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In this article, we consider the hyperbolic and parabolic Anderson models in arbitrary space dimension
d, with constant initial condition, driven by a Gaussian noise which is white in time. We consider two
spatial covariance structures: (i) the Fourier transform of the spectral measure of the noise is a non-negative
locally-integrable function; (ii) d = 1 and the noise is a fractional Brownian motion in space with index
1/4 < H < 1/2. In both cases, we show that there is striking similarity between the Laplace transforms
of the second moment of the solutions to these two models. Building on this connection and the recent
powerful results of [Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017) 1305–1340] for the parabolic model,
we compute the second order (upper) Lyapunov exponent for the hyperbolic model. In case (i), when the
spatial covariance of the noise is given by the Riesz kernel, we present a unified method for calculating the
second order Lyapunov exponents for the two models.

Keywords: hyperbolic Anderson model; Lyapunov exponent; parabolic Anderson model; spatially
homogeneous Gaussian noise

1. Introduction

The goal of this article is to study the second order Lyapunov exponent of the solution to the
hyperbolic Anderson model:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2u

∂t2
(t, x) = �u(t, x) + u(t, x)Ẇ (t, x), t > 0, x ∈ R

d,

u(0, x) = 1, x ∈ R
d,

∂u

∂t
(0, x) = 0, x ∈ R

d,

(1)

driven by a zero-mean Gaussian noise Ẇ which is white in time and is spatially homogeneous
with spatial covariance given by a tempered measure μ on R

d . We consider also the parabolic
Anderson model:⎧⎨⎩

∂u

∂t
(t, x) = 1

2
�u(t, x) + u(t, x)Ẇ (t, x), t > 0, x ∈R

d ,

u(0, x) = 1, x ∈ R
d,

(2)
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with the same noise Ẇ as above. We denote by uw and uh the solutions to equation (1), respec-
tively (2). To simplify the writing, we use the convention that whenever a result holds for both
equations (1) and (2), we omit writing the indices w and h.

The noise is given by a zero-mean Gaussian process W = {W(ϕ);ϕ ∈H} with covariance

E
[
W(ϕ)W(ψ)

] = 〈ϕ,ψ〉H,

where H is the completion of the space C∞
0 (R+ ×R

d) of infinitely differentiable functions with
compact support on R+ ×R

d , with respect to the inner product:

〈ϕ,ψ〉H =
∫ ∞

0

∫
Rd

Fϕ(t, ·)(ξ)Fψ(t, ·)(ξ)μ(dξ) dt, (3)

and Fϕ(t, ·) denotes the Fourier transform of the function ϕ(t, ·). We define the Fourier trans-
form of a function ϕ ∈ L1(Rd) by Fϕ(ξ) = ∫

Rd e−iξ ·xϕ(x) dx for ξ ∈R
d . Here ξ · x is the inner

product in Rd and | · | is the Euclidean norm in Rd .
We are interested in two cases:

(i) the Fourier transform of μ (in the space S ′(Rd) of tempered distributions on R
d ) is a

non-negative locally integrable function f , i.e.∫
Rd

f (x)ϕ(x) dx =
∫
Rd

Fϕ(ξ)μ(dξ) for any ϕ ∈ S
(
R

d
)
, (4)

and the measure μ satisfies Dalang’s condition:∫
Rd

1

1 + |ξ |2 μ(dξ) < ∞. (5)

(ii) d = 1 and μ(dξ) = cH |ξ |1−2H dξ with 1/4 < H < 1/2 and cH = �(2H + 1) sin(πH)/

(2π). In this case, the Fourier transform of μ in S ′(R) is the distribution � defined by
regularization: �(ϕ) = H(2H − 1)

∫
R
(ϕ(x) − ϕ(0))|x|2H−2 dx (see, e.g., p. 23–24 of

[15]). We have:

�(ϕ) =
∫
R

Fϕ(ξ)μ(dξ) for any ϕ ∈ S(R). (6)

Existence (and uniqueness) of the solution to equation (1) has been proved recently in [3] (for
case (i), with a noise more general than here) and in [2] (for case (ii)). In both cases (i) and (ii),
it is also known that equation (2) has a unique solution (see [16]).

Note that in case (i), the inner product in H can be written as:

〈ϕ,ψ〉H =
∫ ∞

0

∫
Rd

∫
Rd

ϕ(t, x)ψ(t, y)f (x − y)dx dy dt.
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An example for this case is the Riesz kernel f (x) = |x|−α with 0 < α < d . For this example,
relation (4) holds for μ(dξ) = Cd,α|ξ |−(d−α) dξ with

Cd,α = π−d/22−α
�(d−α

2 )

�(α
2 )

(7)

(see, e.g., Lemma 1, p. 117 of [21]) and condition (5) holds if and only if α < 2.
Whereas the moments of the solution to equation (2) have been studied intensively in the recent

years (see, e.g., [5,7,11,13,16]), our results seem to be the first which give an exact calculation
for the (upper) Lyapunov exponent of the solution to equation (1) in arbitrary space dimension d .
The pth order upper and lower Lyapunov exponents for the solution to equation (1) in dimension
d = 3 were studied in [10], for case (i). The existence of the solution to the stochastic wave
equation in arbitrary dimension d was established in [8], again in case (i). We recall that the pth
order Lyapunov exponent of the solution u(t, x) is defined by:

λp = lim
t→∞

1

t
logE

∣∣u(t, x)
∣∣p.

These exponents play an important role in the study of intermittency properties of the solution
(see, e.g., Chapter 7 in [17]).

By definition, a mild solution of equation (1), respectively (2), is a square-integrable process
u, which is adapted to the filtration induced by the noise W and satisfies the integral equation:

u(t, x) = 1 +
∫ t

0

∫
Rd

G(t − s, x − y)u(s, y)W(ds, dy), (8)

for any t > 0 and x ∈ R
d , where G = Gw is the fundamental solution of the wave equation,

respectively G = Gh is the fundamental solution of the heat equation. As in [3], the stochastic
integral in (8) is interpreted in the Skorohod sense, but it can be shown to coincide with the
Itô-type integral considered in [9].

