = bαL
{
1/(b − z)

}
,

and L is a function which is slowly-varying at infinity. Consider the following condition on L:
for some fixed ε > 0, the function L satisfies

sup
s∈[b−,b)

∣∣∣∣ 1

(b − s − iy/σs)

L′{1/(b − s − iy/σs)}
L{1/(b − s)}

∣∣∣∣ = O
{(

1 + |y|)α−ε} as |y| → ∞. (4.9)

From (4.9), the argument of L′ converges to 0 ∈ C as |y| → ∞ so that it is the behavior of L′ in
a neighborhood of 0 ∈ C, rather than the behavior of L′ at infinity, that is critical.

Corollary 4 (M varies regularly at b). Suppose M varies regularly at b as described above
and L satisfies condition (4.9). Then, condition (4.2) with j = 1 is satisfied and the saddlepoint
limits in (4.3) hold.
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Condition (4.9) is satisfied by a large class of functions L which are unbounded and slowly-
varying at infinity, including all powers of logarithms and all powers of iterated logarithms. The
importance of condition (4.9) is that it allows a purely Tauberian condition to be specified in
order to obtain the saddlepoint limits in (4.3) rather than the mixed conditions (i.e., including
an assumption on the density) that would ordinarily be used in the traditional theory of Hardy–
Littlewood–Karamata (H–L–K). To conclude the limits in (4.3) for the latter theory, one needs
to not only assume that M varies regularly at b, but also that the the b-tilted density ebtf (t) (or
the appropriately tilted mass function) is ultimately monotone as t ↑ tU . An argument for this is
detailed in the next paragraph. In Corollary 4, we have avoided imposing ultimately monotone
conditions on the tilted density, which may be very difficult to check in specific cases, and have
rather imposed condition (4.9) on the MGF.

We now indicate why (4.3) holds using traditional H–L–K theory under mixed conditions,
i.e. that M varies regularly and ebtf (t) is ultimately monotone as t → ∞. The H–L–K theory
(Feller [23], Section XIII.5 Theorems 4 and 5; Bingham et al. [10], Theorem 1.7.2 and Corollary
1.7.3) is applied rather to the improper b-tilted density ebtf (t) and not directly to f (t) itself; this
approach is described in Butler [14], Section 3, and is specified under the “Feller conditions”.
From the H–L–K theory, we obtain an asymptotic expression for f (t) as t ↑ tU . This, along with
the regularly varying form for M and its ensuing saddlepoint properties, allows the limits in
(4.3) to then be derived using some straightforward computations.

5. The case X ∈D(−Gα)

The most common setting for this case is the left tail of a distribution for which Y ≥ 0, in which
case X = −Y has upper support bound tU = 0. We shall continue to work in the right tail with
variable X instead of Y and assume without loss in generality that tU = 0. If we are interested in
the right tail of Y and it has upper support bound at tU ∈ (0,∞), then we take X = Y − tU so we
again are working with tU = 0 for X with MGF M(s).

Theorem 4 (X ∈D(−Gα)). Suppose X has tU = 0 and moment generating function M(z) with
the following uniform asymptotic expansion: for some α > 0, η > 0 and ε > 0,

M(z) = c1/z
α + O

(
1/zα+η

)
(5.1)

holds uniformly as |z| → ∞ for | arg(z)| ≤ π/2 − ε. Then X ∈ D(−Gα) and

lim
t↑0

S(t)

Ŝ(t)
= �̂(α)

�(α)
. (5.2)

Additionally, suppose f (t), the density of X, is continuous and locally of bounded variation for
t ∈ (−ε0,0) for some ε0 > 0. Then

lim
t↑0

f (t)

f̂ (t)
= �̂(α)

�(α)
. (5.3)
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When considering the left tail of Y ≥ 0 with CDF FY (t), the expansion in (5.1) concerns
MY (−z) = E{e−zY }, the Laplace transform, and the conclusion in (5.2) concerns the distribution
function FY with

lim
t↓0

FY (t)

F̂Y (t)
= �̂(α)

