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We study the issue of integration with respect to the non-commutative fractional Brownian motion, that is
the analog of the standard fractional Brownian motion in a non-commutative probability setting.

When the Hurst index H of the process is stricly larger than 1/2, integration can be handled through the
so-called Young procedure. The situation where H = 1/2 corresponds to the specific free case, for which
an Itô-type approach is known to be possible.

When H < 1/2, rough-path-type techniques must come into the picture, which, from a theoretical point
of view, involves the use of some a-priori-defined Lévy area process. We show that such an object can
indeed be “canonically” constructed for any H ∈ ( 1

4 , 1
2 ). Finally, when H ≤ 1/4, we exhibit a similar non-

convergence phenomenon as for the non-diagonal entries of the (classical) Lévy area above the standard
fractional Brownian motion.

Keywords: integration theory; non-commutative fractional Brownian motion; non-commutative stochastic
calculus

1. Introduction: The non-commutative fractional Brownian
motion

In classical probability theory, the fractional Brownian motion (fBm in the sequel) is considered
as one of the most natural extensions of the standard Wiener process. From a modelling point of
view, fractional noises offer the possibility to account for long-range dependency phenomenon,
which easily explains their large success in various domains ranging from biological sciences
to mathematical finance. The literature related to fBm now comprises thousands of publications,
and we will only refer here to the nice survey [14], which offers an overview on some of the most
interesting aspects of this specific Gaussian process.

Unfortunately, when it comes to stochastic integration, the long-range dependence of the fBm
turns into a major drawback and is known to be the source of important difficulties. In particular,
fBm does not satisfy the martingale property, which rules out the possibility to use Itô theory as
a way to investigate the integration problem. More or less sophisticated alternative procedures
must then come into the picture, based on either a “stochastic” approach (Malliavin calculus,
Skorohod integral) or a “pathwise” strategy (Young integral, rough paths theory). Here again,
any attempt to draw up an exhaustive list of the publications related to the fractional integration
issue would be vain, and we will only quote the recent survey [9] about pathwise methods - the
most efficient approach so far.

In this first section, and as an introduction to the subsequent investigations, we propose to
recall that the above fundamental objects (Wiener process, fBm, Gaussian processes) all admit
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immediate analogs in the so-called non-commutative probability setting, the main framework of
our study. Let us first recall, at a very general level, that non-commutative probability theory
has received a lot of attention since the late 80s and the pathbreaking results of Voiculescu on
large random matrices [18]. Based on Voiculescu’s results (together with subsequent extensions),
the non-commutative paradigm can somehow be seen as a privileged formalism to study the
asymptotic behaviour of standard classes of random matrices growing to infinity.

The rigourous presentation of this setting – which will prevail throughout the study – goes as
follows, along the terminology of [13].

Definition 1.1. We call a non-commutative probability space any pair (A, ϕ) where:

(i) A is a unital algebra over C endowed with an antilinear ∗-operation X �→ X∗ such that
(X∗)∗ = X and (XY)∗ = Y ∗X∗ for all X,Y ∈ A. In addition, there exists a norm ‖ · ‖ :
A → [0,∞[ which makes A a Banach space, and such that for all X,Y ∈ A, ‖XY‖ ≤
‖X‖‖Y‖ and ‖X∗X‖ = ‖X‖2.

(ii) ϕ : A → C is a linear functional such that ϕ(1) = 1, ϕ(XY) = ϕ(YX), ϕ(X∗X) ≥ 0 for
all X,Y ∈ A, and ϕ(X∗X) = 0 ⇔ X = 0. We call ϕ the trace of the space.

In this setting, we will call any element X ∈ A a non-commutative random variable, and any
path X· : [0, T ] → A a non-commutative process.

A fundamental feature of any such non-commutative probability space lies in the close (hid-
den) link between the norm ‖ · ‖ in item (i) and the trace ϕ in item (ii). Namely, for any X ∈ A,
it can be shown on the one hand (see [13], Proposition 3.8) that∣∣ϕ(X)

∣∣ ≤ ‖X‖, (1)

and, even more strikingly, one has (see [13], Proposition 3.17)

‖X‖ := lim
r→∞ϕ

((
XX∗)r) 1

2r . (2)

Thus, the trace ϕ can somehow be seen as the “expectation” in this setting and, along this anal-
ogy, the norm in A can then be recovered as the “L∞-norm”. Besides, using standard spectral
properties, we can provide some partial correspondence between the non-commutative frame-
work and more classical probabilistic objects: namely, with any self-adjoint element X ∈ A, we
can associate a unique probability measure νX (called the law of X) such that for every k ≥ 0,

ϕ
(
Xk

) =
∫
R

xkνX(dx). (3)

Note that due to the (possible) non-commutativity of A, there is no hope to raise such a corre-
spondence at the level of vectors (or processes), and to associate any non-commutative random
vector (X1, . . . ,Xd) with a measure on R

d . Instead, we consider that the “stochastic” dynamics
of a given family {Xi}i∈I of non-commutative random variables is fully characterized by the set
of its joint moments

ϕ(Xi1 · · ·Xir ), r ≥ 1, i1, . . . , ir ∈ I.
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With these preliminaries in mind, let us turn to the presentation of the non-commutative pro-
cess at the center of our study: the non-commutative fractional Brownian motion (NC-fBm in the
sequel). Just as the standard fBm is an example of a Gaussian process, the NC-fBm is part of
a well-identified and important class of non-commutative processes, the so-called semicircular
processes. For a clear description of this family, let us introduce the following notation, borrowed
from [13], and that we will extensively use in our study.

Notation 1.2. Given elements X1, . . . ,X2m ∈ A and a pairing π of {1, . . . ,2m} (that is, a parti-
tion of {1, . . . ,2m} into m disjoint subsets, each of cardinality 2), we set

κπ (X1, . . . ,X2m) :=
∏

{p,q}∈π

ϕ(XpXq). (4)

Also, we denote by NC2({1, . . . ,2m}) or NC2(2m) the subset of non-crossing pairings of
{1, . . . ,2m}, that is the subset of pairings π of {1, . . . ,2m} for which there are no elements
{p1, q1}, {p2, q2} ∈ π with p1 < p2 < q1 < q2.

Definition 1.3. With the above notation, we call a (centered) semicircular family in a non-
commutative probability space (A, ϕ) any collection {Xi}i∈I of self-adjoint elements in A such
that, for every even integer r ≥1 and all i1, . . . , ir ∈ I , one has

ϕ(Xi1 · · ·Xir ) =
∑

π∈NC2({1,...,r})
κπ (Xi1, . . . ,Xir ), (5)

and ϕ(Xi1 · · ·Xir ) = 0 whenever r is an odd integer.

The law of a semicircular family (i.e., the set of its joint moments) is thus governed by what
can be seen as a “non-commutative Wick formula”, obtained by restricting the usual sum to the
sole non-crossing pairings. In particular, this law is fully determined by the set of the covariances
{ϕ(XiXj ), i, j ∈ I } of the family.

It is worth mentioning here that this analogy with the classical Gaussian processes extends
through a fundamental central-limit property. In brief, semicircular families also appear as the
universal limit (in the sense of the joint moments) of the renormalized sum of a sequence of
“independent” NC-random families, where the notion of independence must be understood in
some specific sense, the so-called free sense (see [13], Theorem 8.17, for a complete statement).

As an immediate consequence of Definition 1.3 (and as an additional similarity with the Gaus-
sian model), observe that the semicircular property is stable through linear real transformations.
Let us label this elementary result for further reference.

Lemma 1.4. Let (X1, . . . ,Xk), k ≥ 1, be a semicircular vector and M a k × �-matrix (� ≥ 1)
with real entries. Then Y := MX is a semicircular vector as well.

It is also worth recalling for the non-expert reader that the semicircular property is named after
the probability distribution it generates, when considering single random variables:
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Lemma 1.5. The law νX (in the sense of (3)) of a semicircular random variable X is the semi-
circular distribution of variance σ 2 := ϕ(X2), that is νX is the probability measure with density
given by

pσ 2(x) := 1

2πσ 2

√
4σ 2 − x21{|x|≤2σ }.

