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Under the sublinear expectation E[·] := supθ∈� Eθ [·] for a given set of linear expectations {Eθ : θ ∈ �},
we establish a new law of large numbers and a new central limit theorem with rate of convergence. We
present some interesting special cases and discuss a related statistical inference problem. We also give an
approximation and a representation of the G-normal distribution, which was used as the limit in Peng’s
(Law of large numbers and central limit theorem under nonlinear expectations (2007) Preprint) central limit
theorem, in a probability space.

Keywords: central limit theorem; G-normal distribution; law of large numbers; rate of convergence; Stein’s
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1. Introduction

Let {Pθ : θ ∈ �} be a set of probability measures on a measurable space (�,F). Let Eθ denote
the expectation under Pθ . For a random variable X : � → R such that Eθ [X] exists for all θ ∈ �,
we define its sublinear expectation as

E[X] := sup
θ∈�

Eθ [X]. (1.1)

It is clear that the sublinear expectation (1.1) satisfies the following: (i) monotonicity (E[X] ≥
E[Y ] if X ≥ Y ), (ii) constant preservation (E[c] = c for c ∈ R), (iii) sub-additivity (E[X + Y ] ≤
E[X] +E[Y ]), and (iv) positive homogeneity (E[λX] = λE[X] for λ ≥ 0).

From (iii), we have

E[X] −E[−Y ] ≤ E[X + Y ] ≤ E[X] +E[Y ]. (1.2)

In the special case where Y does not have the mean uncertainty, that is,

E[Y ] = −E[−Y ], we have E[X + Y ] = E[X] +E[Y ]. (1.3)

From (1.2) and (i), we have ∣∣E[X + Y ] −E[X]∣∣≤ E
[|Y |]. (1.4)
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Such a notion of sublinear expectation is often used in situations where it is difficult or impos-
sible to find the “true” probablity P

θ̂
among a set of uncertain probability models {Pθ }θ∈�. To

the best of our knowledge, the definition (1.1) of sublinear expectation first appeared in Huber
[7], who called it the upper expectation. It was also called the upper prevision in the theory of
imprecise probabilities. See, for example, Walley [18]. A type of nonlinear expectation adapted
with a Brownian filtration, called g-expectation, was defined in Peng [12]. The sublinear situa-
tion of g-expectation was applied in Chen and Epstein [3] to describe the investors’ ambiguity
aversions. The notion of coherent risk measures introduced in Artzner et al. [1] is also a type of
sublinear expectation. See also Föllmer and Schied [6]. The motivation for these related notions
is to use the set of probability measures {Pθ : θ ∈ �} to model the uncertainty of probabilities
and distributions in real data, and use the sublinear expectation E as a robust method to measure
the risk loss X. We also refer to Delbaen, Peng and Rosazza-Gianin [4] and Peng [14] for more
information on sublinear expectations, dynamical risk measures and general nonlinear expecta-
tions.

According to Peng [13], we say two random variables X and Y are identically distributed,

denoted by X
d= Y , if

E
[
ϕ(X)

]= E
[
ϕ(Y )

]
for all bounded continuous functions ϕ. X

d= Y means that the distribution uncertainties of X

and Y are the same. There are different notions of independence under sublinear or nonlinear
expectations. See, for example, Walley [18], Marinacci [11] and Maccheroni and Marinacci [10].
We adopt the notion introduced by Peng [14] and say that a random vector Y ∈Rn is independent
of another random vector X ∈Rm if

E
[
ϕ(X,Y )

]= E
{{
E
[
ϕ(x,Y )

]}
x=X

}
for all bounded continuous functions ϕ : Rm+n → R. This independence often occurs in many
situations where the value of X is realized before that of Y , but the distribution uncertainty of Y

does not change after this realization. A sequence of random variables {Xi}∞i=1 is said to be i.i.d.
if for each i = 1,2, . . . , Xi+1 is identically distributed as X1 and independent of (X1, . . . ,Xi).
Under sublinear expectations, “Y is independent of X” does not imply automatically that “X is
independent of Y ”. Example 3.13 of Peng [14] provides such an example. In the special case that
� is a singleton, (1.1) reduces to the usual definition of expectation, and the definition of i.i.d.
random variables reduces to that in the classical setting.

Peng [14] formulated a law of large numbers (LLN) under the sublinear expectation (1.1) as
follows. Let {Xi}∞i=1 be an i.i.d. sequence of random variables with E[X1] = μ, −E[−X1] = μ,

both being finite. By the definition of sublinear expectation (1.1), we have μ ≤ μ. Let Xn =
(X1 + · · · + Xn)/n. Then, we have

(LLN) lim
n→∞E

[
ϕ(Xn)

]→ sup
μ≤y≤μ

ϕ(y), for ϕ ∈ lip(R), (1.5)

where lip(R) denotes the class of Lipschitz functions. We refer to (1.5) as the weak convergence
of Xn to the maximal distribution with parameters μ and μ.
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By assuming further that μ = μ =: μ and

E
[
(X1 − μ)2]= σ 2, −E

[−(X1 − μ)2]= σ 2, E
[|X1|3

]
< ∞,

Peng [13] obtained a central limit theorem (CLT):

(CLT) lim
n→∞E

{
ϕ
[√

n(Xn − μ)
]}→ u(1,0), for ϕ ∈ lip(R), (1.6)

where {u(t, x) : (t, x) ∈ [0,∞) × R} is the unique viscosity solution to the following parabolic
partial differential equation (PDE) defined on [0,∞) ×R:

∂tu − G
(
∂2
xxu
)= 0, u|t=0 = ϕ, (1.7)

where G = Gσ,σ (α) is the following function parametrized by σ and σ :

G(α) = 1

2

(
σ 2α+ − σ 2α−), α ∈ R.

Here we denote α+ := max{0, α} and α− := (−α)+.
We refer to (1.6) as the weak convergence of

√
n(Xn − μ) to the G-normal distribution with

parameters σ 2 and σ 2. We will denote the right-hand side of (1.6) by NG[ϕ] and suppress its
dependence on σ 2 and σ 2 for the ease of notation. Recently, Song [16] obtained a convergence
rate for Peng’s CLT (1.6), which is of the order O(1/nα/2) with an unspecified α ∈ (0,1).

In the special case that ϕ is a convex function, we can verify by the Gaussian integration by

parts formula and G(∂2
xxu) = σ 2

2 ∂2
xxu from the convexity of ϕ that

u(t, x) = E
[
ϕ
(
x + t1/2σZ

)]
(1.8)

is the solution to the PDE (1.7), where Z is a standard Gaussian random variable. Therefore, the
limit in (1.6) is a normal distribution. The same conclusion holds for concave ϕ, except that σ is
replaced by σ . The limit in (1.6) is also normal for any ϕ ∈ lip(R) if σ = σ .

Note that (1.5) and (1.6) reduce to classical LLN and CLT if � in (1.1) is a singleton. In this
case, E is a linear expectation.

The goal of this paper is to obtain convergence rates for the above LLN and a new type of
renormalized CLT with explicitly given bounds in the framework of sublinear expectations. For
the LLN, we prove that

E
{[

(Xn − μ)+
]2 + [(Xn − μ)−

]2}≤ 2[σ 2 + (μ − μ)2]
n

,

where

σ 2 := sup
θ∈�

Eθ

{[
X1 − Eθ(X1)

]2}
.

This upper bound provides us with a quantitative version of the fact that for large n, the sample
mean is sufficiently concentrated inside the interval [μ,μ]. We deduce this upper bound from
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a new law of large numbers, which may be of independent interest. We will discuss a related
statistical inference problem under sublinear expectations. We also discuss extensions to the
multi-dimensional setting.

With respect to the CLT in (1.6), for the special case that ϕ is a convex function, we prove that∣∣∣∣E{ϕ

[√
n

σ
(Xn − μ)

]}
− E

[
ϕ(Z)

]∣∣∣∣≤ logn + 1√
n

{
2 +E

[∣∣∣∣X1 − μ

σ

∣∣∣∣3]}∥∥ϕ′∥∥,
where Z is a standard Gaussian random variable and ‖ · ‖ denotes the supremum norm of a
function. A similar bound for ϕ being a concave function is also obtained. For the general case
where the mean of X1 is uncertain (that is, μ 
= μ) and ϕ may not be convex or concave, we
formulate a new central limit theorem for

n∑
i=1

Xi − μi

σi

√
n

,

where μi equals μ or μ depending on previous {Xj : j < i} and the solution to the heat equation,
and σi depends furthermore on the set of the possible first two moments of X1. Our main tool for
proving the rate of convergence for the CLT is a combination of Lindeberg’s swapping argument
and Stein’s method. This approach was used by Röllin [15] for proving a martingale CLT.