�(α)
,

where F̂Y (t) = 1 − ŜY (t) is the saddlepoint approximation for FY (t).
In the next result, we provide simple conditions on the density h(t) = f (−t) of −X > 0 which

ensure that expansion (5.1) holds for the MGF of X. Let h(z) denote the analytic continuation
of density h to C and assume there exists an ε0 > 0 and r > 0 such that h(z) may have a branch
point at 0 but is otherwise complex analytic on the sector Vε0(r) = {z ∈C : 0 < |z| ≤ r , |arg(z)| ≤
ε0 < π}. Also, for z ∈ Vε0(r) and some β ∈ [0,1), assume that

h(z) = z−β

∞∑
k=0

hkz
k 0 < |z| ≤ r − ε1 (5.4)

for some ε1 > 0, where h0 �= 0 if β ∈ (0,1).
The condition β ∈ [0,1) is not a restriction as we now explain. If β ∈ (0,1) and z = 0 is a

branch point, then h0 �= 0 ensures that h(t) = O(t−β) as t ↓ 0 and β ∈ (0,1) is required for h to
be an integrable density on (0, ε2) for some ε2 > 0. Perhaps the most common setting in which
(5.4) holds is the setting in which h(t) = t−βd(t)1{t>0} or is a sum of such terms, where d(t) is
real analytic at t = 0 with an analytic continuation that is complex analytic at z = 0.

Corollary 5 (Sufficient conditions for (5.1)). Suppose −X has support in (0,∞). If h(t), the
density for −X, satisfies the condition in (5.4), then a uniform expansion as in (5.1) exists with
α = m + 1 − β where m = min{k ≥ 0 : hk �= 0, hj = 0 forj < k}.

Example 3 (Uniform convolutions). Daniels [18], Section 5, considered Y as a convolution of
n independent Uniform (0,1) variables so tU = n. Using direct arguments, he showed that the
limiting density ratio for Y − n in (5.3) holds with α = n but did not show this for the survival
ratio in (5.2). Both limiting ratios hold since (5.1) holds with M(z) = {(1−e−z)/z}n ∼ z−n. The
condition (5.4) also holds. From Feller [23], I.9 Theorem 1, we can determine the convolution
density for −X = n−Y in t ∈ (0,1) is h(t) = tn−1/(n− 1)!. Thus in (5.4), β = 0 and m = n− 1
leading to α = n.

Example 4 (Truncated density). For an arbitrary absolutely continuous variable Z with density
f on R, let Y be the distribution restricted to Z > 0 so it has density f (t)/S(0) for t > 0. Limiting
saddlepoint ratios as t ↓ 0 are determined by applying either (5.1) to the MGF of X = −Y or else
(5.4) to the density of Y . For example, if Z ∼ N(0,1) is standard normal, then X is Z conditional
on Z < 0 with MGF

M(z) = �(−z)

2
√

2πφ(−z)
= erfc(z/

√
2)

4
√

2πφ(z)
, z ∈ C, (5.5)
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where erfc(z) = 1− erf(z), erf(·) is the classical error function, and the expression (5.5) is essen-
tially Mill’s ratio. Here, M is an entire function and has an essential singularity at b = ∞ since
M(s)/sn → ∞ as R � s → −∞ for any n. However, in the other tail, M(z) has the asymptotic
expansion in the complex plane given by

M(z) ≈ 1

2
√

2π

1

z

∞∑
n=0

(−1)n(2n)!
2nn!z2n

, z → ∞,
∣∣arg(z)

∣∣ < 3π/4, (5.6)

(see Abramowitz and Stegun [1], 7.1.23, for the expansion of erfc(z/
√

2)/φ(z)), so (5.1) holds
and X = −Y ∈ D(−G1) as t ↑ 0.

This example illustrates a common setting in which X ∈ D(−Gα) as t ↑ 0. The MGF M(z)

of X is entire and not a finite polynomial so it has an essential singularity at ∞. The Taylor
expansion of M(z) holds on C but a different divergent expansion as in (5.6) holds in a sector
including {z ∈ C; Re(z) ≥ 0} such as {z ∈ C : | arg(z)| < 3π/4} for Example 4. The setting is
an expression of Stokes phenomenon in which different asymptotic regimes for M(z) hold in
different sectors with the Stokes lines | arg(z)| = 3π/4 as in Example 4 separating these regimes.
This setting holds for a large portion of cases in which X ∈D(−Gα). The need for β to be strictly
less than 1 in the condition (5.4) is illustrated in Example 10 of Section 8.7 of Butler and Wood
[16] which considers X as Pareto and also the distribution of e−X when X is Pareto.