We note in passing that Gh(t, ·) is a rapidly decreasing function in R
d , whereas Gw(t, ·) is

an integrable function for d = 1 and d = 2, a measure on the sphere of radius t for d = 3, and
a distribution with compact support for d ≥ 4 (see, e.g., Theorem 5.28 of [12]). The definitions
of Gw and Gh are not important for the present article. What is important is the form of their
Fourier transforms: for any t > 0 and ξ ∈R

d ,

FGw(t, ·)(ξ) = sin(t |ξ |)
|ξ | and FGh(t, ·)(ξ) = exp

(
− t |ξ |2

2

)
. (9)

Due to the constant initial condition, the law of the solution u(t, x) does not depend on x. In
particular, the second moment h(t) = E|u(t, x)|2 is independent of x, a fact which can also be
observed from relation (22) below. A natural question is to find out what is the Laplace transform
of the function h. This calculation lies at the origin of our investigations, and was inspired by
the beautiful proof of Theorem 1.8 of [13]. A key observation made along this calculation is the
fact that the Laplace transforms of FGw(t, ·)(ξ) and FGh(t, ·)(ξ) (as functions of t ) have very
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similar forms. We exploited this fact in two different ways, which lead to the two main theorems
below.

In case (i), we consider the functional

E(f ) = sup
g∈Fd

{∫
Rd

f (x)g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2

dx

}
,

where

Fd =
{
g ∈ H 1(

R
d
);∫

Rd

g2(x) dx = 1

}
.

H 1(Rd) is the Sobolev space of order 1 on R
d , ∇g(x) = (

∂g
∂x1

, . . . ,
∂g
∂xd

), and ∂g
∂xj

is the weak
partial derivative of g with respect to xj for j = 1, . . . , d . In Appendix B, we show that

E2(f ) = E
(
f (

√
2·)), (10)

where E2(f ) is the functional considered in [16]:

E2(f ) = sup
g∈F2d

{∫
Rd

∫
Rd

f (x1 − x2)g
2(x1, x2) dx1 dx2 − 1

2

∫
Rd

∫
Rd

∣∣∇g(x1, x2)
∣∣2

dx1 dx2

}
.

In case (ii), we consider the functionals:

E(�) = sup
h∈A1

{∫
R

(h ∗ h)(ξ)μ(dξ) − 1

2

∫
R

|ξ |2∣∣h(ξ)
∣∣2

dξ

}
,

E2(�) = sup
h∈A2

{∫
R

(h ∗ h)(ξ,−ξ)μ(dξ) − 1

2

∫
R

∫
R

(|ξ1|2 + |ξ2|2
)∣∣h(ξ1, ξ2)

∣∣2
dξ1 dξ2

}
,

where

Ad =
{
h : Rd → C;

∫
Rd

∣∣h(ξ)
∣∣2

dξ = 1,

∫
Rd

|ξ |2∣∣h(ξ)
∣∣2

dξ < ∞, h(ξ) = h(−ξ) ∀ξ ∈ R
d

}
.

Here is our first main result.

Theorem 1.1. In case (i), suppose that there exists α > 0 such that

f (cx) = c−αf (x) for any c > 0, x ∈ R
d . (11)

The upper second order Lyapunov exponent of the solution to equation (1) is:

lim sup
t→∞

1

t
logE

∣∣uw(t, x)
∣∣2 =

⎧⎨⎩2
1−α
3−α

(
E2(f )

) 2−α
6−2α = 2

2−3α
6−2α

(
E(f )

) 2−α
6−2α in case (i),

2
2H−1
2H+1

(
E2(�)

) H
2H+1 = 2

3H−2
2H+1

(
E(�)

) H
2H+1 in case (ii).
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Remark 1.2. Using relation (4) between f and μ, we see that (11) is equivalent to the following
scaling property of μ: for any c > 0 and for any Borel set A ⊂R

d ,

μ(cA) = cαμ(A).

We show in Appendix A that a tempered measure μ with this scaling property satisfies Dalang’s
condition (5) if and only if α < 2. Interestingly, the Lévy measure ν of an α-stable distribution in
R

d satisfies the scaling property ν(cA) = c−αν(A) for any c > 0 and for any Borel set A ⊂ R
d

(see, e.g., Theorem 14.3 of of [19]).

For our second result, we assume that f is the Riesz kernel of order α. We define

a =
{

3 − α for equation (1),

1 − α/2 for equation (2),
(12)

γ =
{

log
(
21−αρ

)
for equation (1),

logρ for equation (2),
(13)

where ρ is the constant introduced in [4]:

ρ = sup
‖g‖2=1

{∫
Rd

∫
Rd

g(ξ)√
1 + |ξ |2

g(η)√
1 + |η|2 Cd,α|ξ − η|−(d−α) dξ dη

}
, (14)

with Cd,α given by (7). Note that ρ < ∞ since α < 2 (see [4]).
Our second main result is the following.

Theorem 1.3. If f (x) = |x|−α with 0 < α < d ∧ 2, then the second order Lyapunov exponent
for the solution to equation (1) and for the solution to equation (2) is given by:

λ2 = eγ/a =
{(

21−αρ
)1/(3−α)

for equation (1),

ρ2/(2−α) for equation (2),
(15)

with constants a, γ and ρ defined by (12), (13) and (14), respectively.

Remark 1.4 (Comparison of the two results). When f (x) = |x|−α =: Rα(x), Theorems 1.1
and 1.3 give the same value for λ2. To see this, on one hand, we express E(Rα) in Theorem 1.1
using Lemma B.3 (Appendix B) as follows:

E(Rα) = E(Rα,1/2) = 2− α
α−2 E(Rα,1), (16)

where E(f,A) is given by (39). On the other hand, by Theorem 1.5 of [4], we know that:

ρ = �1−α/2
α = E(Rα,1)1−α/2, (17)

(Note that there is a small error in Theorem 1.5 of [4] which states that ρ = (2π)−d�
1−α/2
α .