Here is finally the definition of the process (or rather the family of processes) at the center of
our study.

Definition 1.6. In a NC-probability space (A, ϕ), and for every H ∈ (0,1), we call a non-
commutative fractional Brownian motion (NC-fBm) of Hurst index H any semicircular family
{Xt }t≥0 in (A, ϕ) with covariance function given by the formula

ϕ(XsXt ) = 1

2

{
s2H + t2H − |t − s|2H

}
. (6)

In particular, for every t ≥ 0, Xt is distributed along the semicircular distribution of variance
t2H .

This definition should of course not be a surprise to any reader familiar with the definition
of the standard fBm (in the classical setting). Formula (6) is indeed nothing but the covariance
function of the latter process. Lifting the formula to the level of the processes (using (5)) gives
rise to very different dynamics though, as can immediately be seen from Lemma 1.5.

Note that for every fixed Hurst index H ∈ (0,1), the existence of such a NC-fBm in some
NC-probability space (A, ϕ) follows (for instance) from the general semicircular constructions
of [2] in the free Fock space.

Just as in the classical setting, the situation where H = 1
2 is very specific: the resulting non-

commutative process here corresponds to the celebrated free Brownian motion, that is the non-
commutative counterpart of the standard Wiener process. In this case, the disjoint increments of
X are known to satisfy the above-mentioned free independence property, a powerful tool at the
very core of the results of [1] on non-commutative stochastic integration (see Section 2.4 below
for a few additional comments on this situation).

Unfortunately, as soon as H �= 1
2 – which is the condition we have in mind here – it can

be shown that the disjoint increments of the NC-fBm are no longer freely independent. Free
independence will thus not play any role in our analysis, and for this reason, we refrain from
giving the exact definition of this property.

Before going further with the integration problem, let us mention the fact that this is not the
first occurrence of the process in the literature. In [15], Nourdin and Taqqu have shown that
the NC-fBm arises as the limit of natural sums constructed from a given stationary semicircular
process. For the sake of conciseness, we cannot give a full account on their results (which rely in
particular on the consideration of the Tchebycheff polynomials), but let us report the following
simplified statement as an illustration of such asymptotic properties.

Proposition 1.7 ([14], Proposition 8.3). In a NC-probability space (A, ϕ), let (Uk)k≥1 be a
semicircular sequence such that ϕ(Uk) = 0, ϕ(U2

k ) = 1 and with stationary covariance (i.e.,
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ϕ(XkX�) = ρ(k − �)) satisfying

n∑
k,�=1

ρ(k − �) ∼ Cn2H L(n) as n → ∞,

where C is a constant and L : (0,∞) → (0,∞) is a function that slowly varies at infinity, i.e.

L(ct)/L(t)
t→∞→ 1 for any constant c > 0. Then, as n → ∞,

V (n)· := 1

nH
√

L(n)

�n·�∑
k=1

Uk → X·,

where (Xt )t≥0 is a NC-fractional Brownian motion of Hurst index H . To be more specific, for all
times t1, . . . , tk ≥ 0, one has ϕ(V

(n)
t1

· · ·V (n)
tk

) → ϕ(Xt1 · · ·Xtk ) as n → ∞.

The NC-fBm also appeared more recently through the following result on a possible link be-
tween the law of the process and the asymptotic spectral behaviour of growing fractional matrices
(keep in mind, however, that the correspondance between NC-fBm and large random matrices is
a much less understood topic than in the free situation):

Proposition 1.8 ([17], Theorem 1). In a classical probability space, consider a collection

{
B(n)(i, j);n ≥ 1,1 ≤ i ≤ j ≤ n

}
of independent fractional Brownian motions with common Hurst index H > 1

2 , and define the
sequence of symmetric random matrices (M(n))n≥1 along the formula

M
(n)
t (i, j) = B

(n)
t (i, j)√

n
for 1 ≤ i < j ≤ n, M

(n)
t (i, i) =

√
2B

(n)
t (i, i)√
n

.

Denote by {λ(n)
1 ≤ · · · ≤ λ

(n)
n }n≥1 the corresponding random sequence of eigenvalues, and set

μ
(n)
t := 1

n

∑n
i=0 δ

λ
(n)
i

. Then, for every continuous function f : R → R and every t ≥ 0, one has
a.s. ∫

R

f (x)μ
(n)
t (dx)

n→∞−→
∫
R

f (x)μt (dx),

where μt stands for the semicircular distribution of mean 0 and variance t2H (see Lemma 1.5).

In the present study, we propose to go ahead with the analysis of the properties of the NC-fBm
by addressing another natural question, namely: how to integrate with respect to this process?
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Let us slightly specialize the problem by taking account of the algebra setting. Given a NC-
fBm {Xt }t∈[0,1] in a NC-probability space (A, ϕ) (with a given Hurst index H ∈ (0,1)) and two
paths Y,Z : [0,1] → A (in a class to be determined), we are looking for a natural interpretation
of the integral ∫ t

s

Yu dXuZu, s, t ≥ 0, (7)

that would (for instance) extend the existing constructions in the specific free case H = 1
2 .

In order to achieve this goal (at least to some extent), and in the continuation of the analysis
developed in [4,5], our strategy will rely on an adaptation of the so-called “pathwise” methods
which have been successfully used in the classical setting to handle integration with respect to
the standard fractional Brownian [3,8]. We will thus see how to combine this approach (whether
Young integration or rough paths theory) with the specific topological features of the algebra
setting under consideration.

Let us recall, at a very general level, that the “pathwise” methods are based on a subtle analysis
of the local dynamics of the paths under consideration. In particular, the construction of the
integral depends in an essential way on the local Hölder regularity of these paths, which, just as
in the classical setting, will here be governed by the value of the Hurst index H (see Lemma 2.1
below). Thus, the smaller H , the rougher the process and the more sophisticated the integration
procedure. As a particular consequence of this increasing difficulty (as H decreases to 0), the
conditions on the integrands Y , Z in (7) need to be more and more restrictive (at least along the
pathwise approach), a phenomenon which can already be observed in the commutative situation.
In brief, and slightly anticipating the subsequent results, our analysis can cover the case of general
H -Hölder paths Y , Z when H > 1

2 (see Proposition 2.5 and the comments that follow it), while
for H < 1

2 , we will only focus on polynomial expressions of X, that is Yt = P(Xt), Zt = Q(Xt)

for polynomials P , Q (see Section 2.1 and Section 2.7.1 for additional comments about this
restriction). Let us here recall that the case H = 1

2 is extremely specific in this context (see
Section 2.4).

Our results regarding the construction of the integral and its properties will be gathered in Sec-
tion 2. Note that, for the sake of conciseness, we have postponed the proof of our main technical
result, namely Proposition 2.8 (about the existence of some “Lévy area”), to the supplemental
paper [6]. Finally, Section 3 is devoted to the details of the proof of our second main technical
result (Proposition 2.11), showing the divergence of the (product) Lévy area, and accordingly
the failure of the procedure, when H ≤ 1

4 .
As a conclusion to this introduction, we would like to emphasize the particular position of

our study, at the crossroads of two theories (with a priori distinct related “communities”): non-
commutative probability theory and rough paths theory. In this context, and even if our analysis
deeply leans on the combination of the two theories, let us point out a few specific aspects of our
results that might be of special interest to each “audience”:

(i) From a rough-path-expert’s perspective. In the course of the analysis, and more precisely
when H < 1

2 , we will be led to involve a fundamental second-order path into the procedure,
which will play the role of a “Lévy area” in this setting (such a consideration should not be a
surprise to any rough-path user). This object morally corresponds (at least in a simplified version,
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see Section 2.5) to the product iterated integral∫ t

s

{Xu − Xs}dXu, (8)

provided we can give a sense to this integral. In the commutative setting, that is, when A=R and
X = x is a one-dimensional fractional Brownian, the interpretation can be immediately derived
from the (formal) integration formula∫ t

s

{xu − xs}dxu = 1

2
{xt − xs}2, (9)

which indeed yields a suitable definition for this object, for any H ∈ (0,1). In the general non-
commutative setting, the corresponding integration formula reads (still formally) as∫ t

s

{Xu − Xs}dXu = {Xt − Xs}2 −
∫ t

s

dXu{Xu − Xs}, (10)

but there is no reason anymore for the two integrals in (10) to be equal, which of course scut-
tles the simplification procedure. The situation here is somehow analog to the case of the non-
diagonal entries of the classical Lévy-area matrix above a standard multidimensional fBm, and
in fact, we will observe a similar breaking phenomenon when letting the Hurst index H de-
crease from 1 to 0: when H > 1

4 , we can indeed define (8) through a natural approximation
procedure (Proposition 2.8), while for H ≤ 1

4 , the very same approximation fails to converge
(Proposition 2.11). Note however that this change of regime and this similarity with the standard
multidimensional fBm are not behaviours we could have readily expected, because the two ob-
jects (the product integral (8) and the non-diagonal entries of the classical fractional Lévy area)
are not exactly of the same nature.

(ii) From a non-commutative-expert’s perspective. To the best of our knowledge, stochastic
integration in the non-commutative setting is so far limited to the sole free Brownian case (or its
q-extension, see Section 2.7.3 below), where it can be seen as the direct counterpart of Itô’s con-
struction. Thus, even if essentially restricted to polynomial integrands, our construction offers a
new and clearly non-trivial example of an integral driven by an irregular non-commutative pro-
cess. In particular, the pathwise methods will allow us to go beyond the “free independence” con-
dition, just as they allow to go beyond the martingale framework in the classical setting. Besides,
as we will see in Remark 2.7, the study of the (simplified) product Lévy area (8) happens to be
closely related to the behaviour of the commutator [Xs,Xt ] := XsXt − XtXs , as s, t are getting
close to each other (a property which, to some extent, can be guessed from (10)). Accordingly,
through the integration issue, we will also be led to test the “local commutation default” of the
process and offer another interesting interpretation of the above-mentioned change of regime: in
brief, when H ≤ 1

4 , the NC-fBm becomes “too non-commutative” for the sum
∑

(ti )
[Xti ,Xti+1]

of local commutators to converge in A (as the mesh of the subdivision (ti) tends to 0).
As far as the presentation of our results is concerned, please note our intention to make the

subsequent analysis easily accessible to both the rough-path and the non-commutative “commu-
nities”. For this reason, we have endeavored to make the study as self-contained as possible.
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2. Integration with respect to the NC-fractional
Brownian motion

This section accounts for our main results, along the following organization. First, we will spec-
ify our aims and expectations regarding the construction of the integral, and recall some basic
technical tools from pathwise integration theory. Then we will turn to the definition of the in-
tegral, depending on the Hurst index H of the process: Young-type construction when H > 1

2 ,
Itô-type (or Stratonovich-type) construction when H = 1

2 , rough-path-type construction when
H < 1

2 . Finally, we will point out some possible extensions and some limits of our approach.
From now on and for the rest of the section, we fix a NC-probability space (A, ϕ) and consider

a NC-fBm {Xt }t≥0 of Hurst index H ∈ (0,1) on this space. Besides, for more simplicity, we will
restrict the subsequent considerations and constructions to the time interval [0,1], but the results
could be readily extended to any interval [0, T ], T > 0.

2.1. Objectives

It is a well known and natural fact that the difficulty in constructing an integral is often correlated
with the “roughness” of its driving path. In the case of the NC-fBm, and just as in the case of the
standard fBm, we can easily quantify this (ir)regularity along the classical Hölder scale.

Lemma 2.1. For all 0 ≤ s ≤ t ≤ 1, it holds that

‖Xt − Xs‖ = 2|t − s|H . (11)

Proof. This is an elementary argument, but we provide it for the non-initiated reader as an illus-
tration of the specific topological property (2). Observe indeed that, combining (5) and (6), one
has immediately, for all 0 ≤ s ≤ t ≤ 1 and r ≥ 1,

ϕ
(
(Xt − Xs)

2r
) = ∣∣NC2(2r)

∣∣ϕ(
(Xt − Xs)

2)r = ∣∣NC2(2r)
∣∣|t − s|2Hr .

Now recall that the cardinal |NC2(2r)| of the set of the non-crossing pairings of {1, . . . ,2r}
is given by the r-th Catalan number, whose asymptotic behaviour is well-known and yields
|NC2(2r)|1/(2r) → 2 as r → ∞. We are therefore in a position to apply (2) and derive (11). �

Going back to the above discussion, and with property (11) in hand, we can thus expect the
analysis to obey the following general principles: the smaller H , the more irregular the process
and the more difficult the construction. In fact, as a lesson from the pathwise approach in the
classical probability setting, we can expect the most serious difficulties (and accordingly the
most interesting problems) to arise as soon as H ≤ 1

2 .
In order to be able to go below this fundamental 1

2 threshold, we will restrict our attention
to a relatively simple class of integrands Y,Z in (7), namely polynomial functions of X, which
obviously makes sense in this algebra setting. Let us therefore rephrase our objective as follows:
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given two polynomials P,Q, how to “naturally” and “efficiently” define the integral∫ t

s

P (Xu)dXuQ(Xu), 0 ≤ s ≤ t ≤ 1? (12)

Note that, even if restricted to polynomial integrands, this question remains far from trivial.
Consider for instance the case of the elementary integral

∫ t

s
Xu dXu. Following the standard

Lebesgue (or Stieltjes) procedure, we could be tempted to define this object as the limit of the
Riemann sums

∑
(ti )∈�s,t

Xti {Xti+1 − Xti }, for any subdivision �s,t of [s, t] whose mesh tends
to 0. And yet, taking e.g. the basic sequence tni := i

n
, it can be checked from (6) that, just as in

the commutative case,

ϕ

(
n−1∑
i=0

Xti {Xti+1 − Xti }
)

= 1

2

(
1 − n1−2H

)
, (13)

which tends to infinity as soon as H < 1
2 , ruling out the standard Stieltjes procedure as a general

way to define the integral in (12).
Before we turn to the presentation of our results, let us slightly elaborate on the few speci-

fications we shall keep in mind regarding the desired integral, for a both natural and efficient
definition:

(a) We would like this interpretation to be relatively “intrinsic”, that is to depend on X only,
and not on some approximation of the process or some particular sequence of subdivisions of the
time interval.

(b) We expect the resulting integral to obey natural differentiation rules, such that for instance

X2
t − X2

s =
∫ t

s

Xu dXu +
∫ t

s

dXuXu,

or analog Itô-type formulas.
(c) As far as possible, we would like the construction to appear as the limit of the standard

(Lebesgue) construction, and the integral in (12) to appear as the limit of the standard (Lebesgue)
integral ∫ t

s

P
(
X(n)

u

)
dX(n)

u Q
(
X(n)

u

)
,

where X(n) is a sequence of smooth paths that converges to X as n → ∞. For a clear expression
of this robustness (or Wong–Zakaï-type) property, we will refer in the sequel to the “canonical”
sequence derived from the linear interpolation of X along the dyadic subdivision of [0,1]. Thus,
for the rest of the section, we set tni := i

2n (i = 0, . . . ,2n) and denote by {X(n)
t }n≥0,t∈[0,T ] the

sequence defined as

X
(0)
t = tX1, X

(n)
t := Xtni

+ 2n
(
t − tni

){Xtni+1
− Xtni

} for n ≥ 1 and t ∈ [
tni , tni+1

]
. (14)

Observe that the convergence of X(n) to X is a straightforward consequence of the H -Hölder
regularity of X. Using (11), we get more precisely the following lemma.
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Lemma 2.2. For all n ≥ 0, ε ∈ (0,H) and 0 ≤ s ≤ t ≤ 1, it holds that∥∥X
(n)
t − X(n)

s

∥∥ ≤ 6|t − s|H and
∥∥(

X(n) − X
)
t
− (

X(n) − X
)
s

∥∥ ≤ 8|t − s|H−ε2−nε. (15)

Now, as a preliminary step of our construction strategy, we need to remind the reader of a few
elementary results from pathwise integration theory, as developed in [11], and that we directly
specialize to the algebra A under consideration.