6. Lattice distributions

There is no loss in generality in stating our results for distributions on the integer lattice rather
than on general lattices. Doing so also serves to avoid the more complicated saddlepoint expres-
sions which occur on general lattices as given in Butler [13], Section 2.4.4.

Let X have a lattice distribution on {. . . ,−1,0,1, . . .}, with mass function p(n), survival
function S(n) = P(X ≥ n), and MGF M(z) defined on SC = {z ∈ C : a � Re(z) < b} with
−∞ ≤ a ≤ 0 < b ≤ ∞. Let its probability generating function (PGF) P(z) be defined on the
disk D = {z ∈ C : ra � |z| < r} where r = eb . The saddlepoint mass function is p̂(n) = f̂ (n)

with f̂ as in (1.2) but restricted to integer-valued n.
In the integer-valued setting, D(Gα) and D(N ) are the only relevant domains of weak conver-

gence of the standardized titled variable Zs . Were X ∈ D(−Gα), then the support of X would be
bounded above and the upper boundary of support tU would be approached in finite steps with
p̂(tU ) undefined.

Theorem 5 (Limiting saddlepoint mass function ratios). Suppose b /∈ S and either X ∈
D(Gα) or X ∈ D(N ). If there exists a dominating function D(y) with finite integral on (−∞,∞),
as in (3.2), then

lim
n→∞

p(n)

p̂(n)
=

{
�̂(α)/�(α) if X ∈D(Gα)

1 if X ∈D(N ).
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To deal with more difficult cases, weaker conditions than (3.2) are now given which ensure the
limits in Theorem 5. By analogy with the continuous case, we assume that the PGF P has the
form P(z) = (r − z)−αG(z) for some α > 0. The corresponding MGF is given by

M(z) =P
(
ez

) = (
eb − ez

)−α
G

(
ez

)
. (6.1)

The following condition will be required for some b− ∈ (0, b): for some ε > 0, the function
G(ez) in (6.1) satisfies

sup
s∈[b−,b)

∣∣∣∣ 1

σs

G′(es+iy/σs )

G(es)
1{y:|y|<πσs }

∣∣∣∣ ≤ c
(
1 + |y|)α−1−ε (6.2)

for all y ∈R, where G′ is the complex derivative of G and c is a constant.
Note that, due to the indicator function 1{·}, the left-hand side of (6.2) is only non-zero when

σs > |y|/π .

Theorem 6 (X ∈ D(Gα)). Suppose X is an integer-valued random variable which has moment
generating function M of the form (6.1) and assume X ∈ D(Gα). If, in addition, G(ez) satisfies
condition (6.2) for some ε > 0, then

lim
n→∞

p(n)

p̂(n)
= �̂(α)

�(α)
. (6.3)

The Darboux conditions stated in Corollary 6 below were used in Butler [14], Section 4, to
develop expansions for p(n). The next result asserts that the so-called Darboux conditions imply
condition (6.2), and therefore they suffice for guaranteeing the saddlepoint limit in (6.3).

Corollary 6 (Darboux conditions). Suppose X has non-negative and integer-valued support,
with P satisfying Darboux conditions, i.e. P has the form

P(z) = (r − z)−αG(z), α > 0, r > 1,

and G(z) is analytic on {z ∈ C : |z| ≤ r} with G(r) �= 0. Then (6.2) holds and therefore the
saddlepoint limit in (6.3) holds.