This error is due to the fact that in the first line of equation (7.22) of [4] one should have (2π)−dp
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instead of (2π)−d(p+1), since F(f p) = (2π)−d(p−1)(Ff )∗p .) A direct calculation based on (16)
and (17) shows that: (

21−αρ
)1/(3−α) = 2

2−3α
6−2α

(
E(Rα)

) 2−α
6−2α .

Remark 1.5 (Equations with fractional power of Laplacian). Theorems 1.1 and 1.3 can be
extended (with the same proof) to equations (1) and (2) in which the Laplacian � is replaced by
−(−�)β/2 for β ∈ (0,2], provided the measure μ satisfies∫

Rd

1

1 + |ξ |β μ(dξ) < ∞,

which is equivalent to α < β . In this case, formula (9) remains valid with |ξ | replaced by |ξ |β/2

(see, e.g., Section 3.2 of [14] for the wave equation), and existence of the mild solution can be
proved similarly to [3]. In case (i), the statement of Theorem 1.1 becomes:

lim sup
t→∞

1

t
logE

∣∣uw(t, x)
∣∣2 = 2

1
3β−2α

[β(1−α)+ α(β−α)
α−2 ](E(f )

) β−α
3β−2α .

A similar relation holds for case (ii) with α replaced by 2 − 2H and E(f ) replaced by E(�).
Relation (15) holds with γ given by (13), a replaced by:

a =
{

3 − 2α/β for equation (1),

1 − α/β for equation (2),
(18)

and ρ replaced by

ρ = sup
‖g‖2=1

{∫
Rd

∫
Rd

g(ξ)√
1 + |ξ |β

g(η)√
1 + |η|β Cd,α|ξ − η|−(d−α) dξ dη

}
. (19)

We refer the reader to [20] for a study of a general parabolic Anderson models with space–time
colored noise, and to [6] for the precise calculation of the Lyapunov exponents of order p ≥ 2 of
the solution to a fractional parabolic Anderson model.

Remark 1.6 (Equations with space–time white noise). With minor modifications, the proof of
Theorem 1.3 can also be used for the case of equations (1) and (2) with space–time white noise
in spatial dimension d = 1. In this case, H = L2(R+ ×R),

〈ϕ,ψ〉H =
∫ ∞

0

∫
R

ϕ(t, x)ψ(t, x) dx dt,

and relation (3) holds with μ(dξ) = (2π)−1 dξ , by Plancherel theorem. Intuitively, this corre-
sponds to the case of Riesz kernel with critical exponent α = 1. The results in Section 4 below
hold (with the same arguments) with constants:

a =
{

2 for equation (1),

1/2 for equation (2),
and γ = ρ = log(1/2).
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The proof of Lemma 4.1 below shows that in this case, E[Jw
n (τ)] = E[Jh

n (τ )] = Tn, where

Tn = 1

(2π)n

∫
Rn

1

1 + |ξ1|2
1

1 + |ξ1 + ξ2|2 · · · 1

1 + |ξ1 + · · · + ξn|2 dξ1 · · · dξn = 1

2n
.

We obtain the well-known results:

λ2 = eγ/a = (1/2)1/a =
{

1/
√

2 for equation (1),

1/4 for equation (2).

This article is organized as follows. In Section 2, we compute the Laplace transforms of the
second moment of the solutions to equations (1) and (2). In Section 3, we derive the connection
between the Laplace transforms in the hyperbolic and parabolic case, leading to the proof of
Theorem 1.1. In Section 4, we give the proof of Theorem 1.3. For this, we use the special form
(when f is the Riesz kernel) of the Laplace transform of the nth term Jn(t) appearing in the
series representation of the second moment of the solution, and a key result borrowed from [4].
Finally, we present some auxiliary results in Appendix A, while in Appendix B, we derive some
scaling properties of the functionals E and E2 which are needed in the sequel.

2. Laplace transforms

In this section, we gather some useful facts about the Laplace transforms of various deterministic
functions which are used in this article. We also recall some basic facts about the existence of the
solution and the calculation of its second moment. The scaling property (11) is not needed for
the results presented in this section.

Using the same method as in [3] (for case (i)) and in [2] (for case (ii)), it can be proved that
the solution u to either one of equations (1) or (2) has the Wiener chaos expansion:

u(t, x) = 1 +
∑
n≥1

In

(
fn(·, t, x)

)
, (20)

where In is the multiple integral of order n with respect to W , and

fn(t1, x1, . . . , tn, xn, t, x) = G(t − tn, x − xn) · · ·G(t2 − t1, x2 − x1)1{0<t1<···<tn<t}

with G = Gw for equation (1) with d ≤ 2, respectively G = Gh for equation (2). Relation (20)
holds also for the solution to equation (1) with d ≥ 3, but in this case fn(t1, ·, . . . , tn, ·, t, x) is a
distribution in S ′(Rnd). (The omitted variables are x1, . . . , xn.) In all cases, the Fourier transform
of fn(t1, ·, . . . , tn, ·, t, x) is

Ffn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

= e−i(ξ1+···+ξn)·xFG(t2 − t1, ·)(ξ1)

×FG(t3 − t2, ·)(ξ1 + ξ2) · · ·FG(t − tn, ·)(ξ1 + · · · + ξn)1{0<t1<···<tn<t}. (21)
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By the orthogonality of the Wiener chaos spaces,

E
∣∣u(t, x)

∣∣2 = 1 +
∑
n≥1

E
∣∣In

(
fn(·, t, x)

)∣∣2 = 1 +
∑
n≥1

Jn(t), (22)

where Jn(t) = n!‖f̃n(·, t, x)‖2
H⊗n and f̃n(·, t, x) is the symmetrization of fn(·, t, x). In the case

of the heat equation, or the wave equation with d ≤ 2, f̃n(·, t, x) is defined by:

f̃n(t1, x1, . . . , tn, xn, t, x) = 1

n!
∑
ρ∈Sn

fn(tρ(1), xρ(1), . . . , tρ(n), xρ(n)),

where Sn is the set of all permutations of {1, . . . , n}. In the case of the wave equation with d ≥ 3,
f̃n(·, t, x) is defined similarly (see relation (4.2) of [3]). We let J0(t) = 1.