2.2. Technical tools from pathwise integration theory

For k ∈ {1,2,3}, we set Sk := {(t1, . . . , tk) ∈ [0,1]k : t1 ≤ · · · ≤ tk} and denote by Ck([0,1];A)

the set of continuous maps g : Sk → A vanishing on diagonals (i.e., gt1...tk = 0 when two times
ti , tj with i �= j are equal).

Then we define the increment operator δ through the formulas: for g : [0,1] → A, (δg)st :=
gt − gs (0 ≤ s ≤ t ≤ 1), while for h : S2 →A, (δh)sut := hst − hsu − hut (0 ≤ s ≤ u ≤ t ≤ 1).

The two basic results at the core of pathwise integration theory can now be stated as follows.

Lemma 2.3. Let h : S2 → A be a map such that for all 0 ≤ s ≤ u ≤ t ≤ 1, (δh)sut = 0. Then
there exists a path g : [0,1] → A such that h = δg.

Lemma 2.4 (Sewing lemma [11]). Let h : S3 →A be a map in Imδ (i.e., h = δg for g : S2 →A)
such that for all 0 ≤ s ≤ u ≤ t ≤ 1,

‖hsut‖ ≤ Ch|t − s|μ,

for some constant Ch > 0 and some parameter μ > 1. Then there exists a unique element 
h :
S2 →A such that δ(
h) = h and, for all 0 ≤ s ≤ t ≤ 1,∥∥(
h)st

∥∥ ≤ cμCh|t − s|μ, (16)

where cμ := 2 + 2μ
∑∞

k=1 k−μ.

In order to efficiently combine these two lemmas within an integration procedure, we will also
need the integrands (and their expansions) to satisfy suitable estimates. In the polynomial setting
we restrict to, such estimates can be easily verified, but let us label them for further reference.

At first order, one has trivially, for every polynomial P and all U,V ∈A,

∥∥P(V ) − P(U)
∥∥ ≤ cP

(
1 + ‖U‖ + ‖V ‖)p−1‖V − U‖. (17)

For a convenient expression of the corresponding second-order bound, let us introduce the fol-
lowing additional notations, borrowed from [1], and that we will also use in our forthcoming
expansions (see, for instance, (31)). First, for all U,V,Y ∈A, we set

(U ⊗ V )�Y = Y�(U ⊗ V ) := UYV. (18)
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Then, given a polynomial function P(x) := ∑p

k=0 aix
i and an element U ∈A, the tensor deriva-

tive of P (at U ) is the element of the algebraic tensor product A⊗A defined as

∂P (U) :=
p∑

k=1

ak

k−1∑
i=0

Ui ⊗ Uk−1−i .

Combining these two notations, the second-order control we shall rely on in the sequel can be
written as∥∥P(V ) − P(U) − ∂P (U)�{V − U}∥∥ ≤ cP

(
1 + ‖U‖ + ‖V ‖)p−2‖V − U‖2. (19)

This is of course nothing but a basic application of the classical Taylor estimates (in a normed
algebra setting).

2.3. The case H > 1
2 : Young integral

We can finally start off our construction strategy, by focusing first on the situation where the
Hurst index H of the process is strictly larger than 1

2 . Still keeping property (11) in mind, we are
thus dealing here with a “not too rough” process. In fact, this situation could be encompassed
within the general framework of the so-called Young integration theory, that springs from the
seminal paper [19] and readily extends the classical Stieltjes interpretation (see also [12] for a
thorough account on the related results, in a general Banach space). Nevertheless, for the sake of
completeness, and also as a way to set the stage for the rougher situations, we prefer to give a full
treatment of the problem in the specific setting we are interested in. In addition, these few details
on the “Young” situation will allow us to provide the non-initiated reader with a first example of
the possibilities offered by the two Lemmas 2.3 and 2.4.

Our main result here reads as follows (let us recall that X(n) stands for the approximation of X

defined through (14), and that any integral driven by X(n) is interpreted in the classical Lebesgue
sense).

Proposition 2.5. Assume that H > 1
2 . Then, for all polynomials P,Q, all times 0 ≤ s ≤ t ≤ 1

and every subdivision �st = {t0 = s < t1 < · · · < t� = t} of [s, t] with mesh |�st | tending to 0,
the Riemann sum ∑

ti∈�st

P (Xti )δXti ti+1Q(Xti ) (20)

converges in A as |�st | → 0. The limit provides us with a natural interpretation of the integral∫ t

s
P (Xu)dXuQ(Xu), and is such that for all n ≥ 0 and ε ∈ [0,2H − 1),∥∥∥∥

∫ t

s

P
(
X(n)

u

)
dX(n)

u Q
(
X(n)

u

) −
∫ t

s

P (Xu)dXuQ(Xu)

∥∥∥∥ ≤ cH,P,Q,ε|t − s|H−ε2−nε, (21)

for some constant cH,P,Q,ε > 0. As a result, one has, based on this interpretation,

δP (X)st =
∫ t

s

∂P (Xu)�dXu. (22)
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Proof. Set Mst := P(Xs)δXstQ(Xs), and for all 0 ≤ s ≤ u ≤ t ≤ 1, expand the increment δMsut

as

δMsut = −δP (X)suδXutQ(Xs) − P(Xu)δXut δQ(X)su, (23)

so that, combining (11) and (17) , we immediately obtain ‖δMsut‖ ≤ c|t − s|2H . Since 2H > 1,
we are in a position to apply the sewing application 
 (defined in Lemma 2.4) to δM , and using
Lemma 2.3, we can then guarantee the existence of a path J : [0,1] → A such that δJst =
Mst − 
(δM)st for all 0 ≤ s ≤ t ≤ 1. As a straightforward consequence, one has∑

ti∈�st

Mti ti+1 = δJst +
∑

ti∈�st


(δM)ti ti+1 ,

with ‖∑
ti∈�st


(δM)ti ti+1‖ ≤ c
∑

ti∈Dst
|ti+1 − ti |2H → 0 as |�st | → 0, yielding the first con-

vergence result, as well as the identity∫ t

s

P (Xu)dXuQ(Xu) = δJst = Mst − 
(δM)st . (24)

The argument towards (21) then goes as follows. First, observe that the above procedure can
be applied to the approximation X(n) as well, providing a similar decomposition for the limit of
the corresponding sum

∑
ti∈�st

M
(n)
ti ti+1

. Besides, as we are here dealing with a smooth path (for
fixed n), this limit is known to coincide with the classical Lebesgue integral, and we thus obtain
the identity∫ t

s

P
(
X(n)

u

)
dX(n)

u Q
(
X(n)

u

) = M
(n)
st − 


(
δM(n)

)
st

, M
(n)
st := P

(
X(n)

s

)
δX

(n)
st Q

(
X(n)

s

)
. (25)

In order to compare the two integrals in (24) and (25), it now suffices to control the two differ-
ences M −M(n) and 
(δM)−
(δM(n)). The first control is an immediate consequence of (15),
which gives the expected bound ‖Mst − M

(n)
st ‖ ≤ cH,P,Q,ε|t − s|H−ε2−nε . The second control

leans on both (15) and the continuity of 
: one has first, with expansion (23) in mind,

∥∥δMsut − δM
(n)
sut

∥∥ ≤ cH,P,Q,ε|t − s|2H−ε2−nε,

and by applying Lemma 2.4 we get that ‖
(δM)st − 
(δM(n))st‖ ≤ cH,P,Q,ε|t − s|2H−ε2−nε ,
which achieves the proof of (21).

Finally, (22) is just a consequence of (21), since the latter convergence property allows us to
pass to the limit in the classical differentiation rule δP (X(n))st = ∫ t

s
∂P (X

(n)
u )�dX

(n)
u . �

The resulting “Young” integral
∫ t

s
P (Xu)dXuQ(Xu) thus satisfies the three (moral) require-

ments (a)-(b)-(c) raised in Section 2.1. In fact, it should be clear to the reader that the
above procedure could be readily extended to handle the general integral

∫ t

s
Yu dXuZu, where

Y : [0,1] → A, resp. Z : [0,1] → A, is a γ -Hölder path, resp. γ ′-Hölder path, with γ, γ ′ ∈ (0,1)

satisfying γ + H > 1, γ ′ + H > 1.
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However, such an extension will no longer be possible in the subsequent rougher situations,
and we have thus preferred to stick to a unified presentation around the same starting model.

