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Localized Gaussian width of M-convex hulls
with applications to Lasso and convex
aggregation
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Upper and lower bounds are derived for the Gaussian mean width of a convex hull of M points intersected
with a Euclidean ball of a given radius. The upper bound holds for any collection of extreme points bounded
in Euclidean norm. The upper bound and the lower bound match up to a multiplicative constant whenever
the extreme points satisfy a one sided Restricted Isometry Property.

An appealing aspect of the upper bound is that no assumption on the covariance structure of the extreme
points is needed. This aspect is especially useful to study regression problems with anisotropic design
distributions. We provide applications of this bound to the Lasso estimator in fixed-design regression, the
Empirical Risk Minimizer in the anisotropic persistence problem, and the convex aggregation problem in
density estimation.
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1. Introduction

Let T be a subset of Rn. The Gaussian width of T is defined as

�(T ) := E sup
u∈T

uT g,

where g = (g1, . . . , gn)
T and g1, . . . , gn are i.i.d. standard normal random variables. For any

vector u ∈ Rn, denote by |u|2 its Euclidean norm and define the Euclidean balls

B2 = {u ∈ Rn : |u|2 ≤ 1
}
, sB2 = {u ∈ Rn : |u|2 ≤ s

}
, for all s ≥ 0.

We will also use the notation Sn−1 = {u ∈ Rn : |u|2 = 1}. The localized Gaussian width of T

with radius s > 0 is the quantity �(T ∩ sB2). For any u ∈ Rn, define the �p norm by |u|p =
(
∑n

i=1 |ui |p)1/p for any p ≥ 1, and let |u|0 be the number of nonzero coefficients of u.
This paper studies the localized Gaussian width

�(sB2 ∩ T ),

where T is the convex hull of M points in Rn. We will refer to s > 0 as the localization parameter.
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If T = B1 = {u ∈ Rn : |u|1 ≤ 1}, then matching upper and lower bounds are available for the
localized Gaussian width:

�(sB2 ∩ B1) �
√

log
(
en
(
s2 ∧ 1

))∧ (s
√

n), (1)

cf. [23] and [34], Section 4.1. In the above display, a � b means that a ≤ Cb and b ≤ Ca for
some large enough numerical constant C ≥ 1.

The first goal of this paper is to generalize this bound to any T that is the convex hull of M ≥ 1
points in Rn.

Contributions

Section 2 is devoted to the generalization of (1) and provides sharp bounds on the localized
Gaussian width of the convex hull of M points in Rn, see Propositions 1 and 2 below. Sections 3
to 5 provide statistical applications of the results of Section 2. Section 3 studies the Lasso es-
timator and the convex aggregation problem in fixed-design regression. In Section 4, we show
that Empirical Risk Minimization achieves the minimax rate for the persistence problem in the
anisotropic setting. Finally, Section 5 provides results for bounded empirical processes and for
the convex aggregation problem in density estimation.

2. Localized Gaussian width of a M-convex hull

The first contribution of the present paper is the following upper bound on localized Gaussian
width of the convex hull of M points in Rn.

Proposition 1. Let n ≥ 1 and M ≥ 2. Let T be the convex hull of M points in Rn and assume
that T ⊂ B2. Then for all s > 0,

�(T ∩ sB2) ≤ (4√log+
(
4eM
(
s2 ∧ 1

)))∧ (s
√

n ∧ M), (2)

where log+(a) = max(1, loga).

Proposition 1 is proved in the next two subsections. Inequality

�(T ∩ sB2) ≤ s
√

n ∧ M (3)

is a direct consequence of the Cauchy–Schwarz inequality and Eg∼N(0,In×n)|Pg|2 ≤ √
d where

matrix P ∈ Rn×n is the orthogonal projection onto the linear span of T and d ≤ (n ∧ M) is the
rank of P . Inequality �(T ∩ sB2) ≤ √

2 logM is a direct consequence of the fact that the expecta-
tion maximum of M centered normal random variables with variance at most 1 is bounded from
above by

√
2 logM . The novelty of (2) is inequality

�(T ∩ sB2) ≤ 4
√

log+
(
4eMs2

)
. (4)
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Inequality (4) was known for the �1-ball T = {u ∈ Rn : |u|1 ≤ 1} [23], but to our knowledge (4)
is new for general M-convex hulls.

An appealing aspect of the above result is that it holds with no assumption on the corre-
lation structure of the vertices of T . Indeed, if the vertices of T are μ1, . . . ,μM and � =
(μT

j μk)j,k=1,...,M is the Gram matrix, then (4) holds with no assumption on �. Previous results

similar (4) only apply to the �1 ball or the simplex in RM , where the vertices are orthogonal.
The result above shows that no orthogonality assumption is necessary for (4) to hold. This as-
pect will be especially useful to derive results for regression problems with anisotropic design
distributions as in Section 4.

The above result does not assume any type of Restricted Isometry Property (RIP). The fol-
lowing proposition shows that (4) is essentially sharp provided that the vertices of T satisfies a
one-sided RIP of order 2/s2.

Proposition 2. Let n ≥ 1 and M ≥ 2. Let g be a centered Gaussian random variable with co-
variance matrix In×n. Let s ∈ (0,1] and assume for simplicity that m = 1/s2 is a positive in-
teger such that m ≤ M/5. Let T be the convex hull of the 2M points {±μ1, . . . ,±μM} where
μ1, . . . ,μM ∈ Sn−1. Assume that for some real number κ ∈ (0,1) we have

κ|θ |2 ≤ |μθ |2 for all θ ∈ RM such that |θ |0 ≤ 2m, (5)

where μθ =∑M
j=1 θjμj and |θ |0 denotes the number of nonzero coefficients of θ . Then

�(T ∩ sB2) ≥ (
√

2/4)κ

√
log

(
Ms2

5

)
. (6)

The proof of Proposition 2 is given in Section B. The lower bound (6) shows that the upper
bound (4) is sharp up to multiplicative constants, not only if T is the �1-ball (cf. (1)) but also
if the extreme points of T satisfy the one-sided RIP (5). This suggests that the quantity �(T ∩
sB2) is maximal when the extreme points of T are uncorrelated. We investigate this further with
simulations in Appendix A.

2.1. A refinement of Maurey’s argument

This subsection provides the main tool to derive the upper bound (4). Define the simplex in RM

by

�M =
{

θ ∈ RM,

M∑
j=1

θj = 1,∀j = 1, . . . ,M, θj ≥ 0

}
. (7)

Let m ≥ 1 be an integer, and let

Q(θ) = θT �θ,

where � = (�jj ′)j,j ′=1,...,M is a positive semi-definite matrix of size M . Let θ̄ ∈ �M be a vector
of interest such that Q(θ̄) is small. Maurey’s argument [41] has been used extensively to prove
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the existence of a sparse vector θ̃ ∈ �M such that Q(θ̃) is of the same order as that of Q(θ̄).
Maurey’s argument uses the probabilistic method to prove the existence of such θ̃ . A sketch of
this argument is as follows.