The sublinear expectation (1.1) is defined through a class of probability measures, and in gen-
eral, cannot be represented in a single probability space. However, for the G-normal distribution,
which was used as the limit in Peng’s CLT (1.6), we can give an approximation and a represen-
tation in a probability space.

The rest of this paper is organized as follows. In Section 2, we present our results on the law
of large numbers. Section 3 contains the results related to the CLT. A new representation of the
G-normal distribution is derived in Section 4. Most of the proofs are deferred to Section 5.

2. Law of large numbers

In this section, we first provide a rate of convergence for Peng’s law of large numbers, then dis-
cuss its implication on the statistical inference for uncertain distributions, and finally, we present
a new law of large numbers with rates that may be of independent interest.

2.1. Rate of convergence

Let {Xi}∞i=1 be an i.i.d. sequence of random variables under a sublinear expectation E such that

E[X] = sup
θ∈�

Eθ [X]

for a family of linear expectations {Eθ : θ ∈ �}. Suppose both μ = E[X1] and μ = −E[−X1]
are finite. Define

σ 2 := sup
θ∈�

Eθ

{[
X1 − Eθ(X1)

]2}
. (2.1)
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If σ 2 is finite, then we can control the expected deviation of the sample mean Xn =∑n
i=1 Xi/n

from the interval [μ,μ].
Theorem 2.1. Under the above setting, we have

E
{[

(Xn − μ)+
]2 + [(Xn − μ)−

]2}≤ 2[σ 2 + (μ − μ)2]
n

. (2.2)

Remark 2.1. We can rewrite (2.2) as

E
[
d2[μ,μ](Xn)

]≤ 2[σ 2 + (μ − μ)2]
n

,

where for A ⊂ Rd and x ∈ Rd , dA(x) := infy∈A |y − x|. Clearly, for any interval I larger than
[μ,μ], i.e., [μ,μ] ⊂ I , the conclusion of Theorem 2.1 still holds for d2

I (Xn). In fact, [μ,μ] is
the smallest interval satisfying Theorem 2.1. According to (1.5), if [ν, ν] � [μ,μ], then

lim
n→∞E

[
d[ν,ν](Xn)

]= sup
x∈[μ,μ]

d[ν,ν](x) > 0.

Remark 2.2. (1.5) presents a law of large numbers under sublinear expectations where the con-
vergence is in the distribution. In fact, if μ > μ, the convergence would not be in the strong
sense: there does not exist a random variable η such that

lim
n→∞E

[|Xn − η|]= 0. (2.3)

Indeed, if (2.3) holds, then by (1.5), η must be maximally distributed. Set g(x) = min{max{x,μ},
μ} − μ. On one hand, (2.3) implies that

lim
n→∞E

[−g(Xn)(η − μ + 1)
]= E

[−g(η)(η − μ + 1)
]= 0.

On the other hand, as η is independent of g(Sn), we have

lim
n→∞E

[−g(Xn)(η − μ + 1)
] = lim

n→∞E
[
g(Xn)

]
E
[−(η − μ + 1)

]
= E

[
g(η)

]
E
[−(η − μ + 1)

]= −(μ − μ).

This is a contradiction.

Theorem 2.1 can be generalized to the multi-dimensional setting.

Theorem 2.2. Let {Xi}∞i=1 be an i.i.d. sequence of d-dimensional random vectors under a sub-
linear expectation E = supθ∈� Eθ . Suppose that the convex hull of the closure of all the possible
means {Eθ [X1] : θ ∈ �} is a bounded convex polytope P with m vertices. We have

E
[
d2
P (Xn)

]≤ m{supθ∈� Eθ [|X1 − Eθ [X1]|2] + diam2(P)}
n

,
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where Xn =∑n
i=1 Xi/n, | · | denotes the Euclidean norm, and diam(P) denotes the diameter of

the polytope.

Theorem 2.2 reduces to Theorem 2.1 in the one-dimensional case by regarding [μ,μ] as a
polytope with m = 2 vertices. Theorem 2.2 follows from a new law of large numbers stated in
Section 2.3, which may be of independent interest.

Remark 2.3. Based on Theorem 2.2, we can also give a convergence rate of E[dP (Xn)] when
P is a general convex set in Rd with a regular boundary. For example, if P is a disk of radius R

in a plane, we have (proof deferred to Section 5.1)

E
[
dP (Xn)

]≤ (7π2R +
√

σ 2 + 16R2)

n
2
5

.

2.2. Statistical inference for uncertain distributions

The upper bound in Theorem 2.1 provides us with a quantitative version of the fact that for
large n, the sample mean is sufficiently concentrated inside the interval [μ,μ]. This is related to
the estimation of μ and μ described below.

Given an i.i.d. sequence of random variables X1, . . . ,XN under linear expectations, the usual
estimator for their mean is

μ̂ = X1 + · · · + XN

N
.

Here, we consider a statistical estimation under sublinear expectations.
Let X1, . . . ,XN be an i.i.d. sequence of random variables under a sublinear expectation E such

that

E[X] = sup
θ∈�

Eθ [X]
for a family of linear expectations {Eθ : θ ∈ �}. Suppose that N = nk and the data are expressed
as follows: ⎡⎢⎣X11 . . . X1n

...
...

...

Xk1 . . . Xkn

⎤⎥⎦ .

Jin and Peng [8] proposed to estimate the lower mean μ and the upper mean μ of X1 by

μ̂ := min
1≤j≤k

∑n
i=1 Xji

n

and

μ̂ := max
1≤j≤k

∑n
i=1 Xji

n
,

respectively. Applying Theorem 2.1 and the union bound, we have the following result.
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Proposition 2.1. Suppose E[X2
1] < ∞. We have

E
{[

(μ̂ − μ)+
]2}≤ Ck

n
and E

{[
(μ̂ − μ)−

]2}≤ Ck

n
,

where C is a constant depending only on μ,μ and σ 2 in (2.1).

Proof. Define

Yj :=
∑n

i=1 Xji

n
.

We have, by the union bound and Theorem 2.1,

E
{[

(μ̂ − μ)+
]2}= E

{[(
max

1≤j≤k
Yj − μ

)+]2}

= E
{

max
1≤j≤k

[
(Yj − μ)+

]2}≤ E

{
k∑

j=1

[
(Yj − μ)+

]2}≤ Ck

n
.

The second inequality follows from the same argument. �

Proposition 2.1 ensures that as n → ∞ and k = o(n), the estimators by Jin and Peng [8] are
sufficiently concentrated inside [μ,μ].

2.3. A new law of large numbers

We first formulate a new law of large numbers for the one-dimensional case.

Theorem 2.3. Let {Xi}∞i=1 be an i.i.d. sequence of random variables under a sublinear expecta-
tion E such that

E[X] = sup
θ∈�

Eθ [X]

for a family of linear expectations {Eθ : θ ∈ �}. Suppose that E[X2
1] < ∞. Denote

μ := E[X1], μ := −E[−X1].

Then, for ϕ differentiable such that ϕ′ ∈ lip(R), we have∣∣∣∣E{ϕ

[∑n
i=1(Xi − μi)

n

]}
− ϕ(0)

∣∣∣∣≤ C0‖ϕ′′‖
n

,
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where

μi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ if ϕ′

[∑i−1
j=1(Xj − μj )

n

]
≥ 0,

μ if ϕ′
[∑i−1

j=1(Xj − μj )

n

]
< 0,

and

C0 = 1

2

[
σ 2 + (μ − μ)2], σ 2 = sup

θ∈�

Eθ

{[
X1 − Eθ(X1)

]2}
.

Theorem 2.3 is a direct consequence of the following multivariate version, which will be
proved in Section 5.1.

Theorem 2.4. Let X1,X2, . . . be an i.i.d. sequence of d-dimensional random vectors under a
sublinear expectation E such that

E[X] = sup
θ∈�

Eθ [X]

for a family of linear expectations {Eθ : θ ∈ �}. Let

M1 := {Eθ [X1] : θ ∈ �
}

be all possible means of X1. Let P be the convex hull of the closure of M1. We have, for ϕ :
Rd → R differentiable such that the gradient Dϕ : Rd → Rd is a Lipschitz function,∣∣∣∣E{ϕ

[∑n
i=1(Xi − μi)

n

]}
− ϕ(0)

∣∣∣∣≤ λ∗{supθ∈� Eθ [|X1 − Eθ [X1]|2] + diam2(P)}
2n

,

where μi := arg supμ∈P {μ · Dϕ[
∑i−1

j=1(Xj −μj )

n
]} (if the arg sup is not unique, choose any value),

λ∗ is the supremum norm of the operator norm of the Hessian D2ϕ, and diam(P) denotes the
diameter of P .