Let us now turn to the more interesting case where H ≤ 1
2 , with a first brief stop on the (very)

particular case H = 1
2 .

2.4. The free case H = 1
2

As we have already recalled it in the introduction, the NC-fBm with Hurst index H = 1
2 is nothing

but the celebrated free Brownian motion, the behaviour of which has been extensively explored in
the literature. In a somewhat analogous fashion as the standard (commutative) Brownian motion,
the free Brownian motion is known to satisfy a specific independence property, the so-called free
independence, at the level of its disjoint increments. Based on this fundamental feature, Biane
and Speicher [1] have been able to adapt the principles of the classical stochastic integration
theory in the non-commutative setting and construct an Itô-type integral with respect to the free
Brownian. In [4], we have brought a new light on these constructions along a rough-path-type
approach (similar to the one we will develop the next section), which allows for more flexibility
in the integration procedure, as well as additional approximation results.

The following statement offers a (partial) summary of these considerations, when applied to
the integral in (12), and in the spirit of the present formulation. We therein denote by Id ×ϕ × Id
the linear extension (to A ⊗ A ⊗ A) of the operator (Id × ϕ × Id)(U ⊗ V ⊗ W) := ϕ(V )UW .
Besides, let us again recall that X(n) is the smooth approximation introduced in (14), and that
integrals driven by X(n) are all understood in the classical Lebesgue sense.

Proposition 2.6 ([1,4]). Assume that H = 1
2 . For all polynomials P,Q, all times 0 ≤ s ≤ t ≤ 1

and every subdivision �st = {t0 = s < t1 < · · · < t� = t} of [s, t] with mesh |�st | tending to 0,
the Riemann sum ∑

ti∈�st

P (Xti )δXti ti+1Q(Xti ) (26)

converges in A as |�st | → 0. We denote the limit by
∫ t

s
P (Xu)dXuQ(Xu) and define the related

“Stratonovich” integral by the formula∫ t

s

P (Xu)(◦dXu)Q(Xu) (27)

:=
∫ t

s

P (Xu)dXuQ(Xu)

+ 1

2

∫ t

s

(Id × ϕ × Id)
[
∂P (Xu) ⊗ Q(Xu) + P(Xu) ⊗ ∂Q(Xu)

]
.

(28)

Then, as n → ∞, it holds that∫ t

s

P
(
X(n)

u

)
dX(n)

u Q
(
X(n)

u

) →
∫ t

s

P (Xu)(◦dXu)Q(Xu), (29)
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and one has in particular

δP (X)st =
∫ t

s

∂P (Xu)�(◦dXu).

To be more specific, the convergence of the sum in (26) is a consequence of [1], Theorem 3.2.1,
while the approximation property (29) follows from the combination of the results of Proposi-
tion 4.10, Proposition 4.16 and Proposition 5.5 in [4].

When dealing with the free Brownian motion, we thus observe a similar Itô/Stratonovich du-
ality as in classical stochastic integration theory (with respect to the Wiener process), which,
to some extent, offers a natural transition between the previous Young situation H > 1

2 (with

convergence of the “Itô” integral, along (20)) and the forthcoming rough situation H < 1
2 (with

convergence of the “Stratonovich” integral, along (38) and Remark 2.10). Also, as can be seen
from (29), and just as in the standard Wiener case, the Stratonovich interpretation turns out to be
the most robust one as far as approximation of the driver is concerned: it therefore provides us
with the “solution” to our three requirements (a)–(b)–(c) in Section 2.1.

2.5. The first rough case: H ∈ (1
3, 1

2)

As soon as H < 1
2 , both previous strategies clearly fail: the process is not regular enough for the

Young method (based on classical Riemann sums) to work, and its disjoint increments are no
longer (freely) independent, ruling out the free-case procedure.

In the continuation of [4,5], and borrowing some ideas from rough paths theory, we propose
to introduce a construction based on the consideration of local second-order expansions and
corrected Riemann sums, which will at least allow us to cover the case H ∈ ( 1

3 , 1
2 ).

At this point, we need to mention that, at a theoretical level, this setting and the below de-
velopments are very close to the analysis carried out in [4], Section 4. The latter reference in-
deed contains a possible approach to integration with respect to any γ -Hölder NC-process with
γ ∈ ( 1

3 , 1
2 ), which, due to (11), is exactly the regularity condition that prevails here. Nevertheless,

the results of [4], Section 4, lean on the extensive use of some a-priori-defined object called a
product Lévy area, and that is expected to satisfy very specific conditions (we can then check
these conditions in the free Brownian case [4], Section 5, or in the q-Brownian situation [5],
Section 3).

Unfortunately, owing to the strong dependency of the increments of the NC-fBm, we have not
been able to exhibit such a product Lévy area above the process (we suspect that such an object
does not even exist in this case, at least not stricto sensu, see Section 2.7.1 below). Instead, we
will rely on some “weaker product Lévy area”, which does not meet all the requirements of [4],
Definition 4.4, but which will be sufficient for our purpose. The construction of this object is the
topic of Proposition 2.8 below, and the main technical result of our analysis.

As an introduction to this central property, let us briefly recall that in the rough-path procedure,
the consideration of corrected Riemann sums derives from the formal second-order expansion of
the integral at stake, just as the consideration of classical Riemann sums morally stems from a
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first-order expansion. Thus, in the situation we are interested in, we consider that, at first order,

∫ t

s

P (Xu)dXuQ(Xu) ≈ P(Xs)(δX)stQ(Xs), (30)

yielding the main term in (20), while at second order, we have, owing to (19),

∫ t

s
P (Xu)dXuQ(Xu)

≈ P(Xs)(δX)stQ(Xs) +
∫ t

s
δP (X)su dXuQ(Xs) +

∫ t

s
P (Xs)dXuδQ(X)su

≈ P(Xs)(δX)stQ(Xs) +
(∫ t

s

(
∂P (Xs)�δXsu

)
dXu

)
Q(Xs)

+ P(Xs)

(∫ t

s
dXu

(
∂Q(Xs)�δXsu

))
,

(31)

which will ultimately lead us to the desired local correction. The rigorous implementation of this idea,
that is the treatment of the implicit remainder in expansion (31), will then be made possible through the
combination of the technical Lemmas 2.3 and 2.4, along a similar pattern as in the proof of Proposition 2.5.
However, for this machinery to work, we still need to “feed” it with a proper definition of the second-
order objects involved in (31). In other words, we still need to give an a-priori sense to (or to “explicitly
construct”) the two integrals

∫ t

s

(
∂P (Xs)�δXsu

)
dXu and

∫ t

s
dXu

(
∂Q(Xs)�δXsu

)
. (32)

In these expressions, observe that neither ∂P (Xs) nor ∂Q(Xs) depend on the integration variable u, so
that the integrals can overall be regarded as the product iterated integrals of X or the product Lévy areas
above X (“applied” to ∂P (Xs) and ∂Q(Xs)). Observe also (still at a heuristic level for the moment) that
the second integral in (32) can be easily recovered from the first one: indeed, as Xt is a self-adjoint element
in A (for every t), one has morally, for every U ∈A,

(∫ t

s
dXuUδXsu

)∗
=

∫ t

s
δXsuU∗ dXu.

With these few ideas in mind, let us turn to the actual construction procedure, which, as in [3], will lean
on an approximation of these objects. Namely, consider the approximation (X(n))n≥0 of X given by (14)
and define the sequence of approximated Lévy areas by the natural formula: for all n ≥ 0 and U ∈A,

X
2,(n)
st [U ] :=

∫ t

s
δX

(n)
su U dX

(n)
u , 0 ≤ s ≤ t ≤ 1, (33)

where the integral is here understood in the classical Lebesgue sense. Our objective now is to show the
convergence of this sequence as n → ∞, that is as X(n) converges to X. As it can be guessed from the
proof of Proposition 2.5, the pathwise method also requires us to exhibit suitable controls on the limit,
regarding whether the time variables s, t or the “fixed” integrand U in (33).



2152 A. Deya and R. Schott

Remark 2.7. Let us briefly go back here to the discussion we have launched at the end of Section 1,

and insist on the specificity of this object, that is
∫ t
s δX

(n)
su U dX

(n)
u , with respect to its classical commu-

tative counterpart. Note indeed that if A were a commutative algebra, or more generally if the variables

{U,Xt ; t ≥ 0} all commuted, then expression (33) would of course reduce to 1
2U(δX

(n)
st )2, providing an

immediate answer to the above convergence issue, for any H ∈ (0,1) (it is a well-known fact that the
rough-path approach is not relevant when applied to a one-dimensional – and so, commutative – Hölder
process). In a general algebra, this question is no longer trivial and is in fact closely related to the local
“non-commutativity” of the process under consideration. For instance, it is easy to see that

X
2,(n)
01 [1] = 1

2
X2

1 + 1

2

2n−1∑
i=0

[Xtni
,Xtni+1

], with [Xtni
,Xtni+1

] := Xtni
Xtni+1

− Xtni+1
Xtni

, (34)

and in light of this expression, the question (morally) is therefore to know whether the sum
∑

i [Xtni
,Xtni+1

]
of “infinitesimal commutators” converges as n → ∞. At a heuristic level, the problem can thus be inter-
preted as follows: the more “locally commutative” the process (i.e., the smaller [Xtni

,Xtni+1
]), the more

chances the sum, and accordingly the sequence X
2,(n)
01 [1] of (simplified) product Lévy areas, to converge.

In order to prove the convergence of (X2,(n))n≥0 in the present situation, that is when H ∈ ( 1
3 , 1

2 ),
we actually need to reduce the class of possible “fixed” integrands U in (33), at least in a way that still
encompasses our target integrals in (32). To this end, we introduce, for all t ∈ [0,1], the unital subalgebra
At generated by (Xs)0≤s≤t , i.e.

At :=
{

λ01 +
n∑

i=1

λiXti1
X

ti2
· · ·Xtipi

: n ≥ 1, λi ∈R,pi ≥ 1,0 ≤ t ij ≤ t

}
.

The desired property can now be stated as follows.

Proposition 2.8. Assume that H ∈ ( 1
4 , 1

2 ). Then, for all 0 ≤ s ≤ t ≤ 1 and U ∈As , the sequence X2,(N)
st [U ]

converges in A as N → ∞, and the limit, that we denote by X
2
st [U ], satisfies the following properties:

(i) For all 0 ≤ s ≤ t ≤ 1, X2
st ∈L(As ,A).

(ii) For all 0 ≤ s ≤ u ≤ t ≤ 1 and U ∈As ,

X
2
st [U ] −X

2
su[U ] −X

2
ut [U ] = δXsuUδXut . (35)

(iii) For all ε ∈ (0,2H − 1
2 ), ε′ ∈ [0,H), there exist constants cH,ε, cH,ε,ε′ > 0 such that for all 0 ≤

s ≤ t ≤ 1, N ≥ 0, m ≥ 0, N ≤ N1, . . . ,Nm ≤ ∞, 1 ≤ ι ≤ m and 0 ≤ uj ≤ vj ≤ s (j = 1, . . . ,m),

∥∥{
X

2
st −X

2,(N)
st

}[δXu1v1 · · · δXumvm ]∥∥
≤ (cH,ε)

m+1 |t − s|2H−ε

2Nε

∏
j=1,...,m

|uj − vj |H ,
(36)
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and ∥∥X2,(N)
st

[
δX

(N1)
u1v1 · · · δ(X(Nι) − X

)
uιvι

· · · δX(Nm)
umvm

]∥∥
≤ (cH,ε,ε′)m+1|t − s|2H−ε |vι − uι|H−ε′

2Nιε′
∏

j=1,...,m
j �=ι

|uj − vj |H ,
(37)

where we have used the convention X(∞) := X.

For the sake of conciseness, we have postponed the (technical) proof of this result to the supplemental
article [6].

Let us now see how we can lean on the above-constructed object X2 (and the related approximation
results) to offer a satisfying interpretation of the general integral in (12). For a convenient statement of the
result, we set, along a similar convention as in (18), and for all 0 ≤ s ≤ t ≤ 1, U,V ∈As ,

(U ⊗ V )�X2
st := UX

2
st [V ], X

2,∗
st �(U ⊗ V ) :=X

2
st

[
U∗]∗

V,

and then linearly extend these two notations to any element of the algebraic tensor product As ⊗As .

Proposition 2.9. Fix H ∈ ( 1
3 , 1

2 ), and let P , Q be two polynomials. For all 0 ≤ s ≤ t ≤ 1 and every
subdivision �st = {t0 = s < t1 < · · · < t� = t} of [s, t] with mesh |�st | tending to 0, the corrected Riemann
sum ∑

ti∈�st

{
P(Xti )(δX)ti ti+1Q(Xti ) + (

∂P (Xti )�X
2
ti ti+1

)
Q(Xti ) + P(Xti )

(
X

2,∗
ti ti+1

�∂Q(Xti )
)}

(38)

converges in A as |�st | → 0. The limit, that we denote by
∫ t
s P (Xu)dXuQ(Xu), is such that for all n ≥ 0

and ε ∈ (0, 1
2 (3H − 1)),∥∥∥∥
∫ t

s
P

(
X

(n)
u

)
dX

(n)
u Q

(
X

(n)
u

) −
∫ t

s
P (Xu)dXuQ(Xu)

∥∥∥∥ ≤ cH,P,Q,ε|t − s|H−ε2−nε, (39)

for some constant cH,P,Q,ε > 0, and so, based on this construction, one has

δP (X)st =
∫ t

s
∂P (Xu)�dXu. (40)

This interpretation of the integral thus clearly meets requirements (b)–(c) of Section 2.1. Regarding
condition (a), we can only assert that, as far the driver X is concerned, the above definition is as intrinsic as
possible (the usual and “more intrinsic” Riemann sums could indeed diverge, as shown in (13)), but it still
involves an a-priori-defined object X2 whose construction may depend on the chosen approximation X(n)

of X. This is a standard phenomenon in rough paths theory.
Thanks to the results of Lemma 2.2 and Proposition 2.8, Proposition 2.9 could essentially be derived

from the considerations of [4], Section 4, (applied to the particular integral in (12)). However, as we evoked
it earlier, the properties exhibited in Proposition 2.8 (and especially the two estimates (36) and (37)) are not
exactly the same as those appearing in the central definition [4], Definition 4.4. Therefore, for both clarity
and rigor, we prefer to review the main arguments behind the transition from Proposition 2.8 to Proposi-
tion 2.9. This will also allow us to emphasize the similarities with the Young procedure of Section 2.3.
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Proof of Proposition 2.9. We follow the pattern of the proof of Proposition 2.5, starting this time from the
path

Mst := P(Xs)δXstQ(Xs) + (
∂P (Xs)�X

2
st

)
Q(Xs) + P(Xs)

(
X

2,∗
st �∂Q(Xs)

)
. (41)

For all 0 ≤ s ≤ u ≤ t ≤ 1, the increments of δMsut can be readily expanded as

δMsut = [−δP (X)suδXutQ(Xs) + (
∂P (Xs)�δX

2
sut

)
Q(Xs)

]
+ [−P(Xu)δXut δQ(X)su + P(Xs)

(
δX

2,∗
sut �∂Q(Xs)

)]
· [(∂P (Xs)�X

2
ut

)
Q(Xs) − (

∂P (Xu)�X2
ut

)
Q(Xu)

]
+ [

P(Xs)
(
X

2,∗
ut �∂Q(Xs)

) − P(Xu)
(
X

2,∗
ut �∂Q(Xu)

)]
.

(42)

Let us now estimate each term into bracket separately. As far as the third term is concerned, one has naturally(
∂P (Xs)�X

2
ut

)
Q(Xs) − (

∂P (Xu)�X2
ut

)
Q(Xu)

= −(
δ
(
∂P (X)

)
su

�X2
ut

)
Q(Xs) − (

∂P (Xu)�X2
ut

)
δQ(X)su,

which, using estimate (36) (with N = 0), entails that∥∥(
∂P (Xs)�X

2
ut

)
Q(Xs) − (

∂P (Xu)�X2
ut

)
Q(Xu)

∥∥ ≤ cH,P,Q,ε|t − s|3H−ε,

for any ε ∈ (0,2H − 1
2 ). The same strategy and estimate apply of course to the fourth term in (42).