Define the discrete set �M
m as

�M
m :=

{
1

m

m∑
k=1

uk, u1, . . . ,um ∈ {e1, . . . , eM}
}

, (8)

where (e1, . . . , eM) is the canonical basis in RM . The discrete set �M
m is a subset of the simplex

�M that contains only m-sparse vectors.
Let �1, . . . ,�m be i.i.d. random variables valued in {e1, . . . , eM} with distribution

P(�k = ej ) = θ̄j for all k = 1, . . . ,m. (9)

Next, consider the random variable

θ̂ = 1

m

m∑
k=1

�k. (10)

The random variable θ̂ is valued in �M
m and is such that E[θ̂ ] = θ̄ , where E denotes the expecta-

tion with respect to θ̂ . Then a bias-variance decomposition yields

E
[
Q(θ̂)

]≤ Q(θ̄) + R2/m,

where R > 0 is a constant such that maxj=1,...,M �jj ≤ R2. As minθ∈�M
m

Q(θ) ≤ E[Q(θ̂)], this

yields the existence of θ̃ ∈ �M
m such that

Q(θ̃) ≤ Q(θ̄) + R2/m.

If m is chosen large enough, the two terms Q(θ̄) and R2/m are of the same order and we have
established the existence of an m-sparse vector θ̃ so that Q(θ̃) is not much substantially larger
than Q(θ̄).

For our purpose, we need to refine this argument by controlling the deviation of the random
variable Q(θ̂). This is done in Lemma 3 below.

Lemma 3. Let m ≥ 1 and define �M
m by (8). Let F : RM → [0,+∞) be a convex function. For

all θ ∈ RM , let

Q(θ) = θT �θ ,

where � = (�jj ′)j,j ′=1,...,M is a positive semi-definite matrix of size M . Assume that the diago-
nal elements of � satisfy �jj ≤ R2 for all j = 1, . . . ,M . Then for all t > 0,

sup
θ∈�M :Q(θ)≤t2

F(θ) ≤
∫ +∞

1

[
max

θ∈�M
m : Q(θ)≤x(t2+R2/m)

F (θ)
]dx

x2
. (11)
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In the next sections, it will be useful to bound from above the quantity F(θ) maximized over
�M subject to the constraint Q(θ) ≤ t2. An interpretation of (11) is as follows. Consider the two
optimization problems

maximize F(θ) for θ ∈ �M subject to Q(θ) ≤ t2,

maximize F(θ) for θ ∈ �M
m subject to Q(θ) ≤ Y

(
t2 + R2/m

)
,

for some Y ≥ 1. Equation 11 says that the optimal value of the first optimization problem is
smaller than the optimal value of the second optimization problem averaged over the distribution
of Y given by the density y �→ 1/y2 on [1,+∞). The second optimization problem above is over
the discrete set �M

m with the relaxed constraint Q(θ) ≤ Y(t2 + R2/m), hence we have relaxed
the constraint in exchange for discreteness. The discreteness of the set �M

m will be used in the
next subsection for the proof of Proposition 1.

Proof of Lemma 3. The set {θ ∈ �M : Q(θ) ≤ t2} is compact. The function F is convex with
domain RM and thus continuous. Hence the supremum in the left hand side of (11) is achieved at
some θ̄ ∈ �M such that Q(θ̄) ≤ t2. Let �1, . . . ,�m, θ̂ be the random variables defined in (9) and
(10) above. Denote by E the expectation with respect to �1, . . . ,�m. By definition, θ̂ ∈ �M

m and
Eθ̂ = θ̄ . Let E = E[Q(θ̂)]. A bias-variance decomposition and the independence of �1, . . . ,�m

yield

E := E
[
Q(θ̂)

]
= Q(θ̄) + E(θ̂ − θ̄)T �(θ̂ − θ̄)

= Q(θ̄) + 1

m
E
[
(�1 − θ̄)T �(�1 − θ̄)

]
.

Another bias-variance decomposition yields

E
[
(�1 − θ̄)T �(�1 − θ̄)

]= E
[
Q(�1)

]− Q(θ̄) ≤ EQ(�1) ≤ R2,

where we used that Q(·) ≥ 0 and that �1��1 ≤ R2 almost surely. Thus,

E = E
[
Q(θ̂)

]≤ Q(θ̄) + R2/m ≤ t2 + R2/m. (12)

Define the random variable X = Q(θ̂)/E, which is nonnegative and satisfies E[X] = 1. By
Markov inequality, it holds that P(X > t) ≤ 1/t = ∫ +∞

t
(1/x2) dx. Define the random variable Y

by the density function x → 1/x2 on [1,+∞). Then we have P(X > t) ≤ P(Y > t) for any t > 0.
By stochastic dominance, there exists a rich enough probability space � and random variables
X̃ and Ỹ defined on � such that

• X̃ and X have the same distribution,
• Ỹ and Y have the same distribution,
• and X̃ ≤ Ỹ holds almost surely on �,
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see, for instance, Theorem 7.1 in [21]. Denote by E� the expectation sign on the probability
space �.

By definition of θ̄ and θ̂ , using Jensen’s inequality, Fubini’s theorem and the fact that θ̂ ∈ �M
m

we have

sup
θ∈�M :Q(θ)≤t2

F(θ) = F(θ̄) = F
(
E[θ̂ ])≤ E

[
F(θ̂)

]≤ E
[
g
(
Q(θ̂)/E

)]
,

where g(·) is the nondecreasing function g(x) = maxθ∈�M
m :Q(θ)≤xE F (θ). The right-hand side of

the previous display is equal to E[g(X)]. Next, we use the random variables X̃ and Ỹ as follows:

E
[
g(X)

]= E�

[
g(X̃)

]≤ E�

[
g(Ỹ )

]= ∫ +∞

1

g(x)

x2
dx.

Combining the previous display and (12) completes the proof. �

2.2. Proof of (4)

We are now ready to prove Proposition 1. The main ingredients are Lemma 3 and the following
upper bound on the cardinality of �M

m

log
∣∣�M

m

∣∣= log

(
M + m − 1

m

)
≤ log

(
2M

m

)
≤ m log

(
2eM

m

)
. (13)

Proof of (4). If s2 < 1/M then by (3) we have �(T ∩sB2) ≤ 1, hence (4) holds. Thus it is enough
to focus on the case s2 ≥ 1/M .

Let r = min(s,1) and set m = �1/r2�, which satisfies 1 ≤ m ≤ M . As T is the convex hull of
M points, let μ1, . . . ,μM ∈ Rn be such that

T = convex hull of {μ1, . . . ,μM} = {μθ , θ ∈ �M
}
,

where μθ =∑M
j=1 θjμj for θ ∈ �M .