3. Central limit theorem with rate of convergence

As explained in the Introduction, in the special case where ϕ is a convex or concave test function,
the limit in Peng’s CLT in (1.6) is a usual normal distribution. We first provide a rate of conver-
gence for this special case. Moreover, unlike in (1.6), we do not need to impose the identically
distributed assumption.

Theorem 3.1. Suppose X1, . . . ,Xn are independent under a sublinear expectation E with

E[Xi] = −E[−Xi] = μ, E
[
(Xi − μ)2]= σ 2

i , −E
[−(Xi − μ)2]= σ 2

i .
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Let
n∑

i=1

σ 2
i = B

2
n.

For convex test functions ϕ(·) ∈ lip(R), we have∣∣∣∣∣E
{

ϕ

[
n∑

i=1

(Xi − μ)/Bn

]}
− E

[
ϕ(Z)

]∣∣∣∣∣≤ ‖ϕ′‖
Bn

n∑
i=1

2σ 3
i +E[|Xi − μ|3]∑n

j=i σ
2
j

,

where Z is a standard Gaussian random variable. For concave functions ϕ, if we let

n∑
i=1

σ 2
i = B2

n,

then ∣∣∣∣∣E
{

ϕ

[
n∑

i=1

(Xi − μ)/Bn

]}
− E

[
ϕ(Z)

]∣∣∣∣∣≤ ‖ϕ′‖
Bn

n∑
i=1

2σ 2
i σ i +E[|Xi − μ|3]∑n

j=i σ
2
j

.

The proof of Theorem 3.1 follows from a similar and simpler proof of Theorem 3.2 below and
is deferred to Section 5.2. Theorem 3.1 has the following corollary if the Xi ’s are assumed to be
i.i.d.

Corollary 3.1. Under the conditions of Theorem 3.1, suppose further that X1, . . . ,Xn are i.i.d.,
and denote

σ 2 := E
[
(X1 − μ)2], σ 2 := −E

[−(X1 − μ)2].
Then, for a convex test function ϕ ∈ lip(R), we have∣∣∣∣E{ϕ

[∑n
i=1(Xi − μ)

σ
√

n

]}
− E

[
ϕ(Z)

]∣∣∣∣≤ logn + 1√
n

(
2 +E

[∣∣∣∣X1 − μ

σ

∣∣∣∣3])∥∥ϕ′∥∥,
where Z is a standard Gaussian random variable. If ϕ is concave, then we have∣∣∣∣E{ϕ

[∑n
i=1(Xi − μ)

σ
√

n

]}
− E

[
ϕ(Z)

]∣∣∣∣≤ logn + 1√
n

(
2σ

σ
+E

[∣∣∣∣X1 − μ

σ

∣∣∣∣3])∥∥ϕ′∥∥.
Proof. Corollary 3.1 follows directly from Theorem 3.1 by

B
2
n = nσ 2

i and B2
n = nσ 2

i for all i = 1, . . . , n,

and the fact that 1 + · · · + 1
n

≤ logn + 1. �
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For the general case where the mean of X1 is uncertain (that is, μ 
= μ) and ϕ may not be
convex or concave, we formulate a new CLT for

n∑
i=1

Xi − μi

σi

√
n

,

where μi equals μ or μ depending on previous {Xj : j < i} and the solution to the heat equation,
and σi depends furthermore on the set of the possible first two moments of X1. As above, let
{Xi}∞i=1 be an i.i.d. sequence of random variables under a sublinear expectation E such that

E[X] = sup
θ∈�

Eθ [X]

for a family of linear expectations {Eθ : θ ∈ �}. Suppose that E[|X1|3] < ∞. Define

μ := E(X1), μ := −E[−X1], (3.1)

and for each possible mean μ of X1, define

σ 2
μ := sup

θ∈�:Eθ (X1)=μ

Eθ

[
(X1 − μ)2], σ 2

μ := inf
θ∈�:Eθ (X1)=μ

Eθ

[
(X1 − μ)2]. (3.2)

We impose the following assumption.

Assumption A. Regarded as functions of μ, σ 2
μ and σ 2

μ are continuous at, or can be continu-
ously extended to, μ = μ and μ = μ.

Denote

σ 2
μ := lim

μ→μ− σ 2
μ, σ 2

μ := lim
μ→μ− σ 2

μ,

σ 2
μ := lim

μ→μ− σ 2
μ, σ 2

μ := lim
μ→μ− σ 2

μ.
(3.3)

There is no conflict of notation between (3.2) and (3.3) by Assumption A. We assume further
that

Assumption B. All the four quantities in (3.3) are positive.

Let

M2 = {(Eθ [X1],Eθ

[
X1 − Eθ(X1)

]2) : θ ∈ �
}

(3.4)

be the set of all possible pairs of mean and variance of X1. Define

σ 2
0 := min

μi=μ or μ

{
σ 2

μi
∧ inf

(μ,σ 2)∈M2

[
σ 2 + (μ − μi)

2]}, (3.5)
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σ 2 := sup
θ∈�

Eθ

{[
X1 − Eθ(X1)

]2}
and

γ := sup
θ∈�

Eθ

[∣∣X1 − Eθ [X1]
∣∣3].

On the basis of Assumptions A and B, we have σ 2
0 > 0. We have the following theorem.

Theorem 3.2. Under the above setting, we have the following CLT: for each ϕ ∈ lip(R),∣∣∣∣∣E
[
ϕ

(
1√
n

n∑
i=1

Xi − μi

σi

)]
− E

[
ϕ(Z)

]∣∣∣∣∣≤ C1(logn + 1)√
n

∥∥ϕ′∥∥. (3.6)

In (3.6),

C1 = 2 + 5[σ + (μ − μ)]
σ0

+ 4[γ + (μ − μ)3]
σ 3

0

,

Z is a standard Gaussian random variable, with

ti = n − i

n
, Wi = 1√

n

i∑
j=1

Xj − μj

σj

,

μi = μi((Xj ,μj , σj ) : j < i) are defined as

μi =
{

μ if ∂xVi−1 ≥ 0,

μ if ∂xVi−1 < 0,
(3.7)

σi = σi((Xj ,μj , σj ) : j < i,μi) are defined as

σi =

⎧⎪⎪⎨⎪⎪⎩
inf
{
b : b ≥ σμi

, sup
(μ,σ 2)∈M2

[
fi−1,b

(
μ,σ 2)]= 0

}
if ∂2

xxVi−1 ≥ 0,

sup
{
b : 0 < b ≤ σμi

, sup
(μ,σ 2)∈M2

[
fi−1,b

(
μ,σ 2)]= 0

}
if ∂2

xxVi−1 < 0,
(3.8)

where

fi−1,b

(
μ,σ 2)= [μ − μi

b

]
∂xVi−1√

n
+
[
σ 2 + (μ − μi)

2

b2
− 1

]
∂2
xxVi−1

n
, (3.9)

Vi−1 := V (ti−1,Wi−1) and V (·, ·) is the solution to the heat equation

∂tV (t, x) = 1

2
∂2
xxV (t, x), V (0, x) = ϕ(x).

The proof of Theorem 3.2 is deferred to Section 5.2.
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Remark 3.1. From the definition of μi in (3.7), the first term of fi−1,b(μ,σ 2) in (3.9) is ≤ 0 for
(μ,σ 2) ∈ M2 in (3.4). It is straightforward to show, by checking the values of the supremum in
(3.8) at the boundary points below and by the fact that sup(μ,σ 2)∈M2

[fi−1,b(μ,σ 2)] is continuous
for b in a compact set in (0,∞), that in (3.8), if ∂2

xxVi−1 ≥ 0, then

σ 2
μi

≤ σ 2
i ≤ sup

(μ,σ 2)∈M2

[
σ 2 + (μ − μi)

2],
and if ∂2

xxVi−1 < 0, then

inf
(μ,σ 2)∈M2

[
σ 2 + (μ − μi)

2]≤ σ 2
i ≤ σ 2

μi
.

Therefore, σ 2
i is well-defined and is bounded below by σ 2

0 in (3.5).

Remark 3.2. In Theorem 3.2, if we assume that μ = μ =: μ, then it is easy to check that

σi =
{

σμ if ∂2
xxVi−1 ≥ 0,

σμ if ∂2
xxVi−1 < 0.