Lemma 2.1. For any t > 0, x ∈ R
d and n ≥ 1,

Jn(t) =
∫

0<t1<···<tn<t

∫
Rnd

∣∣FG(t2 − t1, ·)(ξ1)
∣∣2∣∣FG(t3 − t2, ·)(ξ1 + ξ2)

∣∣2 · · ·

× ∣∣FG(t − tn, ·)(ξ1 + · · · + ξn)
∣∣2

μ(dξ1) · · ·μ(dξn) dt1 · · ·dtn, (23)

where G = Gw for equation (1), respectively G = Gh for equation (2). We denote by Jw
n (t) and

Jh
n (t) the integral given by (23) with G = Gw , respectively G = Gh.

Proof. The norm in the space H⊗n is computed using Fourier transforms, as in (3). Note
that F f̃n(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn) is the sum over all permutations ρ on {1, . . . , n} of
n! terms which have a similar expression to (21) in which (t1, . . . , tn) and (ξ1, . . . , ξn) are re-
placed by (tρ(1), . . . , tρ(n)), respectively (ξρ(1), . . . , ξρ(n)). Due to the presence of the indicator
of {0 < tρ(1) < · · · < tρ(n) < t} in all such terms, in the computation of the squared modulus
of F f̃n(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn), the mixed terms corresponding to different permutations
ρ and σ vanish, and we are left only with the n! terms corresponding to permutations ρ = σ .
The conclusion follows recalling that the definition of the symmetrization f̃n(·, t, x) contains the
factor 1/n! �

For any ξ ∈ R
d and β > 0, we consider the Laplace transforms:

Iw
β (ξ) =

∫ ∞

0
e−βt

∣∣FGw(t, ·)(ξ)
∣∣2

dt and Ih
β (ξ) =

∫ ∞

0
e−βt

∣∣FGh(t, ·)(ξ)
∣∣2

dt.

Lemma 2.2. For any β > 0 and for any ξ ∈ R
d , we have:

Iw
β (ξ) = 1

2β
· 1

β2

4 + |ξ |2
and Ih

β(ξ) = 1

β + |ξ |2 .
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Proof. The result for Ih(β) is clear. For Iw(β), we use the identity:∫ ∞

0
e−ux sin2 x dx = 2

u(u2 + 4)
, u > 0,

which can be deduced from
∫ ∞

0 e−ux cosx dx = u

u2+1
, since 2 sin2 x = 1 − cos(2x). Let ξ ∈ R

be arbitrary. Using the change of variable x = t |ξ |, we have:

Iw
β (ξ) = 1

|ξ |2
∫ ∞

0
e−βt sin2(t |ξ |)dt = 1

|ξ |3
∫ ∞

0
e−βx/|ξ | sin2 x dx

= 1

|ξ |3 · 2
β
|ξ | (

β2

|ξ |2 + 4)
= 2

β(β2 + 4|ξ |2) = 1

2β
· 1

β2

4 + |ξ |2
.

�

We now compute the Laplace transform of the second moment of the solution:

L(β) =
∫ ∞

0
e−βtE

∣∣u(t, x)
∣∣2

dt, β > 0.

Lemma 2.3. For any β > 0 and n ≥ 1, we have:∫ ∞

0
e−βtJn(t) dt = 1

β

∫
Rnd

Iβ(ξ1)Iβ(ξ1 + ξ2) · · ·Iβ(ξ1 + · · · + ξn)μ(dξ1) · · ·μ(dξn). (24)

Therefore, for any β > 0,

L(β) = 1

β

(
1 +

∑
n≥1

∫
Rnd

Iβ(ξ1)Iβ(ξ1 + ξ2) · · ·Iβ(ξ1 + · · · + ξn)μ(dξ1) · · ·μ(dξn)

)
.

Proof. For the first equality, we use (23) and then write e−βt = e−βt1e−β(t2−t1) · · · e−β(t−tn).
Using the change of variable u = t1, u1 = t2 − t1, . . . , un = t − tn, and Fubini’s theorem, we see
that∫ ∞

0
e−βtJn(t) dt =

∫
Rnd

(∫ ∞

0
e−βu du

)(∫ ∞

0
e−βu1

∣∣FG(u1, ·)(ξ1)
∣∣2

du1

)
· · ·

×
(∫ ∞

0
e−βun

∣∣FG(un, ·)(ξ1 + · · · + ξn)
∣∣2

dun

)
μ(dξ1) · · ·μ(dξn).

The second equality follows by (22) and Fubini’s theorem:∫ ∞

0
e−βtE

∣∣u(t, x)
∣∣2

dt =
∫ ∞

0
e−βt dt +

∑
n≥1

∫ ∞

0
e−βtJn(t) dt.

�
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3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. More precisely, we will derive the second order upper
Lyapunov exponent of uw(t, x), using the global asymptotic behaviour of the second moment of
solutions {uh,β}β>0 to a class of parabolic Anderson models perturbed by a family {Wβ}β>0 of
Gaussian noise processes, whose precise definition is given below.

The key observation is the fact that the Laplace transforms of the functions t �→ E|uw(t, x)|2
and t �→ E|uh(t, x)|2 have exactly the same form, relying on the respective quantities Iw

β (ξ) and

Ih
β(ξ) (see Lemma 2.3). We denote these Laplace transforms by Lw , respectively Lh.

Note that by Lemma 2.2, for any β > 0 and for any ξ ∈R
d , we have

Iw
β (ξ) = 1

2β
Ih

γ (β)(ξ), (25)

where γ (β) := β2/4. We denote μβ(dξ) = (2β)−1μ(dξ).
The Fourier transform in S ′(Rd) of the measure μβ is the function fβ = (2β)−1f in case (i),

respectively the distribution �β = (2β)−1� in case (ii).
Let Wβ = {Wβ(ϕ);ϕ ∈Hβ} be a zero-mean Gaussian process with covariance

E
[
Wβ(ϕ)Wβ(ψ)

] = 〈ϕ,ψ〉Hβ
,

where Hβ is the completion of C∞
0 (R+ ×R

d) with respect to the inner product 〈·, ·〉Hβ
defined

by (3) with μ replaced by μβ .
Let uh,β be the solution to equation (2) with W replaced by Wβ . We denote by Lh,β the

Laplace transform of the second moment of the solution uh,β :

Lh,β(λ) =
∫ ∞

0
e−λtE

∣∣uh,β(t, x)
∣∣2

dt, λ > 0.

Lemma 3.1. For any β > 0 and for any x ∈ R
d , we have:∫ ∞

0
e−βtE

∣∣uw(t, x)
∣∣2

dt = β

4

∫ ∞

0
e−tβ2/4E

∣∣uh,β(t, x)
∣∣2

dt. (26)

Proof. By Lemma 2.3 and relation (25), the Laplace transform Lw(β) is equal to:

γ (β)

β

1

γ (β)

(
1 +

∑
n≥1

∫
Rnd

Ih
γ (β)(ξ1)Ih

γ (β)(ξ1 + ξ2) · · ·Ih
γ (β)(ξ1 + · · · + ξn)μβ(dξ1) · · ·μβ(dξn)

)

= β

4
Lh,β

(
γ (β)

)
.

Note that the last equality is due also to Lemma 2.3 applied to the solution uh,β . �

The following result shows how to derive the asymptotic behaviour of E|uw(t, x)|2, assuming
that we can control the behaviour of E|uh,β(t, x)|2 for all β > 0.
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Theorem 3.2. Assume that for any β > 0,

λ(β) := lim sup
t→∞

1

t
logE

∣∣uh,β(t, x)
∣∣2

< ∞. (27)

Suppose that λ : (0,∞) → [0,∞) is continuous and strictly decreasing and satisfies
limβ→0+ λ(β) ∈ (0,∞] and limβ→∞ λ(β) = c ∈ [0,∞). Then

lim sup
t→∞

1

t
logE

∣∣uw(t, x)
∣∣2 = β0, (28)

where β0 is the unique solution of the equation 4λ(β) = β2 in (0,∞).

Proof. We consider the non-decreasing function hβ(t) = E|uh,β(t, x)|2. By Lemma A.2 (Ap-
pendix A), ∫ ∞

0
e−tβ2/4E

∣∣uh,β(t, x)
∣∣2

dt < ∞ if
β2

4
> λ(β)

and ∫ ∞

0
e−tβ2/4E

∣∣uh,β(t, x)
∣∣2

dt = ∞ if
β2

4
< λ(β).

Define g(β) = 4λ(β) − β2 for any β > 0. Then g is a continuous strictly decreasing function
on (0,∞), which satisfies limβ→0+ g(β) = 4 limβ→0+ λ(β) ∈ (0,∞] and limβ→∞ g(β) = 4c −
∞ = −∞. Hence, the equation g(β) = 0 has a unique solution β0 in (0,∞). Moreover, g(β) > 0

for all β < β0 and g(β) < 0 for all β > β0. This means that β2

4 < λ(β) for all β < β0 and
β2

4 > λ(β) for all β > β0. We obtain that:∫ ∞

0
e−βtE

∣∣uw(t, x)
∣∣2

dt < ∞ if β > β0

and ∫ ∞

0
e−βtE

∣∣uw(t, x)
∣∣2

dt = ∞ if β < β0.

We now apply again Lemma A.2 (Appendix A) to the non-decreasing function h(t) =
E|uw(t, x)|2. Relation (28) follows. �

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. We first treat case (i). By Theorem 1.2 of [16], we know that

λ(β) = lim
t→∞

1

t
logE

∣∣uh,β(t, x)
∣∣2 = E2(fβ).
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Using the definition of fβ and Lemma B.2 (Appendix B), we see that

λ(β) = (2β)−
2

2−α E2(f ) = 2− 2+α
2−α β− 2

2−α E(f ).

The function λ is continuous and strictly decreasing and satisfies limβ→0+ λ(β) = ∞ and
limβ→∞ λ(β) = 0. The unique solution of the equation 4λ(β) = β2 in (0,∞) is

β0 = 2
1−α
3−α

(
E2(f )

) 2−α
6−2α = 2

2−3α
6−3α

(
E(f )

) 2−α
6−2α .

The conclusion follows by Theorem 3.2.
Next we consider case (ii). By Theorem 1.2 of [16] and Lemma B.4 (Appendix B),

λ(β) = lim
t→∞

1

t
logE

∣∣uh,β(t, x)
∣∣2 = E2(�β) = (2β)−1/HE2(�) = 2− 2−H

H β−1/HE(�).

The conclusion follows as in case (i). �

4. Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3. The key observation is that, when f is the
Riesz kernel of order α, the integral appearing on the right-hand side of (24) is related to the
Riesz potential ζ(t) = ∫ t

0 |Bs |−α ds of a d-dimensional Brownian motion B = (Bt )t≥0. More
precisely, if τ1 is an exponential random variable with mean 1, independent of B , by Lemma 2.2
of [4], E[ζ(τ1)

n] = n!Tn, where

Tn = Cn
d,α

∫
Rnd

1

1 + |ξ1|2 · · · 1

1 + |ξ1 + ξ2|2 · · · 1

1 + |ξ1 + · · · + ξn|2
n∏

i=1

|ξi |α−d dξ1 · · ·dξn,

and the constant Cd,α is given by (7). The exact asymptotic behaviour of E[ζ(τ1)
n]/n! = Tn is

given by Theorem 2.2 of [4]:

lim
n→∞

1

n
logTn = logρ, (29)

where ρ is the constant given by (14). This leads to the following result.

Lemma 4.1. Let τ be an exponential random variable with mean 1. Then

lim
n→∞

1

n
logE

[
Jn(τ )

] = γ,

where γ is the constant given by (13).

Proof. Using (24) and Lemma 2.2 with β = 1, we obtain:

E[Jw
n (τ)] =

∫ ∞

0
e−t J w

n (t) dt
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= Cn
d,α

∫
Rnd

Iw
1 (ξ1)Iw

1 (ξ1 + ξ2) · · ·Iw
1 (ξ1 + · · · + ξn)

n∏
i=1

|ξi |α−d dξ1 · · ·dξn

= Cn
d,α

∫
Rnd

2

1 + 4|ξ1|2 · · · 2

1 + 4|ξ1 + ξ2|2 · · ·

× 2

1 + 4|ξ1 + · · · + ξn|2
n∏

i=1

|ξi |α−d dξ1 · · ·dξn

= 2n(1−α)Tn.

A similar calculation shows that E[Jh
n (τ )] = Tn. The conclusion follows by (29). �

The next result shows that the terms Jn(t) have a scaling property in t .

Lemma 4.2. Let a be the constant given by (12). For any t > 0 and n ≥ 0, we have:

Jn(t) = tanJn(1). (30)

Proof. This follows by a change of variables. For the time variables, we let si = ti/t for i =
1, . . . , n for both equations. For the space variables, we let ηi = tξi for i = 1, . . . , n for equation
(1), and ηi = √

tξi for i = 1, . . . , n for equation (2). �

From Lemma 4.1 and the scaling property of Jn(t), we deduce the asymptotic behaviour of
Jn(1).

Lemma 4.3. Let a and γ be the constants given by (12), respectively (13). Then

lim
n→∞

1

n
log

(
�(an + 1)Jn(1)

) = γ. (31)

Proof. Let τ be an exponential random variable with mean 1. By Lemma 4.2, Jn(τ ) = τanJn(1).
Then

E
[
Jn(τ )

] = E
[
τan

]
Jn(1) = �(an + 1)Jn(1).

The conclusion follows by Lemma 4.1. �

Proof of Theorem 1.3. Let ε > 0 be arbitrary. By (30) and (31), there exists an integer N =
Nε ≥ 1 such that for any n ≥ N and t > 0,

en(γ−ε)tan

�(an + 1)
≤ Jn(t) ≤ en(γ+ε)tan

�(an + 1)
. (32)

Step 1. (Upper bound) Let c1 = e(γ+ε)/a . By the upper bound in (32), for any t > 0,∑
n≥N

Jn(t) ≤
∑
n≥N

(c1t)
an

�(an + 1)
≤

∑
n≥0

(c1t)
an

�(an + 1)
=: A(1)

t .
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By Lemma A.3 (Appendix A), for any δ > 0, there exists some tδ,1 > 1 such that

A
(1)
t ≤ et(c1+δ) for all t ≥ tδ,1.

We denote C1 = ∑
n<N Jn(1). We can find a value t ′δ,1 > tδ,1 large enough, such that∑

n≥0

Jn(t) =
∑
n<N

tanJn(1) +
∑
n≥N

Jn(t) ≤ C1t
aN + et(c1+δ) ≤ 2et(c1+δ)

for all t ≥ t ′δ,1. Hence,

1

t
log

∑
n≥0

Jn(t) ≤ 1

t
log 2 + c1 + δ ≤ c1 + 2δ

for all t ≥ t ′′δ,1, for a value t ′′δ,1 > t ′δ,1 large enough. This implies that

lim sup
t→∞

1

t
log

∑
n≥0

Jn(t) ≤ c1. (33)

Step 2. (Lower bound) Let c2 = e(γ−ε)/a . By the lower bound in (32), for any t > 1,∑
n≥N

Jn(t) ≥
∑
n≥N

(c2t)
an

�(an + 1)
= A

(2)
t −

∑
n<N

(c2t)
an

�(an + 1)
≥ A

(2)
t − C2t

aN ,

where

A
(2)
t =

∑
n≥0

(c2t)
an

�(an + 1)
and C2 =

∑
n<N

can
2

�(an + 1)
.

By Lemma A.3 (Appendix A), for any δ > 0 there exists some tδ,2 > 1 such that

A
(2)
t ≥ et(c2−δ) for all t ≥ tδ,2.

Therefore, we can find a value t ′δ,2 > tδ,2 such that for any t ≥ t ′δ,2,∑
n≥0

Jn(t) ≥
∑
n≥N

Jn(t) ≥ et(c2−δ) − C2t
aN ≥ 1

2
et(c2−δ).

It follows that
1

t
log

∑
n≥0

Jn(t) ≥ − log 2

t
+ c2 − δ ≥ c2 − 2δ

for any t ≥ t ′′δ,2, for a value t ′′δ,2 > t ′δ,2 large enough. This implies that

lim inf
t→∞

1

t
log

∑
n≥0

Jn(t) ≥ c2. (34)
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Step 3. (Conclusion) From (33) and (34), we obtain that for any ε > 0,

e(γ−ε)/a ≤ lim inf
t→∞

1

t
log

∑
n≥0

Jn(t) ≤ lim sup
t→∞

1

t
log

∑
n≥0

Jn(t) ≤ e(γ+ε)/a.

The conclusion follows taking ε ↓ 0. �

Appendix A: Some auxiliary results

Lemma A.1. Let μ be a tempered measure on R
d such that μ(cA) = cαμ(A) for all c > 0 and

for any Borel set A ⊂R
d . Then μ satisfies (5) if and only if α < 2.

Proof. Since μ is locally integrable, (5) is equivalent to I := ∫
|ξ |>1 |ξ |−2μ(dξ) < ∞. Denote

Bk := {ξ ∈ Rd : |ξ | ≤ k} and Ak = Bk+1\Bk for k = 1,2, . . . . Then∑
k≥1

1

(k + 1)2
μ(Ak) ≤ I ≤

∑
k≥1

1

k2
μ(Ak).

By the scaling property of μ, μ(Bk) = kαμ(B1) and μ(Ak) = [(k + 1)α − kα]μ(B1). Then

μ(B1)
∑
k≥1

(k + 1)α − kα

(k + 1)2
≤ I ≤ μ(B1)

∑
k≥1

(k + 1)α − kα

k2
.

Note that αxα−1 ≤ (x + 1)α − xα ≤ C(xα−1 + 1) for all x > 0, where C > 0 is a constant
depending on α. Hence I < ∞ if and only if

∑
k≥1 kα−3 < ∞, that is, α < 2. �

Lemma A.2. Let h : [0,∞) → [0,∞) be a function such that
∫ ∞

0 e−ηth(t) dt < ∞ for some
η > 0.

(a) Then

A = inf

{
η > 0;

∫ ∞

0
e−ηth(t) dt < ∞

}
(35)

if and only if ∫ ∞

0
e−ηth(t) dt < ∞ for all η > A (36)

and ∫ ∞

0
e−ηth(t) dt = ∞ for all 0 < η < A. (37)

(b) Assume that h is non-decreasing. Let A be defined by (35). Then

lim sup
t→∞

1

t
logh(t) = A.
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Proof. Part (a) is obvious. For part (b), note that by Lemma A.1 of [1],

Ā := lim sup
t→∞

1

t
logh(t) ≤ A.

For the other inequality, let η < A be arbitrary. We prove that Ā ≥ η. (The same argument was
used for showing that (5.62) implies (5.64) in [13].) Suppose this is not true. Say Ā < η − δ for
some δ ∈ (0, η). Then h(t) ≤ e(η−δ)t , for all t ≥ t0, for some t0. It follows that∫ ∞

0
e−ηth(t) dt ≤ Ct0 +

∫ ∞

t0

e−ηth(t) dt ≤
∫ ∞

t0

e−ηt e(η−δ)t dt < ∞,

which is a contradiction. �

Lemma A.3. Let a ∈ (0,4) and c > 0 be arbitrary. For any t > 0, define

At =
∑
n≥0

(ct)an

�(an + 1)
.

Then

lim
t→∞

1

t
logAt = c.

Proof. Note that At = Ea((ct)
a), where Ea(x) = ∑

n≥0 xn/�(an + 1) is the Mittag–Leffler
function. If a ∈ (0,2), we use Theorem 1.3 (p. 32) of [18], and if a ∈ [2,4), we use Theorem 1.7
(p.35) of [18]. In both cases, we have:

Ea(x) = 1

a
exp

(
x1/a

) − x−1

�(1 − a)
+ R(x),

where R(x) ≤ Cx−2 for all x ≥ x0, for some x0 > 0 and C > 0. Hence

1

t
logAt = −1

t
loga + 1

t
log

(
ect − a(ct)−1

�(1 − a)
+ aR(ct)

)
= −1

t
loga + c + 1

t
log

(
1 − a

c�(1 − a)
· 1

tect
+ aR(ct)

ect

)
.

The conclusion follows. �

Appendix B: The functionals E and E2

Lemma B.1. Relation (10) holds for any non-negative locally integrable function f on R
d ,

which is the Fourier transform (in S ′(Rd)) of a tempered measure μ on R
d which satisfies (5).
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Proof. Note first that

E2(f ) = sup
g∈F2d

{∫
Rd

∫
Rd

f (
√

2x1)g
2(x1, x2) dx1 dx2

− 1

2

∫
Rd

∫
Rd

∣∣∇g(x1, x2)
∣∣2

dx1 dx2

}
=: A. (38)

This follows considering the one-to-one transformation g �→ g̃ from F2d onto itself, where

g̃(y1, y2) = g

(
y1 + y2√

2
,
y2 − y1√

2

)
.

We prove that A = B , where B = E(f (
√

2·)). First, we show that B ≥ A. For this, let g ∈ F2d

be arbitrary, and define g(x1) = (
∫
Rd g2(x1, x2) dx2)

1/2 for all x1 ∈R
d . Then g ∈ Fd and for any

i = 1, . . . , d

∂g

∂xi
1

(x1) =
(∫

Rd

g2(x1, x2) dx2

)−1/2 ∫
Rd

g(x1, x2)
∂g

∂xi
1

(x1, x2) dx2.

Using the Cauchy–Schwarz inequality and then taking the dx1 integral, we infer that:∫
Rd

∣∣∣∣ ∂g

∂xi
1

(x1)

∣∣∣∣2

dx1 ≤
∫
Rd

∫
Rd

∣∣∣∣ ∂g

∂xi
1

(x1, x2)

∣∣∣∣2

dx2 dx1.

Taking the sum over i = 1, . . . , d , we obtain
∫
Rd |∇g(x1)|2 dx1 ≤ ∫

Rd

∫
Rd |∇g(x1, x2)|2 dx1 dx2.

Hence,

B ≥
∫
Rd

f (
√

2x1)g
2(x1) dx1 − 1

2

∫
Rd

∣∣∇ḡ(x1)
∣∣2

dx1

≥
∫
Rd

∫
Rd

f (
√

2x1)g
2(x1, x2) dx1 dx2 − 1

2

∫
Rd

∫
Rd

∣∣∇g(x1, x2)
∣∣2

dx1 dx2.

The fact that B ≥ A follows by taking the supremum over all g ∈F2d .
We now prove that A ≥ B . Let g ∈ Fd be arbitrary. Define G(x1, x2) = g(x1)pt (x2) where

pt(x) = (2πt)−d/2 exp(−|x|2/(2t)) and t > 0. Then G ∈ F2d . Denote x1 = (x1
1 , . . . , xd

1 ) and
x2 = (x1

2 , . . . , xd
2 ). For any i = 1, . . . , d ,

∂G

∂xi
1

(x1, x2) = ∂g

∂xi
1

(x1)pt (x2) and
∂G

∂xi
2

(x1, x2) = − 1

2t
g(x1)pt (x2)

1/2xi
2.