6.1. Saddlepoint survival approximations

In the case of integer-valued X, we consider four approximations for S(n) denoted as Ŝ1(n), . . . ,

Ŝ4(n) which were originally introduced in Daniels [20], Section 6, and further described in Butler
[13], Section 1.2.3. The value of limn→∞ S(n)/Ŝj (n) depends upon the particular form for Ŝj (n),
that is, whether it is continuity-corrected or not and how it is corrected. All four approximations
take the form in (1.3) as in the continuous setting but use different values for ŵ and û in (1.1) and
sometimes different saddlepoints ŝ, which we denote by ŵj , ûj , and ŝj for j = 1,2,3,4. Table 1
provides these values where ŵ, û, and ŝ are those values that would be used in the continuous
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Table 1. Entries into the Lugannani and Rice [33] formula in (1.3) for computing the four saddlepoint
survival approximations for S(n)

j ŵj ûj ŝj

Ŝ1(n) ŵ1 = ŵ û1 = (1 − e−ŝ )
√
K′′(ŝ) ŝ1 = ŝ

Ŝ2(n) ŵ2 = sgn(ŝ−)
√

2{ŝ−n− −K(ŝ−)} û2 = 2 sinh(ŝ−/2)
√
K′′(ŝ−) ŝ2 = ŝ−

Ŝ3(n) ŵ3 = ŵ2 û3 = ŝ−√
K′′(ŝ−) ŝ3 = ŝ−

Ŝ4(n) ŵ4 = ŵ û4 = û ŝ4 = ŝ

formula with t = n and saddlepoint ŝ solving K′(ŝ) = n. Approximation 1 continuity-corrects
by using 1 − e−ŝ in place of ŝ for û1. Approximations 2 and 3 use n− = n − 1/2 in place of
n and use continuity-corrected saddlepoint ŝ− solving K′(ŝ−) = n−. Approximation 4 does not
use continuity correction. Both theory (Daniels [20], Section 6) and computation (Butler [13],
Sections 1.2.3–1.2.6) support approximations 1 and 2 as the most accurate.

Some special subcases arise in the lattice setting that do not occur in the continuous setting;
one such subcase will be addressed and the other is excluded from the statement of results. These
subcases occur when X ∈ D(N ), b = ∞, and K′′(s) � ∞ as s → ∞. The two subcases below
exhaust possibilities for this setting as it is not possible for K′′(s) → 0 as s → b since the limiting
distribution would be degenerate and this would violate weak convergence.

In the very light tails case, X ∈D(N ), b = ∞, and

K′′(s) → κ∞ < ∞ as s → ∞; (6.4)

while in the divergent case, X ∈D(N ), b = ∞, and

K′′(s) diverges with lim inf
s→∞ K′′(s) > 0 and lim sup

s→∞
K′′(s) < ∞. (6.5)

Our results do not apply to the divergent variance case (6.5). The discretized normal in Example
12 of Section 8.7 of Butler and Wood [16] provides a context within which both cases (6.4) and
(6.5) can occur.

Theorem 7 (Limiting saddlepoint survival ratios). Suppose b /∈ S and the limit

lim
n→∞p(n)/p̂(n) = λ ∈ (0,∞)

exists as in Theorem 5 or 6 or Corollary 6. Then the four saddlepoint survival function approxi-
mations have the following limiting ratios.

(a) If X ∈D(Gα),

lim
n→∞

S(n)

Ŝj (n)
= �̂(α)

�(α)
×

⎧⎪⎨
⎪⎩

1 if j = 1,2

b/
{
2 sinh(b/2

}
if j = 3

b/
(
1 − e−b

)
if j = 4.

(6.6)
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(b) If X ∈ D(N ) but neither (6.4) nor (6.5) holds, and ûj /ŵ
3
j → 0 as ŝ ↑ b for j = 1,2,3,4,

then the limiting value for S(n)/Ŝj (n) is dependent on whether b < ∞ or b = ∞, with

lim
n→∞

S(n)

Ŝj (n)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if j = 1,2
b/

{
2 sinh(b/2)

}
if j = 3 b < ∞

b/
(
1 − e−b

)
if j = 4

1 if j = 1,2
0 if j = 3 b = ∞.

∞ if j = 4

(6.7)

(c) If X satisfies (6.4) and ûj /ŵ
3
j → 0 as ŝ ↑ b = ∞ for j = 1,2,3,4, then the limits are as

in the b = ∞ case of (6.7) for j = 1,3, and 4 but for j = 2,

lim
n→∞

S(n)

Ŝ2(n)
= η−1/4 = exp

{−1/(8κ∞)
}
,

where κ∞ is given in (6.4).