Let Q(θ) = |μθ |22 for all θ ∈ RM . This is a polynomial of order 2, of the form Q(θ) = θT �θ ,
where � is the Gram matrix with �jk = μT

k μj for all j, k = 1, . . . ,M . As we assume that
T ⊂ B2, the diagonal elements of � satisfy �jj ≤ 1. For all θ ∈ RM , let F(θ) = gT μθ . Applying
Lemma 3 with the above notation, R = 1, m = �1/r2� and t = r , we obtain

E sup
θ∈�M :Q(θ)≤r2

gT μθ ≤ E

∫ +∞

1

[
max

θ∈�M
m : Q(θ)≤x(r2+1/m)

F (θ)
]dx

x2
.

By definition of m, r2 ≤ 1/m so that x(r2 + 1/m) ≤ 2x/m. Using Fubini’s theorem and a bound
on the expectation of the maximum of |�M

m | centered Gaussian random variables with variances
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bounded from above by 2x/m, we obtain that the right-hand side of the previous display is
bounded from above by

∫ +∞

1

1

x2

√
4x log |�M

m |
m

dx ≤√log(2eM/m)

∫ +∞

1

2

x3/2
dx,

where we used the bound (13). To complete the proof of (4), notice that we have 1/m ≤ 2r2 and∫ +∞
1

2
x3/2 dx = 4. �

3. Statistical applications in fixed-design regression

Numerous works have established a close relationship between localized Gaussian widths and the
performance of statistical and compressed sensing procedures. Some of these works are reviewed
below.

• In a regression problem with random design where the design and the target are sub-
Gaussian, Lecué and Mendelson [34] established that two quantities govern the performance
of empirical risk minimizer over a convex class F . These two quantities are defined using
the Gaussian width of the class F intersected with an L2 ball [34], Definition 1.3,

• If p,p′ > 1 are such that p′ ≤ p ≤ +∞ and log(2n)/(log(2en) ≤ p′. Gordon et al. [23]
provide precise estimates of �(Bp ∩ sBp′) where Bp ⊂ Rn is the unit Lp ball and sBp′
is the Lp′ ball of radius s > 0. These estimates are then used to solve the approximate
reconstruction problem where one wants to recover an unknown high dimensional vector
from a few random measurements [23], Section 7.

• Plan et al. [43] shows that in the semiparametric single index model, if the signal is known
to belong to some star-shaped set T ⊂ Rn, then the Gaussian width of T and its localized
version characterize the gain obtained by using the additional information that the signal
belongs to T , cf. Theorem 1.3 in [43].

• Finally, Chatterjee [17] exhibits a tight connection between localized Gaussian widths and
the performance of the least-squares estimator in shape-constrained regression problems.
The machinery developed in [17] is particularly appealing since it provides both a lower
bound and an upper bound on the risk of the least-squares estimator. Theorem 4 provides
sharp oracle inequalities in the same setting as that of [17]; however Theorem 4 does not
provide lower bounds on the risk.

These results are reminiscent of the isomorphic method [2,3,28], where localized expected
supremum of empirical processes are used to obtain upper bounds on the performance of Empir-
ical Risk Minimization (ERM) procedures. These results show that Gaussian width estimates are
important to understand the statistical properties of estimators in many statistical contexts.

In Proposition 1, we established an upper bound on the Gaussian width of M-convex hulls.
We now provide some statistical applications of this result in regression with fixed-design. We
will use the following theorem from [9].
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Theorem 4 ([9]). Let K be a closed convex subset of Rn and ξ ∼ N (0, σ 2In×n). Let f 0 ∈ Rn

be an unknown vector and let y = f 0 + ξ . Denote by f ∗
0 the projection of f 0 onto K . Assume

that for some t∗ > 0,

1

n
E

[
sup

u∈K: 1
n
|f ∗

0−u|22≤t2∗
ξT
(
u − f ∗

0

)]≤ t2∗
2

. (14)

Then for any x > 0, with probability greater than 1 − e−x , the Least Squares estimator f̂ =
arg minf ∈K |y − f |22 satisfies

1

n
|f̂ − f 0|22 ≤ 1

n

∣∣f ∗
0 − f 0

∣∣2
2 + 2t2∗ + 4σ 2x

n
.

Hence, to prove an oracle inequality of the form (4), it is enough to prove the existence of a
quantity t∗ such that (14) holds. If the convex set K in the above theorem is the convex hull of
M points, then a quantity t∗ is given by the following proposition.

Proposition 5. Let σ 2 > 0,R > 0, n ≥ 1 and M ≥ 2. Let μ1, . . . ,μM ∈ Rn such that 1
n
|μj |22 ≤

R2 for all j = 1, . . . ,M . For all θ ∈ �M , let μθ =∑j=1,...,M θjμj . Let g be a centered Gaussian

random variable with covariance matrix σ 2In×n. If R
√

n ≤ Mσ , then the quantity

t2∗ = 31σR

√
log( eMσ

R
√

n
)

n
satisfies

1

n
E sup

θ∈�M : 1
n
|μθ |22≤t2∗

gT μθ ≤ t2∗
2

, (15)

provided that t∗ ≤ R.

Proof. Inequality

1√
n
E sup

θ∈�M : 1
n
|μθ |22≤r2

(σg)T μθ ≤ 4σR

√
log
(
4eM min

(
1, r2/R2

))

is a reformulation of Proposition 1 using the notation of Proposition 5. Thus, in order to prove
(15), it is enough to establish that for γ = 31 we have

(∗) := 64 log

(
4eMσγ

√
log(eMσ/(R

√
n))

R
√

n

)
≤ γ 2

4
log

(
eMσ

R
√

n

)
. (16)

As 1 ≤ log(eMσ/(R
√

n)) and log t ≤ t for all t > 0, the left-hand side of the previous display
satisfies

(∗) ≤ 64

(
log

(
eMσ

R
√

n

)
+ log(4γ ) + 1

2
log
(
log
(
eMσ/(R

√
n)
)))

≤ 64
(
3/2 + log(4γ )

)
log

(
eMσ

R
√

n

)
.
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Thus (16) holds if 64(3/2 + log(4γ )) ≤ γ 2/4, which is the case if the absolute constant is γ =
31. �

Inequality (15) establishes the existence of a quantity t∗ such that

1

n
E sup

μ∈T : 1
n
|μ|22≤t2∗

gT μθ ≤ t2∗
2

, (17)

where T is the convex hull of μ1, . . . ,μM . Consequences of (17) and Theorem 4 are given in the
next subsections.

We now introduce two statistical frameworks where the localized Gaussian width of an M-
convex hull has applications: the Lasso estimator in high-dimensional statistics and the convex
aggregation problem.

3.1. Convex aggregation

Let f 0 ∈ Rn be an unknown regression vector and let y = f 0 + ξ be an observed random vector,
where ξ satisfies E[ξ ] = 0. Let M ≥ 2 and let f 1, . . . ,f M be deterministic vectors in Rn. The
set {f 1, . . . ,f M} will be referred to as the dictionary. For any θ = (θ1, . . . , θM)T ∈ RM , let
f θ =∑M

j=1 θjf j . If a set � ⊂ RM is given, the goal of the aggregation problem induced by �

is to find an estimator f̂ constructed with y and the dictionary such that

1

n
|f̂ − f 0|22 ≤ inf

θ∈�

(
1

n
|f θ − f 0|22

)
+ δn,M,�, (18)

either in expectation or with high probability, where δn,M,� is a small quantity. Inequality (18)
is called a sharp oracle inequality, where “sharp” means that in the right hand side of (18), the
multiplicative constant of the term infθ∈�

1
n
|f θ − f 0|22 is 1. Similar notations will be defined

for regression with random design and density estimation. Define the simplex in RM by (7). The
following aggregation problems were introduced in [40,50].

• Model Selection type aggregation with � = {e1, . . . , eM}, that is, � is the canonical basis of
RM . The goal is to construct an estimator whose risk is as close as possible to the best func-
tion in the dictionary. Such results can be found in [1,35,50] for random design regression,
in [8,18,20,36] for fixed design regression, and in [6,26] for density estimation.

• Convex aggregation with � = �M , that is, � is the simplex in RM . The goal is to construct
an estimator whose risk is as close as possible to the best convex combination of the dic-
tionary functions. See [32,33,50,52] for results of this type in the regression framework and
[46] for such results in density estimation.

• Linear aggregation with � = RM . The goal is to construct an estimator whose risk is as
close as possible to the best linear combination of the dictionary functions, cf. [50,52] for
such results in regression and [46] for such results in density estimation.
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One may also define the Sparse or Sparse Convex aggregation problems: construct an estimator
whose risk is as close as possible to the best sparse combination of the dictionary functions.
Such results can be found in [44,45,52] for fixed design regression and in [37] for regression
with random design. These problems are out of the scope of the present paper.

A goal of the present paper is to provide a unified argument that shows that empirical risk
minimization is optimal for the convex aggregation problem in density estimation, regression
with fixed design and regression with random design.

Theorem 6. Let f 0 ∈ Rn, let ξ ∼ N (0, σ 2In×n) and define y = f 0 + ξ . Let f 1, . . . ,f M ∈ Rn

and let f θ =∑M
j=1 θjf j for all θ = (θ1, . . . , θM)T ∈ RM . Let

θ̂ ∈ arg min
θ∈�M

|f θ − y|22.

Then for all x > 0, with probability greater than 1 − exp(−x),

1

n
|f

θ̂
− f 0|22 ≤ min

θ∈�M

1

n
|f θ − f 0|22 + 2t2∗ + 4σ 2x

n
,

where t2∗ = min( 4σ 2M
n

,
31σR

√
log( eMσ

R
√

n
)

√
n

) and R2 = 4 maxj=1,...,M
1
n
|f j |22.

Proof of Theorem 6. Let V be the linear span of f 1, . . . ,f M and let P ∈ Rn×n be the orthog-
onal projector onto V . If t2∗ = 4σ 2M/n, then

1

n
E sup

v∈V : 1
n
|v|22≤t2∗

ξT v =
√

t2∗
n
E|P ξ |2 ≤

√
t2∗σ 2M

n
= t2∗/2. (19)

Let K be the convex hull of f 1, . . . ,f M . Let f ∗
0 be the convex projection of f 0 onto K . We

apply Proposition 5 to K −f ∗
0 which is a convex hull of M points, and for all v ∈ K , 1

n
|v|22 ≤ R2.

By (19) and (15), the quantity t∗ satisfies (14). Applying Theorem 4 completes the proof. �

3.2. Lasso

We consider the following regression model. Let x1, . . . ,xM ∈ Rn and assume that 1
n
|xj |22 ≤ 1

for all j = 1, . . . ,M . We will refer to x1, . . . ,xM as the covariates. Let X be the matrix of
dimension n × M with columns x1, . . . ,xM . We observe

y = f 0 + ξ , ξ ∼N
(
0, σ 2In×n

)
, (20)

where f 0 ∈ Rn is an unknown mean. The goal is to estimate f 0 using the design matrix X.
Let R > 0 be a tuning parameter and define the constrained Lasso estimator [49] by

β̂ ∈ arg min
β∈RM :|β|1≤R

|y − Xβ|22. (21)
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Note that, although a different notation is used, this model equivalent to the convex aggregation
problem considered in the previous subsection.

Our goal will be to study the performance of the estimator (21) with respect to the prediction
loss

1

n
|f 0 − Xβ̂|22.

Let x1, . . . ,xM ∈ Rn and assume that 1
n
|xj |22 ≤ 1 for all j = 1, . . . ,M . Let X be the matrix of

dimension n × M with columns x1, . . . ,xM .

Theorem 7. Let R > 0 be a tuning parameter and consider the regression model (20). Define
the Lasso estimator β̂ by (21). Then for all x > 0, with probability greater than 1 − exp(−x),

1

n
|Xβ̂ − f 0|22 ≤ min

β∈RM :|β|1≤R

1

n
|Xβ − f 0|22 + 2t2∗ + 4σ 2x

n
, (22)

where t2∗ = min(
4σ 2 rank(X)

n
,

62σR
√

log( 2eMσ
R

√
n

)
√

n
).

Proof of Theorem 7. Let V be the linear span of x1, . . . ,xM and let P ∈ Rn×n be the orthogonal
projector onto V . If t2∗ = 4σ 2 rank(X)/n, then

1

n
E sup

v∈V : 1
n
|v|22≤t2∗

ξT v =
√

t2∗
n
E|P ξ |2 ≤

√
t2∗σ 2 rank(X)

n
= t2∗/2. (23)

Let K be the convex hull of {±Rx1, . . . ,±RxM}, so that K = {Xβ : β ∈ RM : |β|1 ≤ R}. Let f ∗
0

be the convex projection of f 0 onto K . We apply Proposition 5 to K −f ∗
0 which is a convex hull

of 2M points of empirical norm less or equal to R2. By (23) and (15), the quantity t∗ satisfies
(14). Applying Theorem 4 completes the proof. �

The lower bound [44], Theorem 5.4 and (5.25), states that there exists an absolute constant
C0 > 0 such that the following holds. If log(1 + eM/

√
n) ≤ C0

√
n, then there exists a design

matrix X such that for all estimator f̂ ,

sup
β∈RM :|β|1≤R

1

n
EXβ |Xβ − f̂ |22 ≥ 1

C0
min

(
σ 2 rank(X)

n
,σR

√
log(1 + eMσ

R
√

n
)

n

)
,

where for all f 0 ∈ Rn, Ef 0
denotes the expectation with respect to the distribution of y ∼

N (f 0, σ
2In×n). Thus, Theorem 7 shows that the Least Squares estimator over the set {Xβ,β ∈

RM : |β|1 ≤ R} is minimax optimal. In particular, the right-hand side of inequality (22) cannot
be improved.