From this, we obtain:∫
Rd

∫
Rd

∣∣∇G(x1, x2)
∣∣2

dx1 dx2 =
∫
Rd

∣∣∇g(x1)
∣∣2

dx1 + 1

4t
c,
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where c = E|Z|2 and Z is a Nd(0, I )-random vector. Hence

A ≥
∫
Rd

∫
Rd

f (
√

2x1)G
2(x1, x2) dx1 dx2 − 1

2

∫
Rd

∫
Rd

∣∣∇G(x1, x2)
∣∣2

dx1 dx2

=
∫
Rd

f (
√

2x1)g
2(x1) dx1 − 1

2

∫
Rd

∣∣∇g(x1)
∣∣2

dx1 − 1

8t
c.

We let t → ∞. Then we take the supremum over all g ∈ Fd . �

The next result gives a scaling property of the functionals E(f ) and E2(f ).

Lemma B.2. Let f be a non-negative locally integrable function on R
d which satisfies (11) for

some α > 0. Then for any θ > 0,

E(θf ) = θ
2

2−α E(f ) and E2(θf ) = θ
2

2−α E2(f ).

Moreover, E2(f ) = 2− α
2−α E(f ).

Proof. Due to (10), we only need to prove the scaling property of E(f ). This can be verified us-

ing the one-to-one transformation g �→ g̃ from Fd onto itself, where g̃(y) = θ− d
4−2α g(θ− 1

2−α y).

Indeed, noting that |∇g̃(y)|2 = θ− d+2
2−α |∇g(θ− 1

2−α y)|2, we have

θ

∫
Rd

f (x)g2(x) dx = θ
2

2−α

∫
Rd

f (y)g̃2(y) dy,

∫
Rd

∣∣∇g(x)
∣∣2

dx = θ
2

2−α

∫
Rd

∣∣∇g̃(y)
∣∣2

dy,

and

E(θf ) = sup
g∈Fd

{
θ

∫
Rd

f (x)g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2

dx

}

= sup
g∈Fd

{
θ

2
2−α

∫
Rd

f (y)g̃2(y) dy − θ
2

2−α
1

2

∫
Rd

∣∣∇g̃(y)
∣∣2

dy

}
= θ

2
2−α E(f ).

For the last equality, note that by (10), (11) and the scaling property of E , we have:

E2(f ) = E
(
f (

√
2·)) = E

(
2−α/2f

) = 2− α
2−α E(f ). �

To prove the statement of Remark 1.4, we need the following result.

Lemma B.3. If f satisfies (11), then for any A > 0,

E(f,A) = A
α

α−2 E(f,1),

where

E(f,A) = sup
g∈Fd

{∫
Rd

f (x)g2(x) dx − A

∫
Rd

∣∣∇g(x)
∣∣2

dx

}
. (39)



Second order Lyapunov exponents for parabolic and hyperbolic Anderson models 3087

Proof. As in the proof of Lemma B.2, we consider the one-to-one transformation of Fd onto

itself, where g̃(y) = A− d
4−2α g(A− 1

2−α y). Then∫
Rd

f (y)g̃2(y) dy = A
α

α−2

∫
Rd

f (x)g2(x) dx, A

∫
Rd

∣∣∇g̃(y)
∣∣2

dy = A
α

α−2

∫
Rd

∣∣∇g(x)
∣∣2

dx,

and

A
α

α−2 E(f,1) = sup
g∈Fd

{
A

α
α−2

∫
Rd

f (x)g2(x) dx − A
α

α−2

∫
Rd

∣∣∇g(x)
∣∣2

dx

}

= sup
g∈Fd

{∫
Rd

f (y)g̃2(y) dy − A

∫
Rd

∣∣∇g̃(y)
∣∣2

dy

}
= E(f,A).

�

When d = 1, the function f (x) = |x|2H−2 with 1/2 < H < 1 satisfies the scaling property
(11) with α = 2 − 2H , and hence, E(θf ) = θ1/HE(f ) by Lemma B.2. The following result
shows that this property continues to hold in the case H < 1/2.

Lemma B.4. If � is the distribution given by (6), then for any θ > 0,

E(θ�) = θ1/HE(�) and E2(θ�) = θ1/HE2(�).

Moreover, E2(�) = 2− 1−H
H E(�).

Proof. We use the same arguments as in the proof of Lemma B.2 (with d = 1 and α = 2 − 2H ),
but we express all the quantities in the Fourier mode. To show the scaling property of E(�),
it suffices to consider the one-to-one transformation h �→ h̃ from A1 onto itself, where h̃(η) =
θ

1
4H h(θ

1
2H η). Then

θ

∫
R

(h ∗ h)(ξ)μ(dξ) = θ
1
H

∫
R

(̃h ∗ h̃)(η)μ(dη),

∫
R

|ξ |2∣∣h(ξ)
∣∣2

dξ = θ
1
H

∫
R

|η|2∣∣̃h(η)
∣∣2

dη.

The scaling property of E2(�) will follow from the last relation.
To prove the last relation, we note that

E2(�) = sup
h∈A2

{∫
R

(h ∗ h)(
√

2ξ,0)μ(dξ) − 1

2

∫
R

∫
R

(|ξ1|2 + |ξ2|2
)∣∣h(ξ1, ξ2)

∣∣2
dξ1 dξ2

}

= sup
h∈A1

{∫
R

(h ∗ h)(
√

2ξ)μ(dξ) − 1

2

∫
R

|ξ |2∣∣h(ξ)
∣∣2

dξ

}
= E

(
2H−1�

) = 2
H−1
H E(�).

The first equality above is the analogue of (38) in Fourier mode, and can be proved using the
one-to-one transformation h �→ h̃ from A2 onto itself, where h̃(η1, η2) = h(

η1+η2√
2

,
η2−η1√

2
). The

second equality is the analogue of the equality A = B in the proof of Lemma B.1, and can be
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proved by similar methods. The third equality follows by a change of variables, and the last
equality is due to the scaling property of E(�). �
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