The first two approximations are asymptotically best since �̂(α)/�(α) < 1 for all α > 0 and
factor b/(2 sinh(b/2) < 1 for b > 0. Note that there are no conclusions drawn about limiting
ratios when X satisfies (6.5) since our method of proof does not cover this situation.

Example 5 (Negative Binomial (m,p)). Suppose X counts the number of failures before the
mth success with p as the probability of success. Then X ∈ D(Gm) and the dominating function
condition (3.2) holds for m > 1. To see this, note eb = 1/q and

M(s) =
(

p

q

)m(
1

q
− es

)−m

=
(

p

q

)m

A(s)−m(b − s)−m

where A(z) := (eb − ez)/(b − z) is an entire function with A(b) = eb and no zeros on {z ∈ C :
| Im(z)| ≤ π}. Then

sup
s∈[b−,b)

∣∣∣∣M(s + iy/σs)

M(s)

∣∣∣∣ ≤ sup
s∈[b−,b)

∣∣∣∣ A(b)+

A(s + iy/σs)

∣∣∣∣
m(

1 + y2

α+

)−m/2

≤ {A(b)+}m
Im

(
1 + y2

α+

)−m/2

,

where α+ = α + ε for some ε > 0, and

I = inf
s∈[b−,b]

inf|y|≤πσs

∣∣A(s + iy/σs)
∣∣ = inf

s∈[b−,b]
inf|y1|≤π

∣∣A(s + iy1)
∣∣ > 0.

The example demonstrates how to show that (3.2) holds and reveals that this is true quite
generally when X ∈ D(Gα) for simpler cases with α > 1.
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Consider a Negative Binomial (2,0.2) example. For the mass function ratio and for
S(n)/Ŝj (n) for j = 1 and 2, the limiting ratio is �̂(2) = 0.95950. Pushing the limits of com-
putation in Maple, S(9000) = 1.162 × 10−869 and p(9000)/p̂(9000) = 0.95929. For Ŝ1 and Ŝ2
the survival ratios at 9000 are 0.9639 and 0.9645 respectively. These and other computations
suggest that the convergence of p(n)/p̂(n) is faster than for survival ratios. The limits for sur-
vival ratios with j = 3 and 4 should be 0.9575 and 1.071, respectively while their values at 9000
are 0.9625 and 1.076, respectively.

Additional examples are in Section 8.7 of Butler and Wood [16] such as Example 11 which
considers X ∼ Poisson (1) for which X ∈ D(N ). Also Example 12 revisits a discretized normal
mass function considered in Balkema et al. [3] to show weak convergence of the standardized
tilted distribution does not occur. However, subsequences can converge and, depending on the
construction, lead to weak limits D(N ), D(Gα), or D(−Gα) with (6.4) holding if D(N ).

For a significance test based on X which rejects for large X, the mid-p-value is the value
S−(n) = S(n) − p(n)/2 when X = n is observed. For a discussion on why mid-p-values are
preferred to p-values, see Agresti [2] and Butler [13], Section 6.1.4. Limiting relative errors for
various saddlepoint approximations of this mid-p-value are given in Section 8.5 of Butler and
Wood [16].

6.2. Saddlepoint error ratios with no limit

Example 7 in Section 8.7 of Butler and Wood [16] considers a logarithmic series mass function
and convolutions this mass function with itself for which r > 1 is a logarithmic branch point. It
provides a class of lattice distributions for which saddlepoint relative errors are not ultimately
bounded.
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Supplementary Material

Supplement to “Limiting saddlepoint relative errors in large deviation regions under purely
Tauberian conditions” (DOI: 10.3150/18-BEJ1093SUPP; .pdf). Section 8 in the text refers to
this supplementary material which is referenced as [16] below. It consists of 7 subsections which
contain proofs of all results, further discussion of results, and many additional examples which
illustrate the richness of the theoretical results. Section 8.1 contains proofs and additional results
from Section 2 concerning domains of attraction and also their relationship to the singularity
type for b. Sections 8.2–8.5 contain proofs for Sections 3–6, respectively. Section 8.6 considers
the relationship of limiting relative errors to complex regular variation. Section 8.7 has details
for examples as well as 7 additional examples.

https://doi.org/10.3150/18-BEJ1093SUPP
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