If we assume further that ϕ is a convex (concave resp.) function and hence V (t, ·) = Eϕ(· +√
tZ) is convex (concave resp.), then σi is further reduced to σμ (σμ resp.). In this special case,

Theorem 3.2 reduces to Corollary 3.1 except for the constant.

4. Representation of G-normal distribution

Under the sublinear expectation, the G-normal distribution NG plays the same role as the classi-
cal normal distribution does in a probability space (cf. (1.6)). However, since NG is linked with
a fully nonlinear PDE, which is called G-heat equation, generally we cannot give an explicit
expression for NG[ϕ] like the linear case. So it would be important to give a representation or
approximation for NG[ϕ] using random variables or processes in a probability space.

Theorem 3.2 shows that under a certain normalization, the partial sum of i.i.d. random vari-
ables in a sublinear expectation space converges to the standard normal distribution. Motivated
by this, in this section, we give an approximation of the G-normal distribution by using a suit-
ably normalized partial sum of i.i.d. random variables in a probability space. Moreover, the
continuous-time counterpart provides a representation of the G-normal distribution using (non-
time-homogeneous) SDEs. This refines a result given in Denis, Hu and Peng [5], Proposition 49,
which implies that the G-normal distribution can be represented by Itô integrals with respect to
a Brownian motion.

4.1. Approximation of G-normal distribution

Let X1,X2, . . . be a sequence of i.i.d. random variables with E[X1] = 0 and E[X2
1] = 1 in a

probability space (�,F,P ). Suppose further that E[|X1|3] < ∞.
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Denote by �N

G the collection of all the sequences of measurable functions {σi}∞i=1 with σi :
R → [σ,σ ] for any i ∈ N. Fix n ∈ N. For a mapping σ ∈ �N

G, set Wσ
0,n = 0, and, for 1 ≤ i ≤ n,

set

Wσ
i,n = Wσ

i−1,n + σi

(
Wσ

i−1,n

) Xi√
n
. (4.1)

Thus, we have Wσ
i,n = 1√

n

∑i
k=1(σk(W

σ
k−1,n)Xk) =: 1√

n

∑i
k=1 Xσ

k,n. Write Wσ
n = Wσ

n,n for sim-
plicity.

Theorem 4.1. For any ϕ ∈ lip(R), we have∣∣∣ sup
σ∈�N

G

E
[
ϕ
(
Wσ

n

)]−NG[ϕ]
∣∣∣≤ Cα,Gσ̄ 2+α

∥∥ϕ′∥∥E[|X1|2+α]
n

α
2

,

where α ∈ (0,1), and Cα,G > 0 are constants depending on σ and σ .

The proof of Theorem 4.1 is deferred to Section 5.3. We first express supσ∈�N

G
E[ϕ(Wσ

n )] as
a sublinear expectation of a sum of i.i.d. random variables. The theorem then follows from the
error bound by Song [16] for Peng’s [13] CLT.

4.2. Representation of G-normal distribution

Roughly speaking, the continuous-time form of Eq. (4.1) is

dWσ
t = σ

(
t,Wσ

t

)
dBt , t ∈ (0,1], (4.2)

where B is a standard Brownian motion in a filtered probability space (�,F,F,P ).
Denote as �G the collection of all smooth functions σ : [0,1] ×R→ [σ,σ ] with

sup
(t,x)∈[0,1]×R

∣∣∂xσ (t, x)
∣∣< ∞.

For σ ∈ �G, we consider the following stochastic differential equation SDE (4.2) with the
initial value x:

dW
σ,x
t = σ

(
t,W

σ,x
t

)
dBt , t ∈ (0,1],

W
σ,x
0 = x.

(4.3)

We write Wσ for Wσ,0. Denote �G := {P ◦(Wσ
1 )−1|σ ∈ �G}. For a function σ : [0,1]×R→R,

set σ̃ (t, x) = σ(1 − t, x).

Theorem 4.2. For any ϕ ∈ lip(R), we have

NG[ϕ] = sup
μ∈�G

μ[ϕ].
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Remark 4.1. Note that in the above representation, we need to use non-time-homogeneous
SDEs. If we only consider time-homogeneous SDEs, the representation will be strictly smaller
than the G-normal distribution.

5. Proofs

5.1. Proofs in Section 2

In this subsection, we first prove Theorem 2.4 and then use it to prove Theorem 2.2. Finally, we
provide a simple explanation for Remark 2.3.

Proof of Theorem 2.4. Denote

Y0 = 0, Yk :=
k∑

i=1

ξi :=
k∑

i=1

(Xi − μi)

n
,

and denote

Y[k] := {Y1, . . . , Yk}.
For arbitrary random vectors X and Y , denote

EX
[
ϕ(X,Y )

] := {E[ϕ(x,Y )
]}

x=X
.

We will prove the following claim.

Claim 5.1. For any k = 1, . . . , n, we have

∣∣EY[k−1][ϕ(Yk) − ϕ(Yk−1)
]∣∣≤ λ∗{supθ∈� Eθ [|X1 − Eθ [X1]|2] + diam2(P)}

2n2
.

Using telescoping sum and the independence assumption and applying Claim 5.1 recursively
from k = n to k = 1, we have

E
[
ϕ(Yn)

]− ϕ(0)

= E

{
n∑

k=1

[
ϕ(Yk) − ϕ(Yk−1)

]}

= EEY[n−1]

{
n∑

k=1

[
ϕ(Yk) − ϕ(Yk−1)

]}

= E

{
n−1∑
k=1

[
ϕ(Yk) − ϕ(Yk−1)

]+EY[n−1][ϕ(Yn) − ϕ(Yn−1)
]}
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≤ E

{
n−1∑
k=1

[
ϕ(Yk) − ϕ(Yk−1)

]}+ λ∗{supθ∈� Eθ [|X1 − Eθ [X1]|2] + diam2(P)}
2n2

≤ · · ·

≤ λ∗{supθ∈� Eθ [|X1 − Eθ [X1]|2] + diam2(P)}
2n

.

The lower bound is proved by changing ≤ to ≥ and changing + to − for the error terms. There-
fore, we obtain Theorem 2.4, subject to Claim 5.1.

To prove Claim 5.1, we first write

EY[k−1][ϕ(Yk) − ϕ(Yk−1)
]

= EYk−1
[
ϕ(Yk) − ϕ(Yk−1)

]
= EYk−1

[
ξk · Dϕ(Yk−1) +

∫ 1

0

∫ 1

0
ξT
k D2ϕ(Yk−1 + αβξk)ξkα dα dβ

]
.

By the property (1.4) of the sublinear expectation and the definition of λ∗, we have∣∣EY[k−1][ϕ(Yk) − ϕ(Yk−1)
]−EYk−1

[
ξk · Dϕ(Yk−1)

]∣∣
≤ EYk−1

∣∣∣∣∫ 1

0

∫ 1

0
ξT
k D2ϕ(Yk−1 + αβξk)ξkα dα dβ

∣∣∣∣
≤ 1

2
λ∗E

[|ξk|2
]
.

Note that

E
[|Xk − μk|2

]= sup
θ∈�

Eθ

[|Xk − μk|2
]

= sup
θ∈�

{
Eθ

[∣∣Xk − Eθ(Xk)
∣∣2]+ ∣∣Eθ [Xk] − μk

∣∣2}
≤ sup

θ∈�

Eθ

[|X1 − μθ |2
]+ diam2(P).

Hence, ∣∣EY[k−1][ϕ(Yk) − ϕ(Yk−1)
]−EYk−1

[
ξk · Dϕ(Yk−1)

]∣∣
≤ λ∗{supθ∈� Eθ [|X1 − Eθ [X1]|2] + diam2(P)}

2n2
.

(5.1)

By the definition of sublinear expectation,

EYk−1
[
Xk · Dϕ(Yk−1)

]= sup
μ∈M1

μ · Dϕ(Yk−1).
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As M1 ⊂P , it is clear that

sup
μ∈M1

μ · Dϕ(Yk−1) ≤ sup
μ∈P

μ · Dϕ(Yk−1).

On the other hand, for λ1, λ2 ≥ 0 such that λ1 + λ2 = 1 and μ1,μ2 ∈ M1, the closure of M1,

(λ1μ1 + λ2μ2) · Dϕ(Yk−1) ≤ sup
μ∈M1

μ · Dϕ(Yk−1) = sup
μ∈M1

μ · Dϕ(Yk−1).

Therefore,

EYk−1
[
Xk · Dϕ(Yk−1)

]= sup
μ∈M1

μ · Dϕ(Yk−1) = sup
μ∈P

μ · Dϕ(Yk−1),

and by the choice of μk , we have

EYk−1
[
ξk · Dϕ(Yk−1)

]= 0.