As for the first two terms, we can use identity (35) to write(
∂P (Xs)�δX

2
sut

)
Q(Xs) = (

∂P (Xs)�δXsu

)
δXutQ(Xs),

and so ∥∥−δP (X)suδXutQ(Xs) + (
∂P (Xs)�δX

2
sut

)
Q(Xs)

∥∥
= ∥∥{

δP (X)su − ∂P (Xs)�δXsu

}
δXutQ(Xs)

∥∥ ≤ cH,P,Q|t − s|3H ,

where we have combined (11) and (19) to get the last inequality. Besides, using again (35), it is easy to
check that

P(Xs)
(
δX

2,∗
sut �∂Q(Xs)

) = P(Xs)δXut

(
∂Q(Xs)�δXsu

)
,

which, along the same argument as above, entails that∥∥−P(Xu)δXut δQ(X)su + P(Xs)
(
δX

2,∗
sut �∂Q(Xs)

)∥∥ ≤ cH,P,Q|t − s|3H .

Going back to (42), we have thus shown that for all 0 ≤ s ≤ u ≤ t ≤ 1 and ε ∈ (0,2H − 1
2 ), ‖δMsut‖ ≤

cH,P,Q,ε|t − s|3H−ε . Since H > 1
3 , we are here in the very same position as in the proof of Proposition 2.5

(at least when picking ε ∈ (0,3H − 1)), and following the same arguments (that is, combining Lemmas 2.3
and 2.4), we can conclude about the existence of a path J : [0,1] → A such that for all 0 ≤ s ≤ t ≤ 1, one
has

lim|�st |→0

∑
ti∈�st

Mti ti+1 = δJst = Mst − 
(δM)st =:
∫ t

s
P (Xu)dXuQ(Xu),

which corresponds to the first part of our assertion.
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The estimate (39) can again be shown along the same principles as in the proof of Proposition 2.5. Just
as in the latter proof, we can first decompose the approximated integral (for any fixed n) as∫ t

s
P

(
X

(n)
u

)
dX

(n)
u Q

(
X

(n)
u

) = M
(n)
st − 


(
δM(n)

)
st

,

where M(n) is obtained by replacing (X,X2) with (X(n),X2,(n)) in (41). Then, in order to control the
differences M(n) −M and δM(n) −δM , we can rely on the combination of (15), (36) and (37). For instance,
writing (

∂P
(
X

(n)
s

)
�X

2,(n)
st

)
Q

(
X

(n)
s

) − (
∂P (Xs)�X

2
st

)
Q(Xs)

= ({
∂P

(
X

(n)
s

) − ∂P (Xs)
}
�X

2,(n)
st

)
Q

(
X

(n)
s

) + (
∂P (Xs)�

{
X

2,(n)
st −X

2
st

})
Q

(
X

(n)
s

)
+ (

∂P (Xs)�X
2
st

){
Q

(
X

(n)
s

) − Q(Xs)
}

we can easily bound the first term using (15) and (37), and the last two terms using (15) and (36), which
gives here

∥∥(
∂P

(
X

(n)
s

)
�X

2,(n)
st

)
Q

(
X

(n)
s

) − (
∂P (Xs)�X

2
st

)
Q(Xs)

∥∥ ≤ cH,P,Q,ε
|t − s|2H−ε

2nε
,

for any ε ∈ (0,2H − 1
2 ). Similar considerations allow us to control δM(n) − δM (keeping expansion (42)

in mind), providing finally, for all 0 ≤ s ≤ u ≤ t ≤ 1 and ε ∈ (0,2H − 1
2 ),

∥∥M
(n)
st − Mst

∥∥ ≤ cH,P,Q,ε
|t − s|2H−ε

2nε
,

∥∥δM
(n)
sut − δMsut

∥∥ ≤ cH,P,Q,ε
|t − s|3H−2ε

2nε
.

Picking ε ∈ (0, 1
2 (3H − 1)), the conclusion (that is, (39)) follows from the continuity properties of 
.

Once endowed with (39), and just as in the proof of Proposition 2.5, identity (40) is immediately derived

from the classical differentiation rule δP (X(n))st = ∫ t
s ∂P (X

(n)
u )�dX

(n)
u . �

Remark 2.10. In both Propositions 2.8 and 2.9, we could also have included (without any change in the
statements and their proofs) the situation where H ∈ [ 1

2 ,1). In fact, when doing so, the resulting interpreta-
tion of the integral happens to be consistent with the previous constructions, that is with the interpretations
of Proposition 2.5 and Proposition 2.6. When H > 1

2 , we can rely on (36) to assert that, as |�st | → 0,∑
ti∈�st

{(
∂P (Xti )�X

2
ti ti+1

)
Q(Xti ) + P(Xti )

(
X

2,∗
ti ti+1

�∂Q(Xti )
)} → 0,

so that the limit of the sum in (38) indeed reduces to the limit of the classical Riemann sums in (20). When
H = 1

2 , this consistency property is a consequence of Corollary 4.13 and Proposition 5.6 in [4]: according
to the latter results, the limit of the corrected Riemann sums (38) more specifically coincides with the
Stratonovich integral defined through (27).

2.6. Rougher situations

At this point, the - theoretical! - extension of our construction procedure to smaller H should certainly be
clear to the reader: for H ∈ ( 1

4 , 1
3 ] (and then H ∈ ( 1

5 , 1
4 ], . . .), we formally expand the integral in (12) at
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order 3 (and then at order 4, . . .) and study the existence of the successive “product iterated integrals” that
arise in the development.

When H ∈ ( 1
4 , 1

3 ], and even if we prefer to skip the examination of the related details (or perhaps post-
pone it to a future report), we are relatively confident about the success of the method, which should lead to
a similar result as in Proposition 2.9, by considering of course third-order-corrected Riemann sums. Thus,
on top of the “product Lévy areas” X2,X2,∗ constructed in Proposition 2.8 (note indeed that the latter state-
ment holds true for any H ∈ ( 1

4 , 1
2 )), the strategy would here require us to investigate the existence of the

“product Lévy volumes” above X, corresponding morally to the third-order iterated integrals∫
(u,v,w)∈D(i)

s,t

dXuU dXvV dXw, (43)

for U , V fixed in As , and where the domains D(i)
s,t (i = 1, . . . ,6) correspond to the six ordered sets com-

posing [s, t]3 (for instance, D(1)
s,t = {s ≤ u ≤ v ≤ w ≤ t}, D(2)

s,t = {s ≤ u ≤ w ≤ v ≤ t}, . . .). We think that
the study of the integrals in (43) can certainly be done along the arguments of the proof of Proposition 2.8,
but of course this still needs to be checked through a careful analysis.

What we rather would like to point out is the fact that this construction procedure is actually doomed to
failure as soon as H ≤ 1

4 , which can be directly seen at second order, that is at the level of the product Lévy
area.

Proposition 2.11. In a non-commutative probability space (A, ϕ), consider a NC-fractional Brownian
motion {Xt }t≥0 of Hurst index H ≤ 1

4 , and let (X(n),X2,(n))n≥0 be defined through formulas (14) and
(33). Then it holds that

ϕ
((
X

2,(n+1)
01 [1] −X

2,(n)
01 [1])(X2,(n+1)

01 [1] −X
2,(n)
01 [1])∗) ≥ c2n(1−4H), (44)

for some strictly positive constant c. In particular, the sequence X
2,(n)
01 [1] does not converge in (A,‖ · ‖) as

n tends to infinity.

The details of the proof of this proposition can be found in the subsequent Section 3.
Going back to the interpretation in Remark 2.7, and especially to (34), we can thus consider that when

H ≤ 1
4 , the NC-fBm is too “locally non-commutative” for the sequence of approximated Lévy areas to

converge, and accordingly for our rough-path approach to work.
From a technical point of view, and although we are dealing with a quite different object here, this

non-convergence phenomenon is somehow similar to the issue one must face, in classical probability the-
ory, when considering the non-diagonal entries of the Lévy-area matrix above a standard 2-dimensional

fractional Brownian motion, that is (morally) the integral
∫ t
s δB

(1)
su dB

(2)
u , where B(1),B(2) stand for in-

dependent fractional Brownian motions of common Hurst index H ≤ 1
4 , defined on a classical probability

space (�,F ,P). It is indeed a well-known fact (see, for instance, [3], Proposition 30) that the correspond-
ing sequence of approximated Lévy areas, derived from some “canonical” approximation (B(1),n,B(2),n)

of (B(1),B(2)), also fails to convergence (even in probability) as n → ∞.

In the latter commutative setting, that is when working with the above integral
∫ t
s δB

(1)
su dB

(2)
u for H ≤ 1

4 ,
a possible way to overcome the non-convergence issue is to extend our interpretation of iterated integrals
at a more abstract level, by considering the so-called class of non-geometric rough paths, and then use this
additional flexibility to exhibit a suitable object above the process. Such a (highly abstract and sophisticated)
procedure has for instance been implemented in [16]. At this stage, we must admit that we have no idea
whether such considerations could be adapted in the non-commutative framework to handle the product
Lévy area

∫ t
s δXsuU dXu.
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2.7. Possible extensions of these considerations

As a conclusion to our investigations, and before we turn to the technical proofs of Proposition 2.8 and
Proposition 2.11, let us briefly outline a few possible extensions of this approach to non-commutative inte-
gration, together with related open questions.

2.7.1. Beyond polynomial integration

A first general question is whether this strategy could be extended to a larger class of integrands Y,Z :
[0,1] → A (instead of P(X),Q(X)) in (12). Recall that we have already addressed this issue in the Young
case H > 1

2 (see the end of Section 2.3), while such an extension can indeed be obtained in the free case

H = 1
2 using the Itô-type approach developed by Biane and Speicher (see [1] for further details).

The rough situation H < 1
2 turns out to be more problematic in this regard. In view of the above develop-

ments, a first essential question here is to know whether the definition of the “product Lévy area” X2
st [U ] in

Proposition 2.8 could be extended to more general U , that is beyond polynomial expressions of {Xr }0≤r≤s .
Based on (36), a possible line of generalization involves elements U of the form U := f (Xr), where

r ∈ [0, s] and f is a function defined through the Fourier transform f (x) = ∫
R

eıξxμf (dξ) and satisfying∫
R

ecH,ε |ξ |μf (dξ) < ∞. Here, cH,ε stands for the constant in (36), for ε > 0 fixed such that 3H − ε > 1.
Indeed, at least at some formal level, we have, for such a function f ,

∥∥X2
st

[
f (Xr)

]∥∥ ≤
∑
m≥0

∣∣∣∣
∫
R

(ıξ)m

m! μf (dξ)

∣∣∣∣∥∥X2
st

[
Xm

r

]∥∥

≤ cH,ε|t − s|2H−ε

∫
R

(∑
m≥0

|cH,εξ |m
m!

)
μf (dξ)

≤ cH,ε|t − s|2H−ε

∫
R

ecH,ε |ξ |μf (dξ),

which still offers the required Hölder control, and thus opens a way toward the interpretation of the integral∫ t
s g(Xu)dXuh(Xu), for smooth enough functions g, h.

Then a natural attempt to go further would be to turn to the setting introduced in [4], Section 4, and
allowing for the consideration of the more flexible class of adapted controlled biprocesses (along [4], Def-
inition 4.9). Unfortunately, as we already mentionned it twice, the estimates we have obtained in Proposi-
tion 2.8 are not sufficient for a direct application of the results of [4]. In other words, the operator X2 derived
from our result is not as general as a genuine product Lévy area, in the specific sense of [4], Definition 4.4.
Indeed, such a product Lévy area is expected to satisfy, for all 0 ≤ s ≤ t ≤ 1 and U ∈As ,∥∥X2

st [U ]∥∥ ≤ cγ |t − s|2γ ‖U‖, (45)

for some γ > 1
3 , which is more general than our estimate (36) (with N = 0). Morally, we would here need

the right-hand side of (36) to be uniformly bounded over m ≥ 0, which cannot be derived from our current
computations (see [6]). Property (45) can indeed be checked in the free Brownian case H = 1

2 , owing to

the free independence of the disjoint increments. When H < 1
2 , and in light of the expressions at stake in

the proof of Proposition 2.8, we must say that we have serious doubts about the existence of such a uniform
estimate.

Let us now evoke some possible extensions at the level of the driving process itself.
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2.7.2. More general semicircular processes

In the standard probability setting, the rough-path approach is known to be applicable to a class of Gaussian
processes that goes beyond the fractional Brownian motion (see, e.g., [8] or [10], Chapter 15), and therefore
we may wonder about the existence of such an extension in the non-commutative framework.

Skimming through the proof of Proposition 2.8 (in [6]), the specific involvement of the covariance of
the process (here, the fractional covariance (6)) is actually easy to locate. Namely, we only use the form of
this covariance within the estimates of the two final technical lemmas, and as a consequence, the develop-
ments and results of Section 2.5 would remain true for any (Hölder) semicircular process satisfying these
estimates.

This being said, at this point, we are far from being able to exhibit a similar general (and essentially
sharp) covariance criterion as in [10], Theorem 15.33.

2.7.3. The q-fractional Brownian motion

It is a well-known fact in the non-commutative-probability literature (see, e.g., [2]) that the semicircular
processes are part of a more general class, the so-called q-Gaussian processes (for fixed q ∈ (−1,1)),
defined through the “q-Wick” formula

ϕ(Xi1 · · ·Xir ) =
∑

π∈P2({1,...,r})
qCr(π)κπ (Xi1 , . . . ,Xir ), (46)

where, in comparison with (5), the sum runs this time over the set of all pairings of {1, . . . , r}, and the
notation Cr(π) refers to the number of crossings in π (the semicircular processes are thus nothing but the
0-Gaussian processes).

Along this line of generalization, and for fixed q ∈ (−1,1), H ∈ (0,1), we can then naturally define the
q-fractional Brownian motion (q-fBm) of Hurst index H , the above NC-fBm corresponding to the 0-fBm.
In [5], we have already applied the rough-path strategy to the q-Brownian motion, that is, the q-fBm of
Hurst index H = 1

2 , which, at least in the case q ∈ [0,1), led us to better controls and approximation results
than in the original Itô-type approach of the situation [7].

As regards the q-fBm X = X(q,H) of Hurst index H �= 1
2 , observe first that we are still dealing with a

H -Hölder process (for any fixed q ∈ (−1,1)), since, with the argument of the proof of Lemma 2.1 in mind,
we have here

ϕ
(
(Xt − Xs)

2r
)1/(2r) = |t − s|2H

( ∑
π∈P2({1,...,2r})

qCr(π)

)1/(2r)

→ 2|t − s|2H

√
1 − q

as r → ∞.

When H > 1
2 , this basic regularity property immediately allows us to mimic the Young procedure of Sec-

tion 2.3. As for the (more interesting) case H < 1
2 , we must say we are rather confident about the possibility

to extend the considerations of both Section 2.5 and Section 2.6 to any q ∈ (−1,1), with a similar “success”
for H > 1

4 and “failure” for H ≤ 1
4 . Of course, this involves a careful adaptation of the proofs of Proposi-

tions 2.8 and 2.11, taking the q-parameter into account, and we expect both the upper bounds in (36)–(37)
and the lower bound in (44) to depend on q as well.

3. Non-convergence of the Lévy area when H ≤ 1
4

Let us finally provide the details behind the second main technical result of our study.



Integration with respect to the NC-fBm 2159

Proof of Proposition 2.11. Just as in the proof of Proposition 2.8, we have

X
2,(n+1)
01 [1] −X

2,(n)
01 [1] = 1

2

2n−1∑
i=0

{
Y

(n)
2i

Y
(n)
2i+1 − Y

(n)
2i+1Y

(n)
2i

}
,

with Y
(n)
i

:= δX
tn+1
i tn+1

i+1
, and so, setting

M(n) := ