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Recent researches on designs for computer experiments with both qualitative and quantitative factors have
advocated the use of marginally coupled designs. This paper proposes a general method of constructing such
designs for which the designs for qualitative factors are multi-level orthogonal arrays and the designs for
quantitative factors are Latin hypercubes with desirable space-filling properties. Two cases are introduced
for which we can obtain the guaranteed low-dimensional space-filling property for quantitative factors.
Theoretical results on the proposed constructions are derived. For practical use, some constructed designs
for three-level qualitative factors are tabulated.
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1. Introduction

Computer experiments with both qualitative and quantitative variables are becoming increasingly
common (see, for example, Rawlinson et al. [17]; Qian, Wu and Wu [16]; Han et al. [4]; Zhou,
Qian and Zhou [23]; Deng et al. [2]). Extensive studies have been devoted to design and model-
ing of such experiments. This article focuses on a particular class of designs, namely, marginally
coupled designs, which have been argued to be a cost-effective design choice (Deng, Hung and
Lin [1]). The goal here is to propose a general method for constructing marginally coupled de-
signs when the design for qualitative variables is a multi-level orthogonal array.

The first systematical plan to accommodate computer experiments with both qualitative and
quantitative variables is sliced Latin hypercube designs proposed by Qian and Wu [15]. In such
a design, for each level combination of the qualitative factors, the corresponding design for the
quantitative factor is a small Latin hypercube (McKay, Beckman and Conover [14]). The run size
of a sliced Latin hypercube design increases dramatically with the number of the qualitative fac-
tors. To accommodate a large number of qualitative factors with an economical run size, Deng,
Hung and Lin [1] introduced marginally coupled designs which possess the property that with
respect to each level of each qualitative variable, the corresponding design for quantitative vari-
ables is a sliced Latin hypercube design. Other enhancements of sliced Latin hypercubes include
multi-layer sliced Latin hypercube designs (Xie et al. [21]), clustered-sliced Latin hypercube
designs (Huang et al. [10]), bi-directional sliced Latin hypercube designs (Zhou et al. [22]).
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Since being introduced by Deng, Hung and Lin [1], there have been two developments of
marginally coupled designs, due to He, Lin and Sun [6] and He et al. [7], respectively. Compar-
ing with the original work, both developments provide designs for quantitative factors without
clustered points, thereby improving the space-filling property which refers to spreading out points
in the design region as evenly as possible (Lin and Tang [13]). He, Lin and Sun [6] constructs
marginally coupled designs of su runs that can accommodate (s + 1 − k)su−2 qualitative factors
and k quantitative factors for a prime power s and 1 ≤ k < s + 1. The drawback of this method is
when s = 2, the corresponding designs can accommodate only up to 3 quantitative factors. He et
al. [7] addressed this issue and introduced a method for constructing marginally coupled designs
of 2u runs for 2u1−1 qualitative factors of two levels and up to 2u−u1 quantitative factors, where
1 ≤ u1 ≤ u.

The paper aims to construct marginally coupled designs of su runs in which designs for qual-
itative factors are s-level orthogonal arrays for a prime power s and any positive integer u. The
primary technique in the proposed construction is the subspace theory of Galois field GF(su).
Although such a technique was used in the constructions in He et al. [7] for s = 2, it is not trivial
to generalize their constructions for any prime power s. Extra care must be taken in the gener-
alization. The other contribution of this article is to introduce two cases for which guaranteed
low-dimensional space-filling property for quantitative factors can be obtained. For example, for
s = 2, the designs of 2u runs for quantitative factors achieve stratification on a 2 × 2 × 2 grid of
any three dimensions.

The remainder is arranged as follows. Section 2 introduces background and preliminary re-
sults. New constructions and the associated theoretical results are presented in Section 3. Sec-
tion 4 tabulates the designs with three-level qualitative factors. The space-filling property of the
newly constructed designs is discussed in Section 5, and the last section concludes the paper. All
the proofs are relegated to Appendix.

2. Background and preliminary results

2.1. Background

A matrix of size n×m, where the j th column has sj levels 0, . . . , sj − 1, is called an orthogonal
array of strength t , if for any n × t sub-array, all possible level combinations appear equally
often. It is denoted by OA(n, s1 · · · sm, t) and the simplified notation OA(n, s

u1
1 s

u2
2 · · · suk

k , t) will
be used if the first u1 columns have s1 levels, the next u2 columns have s2 levels, and so on. If
s1 = · · · = sm = s, it is shortened as OA(n,m, s, t). If all rows of an OA(n,m, s, t) can form a
vector space, it is called a linear orthogonal array (Hedayat, Sloane and Stufken [8]). For a prime
power s, let GF(s) = {α0, α1, . . . , αs−1} be a Galois field of order s, where α0 = 0 and α1 = 1.
Throughout this paper, unless otherwise specified, entries of any s-level array are from GF(s).
For a set S, |S| represents the number of elements in S.

A Latin hypercube is an n × k matrix each column of which is a random permutation of
n equally spaced levels (McKay, Beckman and Conover [14]). In this article, these n levels
are represented by 0, . . . , n − 1, and a Latin hypercube of n runs for k factors is denoted by
LHD(n, k). A special type of Latin hypercubes is a cascading Latin hypercube for which with
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n = n1n2 points and levels (n1, n2) is an n2-point Latin hypercube about each point in the n1-
point Latin hypercube (Handcock [5]). Latin hypercubes can be obtained from orthogonal arrays.
Given an OA(n,m, s, t), replace the r = n/s positions having level i by a random permutation
of {ir, . . . , (i + 1)r − 1}, for i = 0, . . . , s − 1. The resulting design achieves t -dimensional strat-
ification, and is called an orthogonal array-based Latin hypercube (Tang [19]). This approach is
referred to as the level replacement-based Latin hypercube approach.

Let D1 be an OA(n,m, s,2) and D2 be an LHD(n, k). Design D = (D1,D2) is called a
marginally coupled design, denoted by MCD(D1,D2), if for each level of every column of
D1, the corresponding rows in D2 have the property that when projected onto each column,
the resulting entries consist of exactly one level from each of the n/s equally-spaced intervals
{[0, s − 1], [s,2s − 1], . . . , [n − s, n − 1]}. As a space-filling design is generally sought, a D2
in which the whole design or any of its column-wise projections has clustered points shall be
avoided. We define a Latin hypercube D2 to be non-cascading if, when projected onto any two
distinct columns of D2, the resulting design is not a cascading Latin hypercube of levels (s, n/s).

To study the existence of MCD(D1,D2)’s, He, Lin and Sun [6] defined the matrix D̃2 based
on D2. Let d2,ij be the (i, j)th entry of D2. The (i, j )th entry d̃2,ij is given by

d̃2,ij = �d2,ij /s�, i = 1, . . . , n and j = 1, . . . , k, (1)

where �x� denotes the greatest integer less than or equal to x. The operator in (1) scales the levels
in the interval [0, s − 1] to level 0, the levels in the interval [s,2s − 1] to level 1, and so on. Thus,
the levels in D̃2 are {0,1, . . . , n/s − 1}. On the other hand, design D2 can be obtained from D̃2
via the level replacement-based Latin hypercube approach. Lemma 1 given by He, Lin and Sun
[6] provides a necessary and sufficient condition for the existence of an MCD(D1,D2) when D1
is an s-level orthogonal array.

Lemma 1. Given that D1 is an OA(n,m, s,2), D2 is an LHD(n, k) and D̃2 is defined via (1),
then (D1,D2) is a marginally coupled design if and only if for j = 1, . . . , k, (D1,dj ) is an
OA(n, sm(n/s),2), where dj is the j th column of D̃2.

In addition to conveniently study the existence of marginally coupled designs, the definition of
D̃2 allows us to determine whether or not D2 is non-cascading. By definition, a Latin hypercube
D2 is non-cascading if any two distinct columns of the corresponding D̃2 cannot be transformed
to each other by level permutations.

2.2. Preliminary results

This subsection presents a result that is the cornerstone of the proposed general construc-
tion in next section. Although the result itself is trivial, it is important to review the nota-
tion, concepts and existing results to help understand the later development. An example is
also given to facilitate the understanding. Suppose that we wish to construct an MCD(D1,D2)

with D1 = OA(su,m, s,2) and D2 = LHD(su, k). Lemma 1 indicates that it is equivalent to
construct D1 = (a1, . . . ,am) and D̃2 = (d1, . . . ,dk) = OA(su, k, su−1,1) such that (dj ,ai ) =
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OA(su, su−1 × s,2) (Here su−1 × s means dj has su−1 levels, and ai has s levels) and any dis-
tinct two columns di and dj cannot be transformed to each other by level permutations. This
subsection focuses on a construction of an OA(su, su−1 × s,2).

First, we review the connection between an su−1-level column and a (u− 1)-dimensional sub-
space of GF(sw), where w ≥ u − 1. To see this, note that an su−1-level column can be generated
by choosing a subarray A0 = OA(sw,u − 1, s, u − 1) from a linear OA(sw,m, s,2), say A, and
substituting each level combination of these columns by a unique level of {0,1, . . . , su−1 − 1}
in some manner. This procedure is known as the method of replacement (Wu and Hamada [20]).
One method to achieve the substitution is A0 · (su−2, . . . , s,1)T , where the superscript T repre-
sents the transpose of a matrix or a vector; this is exactly what we adopt in this paper. The A0,
consisting of u − 1 independent columns, can also be generated using all linear combinations of
rows of a w × (u− 1) matrix G, called the generator matrix of A0 (Hedayat, Sloane and Stufken
[8]). In addition, all linear combinations of columns of G form a (u − 1)-dimensional vector
subspace of GF(sw). Therefore, an su−1-level column corresponds to one (u − 1)-dimensional
subspace of GF(sw), where w ≥ u − 1.

Consider the case of w = u. Let Su consist of s-level column vectors of length u, then all of
its column vectors form a space of dimension u. For the detail of vector spaces, refer to Horn
and Johnson [9]. For two column vectors x,y ∈ Su, if xT y = 0 in GF(s), they are said to be
orthogonal. For a nonzero element x ∈ Su, define

O(x) = {
y ∈ Su | yT x = 0

}
. (2)

It can be seen that O(x) is a (u − 1)-dimensional subspace of Su.
Let G(x) be a u × (u − 1) matrix consisting of u − 1 independent columns of O(x). For a

vector from Su \O(x), say z, all linear combinations of rows of the matrix (G(x), z) can generate
an su × u matrix. For ease of presentation, the first u − 1 columns and the last column of the
resulting matrix are denoted by A(x) and a, respectively. Applying the method of replacement to
A(x) yields an su−1-level vector, say d. Lemma 2 indicates that the d and a are orthogonal.

Lemma 2. For d and a constructed above, we have that (d,a) is an OA(su, su−1 × s,2).

Example 1. For s = u = 3, we have GF(3) = {0,1,2} and S3 = {(x1, x2, x3)
T | xi ∈ GF(3), i =

1,2,3}. Consider x = (1,2,0)T , and we have

O(x) =
⎛
⎝0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

⎞
⎠ ,

and the dimension of O(x) is 2. Choose two independent columns (0,0,1)T and (1,1,0)T from
O(x), and column-combining them gives G(x). For z = (1,2,0)T ∈ S3 \ O(x), (G(x), z) gener-
ates a 27 × 3 matrix (A(x),a), whose transpose is as follows⎛

⎝0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1
0 0 0 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0

⎞
⎠ .
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By the method of replacement, let d = A(x) · (3,1)T . Then (d,a) is an OA(27,9 × 3,2) whose
transpose is(

0 3 6 1 4 7 2 5 8 1 4 7 2 5 8 0 3 6 2 5 8 0 3 6 1 4 7
0 0 0 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0

)
.

3. Construction

This section introduces a general construction and a subspace construction for marginally cou-
pled designs using a set of vectors from Su. For each construction, a necessary condition for
the set of vectors is given. For the given design parameters s, u, u1, two constructions provide
marginally coupled designs with different numbers of qualitative factors and quantitative factors.
The key results are summarized in Theorems 1 and 2.

In the following constructions, when choosing nonzero vectors x, y from Su to construct or-
thogonal arrays or to construct (u−1)-dimensional subspaces O(x) and O(y), we require x �= αy
for any α ∈ GF(s). This is because if x = αy for some α ∈ GF(s), x and y generate the columns
representing the same factor, and O(x) and O(y) actually represent the same (u−1)-dimensional
subspace.

3.1. General construction

Suppose we choose m + k vectors z1, . . . , zm, x1, . . . ,xk from Su, such that zi is not in any of
O(xj ). We propose the following three-step construction.

Step 1. Obtain D1 = (a1, . . . ,am) by taking all linear combinations of the rows of (z1, . . . ,

zm), where ai is the ith column of D1;
Step 2. For each xj , choose u − 1 independent columns from O(xj ) in (2) to form a gen-

erator matrix G(xj ). Obtain A(xj ) by taking all linear combinations of the rows of
G(xj ). Apply the method of replacement to obtain an su−1-level column vector dj

from A(xj ). Denote the resulting design by D̃2 = (d1, . . . ,dk);
Step 3. Obtain D2 from D̃2 via the level replacement-based Latin hypercube approach.

The method of obtaining dj and ai in Steps 1 and 2 in the general construction are essentially
the construction in Section 2.2 and thus by Lemma 2, (dj ,ai ) is an OA(su, su−1 × s,2). In addi-
tion, D1 is an OA(su,m, s,2) and D2 is an LHD(su, k). Therefore, the (D1,D2) is a marginally
coupled design. The condition of the construction is to have zi not in any of O(xj ). To find such
zi ’s and xj ’s, we consider the set of vectors {e1, . . . , eu1} ⊂ Su, where ei is a vector of Su with
the ith entry equal to 1 and the other entries equal to 0, and 1 ≤ u1 ≤ u. We further define

A =
{

x ∈ Su \
(

u1⋃
i=1

O(ei )

) ∣∣∣ the first entry of x is 1

}
, (3)

where O(·) is defined in (2). The main result of using A and ei ’s to construct MCD(D1,D2)’s
is provided in Theorem 1. Before presenting the theorem, we describe a result which counts the
number of vectors in A.
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Lemma 3. There are nA = (s − 1)u1−1su−u1 column vectors in A in (3).

The value of nA is the number of columns in D1 or D2, as revealed in Theorem 1.

Theorem 1. For {e1, . . . , eu1} defined above, A in (3) and nA in Lemma 3, if in the general
construction we

(i) choose zi = ei and xj ∈ A for 1 ≤ i ≤ u1 and 1 ≤ j ≤ nA, an MCD(D1,D2) with D1 =
OA(su, u1, s, u1), D2 = LHD(su, nA) can be obtained, or,

(ii) choose zi ∈ A and xj = ej for 1 ≤ i ≤ nA and 1 ≤ j ≤ u1, an MCD(D1,D2) with D1 =
OA(su, nA, s,2), D2 = LHD(su, u1) can be obtained,

where both D2’s are non-cascading Latin hypercubes.

The design D1 (or D2) in Theorem 1(i) (or (ii)) can only accommodate u1 ≤ u columns. A nat-
ural question is whether or not more columns in D1 (or D2) can be constructed. The answer is
positive for s = 2 as shown in He et al. [7] by choosing some linear combinations of {e1, . . . , eu1}
besides themselves for zi ’s (or xj ’s). For s > 2, the answer is still positive, however, there is a
price to pay. That is, when more columns of D1 than those in Theorem 1 are constructed using
some linear combinations of {e1, . . . , eu1} in addition to themselves, the number of columns in
D2 will be less than that in Theorem 1. The reason for paying such cost is quantified in Proposi-
tion 1.

Proposition 1. For s > 2 and the set {e1, . . . , eu1} defined above, let z = ∑u1
i=1 λiei with at least

two nonzero coefficients, where λi ∈ GF(s). For such z’s and A in (3), there exists a column
vector x ∈A, such that z ∈ O(x).

Proposition 1 shows that, when s > 2, except {αei | α ∈ GF(s) \ {0}, i = 1, . . . , u1}, for any
of their other combinations, say z, it is impossible that z is not in O(x) for all x ∈ A. This
means if adding z for constructing one more column for D1, not all the columns in A can be
used for constructing columns for D2. As a compromise, after adding more combinations of
{e1, . . . , eu1} for D1, we use a subset {x1, . . . ,xk} ⊂ A to construct (u − 1)-dimensional sub-
spaces {O(x1), . . . ,O(xk)}, where k < nA. Next, the section discusses an approach to find such
a subset.

3.2. Subspace construction

This subsection introduces an approach to find a proper subset {x1, . . . ,xk} ⊂ A and judiciously
select some linear combinations z = λ1e1 + · · · + λu1eu1 , with λj ∈ GF(s), such that z ∈ Su \
(
⋃k

i=1 O(xi )).
One building block of the proposed approach is some disjoint groups of A. To partition A into

different groups, note that for 1 ≤ j ≤ u1, the last u − u1 entries of ej are zeros and thus the first
u1 entries of z and xi determine whether or not z is orthogonal to xi . In light of this observation,
the partition of A is based on the distinct values of the first u1 entries of vectors in A. The proof
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of Lemma 3 reveals that the first u1 entries of x ∈ A can take nB = (s − 1)u1−1 distinct values,
say {(1, bi2, . . . , biu1) | i = 1, . . . , nB}. Let bi = (1, bi2, . . . , biu1,0, . . . ,0)T , and define Ai to be
the subset of A whose column vectors have the same first u1 entries as those of bi . It shall be
noted that |Ai | = su−u1 and Ai ’s form a disjoint partition of A. That is,

A=
nB⋃
i=1

Ai .

The other building block is a set of Ei ’s defined as follows. Let E = {∑u1
j=1 λj ej | λj ∈ GF(s)}

consist of all linear combinations of e1, . . . , eu1 . For fixed i, bi and Ai , 1 ≤ i ≤ nB , define

Ei = {
z ∈ E | zT bi = 0

}
and Ei = E \ Ei.

If z ∈ Ei , then z /∈ O(bi ), which implies z /∈ O(x) for all x ∈ Ai since the last u − u1 entries of
z are zeros. This leads to Lemma 4.

Lemma 4. For 1 ≤ v ≤ nB , any z ∈ ⋂v
i=1 Ei and any x ∈ ⋃v

i=1 Ai , we have z /∈ O(x).

Lemma 4 is useful because it provides {zi}’s and {xj }’s required by the general construction
in Section 3.1. That is, one can choose zi from

⋂v
i=1 Ei , and xj from

⋃v
i=1 Ai , that is exactly

the method Theorem 2 adopts.
So far, it remains to resolve the question that what the elements are in

⋂v
i=1 Ei for 1 ≤ v ≤ nB .

The answer is not difficult for v = 1, and that for v = nB can be found in Proposition 6 in the
Appendix for interested readers. For 1 < v < nB , the explicit form for elements in

⋂v
i=1 Ei

depends on the specific sets E1, . . . ,Ev . Thus, we cannot express the elements in
⋂v

i=1 Ei using
a general form. However, we are able to compute the number of elements in

⋂v
i=1 Ei for some

cases. Theorem 2 shows that this number is closely related to the number of variables in the
marginally coupled design. In practice, experimenters also hope to know the number in advance,
as it can help them determine which marginally coupled design to choose given the numbers of
qualitative and quantitative variables in the experiment. Proposition 2 below provides the number,
|⋂v

i=1 Ei |, in some circumstances.

Proposition 2. For {b1, . . . ,bnB
} defined above, suppose that there exists a subset {bi1, . . . ,bin∗ }

such that any u1 elements of the set are independent, for n∗ ≤ nB . We have that for 1 ≤ v ≤ n∗
and 1 ≤ i1 < i2 < · · · < iv ≤ nB , the set

⋂v
j=1 Eij contains f (v) elements with

f (v) =
{

(s − 1)vsu1−v, 1 ≤ v ≤ u1,

m∗, u1 + 1 ≤ v ≤ n∗,
(4)

where m∗ = su1 [1 − (
v
1

)
s−1 + · · · + (−1)u1

(
v
u1

)
s−u1 ] + ∑v

i=u1+1(−1)i
(
v
i

)
.

The value of n∗ in Proposition 2 will be studied in Section 3.3. Example 2 provides an illus-
tration of the bi ’s, Ai ’s, Ei ’s and Proposition 2.
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Table 1. Partition of A in Example 2

A1 A2 A3 A4

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 2 2 2 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2

Example 2. Consider s = 3, u = 4 and u1 = 3. By definition, we have e1 = (1,0,0,0)T ,
e2 = (0,1,0,0)T and e3 = (0,0,1,0)T , A = {(x1, x2, x3, x4)

T | x1 = 1, x2, x3 ∈ {1,2}, x4 ∈
{0,1,2}}, nB = (3 − 1)3−1 = 4, b1 = (1,1,1,0)T , b2 = (1,1,2,0)T , b3 = (1,2,1,0)T , and
b4 = (1,2,2,0)T . The disjoint groups A1, . . . ,A4 are displayed in Table 1. Note that any three
of {b1,b2,b3,b4} are independent. According to (4), we have f (1) = 18, f (2) = 12, f (3) = 8
and f (4) = 6. That is, each of Ei ’s has 18 vectors, as shown in Table 2; the intersection of any

Table 2. Vectors of Ei ’s in Example 2

E1

0 0 0 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2
0 1 1 0 0 1 2 1 2 0 2 2 0 0 2 1 2 1
1 0 1 0 1 0 2 2 1 2 0 2 0 2 0 1 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2

0 0 0 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2
0 1 1 0 0 1 1 2 2 0 2 2 0 0 2 2 1 1
1 0 2 0 2 0 1 2 1 2 0 1 0 1 0 2 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3

0 0 0 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2
0 1 1 0 0 2 1 2 1 0 2 2 0 0 1 2 1 2
1 0 2 0 1 0 1 2 2 2 0 1 0 2 0 2 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4

0 0 0 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2
0 1 1 0 0 2 1 1 2 0 2 2 0 0 1 2 2 1
1 0 1 0 2 0 1 2 1 2 0 2 0 1 0 2 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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two of Ei ’s has 12 vectors, the intersection of any three of Ei ’s has 8 vectors, and the intersection
of four of them has 6 vectors.

Next, we show how to use bi , Ai and Ei (i = 1, . . . , nB ) to construct marginally coupled
designs. To do so, we define E∗

v , A∗
v and g(v) as follows. To define E∗

v , given s, u and u1,
find a set of {bi1, . . . ,bin∗ }, by calculation or computer search, such that any u1 elements in
the set are independent; for 1 ≤ v ≤ n∗, obtain

⋂v
j=1 Eij which has f (v) elements as shown in

Proposition 2. Define E∗
v to be the subset of

⋂v
j=1 Eij in which the first nonzero entry of each

element is equal to 1. The value g(v) = f (v)/(s − 1) is the number of elements of E∗
v . Define

A∗
v = ⋃v

j=1 Aij .

Theorem 2. For E∗
v , A∗

v and g(v) defined above, if in the general construction, we

(i) choose zi ∈ E∗
v and xj ∈ A∗

v , i = 1, . . . , g(v) and j = 1, . . . , vsu−u1 , an MCD(D1,D2)

with D1 = OA(su, g(v), s,2), D2 = LHD(su, vsu−u1) can be obtained, or
(ii) choose zi ∈ A∗

v and xj ∈ E∗
v , i = 1, . . . , vsu−u1 and j = 1, . . . , g(v), an MCD(D1,D2)

with D1 = OA(su, vsu−u1, s,2), D2 = LHD(su, g(v)) can be obtained,

where both D2’s are non-cascading Latin hypercubes.

For ease of the presentation, the method in Theorem 2 is called subspace construction. Exam-
ple 3 provides a detailed illustration of obtaining marginally coupled designs via the subspace
construction using the Ai ’s and Ei ’s in Example 2.

Example 3 (Continuation of Example 2). Table 3 presents MCD(D1,D2)’s obtained accord-
ing to the subspace construction method by choosing v = 1,2,3 or 4. As an illustration, we
provide the detailed steps of applying item (i) of Theorem 2 for v = 3. Consider the sets⋂3

j=1 Ej and
⋃3

j=1 Aj . In Step 1, f (3) = 8, hence g(3) = 4. The four elements in
⋂3

j=1 Ej

with the first nonzero entry being 1 are z1 = (0,0,1,0)T , z2 = (0,1,0,0)T , z3 = (1,0,0,0)T ,
and z4 = (1,2,2,0)T ; take (z1, z2, z3, z4) as a generator matrix to obtain D1 = (a1,a2,a3,a4),
an OA(81,4,3,2). In Step 2, the 3 · 34−3 = 9 elements in

⋃3
j=1 Aj = {x1,x2, . . . ,x9} are shown

in Table 1. For each xi , let G(xi ) consist of three independent columns of O(xi ), and take G(xi )

as a generator matrix to obtain the matrix Ai , an OA(81,3,3,3); let di = Ai · (32,3,1)T , and

Table 3. MCD(D1,D2)’s with s = 3, u = 4 and u1 = 3 in Example 3

By item (i) By item (ii)

v D1 D2 D1 D2

1 OA(34,9,3,2) LHD(34,3) OA(34,3,3,2) LHD(34,9)

2 OA(34,6,3,2) LHD(34,6) OA(34,6,3,2) LHD(34,6)

#3 OA(34,4,3,2) LHD(34,9) OA(34,9,3,2) LHD(34,4)

4 OA(34,3,3,2) LHD(34,12) OA(34,12,3,2) LHD(34,3)



2172 Y. He, C.D. Lin and F. Sun

further let D̃2 = (d1, . . . ,d9), an OA(81,9,27,1). In Step 3, construct D2, an LHD(81,9), from
D̃2 by the level-replacement based Latin hypercube approach. The above three-step procedure
results in an MCD(D1,D2), which is listed in Table 3 marked by #, and in the middle of Table 6
marked by ♦.

3.3. The maximum value of n∗

Both Proposition 2 and Theorem 2 require a set of vectors {bi1, . . . ,bin∗ } in which any u1 el-
ements are independent. The value of n∗ directly determines the number of columns in D1 or
D2. Of theoretical interest is the maximum value of n∗ that can be achieved, and the bound of
such a value if not obtained explicitly. We provide the maximum value of n∗ for the three cases:
(1) s = 2 with u1 ≥ 2, (2) s > 2 with u1 = 1, and (3) s > 2 with u2 = 2. For other values of s, u,
and u1, we provide bounds of the maximum value of n∗.

Case 1: s = 2, u1 ≥ 2

For s = 2, and 1 ≤ u1 < u, we have nB = (s − 1)u1−1 = 1 and thus n∗ = 1. The only choice
for bi ’s, Ai ’s and Ei ’s is b1 = (1, . . . ,1,0, . . . ,0), A = A1 = {(1, . . . ,1, xu1+1, . . . , xu) | xi ∈
{0,1}}, and E1 contains all the combinations of λ1e1 +· · ·+λu1eu1 that are not orthogonal to col-
umn vectors of A1. Note that E1 consists of all combinations with odd numbers of {e1, . . . , eu1}.
Therefore, E1 has 2u1−1 elements. In addition, v = 1, f (1) = g(1) = 2u1−1 and k = 1 · 2u−u1 .

Case 2: s ≥ 3, u1 = 1

As u1 = 1, we have nB = (s − 1)u1−1 = 1 and n∗ = 1. It is clear that A = A1, E1 = {αe1 |
α ∈ GF(s) \ {0}}, v = 1, f (1) = s − 1, g(1) = 1 and k = 1 · su−1.

Case 3: s ≥ 3, u1 = 2

We have nB = (s − 1)u1−1 = s − 1. The first u1 entries of vectors of A have s − 1 choices
as (1, α1)

T , (1, α2)
T , . . . , (1, αs−1)

T for αi ∈ GF(s), hence bi = (1, αi,0, . . . ,0)T . As any two
vectors of {b1,b2, . . . ,bs−1} are independent, the maximum value of n∗ is s − 1. The values of
f (v) at v = 1,2, and 2 < v ≤ s − 1 are s(s − 1), (s − 1)2 and (s − 1)(s − v + 1) according to
(4), respectively. The values of g(v) at v = 1,2, and 2 < v ≤ s − 1 are s, s − 1 and s − v + 1,
respectively.

Table 4 summarizes the maximum values of n∗ under cases 1 to 3, where the marginally
coupled designs are obtained as in Theorem 2. For s = 2, D1 is an orthogonal array of strength
three follows by Corollary 2 of Deng, Hung and Lin [1]. For s, u1 > 2, Proposition 3 presents a
bound for the maximum value of n∗.

Proposition 3. Given positive integers s, u > 2, and 2 < u1 ≤ u, suppose any u1 vectors of
{b1, . . . ,bn∗} are independent. We have

maxn∗ ≤

⎧⎪⎨
⎪⎩

u1 + 1, s ≤ u1,

s + u1 − 2, s > u1 ≥ 3 and s is odd,

s + u1 − 1, in all other cases.

(5)
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Table 4. Maximum values of n∗ and MCD(D1,D2)’s for s = 2 or u1 ≤ 2

s u1 Maximum value of n∗ v g(v) D1 D2

s = 2 2 ≤ u1 ≤ u 1 1 2u1−1 OA(2u,2u1−1,2,3) LHD(2u,2u−u1)

1 2u1−1 OA(2u,2u−u1 ,2,3) LHD(2u,2u1−1)

s ≥ 3 1 1 1 1 OA(su,1, s,2) LHD(su, su−1)

1 1 OA(su, su−1, s,2) LHD(su,1)

s ≥ 3 2 s − 1 1 s OA(su, s, s,2) LHD(su, su−2)

1 s OA(su, su−2, s,2) LHD(su, s)

2 s − 1 OA(su, s − 1, s,2) LHD(su,2su−2)

2 s − 1 OA(su,2su−2, s,2) LHD(su, s − 1)

2 < v ≤ s − 1 s − v + 1 OA(su, s − v + 1, s,2) LHD(su, vsu−2)

2 < v ≤ s − 1 s − v + 1 OA(su, vsu−2, s,2) LHD(su, s − v + 1)
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Remark 1. According to the proof of Proposition 3, the maximum value of n∗ is not greater than
the maximum value of m in an OA(su1 ,m, s,u1). It shall be noted that, however, it is possible
to give an upper bound tighter than that given by Proposition 3, for example, for u1 = 2, the
maximum value of n∗ is s − 1, but the maximum value of m in an OA(s2,m, s,2) is s + 1.

4. Tables for three-level qualitative factors

This section tabulates the marginally coupled designs with three-level qualitative factors obtained
by the proposed methods for practical use. Tables 5 and 6 present the designs constructed in
Theorems 1 and 2, respectively, where u1 = u − u1, and the symbol ∗ indicates the case of
v = n∗.

Since the last u − u1 entries of each bi are zeros, to obtain the maximum value of n∗, we only
need to consider the independent relationship between the vectors with the first u1 entries of bi ’s.
For s = 3, nB = 2u1−1 and these vectors can form a u1 × 2u1−1 matrix, which is denoted by Bu1

in this paper. Columns of Bu1 are arranged in an order such that the j th column is determined by
the (i, j)th entry Bu1(i, j) as follows:

j − 1 =
u1∑
i=1

2u1−i
(
Bu1(i, j) − 1

)
.

Hence the j th column is labeled by bold j − 1 in Table 7, in which the matrices of B2 to B5
are presented. Correspondingly, define B∗

u1
to be an n∗-column subset of Bu1 , such that any u1

Table 5. MCD(D1,D2)s with 3u runs by Theorem 1, u = 2,3,4,5

By item (i) By item (ii)

u u1 nA D1 D2 D1 D2

2 1 3 OA(32,1,3,1) LHD(32,3) OA(32,3,3,2) LHD(32,1)

2 2 2 OA(32,2,3,2) LHD(32,2) OA(32,2,3,2) LHD(32,2)

3 1 9 OA(33,1,3,1) LHD(33,9) OA(33,9,3,2) LHD(33,1)

3 2 6 OA(33,2,3,2) LHD(33,6) OA(33,6,3,2) LHD(33,2)

3 3 4 OA(33,3,3,3) LHD(33,4) OA(33,4,3,2) LHD(33,3)

4 1 27 OA(34,1,3,1) LHD(34,27) OA(34,27,3,2) LHD(34,1)

4 2 18 OA(34,2,3,2) LHD(34,18) OA(34,18,3,2) LHD(34,2)

4 3 12 OA(34,3,3,3) LHD(34,12) OA(34,12,3,2) LHD(34,3)

4 4 8 OA(34,4,3,4) LHD(34,8) OA(34,8,3,2) LHD(34,4)

5 1 81 OA(35,1,3,1) LHD(35,81) OA(35,81,3,2) LHD(35,1)

5 2 54 OA(35,2,3,2) LHD(35,54) OA(35,54,3,2) LHD(35,2)

5 3 36 OA(35,3,3,3) LHD(35,36) OA(35,36,3,2) LHD(35,3)

5 4 24 OA(35,4,3,4) LHD(35,24) OA(35,24,3,2) LHD(35,4)

5 5 16 OA(35,5,3,5) LHD(35,16) OA(35,16,3,2) LHD(35,5)
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Table 6. MCD(D1,D2)s with 3u runs by Theorem 2, u = 2,3,4,5

By item (i) By item (ii)

u u1 v g(v) u1 k D1 D2 D1 D2

2 1 1* 1 1 3 OA(32,1,3,2) LHD(32,3) OA(32,3,3,2) LHD(32,1)

2 2 1 3 0 1 OA(32,3,3,2) LHD(32,1) OA(32,1,3,2) LHD(32,3)

2 2 2* 2 0 2 OA(32,2,3,2) LHD(32,2) OA(32,2,3,2) LHD(32,2)

3 1 1* 1 2 9 OA(33,1,3,2) LHD(33,9) OA(33,9,3,2) LHD(33,1)

3 2 1 3 1 3 OA(33,3,3,2) LHD(33,3) OA(33,3,3,2) LHD(33,3)

3 2 2* 2 1 6 OA(33,2,3,2) LHD(33,6) OA(33,6,3,2) LHD(33,2)

3 3 1 9 0 1 OA(33,9,3,2) LHD(33,1) OA(33,1,3,2) LHD(33,9)

3 3 2 6 0 2 OA(33,6,3,2) LHD(33,2) OA(33,2,3,2) LHD(33,6)

3 3 3 4 0 3 OA(33,4,3,2) LHD(33,3) OA(33,3,3,2) LHD(33,4)

3 3 4* 3 0 4 OA(33,3,3,2) LHD(33,4) OA(33,4,3,2) LHD(33,3)

4 1 1* 1 3 27 OA(34,1,3,2) LHD(34,27) OA(34,27,3,2) LHD(34,1)

4 2 1 3 2 9 OA(34,3,3,2) LHD(34,9) OA(34,9,3,2) LHD(34,3)

4 2 2* 2 2 18 OA(34,2,3,2) LHD(34,18) OA(34,18,3,2) LHD(34,2)

4 3 1 9 1 3 OA(34,9,3,2) LHD(34,3) OA(34,3,3,2) LHD(34,9)

4 3 2 6 1 6 OA(34,6,3,2) LHD(34,6) OA(34,6,3,2) LHD(34,6)

♦4 3 3 4 1 9 OA(34,4,3,2) LHD(34,9) OA(34,9,3,2) LHD(34,4)

4 3 4* 3 1 12 OA(34,3,3,2) LHD(34,12) OA(34,12,3,2) LHD(34,3)

4 4 1 27 0 1 OA(34,27,3,2) LHD(34,1) OA(34,1,3,2) LHD(34,27)

4 4 2 18 0 2 OA(34,18,3,2) LHD(34,2) OA(34,2,3,2) LHD(34,18)

4 4 3 12 0 3 OA(34,12,3,2) LHD(34,3) OA(34,3,3,2) LHD(34,12)

4 4 4 8 0 4 OA(34,8,3,2) LHD(34,4) OA(34,4,3,2) LHD(34,8)

4 4 5* 5 0 5 OA(34,5,3,2) LHD(34,5) OA(34,5,3,2) LHD(34,5)

5 1 1* 1 4 81 OA(35,1,3,2) LHD(35,81) OA(35,81,3,2) LHD(35,1)

5 2 1 3 3 27 OA(35,3,3,2) LHD(35,27) OA(35,27,3,2) LHD(35,3)

5 2 2* 2 3 54 OA(35,2,3,2) LHD(35,54) OA(35,54,3,2) LHD(35,2)

5 3 1 9 2 9 OA(35,9,3,2) LHD(35,9) OA(35,9,3,2) LHD(35,9)

5 3 2 6 2 18 OA(35,6,3,2) LHD(35,18) OA(35,18,3,2) LHD(35,6)

5 3 3 4 2 27 OA(35,4,3,2) LHD(35,27) OA(35,27,3,2) LHD(35,4)

5 3 4* 3 2 36 OA(35,3,3,2) LHD(35,36) OA(35,36,3,2) LHD(35,3)

5 4 1 27 1 3 OA(35,27,3,2) LHD(35,3) OA(35,3,3,2) LHD(35,27)

5 4 2 18 1 6 OA(35,18,3,2) LHD(35,6) OA(35,6,3,2) LHD(35,18)

5 4 3 12 1 9 OA(35,12,3,2) LHD(35,9) OA(35,9,3,2) LHD(35,12)

5 4 4 8 1 12 OA(35,8,3,2) LHD(35,12) OA(35,12,3,2) LHD(35,8)

5 4 5* 5 1 15 OA(35,5,3,2) LHD(35,15) OA(35,15,3,2) LHD(35,5)

5 5 1 81 0 1 OA(35,81,3,2) LHD(35,1) OA(35,1,3,2) LHD(35,81)

5 5 2 54 0 2 OA(35,54,3,2) LHD(35,2) OA(35,2,3,2) LHD(35,54)

5 5 3 36 0 3 OA(35,36,3,2) LHD(35,3) OA(35,3,3,2) LHD(35,36)

5 5 4 24 0 4 OA(35,24,3,2) LHD(35,4) OA(35,4,3,2) LHD(35,24)

5 5 5 16 0 5 OA(35,16,3,2) LHD(35,5) OA(35,5,3,2) LHD(35,16)

5 5 6* 11 0 6 OA(35,11,3,2) LHD(35,6) OA(35,6,3,2) LHD(35,11)
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Table 7. Matrices Bu1 ’s for u1 = 2,3,4,5 and s = 3

B2 B3 B4

0 1 0 1 2 3 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 2 2 1 1 1 1 2 2 2 2

1 2 1 2 1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2

B5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

columns in it are independent. The following is a list of the sets B∗
2 to B∗

5 : B∗
2 containing columns

{0,1} of B2; B∗
3 containing columns {0,1,2,3} of B3; B∗

4 containing columns {0,1,2,4,7}
of B4; and B∗

5 containing columns {0,1,2,4,9,14} of B5, where B∗
2 and B∗

3 are obtained by
calculation, and B∗

4 and B∗
5 are obtained by computer search. All of their n∗’s are maximal,

refer to Proposition 3. With those B∗
u1

’s, one can obtain the set of column vectors {bi1, . . . ,bin∗ }
required by Theorem 2.

5. Space-filling property

One important issue of marginally coupled designs is the space-filling property of design D2. To
achieve or improve the space-filling property, several approaches have been proposed; see, for
example, Draguljić, Santner and Dean [3], Joseph, Gul and Ba [11], and Sun and Tang [18]. In our
case, one approach to improve the space-filling property is to use an optimal level replacement
with some optimization criterion when obtaining D2 from D̃2, as done in Leary, Bhaskar and
Keane [12]; another approach is to make D2 possess some guaranteed space-filling property, for
example, having uniform projections on lower dimensions. In this paper, we address this issue
through the latter approach. For s = 2, the approach uses a concept, anti-mirror vector, defined
below.

Definition 1. Two column vectors v1 and v2 of the same length with entries from {0,1} are said
to be anti-mirror vectors if their sum is equal to the vector of all ones. We use the notation v1 = v2

and v2 = v1.
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For example, (1,1,0)T is the anti-mirror vector of (0,0,1)T . It is clear that vT v = 0, and the
anti-mirrors of two different vectors are different.

For practical application, given parameters 1 ≤ u1, u
′
1 ≤ u, item (ii) of Theorem 2 can con-

struct an MCD(D1,D2) with D1 = OA(2u,2u−u1,2,3) and D2 = LHD(2u,2u1−1), and item
(i) can construct an MCD(D1,D2) with D1 = OA(2u,2u′

1−1,2,3) and D2 = LHD(2u,2u−u′
1).

When setting u′
1 = u − u1 + 1, the MCD obtained by item (i) has the same set of parameters

as that obtained by item (ii). In this sense, for s = 2, we only need to consider the subspace
construction by item (i) of Theorem 2.

To investigate the space-filling property of D2 when D1 is a two-level orthogonal array, we
take a closer look at Step 2 of the general construction. Recall that A = A1 has 2u−u1 vectors,
nB = 1 and b1 = (1, . . . ,1,0, . . . ,0)T with the first u1 entries being 1. As in item (ii) of Theo-
rem 2, let {x1, . . . ,x2u−u1 } be the vectors in A1, and note that each xi can be written as

xi = (
1T
u1

,yT
i

)T
,

where yi �= yj for i �= j . Let x0 = (1,1,0, . . . ,0)T be a vector with the first two entries being 1
and the last u1 − 2 entries being 0; for 1 ≤ i ≤ 2u−u1 , define ηi = (xT

0 ,yT
i )T , where yi is the

anti-mirror vector of yi . We have ηi ∈ O(xi ) as ηT
i xi = xT

0 1u1 + yT
i yi = 0 For each xi , let G(xi )

be a generator matrix that consists of u − 1 independent columns of O(xi ). Set the first column
of G(xi ) to be ηi . Generate Ai based on G(xi ) and obtain di = Ai · (2u−2, . . . ,2,1)T , and let
D̃2 = (d1, . . . ,d2u−u1 ). The method is called the anti-mirror arrangement in this paper.

Proposition 4. When 2 ≤ u1 < u − 1, the design D̃2 obtained by the anti-mirror arrangement is
an OA(2u,2u−u1,2u−1,1) achieving stratifications on a 2 × 2 × 2 grid of any three dimensions.

For s ≥ 2, Proposition 5 provides a result of the space-filling property of D2’s in marginally
coupled designs in Theorem 2.

Proposition 5. If the number, k, of columns in D2 in Theorem 2 satisfies k ≤ (su−1 − 1)/(s − 1),
a D̃2 that achieves stratifications on an s × s grid of any two dimensions can be constructed.

6. Conclusion and discussion

We have proposed a general method for constructing marginally coupled designs of su runs
in which the design for quantitative factors is a non-cascading Latin hypercube, where s is a
prime power. The approach uses the theory of (u − 1)-dimensional subspaces in the Galois field
GF(su). The newly constructed marginally coupled designs with three-level qualitative factors
are tabulated. For other prime numbers of levels, marginally coupled designs can be obtained
similarly. In addition, we discuss two cases for which guaranteed space-filling property can be
obtained.

The results for the subspace construction in this article extend those in He et al. [7] for two-
level qualitative factors to any s-level qualitative factors. The Construction 2 of He, Lin and Sun
[6] is also a special case of the general construction in this article. The reason is as follows. There
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are s + 1 matrices of size su × (su−1 − 1)/(s − 1), denoted by C1, . . . ,Cs+1, each of which con-
tains s replications of the linear saturated orthogonal array OA(su−1, (su−1 − 1)/(s − 1), s,2).
According to their construction procedure, the matrix Ci is corresponding to the (u − 1)-
dimensional subspace generated by {e1, . . . , eu−2, eu−1 + αi−1eu} for 1 ≤ i ≤ s, and Cs+1 is
corresponding to the (u − 1)-dimensional subspace generated by {e1, . . . , eu−2, eu}. They are
respectively identical to the (u− 1)-dimensional subspaces O(x1), . . . ,O(xs+1), where x1 = eu,
xi = eu−1 − α−1

i−1eu for 2 ≤ i ≤ s, and xs+1 = eu−1. Therefore, in the general construction,
by choosing such x1, . . . ,xk , for 1 ≤ k < s + 1, and choosing z1, . . . , zm from the set of⋃s+1

j=k+1 O(xj ) \ (
⋃k

i=1 O(xi )), one can obtain the marginally coupled design provided by Con-
struction 2 of He, Lin and Sun [6].

For practitioners, three related issues need further investigations. One is that, the low-
dimensional projection space-filling property of the quantitative factors for each level of a quali-
tative factor; the second one is to improve the space-filling property of the quantitative factors in
3 to 4 dimensions, when the two-dimensional uniform projections are already obtained; and the
last one is to construct designs with good coverage if perfect space-filling property under some
criterion is not expected. We hope to study them and report our results in future.

Appendix

Proof of Lemma 3. For 1 ≤ i ≤ u1 and any vector x = (x1, . . . , xu)
T ∈ Su \ O(ei ), we have

xT ei �= 0, that means xi �= 0. Thus, for any x ∈ A, we have x1 = 1, xi ∈ GF(s) \ {0} for i =
2, . . . , u1, and xj ∈ GF(s) for j = u1 + 1, . . . , u. So, the conclusion follows. �

Proof of Theorem 1. As every zi is not in any of O(xj ), every xj is not in any of O(zi ). The
conclusion follows by the definition of A, Lemma 2, and Lemma 1. Because in both items (i)
and (ii), O(xi ) �= O(xj ) when i �= j , di cannot be transformed to dj by level permutations. Thus
D2’s are non-cascading Latin hypercubes. �

Proof of Proposition 1. Suppose z = ∑u1
i=1 λiei has l nonzero coefficients λi1, . . . , λil , where

1 ≤ ij ≤ u1 and 2 ≤ l ≤ u1. Denote by λ∗ = ∑l−1
j=1 λij , and let x = (x1, . . . , xu)

T . If λ∗ is

nonzero, take xil = −λ−1
il

λ∗ and all the other xi ’s equal 1, then x ∈A since the first u1 entries of
x are nonzero. More specifically, the first entry of x is 1, and

zT x =
u1∑
i=1

λixi =
l∑

j=1

λij xij =
l−1∑
j=1

λij · 1 + λil · xil = λ∗ − λil · λ−1
il

λ∗ = 0,

where the first equality holds because the last u − u1 entries of z are zeros. Otherwise, if λ∗ = 0,
we must have l − 1 ≥ 2, and one can take xil−1 = α2, xil = −λ−1

il
λil−1(α2 − 1), and all other xi ’s

equal 1. Note for s > 2, we have α2 �= 1, hence xil �= 0 and x ∈ A again. In addition,

zT x =
u1∑
i=1

λixi =
l∑

j=1

λij xij =
l−1∑
j=1

λij · 1 + λil−1 · (α2 − 1) − λil · λ−1
il

λil−1(α2 − 1) = 0.

So, there always exists an x ∈A, such that z ∈ O(x). �
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Proof of Proposition 2. First, consider v = 1. As (
∑u1

j=1 λj ej )
T b1 = 0, we have

λ1b11 + λ2b12 + · · · + λu1b1u1 = 0.

There are su1−1 solutions for such an equation, hence there are su1 − su1−1 = (s − 1)su1−1

combinations in E1.
For v = 2, as (

∑u1
j=1 λjej )

T bi = 0 for i = 1,2, then

{
λ1b11 + λ2b12 + · · · + λu1b1u1 = 0,

λ1b21 + λ2b22 + · · · + λu1b2u1 = 0,

which has su1−2 solutions since b1 and b2 are independent. However, elements in E1 ∩E2 should
not be the solution of neither of the two equations. Then, we have

|E1 ∩ E2| =
∣∣E \ (E1 ∪ E2)

∣∣ = su1 −
[(

2

1

)
su1−1 −

(
2

2

)
su1−2

]
= (s − 1)2su1−2.

For 1 ≤ v ≤ u1, as any u1 elements of {b1,b2, . . . ,bn∗} are independent, we have∣∣∣∣∣
v⋂

i=1

Ei

∣∣∣∣∣ =
∣∣∣∣∣E \

v⋃
i=1

Ei

∣∣∣∣∣ = su1 −
[(

v

1

)
su1−1 −

(
v

2

)
su1−2 + · · · + (−1)v−1

(
v

v

)
su1−v

]

= su1

[
1 −

(
v

1

)
s−1 + · · · + (−1)v

(
v

v

)
s−v

]

= (s − 1)vsu1−v.

For u1 + 1 ≤ v ≤ n∗, the intersection of any t ≥ u1 sets of Ei ’s only contains one vector, namely
the zero column vector. Since any u1 elements of {b1,b2, . . . ,bn∗} are independent, we have∣∣∣∣∣

v⋂
i=1

Ei

∣∣∣∣∣ =
∣∣∣∣∣E \

v⋃
i=1

Ei

∣∣∣∣∣
= su1 −

[(
v

1

)
su1−1 −

(
v

2

)
su1−2 + · · · + (−1)u1−1

(
v

u1

)
su1−u1

+ (−1)u1

(
v

u1 + 1

)
· 1 + · · · + (−1)v−1

(
v

v

)
· 1

]
(6)

= su1

[
1 −

(
v

1

)
s−1 + · · · + (−1)u1

(
v

u1

)
s−u1

]
+

v∑
i=u1+1

(−1)i
(

v

i

)

= m∗. �

Proof of Theorem 2. Followed by Lemma 4, for any z ∈ ⋂v
j=1 Eij and x ∈ ⋃v

j=1 Aij , we have
z /∈ O(x). Thus, by Lemmas 2 and 1, the (D1,D2)’s constructed in both items are marginally
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coupled designs. In addition, both items (i) and (ii), O(xi ) �= O(xj ) when i �= j , which implies
that di cannot be obtained from dj by level permutations. Therefore, D2’s are non-cascading
Latin hypercubes. �

Proof of Proposition 3. Since any u1 vectors of {b1, . . . ,bn∗} are independent, one can use them
to obtain an OA(su1 , n∗, s, u1). The run size here is su1 , not su, because the last u−u1 entries of
bi ’s are zeros. Note that the maximum value of n∗ must not be greater than the maximum value
of m for an OA(su1 ,m, s,u1) to exist. The right-hand side of (5) are the upper bounds of m for
different cases, which were provided by Theorem 2.19 of Hedayat, Sloane and Stufken [8]. �

Proof of Proposition 4. It is straightforward to see D̃2 is an OA(2u,2u−u1,2u−1,1). For
u − u1 > 1 and therefore 2u−u1 > 3, consider a subarray (dp,dq,dl) of D̃2, for 1 ≤ p < q <

l ≤ 2u−u1 . Let ci = �di/2u−2�. As di = Ai · (2u−2, . . . ,2,1)T , ci is the first column of Ai . In
addition, (cp, cq, cl) is the projection of (dp,dq,dl ) on the 2 × 2 × 2 grid. Because Ai is con-
structed by G(xi ), ci is generated from ηi . As yi �= yj for i �= j , we have yi �= yj . Since the last
u − u1 entries of ηi is yi , ηp , ηq and ηl are three different columns. In addition, ηp + ηq �= ηl

because the first u1 entries of ηp , ηq , ηl are equal to x0 = (1,1,0, . . . ,0)T . As a result, ηp , ηq ,
ηl are three independent column vectors. Thus, the array (cp, cq, cl) is an OA(2u,3,2,3), and
the conclusion follows. �

Proof of Proposition 5. In the subspace construction of Theorem 2, for i = 1, . . . , k, each O(xi )

contains a set of (su−1 − 1)/(s − 1) different column vectors, the first nonzero entry of each of
which is equal to 1. If k ≤ (su−1 − 1)/(s − 1), one can always choose yi ∈ O(xi ), such that
yi �= αyj for 1 ≤ i �= j ≤ k and any α ∈ GF(s). Let yi be the first column of G(xi ) which is
used to obtain Ai and consists of u − 1 independent columns of O(xi ). For such {A1, . . . ,Ak},
the first k columns form an OA(su, k, s,2), which guarantees D̃2 to achieve stratifications on an
s × s grid of any two dimensions. �

Proposition 6. The set
⋂nB

i=1 Ei is equal to (i) {ei1 + ei2 + · · · + ei2t+1 | 2t + 1 ≤ u1,1 ≤ i1 <

i2 < · · · < i2t+1 ≤ u1} when s = 2, or equal to (ii) {αei | α ∈ GF(s) \ {0}, i = 1, . . . , u1} when
s > 2.

Proof. For s = 2, we have nB = 1, A = A1, and b1 = (1, . . . ,1,0, . . . ,0)T where the first u1
entries are equal to 1. If z ∈ E and zT b1 �= 0, z must be a sum of an odd number of ei ’s. Thus,
item (i) follows. If z ∈ ⋂nB

i=1 Ei , z /∈ O(x) for any x ∈ A by Lemma 4. Therefore, for s > 2, the
possible elements in

⋂nB

i=1 Ei can only be z = αej for any α ∈ GF(s) \ {0} and j = 1, . . . , u1,
according to Proposition 1, while ej ∈ ⋂nB

i=1 Ei , for j = 1, . . . , u1. Combining these two results,
item (ii) follows. �
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