There is an extensive literature on risk bounds on oracle inequalities for the Lasso (cf. [5,11–
13,15,16,19,27,30,38,48,49,55] for a non-exhaustive list). However, to our knowledge, the fact
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that the Lasso enjoys the above upper bound with rate

σR
√

log( 2eMσ
R

√
n

)
√

n

holds with no assumption on the correlations of the design matrix, is new. This is an improvement
over the rate σR

√
(logM)/n which is known and which can be easily obtained by using high

probability bounds on the maximum of M normal random variables.
The above result holds in completely anisotropic settings, that is, in situations where the design

matrix X is very far from isotropic. This contrasts with numerous results on the Lasso which
holds for sparse target vectors under Restricted Eigenvalue conditions, Compatibility conditions
which grant isotropy on restricted cones. We refer the reader to [13] or the books [15,22,25] for
more information on these conditions and the risk bounds satisfied by the Lasso in such settings.

Finally, let us note that the risk bounds obtained under such conditions on the design yield
“fast” rates of convergence, of the form O(1/n), while the rate obtained above is “slow”, of the
form O(1/

√
n). Although fast rates are appealing, it was recently shown in [7], Section 4.1, or

[10], Section 3, that the compatibility condition is necessary to obtain fast rates of convergence,
hence there is no hope to achieve fast rates of convergence with no assumption on the design.
This motivates the study of risk bounds on the Lasso that are free of any assumption on the design
such as Theorem 7.

4. The anisotropic persistence problem in regression with
random design

Consider n i.i.d. observations (Yi,Xi)i=1,...,n where (Yi)i=1,...,n are real valued and the
(Xi)i=1,..,n are design random variables in RM with E[XiX

T
i ] = � for some covariance ma-

trix � ∈ RM×M . We consider the learning problem over the function class{
fβ : fβ(x) = xT β for some β ∈ RM with |β|1 ≤ R

}
for a given constant R > 0. We consider the Emprical Risk Minimizer defined by

β̂ = arg min
β∈RM :|β|1≤R

n∑
i=1

(
Yi − βT Xi

)2
. (24)

This problem is sometimes referred to as the persistence problem or the persistence framework
[4,24]. The prediction risk of f

β̂
is given by

R(f
β̂
) = E

[(
f

β̂
(X) − Y

)2 | (Xi, Yi)i=1,...,n

]
,

where (X,Y ) is a new observation distributed as (X1, Y1) and independent from the data
(Xi, Yi)i=1,...,n. Define also the oracle β∗ by

β∗ = arg min
β∈RM :|β|1≤R

R(β) (25)
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and define σ > 0 by

σ = ∥∥Y − XT β∗∥∥
ψ2

, (26)

where the sub-Gaussian norm ‖ · ‖ψ2 is defined by ‖Z‖ψ2 = supp≥1 E[|Z|p]1/p/
√

p for any
random variable Z (see Section 5.2.3 in [53] for equivalent definitions of the ψ2 norm).

To analyse the above learning problem, we use the machinery developed by Lecué and
Mendelson [34] to study learning problems over sub-Gaussian classes. Consider the two quanti-
ties

rn(γ ) = inf
{
r > 0 : E sup

β:|β|1≤2R, E[(GT β)2]≤s2
βT G ≤ γ r

√
n
}
, (27)

sn(γ ) = inf
{
s > 0 : E sup

β: |β|1≤2R, E[(GT β)2]≤s2
βT G ≤ γ s2√n/σ

}
, (28)

where G ∼ N(0,�). In the present setting, Theorem A from Lecué and Mendelson [34] reads as
follows.

Theorem 8 (Theorem A in Lecué and Mendelson [34]). There exist absolute constants
c1, c2, c4 > 0 such that the following holds. Let R > 0. Consider i.i.d. observations (Xi, Yi)

with E[XiX
T
i ] = �. Assume that the design random vectors Xi are sub-Gaussian with respect

to the covariance matrix � in the sense that ‖XT
i τ‖ψ2 ≤ 10|�1/2τ |2 for any τ ∈ Rp . Define β∗

by (25) and σ by (26). Assume that the diagonal elements of � are no larger than 1. Then, there
exists absolute constants c0, c1, c2, c3 > 0 such that the estimator β̂ defined in (24) satisfies

R(f
β̂
) ≤ R(fβ∗) + max

(
s2
n(c1), r

2
n(c2)

)
,

with probability at least 1 − 6 exp(−c4nmin(c2, sn(c1))).

In the isotropic case (� = IM ), [39] proves that

r2
n(γ ) ≤

⎧⎨
⎩

c3R
2

n
log

(
c3M

n

)
if n ≤ c4M,

0 if n > c4M,

(29)

for some constants c3, c4 > 0 that only depends on γ , while

s2
n(γ ) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c5Rσ√
n

√
log

(
c5Mσ√

nR

)
if n ≤ c6σ

2M2/R2,

c5σ
2M

n
if n > c6σ

2M2/R2,

(30)

for some constants c5, c6 > 0 that only depend on γ .
Using Proposition 1 and equation 10 above lets us extend these bounds to the anisotropic case

where � is not proportional to the identity matrix.
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Proposition 9. Let R > 0, let G ∼ N(0,�) and assume that the diagonal elements of � are no
larger than 1. For any γ > 0, define rn(γ ) and sn(γ ) by (28) and (27). Then for any γ > 0, there
exists constants c3, c4, c5, c6 > 0 that depend only on γ such that (30) and (29) hold.

The proof of Proposition 9 will be given at the end of this subsection. The primary improve-
ment of Proposition 1 over previous results is that this result is agnostic to the underlying covari-
ance structure. This lets us handle the anisotropic case with � �= IM in the above proposition.
Proposition 9 combined with Theorem 8 lets us obtain the minimax rate of estimation for the per-
sistence problem in the anisotropic case. Although the minimax rate was previously obtained in
the isotropic case, we are not aware of a previous result that yields this rate for general covariance
matrices � �= IM .

Since it holds for any covariance �, the result of the present section holds for covariance struc-
ture that are very far from isotropic. This contrasts with previous results of the literature, such as
[4,42,47] or [39], Section 4.1. More precisely, [39], Section 4.1, assumes that � is proportional
to identity, [4] assumes either that � is proportional to identity or that |Xi |∞ is almost surely
bounded, [47] assumes � satisfies a Restricted Eigenvalue condition which grants isotropy on a
restricted cone of RM , and finally, [42], (1.9) and Section 3, assumes that the condition number
of � is bounded in order to handle anisotropic covariance structures.

Proof of Proposition 9. In this proof, c > 0 is an absolute constant whose value may change
from line to line. Let γ > 0. We first bound rn(γ ) from above. Let r > 0 and define

Tr(R) = {β ∈ Rp : |β|1 ≤ 2R,βT �β ≤ r2}.
The random variable G ∼ N(0,�) has the same distribution as �1/2g where g ∼ N(0, IM).
Thus, the expectation inside the infimum in (27) is equal to

E sup
β∈Tr (R)

βT �1/2g. (31)

To bound rn(γ ) from above, it is enough to find some r > 0 such that (31) is bounded from above
by γ r

√
n.