This, together with (5.1), proves Claim 5.1. �

Proof of Theorem 2.2. Here, P is a bounded convex polytope with m vertices. Denote the set
of vertices by V . For each vertex v ∈ V , define

Tv = {w ∈ Rd : w − v = c(u − v) for some u ∈P and c ≥ 0
}
.

It is clear that P =⋂v∈V Tv where the intersection is over all the m vertices. (Just to clarify the
definitions, consider, for example, d = 1 and P = [μ,μ]. It has two vertices V = {μ,μ}. Thus,
we have Tμ = [μ,∞), Tμ = (−∞,μ] and P = Tμ ∩ Tμ.) We will prove that

d2
Tv

(∑n
i=1 Xi

n

)
≤ supθ∈� Eθ [|X1 − Eθ(X1)|2] + diam2(P)

n
(5.2)

and hence

d2
P

(∑n
i=1 Xi

n

)
≤
∑
v∈V

d2
Tv

(∑n
i=1 Xi

n

)
≤ m{supθ∈� Eθ [|X1 − Eθ(X1)|2] + diam2(P)}

n
.

To prove (5.2), we take the function ϕ in Theorem 2.4 to be

ϕ(x) = d2
Tv−v(x),

where Tv − v = {u − v : u ∈ Tv}. We will prove the following lemma.

Lemma 5.1. For this ϕ, we have that ϕ is differentiable, Dϕ : Rd →Rd is a Lipschitz function,

v · Dϕ(x) = sup
μ∈P

{
μ · Dϕ(x)

}
, for all x ∈ Rd (5.3)
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and

λ∗ = 2. (5.4)

On the basis of this lemma, we can take μi = v for all i in Theorem 2.4. This implies the
following: ∣∣∣∣E{ϕ

[∑n
i=1(Xi − v)

n

]}∣∣∣∣≤ supθ∈� Eθ [|X1 − μθ |2] + diam2(P)

n
.

The left-hand side is precisely d2
Tv

(

∑n
i=1 Xi

n
); hence, we obtain (5.2). �

We now prove Lemma 5.1.

Proof of Lemma 5.1. Without loss of generality, we assume that v = 0; hence, Tv −v = Tv = T0.
For each x such that d(x,T0) > 0, define

x0 = arginf
y∈T0

|x − y|.

Because of the convexity of T0, x0 is unique for each x, and moreover, x0 as a function of x is
continuous. Based on this definition,

ϕ(x) = |x − x0|2.
Let E and S denote the set of “edges” and “surfaces” of T0, respectively. The d-dimensional set
R = {x : d(x,T0) > 0} can be divided into a finite number of disjoint parts as

R=R0 ∪
(⋃

e∈E
Re

)
∪
(⋃

s∈S
Rs

)
,

where

R0 = {x ∈R : x0 = 0},
Re = {x ∈R : x0 ∈ e, x0 
= 0}

and

Rs = {x ∈R : x0 ∈ s, x0 /∈ e for any e ∈ E}.
For each x ∈ Rs , we change the coordinates such that x0 is the origin and regard Rd as s⊥ ⊗ s,
where s⊥ is the orthogonal space of s. Suppose that s⊥ is d1-dimensional. Then, under this new
coordinate system and for y ∈Rs , we have

ϕ(y) = y2
1 + · · · + y2

d1
.



Limit theorems under sublinear expectations 2581

Figure 1. P & Pm.

Hence

Dϕ(y) = 2(y1, . . . , yd1,0, . . . ,0)T = 2(y − y0),

D2ϕ(y) is a diagonal matrix with the first d1 diagonal entries being 2 and the rest being 0, and
‖D2ϕ(y)‖op ≤ 2. Similar arguments and results apply to x ∈Re and to x ∈ R0. Recall that y0 is
a continuous function of y. We conclude that Dϕ is continuous. Therefore, we have (5.4).

We now prove (5.3). Recall that we assumed that v = 0. On one hand, as 0 ∈P ,

sup
μ∈P

μ · Dϕ(x) ≥ 0.

On the other hand, by considering x ∈ R0,Re,Rs separately as above, as μ ∈ P points “in-
wards” and Dϕ(x) = 2(x − x0) points “outwards”, it is clear that

μ · Dϕ(x) ≤ 0,

which proves (5.3). �

Proof of Remark 2.3. Let B0(R) denote a disk of radius R in a plane. For m ∈ N, denote as Pm

a regular m-sided polygon with B0(R) as the inscribed circle (see Figure 1).
Write rm as the radius of the regular m-sided polygon. Then, rm = R

cos π
m

. We can easily check

that

rm − R ≤ 7π2R

m2
for m ≥ 3

and

lim
m→+∞m2(rm − R) = π2R

2
.

Now, we expand the set � as �m such that {Eθ [X1] : θ ∈ �m} = Pm and

sup
θ∈�m

Eθ

[∣∣X1 − Eθ [X1]
∣∣2]= sup

θ∈�

Eθ

[∣∣X1 − Eθ [X1]
∣∣2]=: σ̄ 2.
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Set Em = supθ∈�m
Eθ . Then,

E
[
dP (Xn)

] ≤ Em

[
dP (Xn)

]
≤ Em

[
dPm(Xn)

]+ rm − R

≤ rm − R +
√

m

n

√
σ 2 + 4r2

m.

By setting m = n
1
5 , we have

E
[
dP (Xn)

]≤ (7π2R +
√

σ 2 + 16R2
)
n− 2

5

and

lim sup
n→+∞

(
n

2
5 E
[
dP (Xn)

])≤ π2R

2
+
√

σ 2 + 4R2. �

5.2. Proofs in Section 3

In this subsection, we first introduce Stein’s method, which is our main tool for proving the
results presented in Section 3. Then, we prove Theorem 3.2. Finally, we discuss the modification
of the proof of Theorem 3.2 for obtaining Theorem 3.1.

5.2.1. Stein’s method for distributional approximations

Stein’s method was introduced by Stein [17] for distributional approximations. The book by
Chen, Goldstein and Shao [2] contains an introduction to Stein’s method and many recent ad-
vances. Here, we will explain the basic ideas in the context of normal approximation.

Let W be a random variable with mean x and variance t > 0, and let Zx,t ∼ N(x, t) be a
Gaussian random variable. The Wasserstein distance between their distributions is defined as

sup
ϕ∈lip(R):‖ϕ′‖≤1

{
E
[
ϕ(W)

]− E
[
ϕ(Zx,t )

]}
. (5.5)

Inspired by the fact that Y ∼ N(x, t) if and only if

E
[
(Y − x)f (Y )

]= tE
[
f ′(Y )

]
(5.6)

for all absolutely continuous functions f for which the above expectations exist, we consider the
following Stein equation:

tf ′(w) − (w − x)f (w) = ϕ(w) − Eϕ(Zx,t ). (5.7)

A bounded solution to (5.7) is known to be

fϕ(w) = 1√
t
e

(w−x)2
2t

∫ w−x√
t

−∞
e−y2/2{ϕ(x + √

ty) − E
[
ϕ(x + √

tZ)
]}

dy. (5.8)
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Hereafter, we denote the standard Gaussian random variable Z0,1 as Z. Setting w = W and
taking the expectation on both sides of (5.7), we have

sup
ϕ∈lip(R):‖ϕ′‖≤1

{
E
[
ϕ(W)

]− E
[
ϕ(Zx,t )

]}
= sup

ϕ∈lip(R):‖ϕ′‖≤1
E
{
tf ′

ϕ(W) − (W − x)fϕ(W)
}
.

(5.9)

The Wasserstein distance between the distribution of W and N(x, t) is then bounded by using
the properties of fϕ and by exploiting the dependence structure of W .

We will need to use the following properties of fϕ . The first lemma provides an upper bound
for f ′′

ϕ .

Lemma 5.2. For the solution (5.8) to Stein’s equation (5.7), we have

∥∥f ′′
ϕ

∥∥≤ 2

t

∥∥ϕ′∥∥. (5.10)

Proof. Define

g(s) := √
tfϕ(x + √

ts), h(y) := ϕ(x + √
ty).

We have

g(s) = es2/2
∫ s

−∞
e−y2/2{h(y) − E

[
h(Z)

]}
dy.

It is known that g(s) is a bounded solution to

g′(s) − sg(s) = h(s) − E
[
h(Z)

]
and (see, for example, (2.13) of Chen, Goldstein and Shao [2])∥∥g′′∥∥≤ 2

∥∥h′∥∥.
This implies (5.10). �

It is known that V (t, x) := Eϕ(x + √
tZ) is the solution to the heat equation

∂tV (t, x) = 1

2
∂2
xxV (t, x), V (0, x) = ϕ(x). (5.11)

The next lemma relates the solution to the Stein equation to the solution to the heat equation.

Lemma 5.3. Let V (·, ·) be the solution to the heat equation (5.11). Let fϕ be the solution (5.8)
to Stein’s equation (5.7). We have

E
[
fϕ(x + √

tZ)
]= −∂xV (t, x). (5.12)
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Proof. Define again

g(s) := √
tfϕ(x + √

ts), h(y) := ϕ(x + √
ty).

We have

g(s) = es2/2
∫ s

−∞
e−y2/2{h(y) − E

[
h(Z)

]}
dy

and g(s) is a bounded solution to

g′(s) − sg(s) = h(s) − E
[
h(Z)

]
. (5.13)

As

E
[
fϕ(x + √

tZ)
]= 1√

t
E
[
g(Z)

]
and −∂xV (t, x) = − 1√

t
E
[
h′(Z)

]
,

to prove (5.12), we only need to show

E
[
g(Z)

]= −E
[
h′(Z)

]
. (5.14)

From (2.87) of Chen, Goldstein and Shao [2], we have

g(s) = −√
2πes2/2(1 − �(s)

) ∫ s

−∞
h′(u)�(u)du

− √
2πes2/2�(s)

∫ ∞

s

h′(u)
[
1 − �(u)

]
du,

where �(·) denotes the standard normal distribution function. We have

E
[
g(Z)

]= ∫ ∞

−∞
(
1 − �(s)

) ∫ s

−∞
(−h′(u)

)
�(u)duds

+
∫ ∞

−∞
�(s)

∫ ∞

s

(−h′(u)
)(

1 − �(u)
)
duds

=
∫ ∞

−∞
(−h′(u)

){
�(u)

∫ ∞

u

(
1 − �(s)

)
ds + (1 − �(u)

) ∫ u

−∞
�(s)ds

}
du.

Let φ(u) be the standard normal density function. We have

�(u)

∫ ∞

u

∫ ∞

s

φ(v) dv ds + (1 − �(u)
) ∫ u

−∞

∫ s

∞
φ(v)dv ds

= �(u)

∫ ∞

u

(v − u)φ(v) dv + (1 − �(u)
) ∫ u

−∞
(u − v)φ(v) dv

= �(u)
[
φ(u) − u

(
1 − �(u)

)]+ (1 − �(u)
)[

u�(u) + φ(u)
]

= φ(u).
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Therefore,

E
[
g(Z)

]= ∫ ∞

−∞
(−h′(u)

)
φ(u)du = −E

[
h′(Z)

]
.

This proves (5.14) and hence, the lemma. �

5.2.2. Proofs of Theorems 3.2 and 3.1

Proof of Theorem 3.2. The proof is by Lindeberg’s swapping argument and Stein’s method.
The approach was used by Röllin [15] for a martingale CLT. See also Song [16].

We note that in general Xi is not independent of {Xj : j 
= i}. This fact prevents us from using
some of the techniques in Stein’s method.

Without loss of generality, we assume that ‖ϕ′‖ = 1. Denote

W0 = 0, Wk = ξ1 + · · · + ξk, ξi = Xi − μi

σi

√
n

,

and denote

W[k] := {W1, . . . ,Wk}.
For arbitrary random vectors X and Y , denote

EX
[
ϕ(X,Y )

] := {E[ϕ(x,Y )
]}

x=X
.

We will prove the following claim.

Claim 5.2. Let φσ (·) be the density function of N(0, σ 2) and let ∗ denote the convolution of
functions. For any k = 1, . . . , n, we have∣∣EW[k−1][ϕ ∗ φ√

n−k
n

(Wk) − ϕ ∗ φ√
n−k+1

n

(Wk−1)
]∣∣≤ C1

(n − k + 1)
√

n
,

where C1 is as in the statement of Theorem 3.2.

Using telescoping sum and the independence assumption and applying Claim 5.2 recursively
from k = n to k = 1 as in the argument below Claim 5.1, we have

∣∣E[ϕ(Wn)
]− E

[
ϕ(Z)

]∣∣∣∣∣∣∣E
{

n∑
k=1

[
ϕ ∗ φ√

n−k
n

(Wk) − ϕ ∗ φ√
n−k+1

n

(Wk−1)
]}∣∣∣∣∣

≤
n∑

k=1

C1

(n − k + 1)
√

n

≤ C1(logn + 1)√
n

.

Therefore, we obtain Theorem 3.2, subject Claim 5.2.
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To prove Claim 5.2, let η1, . . . , ηn be an i.i.d. sequence of random variables distributed as
N(0, 1

n
) and be independent of {X1, . . . ,Xn}, and let

Tk = ηn + · · · + ηn−k+1 ∼ N

(
0,

k

n

)
.

We have

EW[k−1][ϕ ∗ φ√
n−k
n

(Wk) − ϕ ∗ φ√
n−k+1

n

(Wk−1)
]

= EWk−1
{
ϕ(Wk + Tn−k) − E

[
ϕ(Z

Wk−1,
n−k+1

n
)
]}

,

(5.15)

where as in Section 5.2.1, Zx,t ∼ N(x, t). Given Wk−1, let f be the solution to (cf. (5.7))

n − k + 1

n
f ′(w) − (w − Wk−1)f (w) = ϕ(w) − E

[
ϕ(Z

Wk−1,
n−k+1

n
)
]
. (5.16)

Based on Lemma 5.2 and ‖ϕ′‖ = 1,

∥∥f ′′∥∥≤ 2n

n − k + 1
. (5.17)

From (5.16), we can rewrite (5.15) as

EW[k−1][ϕ ∗ φ√
n−k
n

(Wk) − ϕ ∗ φ√
n−k+1

n

(Wk−1)
]

= EWk−1

[
n − k + 1

n
f ′(Wk + Tn−k) − (ξk + Tn−k)f (Wk + Tn−k)

]
(5.18)

= EWk−1

[
1

n
f ′(Wk + Tn−k) − ξkf (Wk + Tn−k)

+ n − k

n
f ′(Wk + Tn−k) − Tn−kf (Wk + Tn−k)

]
.

Recall that Tn−k ∼ N(0, n−k
n

) and is independent of {X1, . . . ,Xn}. Using (5.6) with Y = Tn−k ,
x = 0, t = (n − k)/n, we have

EWk−1

[
n − k

n
f ′(Wk + Tn−k) − Tn−kf (Wk + Tn−k)

]
= 0

and

−EWk−1

{
−
[
n − k

n
f ′(Wk + Tn−k) − Tn−kf (Wk + Tn−k)

]}
= 0.
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Therefore, from (5.18) and (1.3) where we regard Y as the third and fourth terms on the right-
hand side of (5.18), we obtain

EW[k−1][ϕ ∗ φ√
n−k
n

(Wk) − ϕ ∗ φ√
n−k+1

n

(Wk−1)
]

= EWk−1

[
1

n
f ′(Wk + Tn−k) − ξkf (Wk + Tn−k)

]
.

(5.19)

Rewrite

EWk−1

[
1

n
f ′(Wk + Tn−k) − ξkf (Wk + Tn−k)

]
= EWk−1

{
1

n
f ′(Wk + Tn−k) − ξkf (Wk−1 + Tn−k+1)

− ξk

[
f (Wk−1 + ξk + Tn−k) − f (Wk−1 + Tn−k+1)

]}
= EWk−1

[
1

n
f ′(Wk−1 + Tn−k+1) + R1 − ξkf (Wk−1 + Tn−k+1)

− ξ2
k f ′(Wk−1 + Tn−k+1) + ξkηkf

′(Wk−1 + Tn−k+1) + R2

]
= EWk−1

[
1

n
f ′(Wk−1 + Tn−k+1) + R1 − ξkf (Wk−1 + Tn−k+1)

− ξ2
k f ′(Wk−1 + Tn−k+1) + ξkηkf

′(Wk−1 + Tn−k) + R2 + R3

]
,

(5.20)

where

R1 = 1

n
f ′(Wk + Tn−k) − 1

n
f ′(Wk−1 + Tn−k+1),

R2 = −ξk

[
f (Wk−1 + ξk + Tn−k) − f (Wk−1 + Tn−k+1) − (ξk − ηk)f

′(Wk−1 + Tn−k+1)
]

and

R3 = ξkηk

[
f ′(Wk−1 + Tn−k+1) − f ′(Wk−1 + Tn−k)

]
.

Based on (5.17) and the fact that Xk is independent of Wk−1 and ηk ∼ N(0, 1
n
) is independent of

{X1, . . . ,Xn}, we have

EWk−1
[|R1|

]≤ EWk−1

[
1

n
|ξk − ηk|

∥∥f ′′∥∥]≤ 2

n − k + 1

(
1√
n

+E
[|ξk|

])
,

EWk−1
[|R2|

]≤ EWk−1

[
|ξk| (ξk − ηk)

2

2

∥∥f ′′∥∥]≤ 2n

n − k + 1

(
E
[|ξk|3

]
/2 + 1

n
E
[|ξk|

]
/2

)
,
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EWk−1
[|R3|

]≤ EWk−1
[|ξk|η2

k

]∥∥f ′′∥∥≤ 2

n − k + 1
E
[|ξk|

]
.

From (5.19), (5.20) and the estimates above, we have∣∣EW[k−1][ϕ ∗ φ√
n−k
n

(Wk) − ϕ ∗ φ√
n−k+1

n

(Wk−1)
]− A

∣∣
≤ 2

(n − k + 1)
√

n

(
1 + 5n1/2

2
E
[|ξk|

]+ n3/2

2
E
[|ξk|3

])
,

(5.21)

where

A := EWk−1

{
ξk

[−f (Wk−1 + Tn−k+1)
]+(ξ2

k − 1

n

)[−f ′(Wk−1 + Tn−k+1)
]

+ ξkηkf
′(Wk−1 + Tn−k)

}
.

(5.22)

Note that

n1/2E
[|ξk|

]= sup
μi,σi

i=1,...,n

E

[∣∣∣∣Xi − μi

σi

∣∣∣∣]≤ σ + (μ − μ)

σ0
,

and

n3/2E
[|ξk|3

]= sup
μi,σi

i=1,...,n

E

[∣∣∣∣Xi − μi

σi

∣∣∣∣3]≤ 4[γ + (μ − μ)3]
σ 3

0

.

Therefore, (5.21) is further bounded by

C1

(n − k + 1)
√

n
,

where C1 is as in the statement of Theorem 3.2.
We are left to show that A in (5.22) equals 0. Since ηk has mean 0 and is independent of

{X1, . . . ,Xn} and Tn−k , we have

EWk−1
[
ξkηkf

′(Wk−1 + Tn−k)
]= 0 and EWk−1

[−ξkηkf
′(Wk−1 + Tn−k)

]= 0.

By the property (1.3) of sublinear expectation, we have

A = EWk−1

{
ξk

[−f (Wk−1 + Tn−k+1)
]+(ξ2

k − 1

n

)[−f ′(Wk−1 + Tn−k+1)
]}

.

Using Lemma 5.3 and ti = n−i
n

in the statement of the theorem, we have

A = EWk−1

[
ξk∂xV (tk−1,Wk−1) +

(
ξ2
k − 1

n

)
∂2
xxV (tk−1,Wk−1)

]
.
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Moreover, by the definition of ξk and Vi below (3.9), we have

A = EWk−1

{
Xk − μk

σk

∂xVk−1√
n

+
[
(Xk − μk)

2

σ 2
k

− 1

]
∂2
xxVk−1

n

}
,

and by the definition of E,

A = sup
(μ,σ 2)∈M2

{
μ − μk

σk

∂xVk−1√
n

+
[
σ 2 + (μ − μk)

2

σ 2
k

− 1

]
∂2
xxVk−1

n

}
.

Finally, by the choice of μk and σk in (3.7) and (3.8), we have A = 0. Note that part of the reason
for the particular expansion of (5.20) is to find connections to V . This, together with (5.21),
proves Claim 5.2. �

Proof of Theorem 3.1. The proof is similar to that of Theorem 3.2. We use a slightly different
expansion (cf. (5.25)) and make use of the convexity (concavity) of ϕ (cf. (5.27) and (5.28)).

We only prove the case where ϕ is convex. The concave case follows from a similar argument.
Without loss of generality, we assume that μ = 0 and ‖ϕ′‖ = 1. Denote

W0 = 0, Wk = ξ1 + · · · + ξk, ξi = Xi

Bn

,

and denote

W[k] := {W1, . . . ,Wk}.
Define

�2
k =

n∑
i=n−k+1

σ 2
i /B

2
n.

We will prove the following claim.

Claim 5.3. Let φσ (·) be the density function of N(0, σ 2) and let ∗ denote the convolution of
functions. For any k = 1, . . . , n, we have

∣∣EW[k−1][ϕ ∗ φ�n−k
(Wk) − ϕ ∗ φ�n−k+1(Wk−1)

]∣∣≤ 1

�2
n−k+1

(
2σ 3

k

B
3
n

+E
[|ξk|3

])
.

Using telescoping sum and the independence assumption and applying Claim 5.3 recursively
from k = n to k = 1 as in the argument below Claim 5.2, we obtain the theorem.

To prove Claim 5.3, let η1, . . . , ηn be an independent sequence of random variables distributed

as ηi ∼ N(0,
σ 2

i

B
2
n

) and be independent of {X1, . . . ,Xn}, and let

Tk = ηn + · · · + ηn−k+1 ∼ N
(
0,�2

k

)
.
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As in (5.15), we have

EW[k−1][ϕ ∗ φ�n−k
(Wk) − ϕ ∗ φ�n−k+1(Wk−1)

]
= EWk−1

{
ϕ(Wk + Tn−k) − E

[
ϕ(ZWk−1,�

2
n−k+1

)
]}

.

Given Wk−1, let f be the solution to

�2
n−k+1f

′(w) − (w − Wk−1)f (w) = ϕ(w) − E
[
ϕ(ZWk−1,�

2
n−k+1

)
]
. (5.23)

Based on lemma 5.2 and ‖ϕ′‖ = 1, we have∥∥f ′′∥∥≤ 2

�2
n−k+1

. (5.24)

By a similar argument leading to (5.19), we have

EW[k−1][ϕ ∗ φ�n−k
(Wk) − ϕ ∗ φ�n−k+1(Wk−1)

]
= EWk−1

[
σ 2

k

B
2
n

f ′(Wk + Tn−k) − ξkf (Wk + Tn−k)

]
.

The appropriate change to (5.20) is as follows:

EWk−1

[
σ 2

k

B
2
n

f ′(Wk + Tn−k) − ξkf (Wk + Tn−k)

]

= EWk−1

{
σ 2

k

B
2
n

f ′(Wk−1 + Tn−k) + R1

− ξkf (Wk−1 + Tn−k) + ξ2
k

(−f ′(Wk−1 + Tn−k)
)+ R2

}
,

(5.25)

where

R1 = σ 2
k

B
2
n

f ′(Wk + Tn−k) − σ 2
k

B
2
n

f ′(Wk−1 + Tn−k)

and

R2 = −ξk

[
f (Wk + Tn−k) − f (Wk−1 + Tn−k) − ξkf

′(Wk−1 + Tn−k)
]
.

Based on (5.24) and the fact that Xk is independent of Wk−1 and ηk is independent of
{X1, . . . ,Xn},

EWk−1
[|R1|

]≤ EWk−1

[
σ 2

k

B
2
n

|ξk|
∥∥f ′′∥∥]≤ 2

�2
n−k+1

· σ 2
k

B
2
n

E
[|ξk|

]≤ 2

�2
n−k+1

· σ 3
k

B
3
n

,
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EWk−1
[|R2|

]≤ EWk−1

[ |ξk|3
2

]∥∥f ′′∥∥≤ 1

�2
n−k+1

E
[|ξk|3

]
.

Therefore, we have ∣∣∣∣EWk−1

[
σ 2

k

B
2
n

f ′(Wk + Tn−k) − ξkf (Wk + Tn−k)

]
− B

∣∣∣∣
≤ 1

�2
n−k+1

(
2σ 3

k

B
3
n

+E
[|ξk|3

])
,

(5.26)

where

B := EWk−1

{
ξk

[−f (Wk−1 + Tn−k)
]+(ξ2

k − σ 2
k

B
2
n

)[−f ′(Wk−1 + Tn−k)
]}

.

By the definition of ξk , we have

B = EWk−1

{
Xk

Bn

[−f (Wk−1 + Tn−k)
]+ X2

k − σ 2
k

B
2
n

[−f ′(Wk−1 + Tn−k)
]}

.

Since we have assumed that E(Xk) = E(−Xk) = 0, we have, using the property (1.3) of the
sublinear expectation and also the fact that Tn−k is independent of {X1, . . . ,Xn},

B = EWk−1

{
X2

k − σ 2
k

B
2
n

[−f ′(Wk−1 + Tn−k)
]}

.

From Lemma 5.3 and the fact that Tn−k is independent of {X1, . . . ,Xn}, we have

B = EWk−1

{
X2

k − σ 2
k

B
2
n

∂2
xxV

(
�2

n−k,Wk−1
)}

. (5.27)

Since we have assumed that ϕ is convex, the solution to the PDE (1.7) (cf. (1.8)) is also convex
in the argument x, that is, ∂2

xxV ≥ 0. Therefore, by the definition of sublinear expectation,

B = 0, (5.28)

and hence by (5.26), ∣∣∣∣EWk−1

[
σ 2

k

B
2
n

f ′(Wk + Tn−k) − ξkf (Wk + Tn−k)

]∣∣∣∣
≤ 1

�2
n−k+1

(
2σ 3

k

B
3
n

+E
[|ξk|3

])
.

This proves Claim 5.3. �
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5.3. Proofs in Section 4

Proof of Theorem 4.1. Define ξ = (ξ1, . . . , ξn) : Rn → Rn by ξi(x) = xi , i = 1, . . . , n. Denote
as H the collection of continuous real-valued functions h on Rn with |h(x)| ≤ C(1 + |x|3) for
some constant C > 0. For a function h ∈ H, set

E
[
h(ξ)

] := sup
σ∈�N

G

E
[
h
(
Xσ

1,n, . . . ,X
σ
n,n

)]
.

Then, E[ξi] = E[−ξi] = 0, E[ξ2
i ] = σ 2 and −E[−ξ2

i ] = σ 2, i = 1,2, . . . , n. Moreover, for a
function ϕ ∈ lip(R), we have

E
[
ϕ(ξi)

]= sup
λ∈[σ,σ ]

E
[
ϕ(λXi)

]=: N [ϕ],

that is, ξ1, . . . , ξn are identically distributed under E.
Set Wi,n = ξ1+···+ξi√

n
. We next prove that, for any function ϕ ∈ lip(R),

E
[
ϕ(Wi+1,n)

]= E

[
E

[
ϕ

(
s + ξi+1√

n

)]∣∣∣
s=Wi,n

]
. (5.29)

On the one hand, we have, for any σ ∈ �N

G,

E
[
ϕ
(
Wσ

i+1,n

)]= E

[
E

[
ϕ

(
s + σi+1(s)

Xi+1√
n

)]∣∣∣
s=Wσ

i,n

]
≤ E

[
E

[
ϕ

(
s + ξi+1√

n

)]∣∣∣
s=Wσ

i,n

]
.

Therefore, we obtain

E
[
ϕ(Wi+1,n)

]≤ E

[
E

[
ϕ

(
s + ξi+1√

n

)]∣∣∣
s=Wi,n

]
.

On the other hand, for each s ∈R, we choose λϕ,n(s) ∈ [σ ,σ ] such that

E

[
ϕ

(
s + λϕ,n(s)

X1√
n

)]
= sup

λ∈[σ,σ ]
E

[
ϕ

(
s + λ

X1√
n

)]
= E

[
ϕ

(
s + ξ1√

n

)]
.

Here, we are not sure about the measurability of the function λϕ,n(s). Therefore, we replace it by
measurable approximations. Write �(s, t,X1) = ϕ(s + λϕ,n(t) X1√

n
). For any two real numbers

s, t , we have

E
[
�(s, s,X1)

]
= E

[
�(t, s,X1)

]+ (E[�(s, s,X1)
]− E

[
�(t, s,X1)

])
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≤ E
[
�(t, t,X1)

]+ Lϕ |t − s|
= E

[
�(s, t,X1)

]+ (E[�(t, t,X1)
]− E

[
�(s, t,X1)

])+ Lϕ |t − s|
≤ E

[
�(s, t,X1)

]+ 2Lϕ |t − s|,
where Lϕ is the Lipschitz constant of the function ϕ.

For any ε > 0, set δ = ε
2Lϕ and

λϕ,n
ε (s) =

∑
k∈Z

λϕ,n(kδ)1(kδ,(k+1)δ](s).

Then, for any s ∈ R,

E

[
ϕ

(
s + λϕ,n

ε (s)
X1√

n

)]
≥ E

[
ϕ

(
s + ξ1√

n

)]
− ε.

For any σ ∈ �N

G with σi+1(s) = λ
ϕ,n
ε (s), we have

E
[
ϕ
(
Wσ

i+1,n

)]= E

[
E

[
ϕ

(
s + σi+1(s)

Xi+1√
n

)]∣∣∣
s=Wσ

i,n

]
≥ E

[
E

[
ϕ

(
s + ξi+1√

n

)]∣∣∣
s=Wσ

i,n

]
− ε.

Therefore,

E
[
ϕ(Wi+1,n)

]≥ E

[
E

[
ϕ

(
s + ξi+1√

n

)]∣∣∣
s=Wi,n

]
.

Combining the above arguments, we prove equality (5.29).
Let ξ̃1, . . . , ξ̃n be i.i.d. random variables under a sublinear expectation Ẽ with ξ̃ ∼ N , the

distribution of ξ1. On the basis of (5.29), we have, for any ϕ ∈ lip(R),

E
[
ϕ(Wn)

]= Ẽ

[
ϕ

(
ξ̃1 + · · · + ξ̃n√

n

)]
.

Therefore, by using Theorem 4.5 of Song [16], we obtain the desired estimate. �

Proof of Theorem 4.2. Without loss of generality, we shall only consider ϕ that vanishes
at infinity. Let u be the solution to the G-heat equation with initial value ϕ. Set σϕ(t, x) =
2G(sgn[∂2

xxu(1 − t, x)]), (t, x) ∈ [0,1) ×R, where

sgn[a] =
{

1 if a ≥ 0;
−1 if a < 0.

Then, u satisfies

∂tu − 1

2
σ̃ 2

ϕ∂2
xxu = 0, (t, x) ∈ (0,1] ×R,

u(0, x) = ϕ(x).
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By the mollification procedure, we can find {σn} ⊂ �G such that ‖σn − σϕ‖L2([0,1]×B(R)) → 0
as n → ∞ for any R < ∞. Next, set vn(t, x) := E[ϕ(W

σn,x
t )]. Then, vn is the solution to the

following equation:

∂tvn − 1

2
σ̃ 2

n ∂2
xxvn = 0, (t, x) ∈ (0,1] ×R,

vn(0, x) = ϕ(x).

As ϕ vanishes at infinity,

M(R) := max
|x|≥R;
1≥t≥0

{∣∣u(t, x)
∣∣, ∣∣vn(t, x)

∣∣ : n ∈ N
}

approaches zero as R approaches +∞. Also, we have

m(ε) := max
(t,x)∈[0,ε]×R

{∣∣u(t, x) − ϕ(x)
∣∣, ∣∣vn(t, x) − ϕ(x)

∣∣ : n ∈N
}

goes to zero as ε goes to 0. Set wn = u − vn and εn = σ̃ 2
n − σ̃ 2

ϕ . Then, wn, which is nonnegative,
satisfies

∂twn − 1

2
σ̃ 2

n ∂2
xxwn = 1

2
εn∂

2
xxu, (t, x) ∈ (0,1] ×R,

wn(0, x) = 0.

According to the Aleksandrov–Bakel’man–Pucci–Krylov maximum principle (see, for instance,
Theorem 7.1 of Lieberman [9]),

sup
(t,x)∈(ε,1]×B(R)

wn ≤ 2M(R) + 2m(ε) + c0

(
R

σ

)1/2∥∥εn∂
2
xxu
∥∥

L2([ε,1]×B(R))
,

where c0 is a universal constant. Note that, following the interior regularity of G-heat equation,∥∥εn∂
2
xxu
∥∥

L2([ε,1]×B(R))
≤ 2σ

∥∥∂2
xxu
∥∥∞;[ε,1]×R

‖σn − σϕ‖L2([0,1]×B(R)) → 0

as n approaches +∞. Thus,

O(R, ε) := lim sup
n→∞

(
sup

(t,x)∈(ε,1]×B(R)

wn

)
≤ 2
(
M(R) + m(ε)

)
and

O(R, ε) ≤ lim
R→∞,ε→0

O(R, ε) ≤ lim
R→∞,ε→0

2
(
M(R) + m(ε)

)≤ 0.

In particular, we have

NG[ϕ] = u(0,1) = lim
n→∞vn(0,1) = lim

n→∞E
[
ϕ
(
W

σn

1

)]
. �
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