By the Cauchy–Schwarz inequality, (31) is bounded from above by r
√

M , which is smaller
than γ r

√
n for all all r > 0 provided that n > c4M for some constant c4 that only depends on γ .

Hence, rn(γ ) = 0 provided that n > c4M .
We now bound rn(γ ) from above in the regime n ≤ c4M . Let u1, . . . ,uM be the columns

of �1/2 and let T̃ be the convex hull of the 2M points {±u1, . . . ,±uM}. Using the fact that
Tr(R) = 2RTr/(2R)(1) ⊂ 2R(T̃ ∩ (r/(2R))B2), the right-hand side of the previous display is
bounded from above by

2R �
(
T̃ ∩ (r/R)

)
B2) ≤ 8R

√
log+
(

4eM

(
r

2R

)2)
, (32)

where we used Proposition 1 for the last inequality. By simple algebra, one can show that if
r = c3(γ ) R√

n

√
log(c3(γ )M/n) for some large enough constant c3(γ ) that only depends on γ ,
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then the right-hand side of (32) is bounded from above by γ r
√

n. This completes the proof of
(29).

We now bound sn(γ ) from above. Let s > 0. By definition of sn(γ ), to prove that sn(γ ) ≤ s,
it is enough to show that

σEξ sup
β∈Ts(R)

βT �1/2g

is smaller than γ s2√n. We use Proposition 1 to show that the previous display is bounded from
above by

cσ min

(
s
√

M,R

√
log+
(

4eM

(
s

2R

)2))
.

By simple algebra similar to that of the proof of Proposition 5, we obtain that if s2 equals the
right hand side of (30) for large enough c5 = c5(γ ) and c6 = c6(γ ), then the right-hand side of
the previous display is bounded from above by γ s2√n. This completes the proof of (30). �

5. Bounded empirical processes and density estimation

We now prove a result similar to Proposition 1 for bounded empirical processes indexed by the
convex hull of M points. This will be useful to study the convex aggregation problem for density
estimation. Throughout this section, ε1, . . . , εn are i.i.d. Rademacher random variables that are
independent of all other random variables.

Proposition 10. There exists an absolute constant c > 0 such that the following holds. Let
M ≥ 2, n ≥ 1 be integers and let b,R,L > 0 be real numbers. Let Q(θ) = θT �θ for some
positive semi-definite matrix �. Let Z1, . . . ,Zn be i.i.d. random variables valued in some mea-
surable set Z . Let h1, . . . , hM : Z → R be measurable functions. Let hθ =∑M

j=1 θjhj for all

θ = (θ1, . . . , θM)T ∈ RM . Assume that almost surely∣∣hj (Z1)
∣∣≤ b, Q(ej ) = �jj ≤ R2, E

[
h2

θ (Z1)
]≤ LQ(θ), (33)

for all j = 1, . . . ,M and all θ ∈ �M . Then for all r > 0 such that R/
√

M ≤ r ≤ R we have

E

[
sup

θ∈�M : Q(θ)≤r2
F(θ)

]
≤ c max

(√
LR

√
log(eMr2/R2)

n
,
bR2 log(eMr2/R2)

r2n

)
, (34)

where F(θ) = 1
n
|∑n

i=1 εihθ (Zi)| for all θ ∈ RM .

Proof of Proposition 10. Let m = �R2/r2� ≥ 1. The function F is convex since it can be written
as the maximum of two linear functions. Applying Lemma 3 with the above notation and t = r

yields

E sup
θ∈�M :Q(θ)≤r2

F(θ) ≤ E

∫ +∞

1
M(x)

dx

x2
=
∫ +∞

1
E
[
M(x)

]dx

x2
, (35)
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where the second inequality is a consequence of Fubini’s theorem and for all x ≥ 1,

M(x) = max
θ∈�M

m : Q(θ)≤x(r2+R2/m)
F (θ).

Using (33) and the Rademacher complexity bound for finite classes given in [29], Theorem 3.5,
we obtain that for all x ≥ 1,

E
[
M(x)

]≤ c′ max

(√
Lx(r2 + R2/m) log |�M

m |
n

,
b log |�M

m |
n

)
, (36)

where c′ > 0 is a numerical constant and |�M
m | is the cardinality of the set �M

m . By definition of
m we have r2 ≤ R2/m. The cardinality |�M

m | of the set �M
m is bounded from above by the right-

hand side of (13). Combining inequality (35), inequality (36), the fact that the integrals
∫ +∞

1
dx

x2

and
∫ +∞

1
dx

x3/2 are finite, we obtain

E sup
θ∈�M :Q(θ)≤r2

F(θ) ≤ c′′ max

(√
LR

√
log(eM/m)

n
,
bm log(eM/m)

n

)

for some absolute constant c′′ > 0. By definition of m, we have R2/(2r2) ≤ m ≤ R2/r2. A mono-
tonicity argument completes the proof. �

Next, we show that Proposition 10 can be used to derive a condition similar to (15) for bounded
empirical processes. To bound from above the performance of ERM procedures in density esti-
mation, Theorem 13 in the Appendix C requires the existence of a quantity r∗ > 0 such that

E

[
sup

θ∈�M : Q(θ)≤r2∗
F(θ)

]
≤ r2∗

16
, (37)

where F is the function defined in Proposition 10 above.
To obtain such quantity r∗ > 0 under the assumptions of Proposition 10, we proceed as follows.

Let K = max(b,
√

L) and assume that

MK > R
√

n.

Define r2 = CKR
√

log(eMK/(R
√

n)) where C ≥ 1 is a numerical constant that will be chosen
later. We now bound from above the right-hand side of (34). We have

log
(
eMr2/R2)≤ log(C) + log

(
eMK/(R

√
n)
)+ (1/2) log log

(
eMK/(R

√
n)
)

≤ (log(C) + 3/2
)

log
(
eMK/(R

√
n)
)
,

where for the last inequality we used that log log(u) ≤ logu for all u > 1 and that log(C) ≤
log(C) log(eMK/(R

√
n)), since C ≥ 1 and MK/(R

√
n) ≥ 1. Thus, the right-hand side of (34)
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is bounded from above by

c max

(√
log(C) + 3/2

C
,

log(C) + 3/2

C2

)
r2.

It is clear that the above quantity is bounded from above by r2/16 if the numerical constant C is
large enough. Thus, we have proved that as long as MK > R

√
n, inequality (37) holds for

r2∗ = CRK

√
log(eMK/(R

√
n))

n
,

where C ≥ 1 is a numerical constant.

ERM and convex aggregation in density estimation

We now study density estimation with respect to the squared loss. Consider a measurable space
(Z,μ) with measure μ and an unknown density p0 with respect to the measure μ. We observe
Z1, . . . ,Zn distributed according to p0 and we are given preliminary estimators p1, . . . , pM ∈
L2(μ). We assume that the preliminary estimators p1, . . . , pM have been constructed with data
different than Z1, . . . ,Zn, and for the purpose of the present section, we assume that p1, . . . , pM

are deterministic functions in L2(μ). For instance, p1, . . . , pM may be kernel density estimators
with different bandwidth parameters, we refer the reader to [51], Section 2.1, and the references
therein.

Linear, convex and model-selection type aggregation of density estimators with respect to the
L2 loss is studied in [6,46]. Aggregation of density estimator with respect to the Kullback-Leibler
loss is studied in [31,54].

The goal is to construct an estimator that performs almost as well as the best convex combina-
tion of p1, . . . , pM . Since we consider the L2 loss, the empirical loss function

p →
∫

p2 dμ − 2

n

n∑
i=1

p(Zi)

is an unbiased estimator of the L2 loss
∫
(p − p0)

2 dμ, up to an additive constant that is inde-
pendent of p.

The minimax optimal rate for the convex aggregation problem is known to be of order

φC
M(n) := min

(
M

n
,

√
log( eM√

n
)

n

)

for regression with fixed design [44] and regression with random design [50] if the integers M

and
√

n satisfy eMσ ≤ R
√

n exp(
√

n) or equivalently φC
M(n) ≤ 1. The arguments for the convex

aggregation lower bound from [50] can be readily applied to density estimation, showing that the
rate φC

M(n) is a lower bound on the optimal rate of convex aggregation for density estimation.
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We now use the results of the previous sections to show that ERM is optimal for the convex
aggregation problem in density estimation.

Theorem 11. There exists an absolute constant c > 0 such that the following holds. Let
(Z,μ) be a measurable space with measure μ. Let p0 be an unknown density with respect
to the measure μ. Let Z1, . . . ,Zn be i.i.d. random variables valued in Z with density p0. Let
p1, . . . , pM ∈ L2(μ) and let pθ =∑M

j=1 θjpj for all θ = (θ1, . . . , θM)T ∈ RM . Let

θ̂ ∈ arg min
θ∈�M

(∫
p2

θ dμ − 2

n

n∑
i=1

pθ (Zi)

)
.

Then for all x > 0, with probability greater than 1 − exp(−x),

∫
(p

θ̂
−p0)

2 dμ ≤ min
θ∈�M

∫
(pθ −p0)

2 dμ+ c max

(
b∞M

n
,R
√

b∞

√√√√ log(
eM

√
b∞

R
√

n
)

n

)
+ 88b∞x

3n
,

where R2 = 4 maxj=1,...,M

∫
p2

j dμ and b∞ = maxj=0,1,...,M ‖pj‖L∞(μ).

Proof. It is a direct application of Theorem 13 in the Appendix C. If M
√

b∞ ≤ R
√

n, a fixed
point t∗ is given by Lemma 14. If M

√
b∞ > R

√
n, we use Proposition 10 with Q(θ) =∫

(p∗
0 − pθ )

2, L = b∞ and b = b∞. The bound (37) yields the existence of a fixed point t∗
in this regime. �

Appendix A: Simulations: How correlations affect �(T ∩ sB2)

The upper bound on �(T ∩ sB2) given in Proposition 1 applies to any convex set T with M

extreme points and this bound is sharp for the �1-ball. However, the upper bound of Proposition 1
does not involve geometric characteristics of the set T . Since this upper bound is sharp for the
�1-ball, one may conjecture that correlations among the extreme points of T will decrease the
value �(T ∩ sB2).

We study here with simulations how correlations among the extreme points of the convex
set T affect the Gaussian width �(T ∩ sB2). For a given correlation parameter ρ ∈ (0,1) and a
given localization parameter s ∈ (0,1), we construct a set Tρ as follows. First, we construct a
matrix X ∈ Rn×p with n i.i.d. rows distributed according to N(0,�ρ), where �ρ ∈ RM×M is the
matrix with diagonal entries equal to 1 and off-diagonal entries equal to ρ. Then we set Tρ to be
the convex envelope of {±x1/|x1|2, . . . ,±xM/|xM |2} where x1, . . . ,xM are the columns of X.
Thus, Tρ is a convex set with 2M extreme points, and any two extreme points have correlation
approximately equal to ρ. Next, we compute the Gaussian width �(Tρ ∩ sB2) approximately,
by drawing k independent standard normal vectors g1, . . . ,gk and by taking the average, that
is, we report the value V (s,ρ) = 1

k

∑k
l=1 maxu∈Tρ∩sB2 uT gl . Computing V (s,ρ) can be done

by solving k convex programs. The values V (s,ρ) are reported on Figure A.1 with n = 100,
M = 300.
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Figure A.1. Heatmap of the approximate values of the Gaussian width �(Tρ ∩ (sB2)) for different correla-
tion parameter ρ ∈ (0,1) and localization parameter s ∈ (0,1). Red is largest, blue is smallest. The x-axis
represents the localization parameter s, the y-axis represents ρ the approximate correlation of two extreme
points of T .

We see on Figure A.1 that the Gaussian width �(Tρ ∩ sB2) is monotonic with respect to the
correlation parameter ρ for every fixed localization parameter s. This supports the theoretical
conclusions of Propositions 1 and 2, which shows that the upper bound of Proposition 1 holds
for any set T and that this upper bound is sharp for the �1-ball or for sets T whose extreme points
have small correlations.

However, let us emphasize that the situation highlighted in Figure A.1 is specific to the con-
struction of the sets Tρ . It is still unclear, for general sets T , whether �(T ∩ sB2) is monotonous
with respect to correlations among the extreme points of T . More theoretical work is needed
to understand the geometric features of the set T that characterize �(T ∩ sB2); we leave these
questions open for future work.

Appendix B: Proof of the lower bound (6)

Proof of Proposition 2. By the Varshamov–Gilbert extraction lemma [22], Lemma 2.5, there
exist a subset � of {0,1}M such that

|ω|0 = m,
∣∣ω − ω′∣∣

0 > m, log |�| ≥ (m/2) log
(
M/(5m)

)
for any distinct ω,ω′ ∈ �.

For each ω ∈ �, we define sgn(ω) ∈ {−1,0,1}M , a signed version of ω, as follows. Let
ε1, . . . , εM be M i.i.d. Rademacher random variables. Then we have

E

[∣∣∣∣∣
M∑

j=1

ωjεjμj

∣∣∣∣∣
2

2

]
=

M∑
j=1

ωj |μj |22 = m.

Hence, there exists some sgn(ω) ∈ {−1,0,1}M with |sgn(ω)j | = ωj for all j = 1, . . . ,M such
that |μsgn(ω)|22 ≤ m.
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Define T� = {s2μsgn(ω),ω ∈ �}. Since s2 = 1/m, each element of T� is of the form
(1/m)(±μj1

± ... ± μjm
) where μj1

, . . . ,μjm
are m distinct elements of {μ1, . . . ,μM}, hence

by convexity of T we have T� ⊂ T . By definition of sgn(ω), it holds that T� ⊂ sB2, and thus
T� ⊂ T ∩ sB2. For any two distinct u,v ∈ T�,

|u − v|22 ≥ κ2s4 inf
ω,ω′
∣∣sgn(ω) − sgn

(
ω′)∣∣2

2 > κ2s4m = κ2s2,

where the supremum is taken over any two distinct elements of �. By Sudakov’s inequality (see
for instance [14], Theorem 13.4) we have

�(T ∩ sB2) ≥ �(T�) ≥ (1/2)κs
√

log� ≥ 1/(2
√

2)κs
√

m
√

log(M/5m).

Since 1/m = s2, the right hand side of the previous display is equal to the right hand side of (6)
and the proof is complete. �

Appendix C: Local Rademacher complexities and density
estimation

In the last decade emerged a vast literature on local Rademacher complexities to study the per-
formance of empirical risk minimizers (ERM) for general learning problems, cf. [2,3,28] and
the references therein. The following result is given in [2], Theorem 2.1. Let ε1, . . . , εn be in-
dependent Rademacher random variables, that are independent from all other random variables
considered in the paper.

Theorem 12 (Bartlett et al. [2]). Let Z1, . . . ,Zn be i.i.d. random variables valued in some
measurable space Z . Let H : Z → [−b∞, b∞] be a class of measurable functions. Assume that
there is some v > 0 such that E[h(Z1)

2] ≤ v for all h ∈ H. Then for all x > 0, with probability
greater than 1 − exp(−x),

sup
h∈H

(P − Pn)h ≤ 4E

[
sup
h∈H

1

n

n∑
i=1

εih(Zi)

]
+
√

2vx

n
+ 8b∞x

3n
.

Theorem 12 is a straightforward consequence of Talagrand inequality. We now explain how
Theorem 12 can be used to derive sharp oracle inequalities in density estimation.

Theorem 13. Let (Z,μ) be a measurable space with measure μ. Let p0 be an unknown density
with respect to the measure μ. Let Z1, . . . ,Zn be i.i.d. random variables valued in Z with density
p0. Let P be a convex subset of L2(μ). Assume that there exists p∗

0 ∈ P such that
∫
(p0 −

p∗
0)2 dμ = infp∈P

∫
(p0 − p)2 dμ. Assume that for some t∗ > 0,

E

[
sup

p∈P : ∫ (p−p∗
0)2 dμ≤t2∗

1

n

n∑
i=1

εi

(
p − p∗

0

)
(Zi)

]
≤ t2∗

16
. (38)
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Assume that there exists an estimator p̂ such that almost surely,

p̂ ∈ arg min
p∈P

(∫
p2 dμ − 1

n

n∑
i=1

2p(Zi)

)
.

Then for all x > 0, with probability greater than 1 − exp(−x),∫
(p̂ − p0)

2 dμ ≤ min
p∈P

∫
(p − p0)

2 dμ + 2 max

(
t2∗ ,

4(‖p0‖L∞(μ) + 8b∞/3)x

n

)
,

where b∞ = supp∈P ‖p‖L∞(μ).

Proof of Theorem 13. By optimality of p̂ we have∫
(p̂ − p0)

2 dμ ≤
∫ (

p∗
0 − p0

)2
dμ + 2�p̂,

where for all p ∈P , �p is the random variable

�p = (P − Pn)
(
p − p∗

0

)− 1

2

∫ (
p∗

0 − p
)2

dμ.

Let ρ = max(t2∗ ,4(‖p0‖L∞(μ) + 8b∞/3)x/n) and define

H =
{
h = p∗

0 − p for some p ∈P such that
∫

h2 dμ ≤ ρ

}
.

The class H is convex, 0 ∈ H and t2∗ ≤ ρ so that h ∈ H implies t2∗
ρ
h ∈H. For any linear form L,

1

ρ
sup

h∈H:∫ h2 dμ≤ρ

L(h) ≤ 1

t2∗
sup

h∈H:∫ h2 dμ≤ρ

L

(
t2∗
ρ

h

)
≤ 1

t2∗
sup

h∈H:∫ h2 dμ≤t2∗
L(h)

so that by taking expectations, (38) holds if t2∗ is replaced by ρ.
For any h ∈ H, E[h(Z1)

2] ≤ ‖p0‖L∞(μ)ρ and h is valued in [−2b∞,2b∞] μ-almost surely.
We apply Theorem 12 to the class H. This yields that with probability greater than 1 − e−x , if
p ∈ P is such that p8

0 − p ∈H, then

(P − Pn)
(
p∗

0 − p
)≤ ρ

4
+
√

2ρ‖p0‖L∞(μ)x

n
+ 16b∞x

n

≤ ρ

2
+ 2
(‖p0‖L∞(μ) + 8b∞/3

)x
n

≤ ρ.

On the same event of probability greater than 1 − e−x , if p ∈ P is such that
∫
(p∗

0 − p)2 dμ > ρ,

consider h = √
ρ(p∗

0 − p)/

√∫
(p∗

0 − p)2 dμ which belongs to H. We have (P − Pn)h ≤ ρ,
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which can be rewritten

(P − Pn)
(
p∗

0 − p
)≤ √

ρ

√∫ (
p∗

0 − p
)2

dμ ≤ ρ/2 +
∫ (

p∗
0 − p

)
dμ/2,

so that �p ≤ ρ/2 ≤ ρ. In summary, we have proved that on an event of probability greater than
1 − e−x , supp∈P �p ≤ ρ. In particular, this holds for p = p̂ which completes the proof. �

Appendix D: A fixed point t∗ for finite dimensional classes

Lemma 14. Consider the notations of Theorem 13 and assume that the linear span of P is finite
dimensional of dimension d . Then (38) is satisfied for t2∗ = 256‖p0‖L∞(μ)d/n.

Proof. Let e1, . . . , ed be an orthonormal basis of the linear span of P , for the scalar product
〈p1,p2〉 = ∫ p1p2 dμ. Then

E

[
sup

p∈P : ∫ (p−p∗
0)2 dμ≤t2∗

1

n

n∑
i=1

εi

(
p − p∗

0

)
(Zi)

]
≤ E sup

θ∈Rd : |θ |22≤t2∗

1

n

n∑
i=1

εi

d∑
j=1

ej (Xi)

≤ t∗

√√√√√ d∑
j=1

(
1

n

n∑
i=1

εiej (Xi)

)2

≤ t∗
√‖p0‖L∞(μ)d√

n
= t2∗

16
,

where we have used the Cauchy–Schwarz inequality, Jensen’ inequality, and that Eej (X)2 ≤
‖p0‖L∞(μ) for all j = 1, . . . , d . �
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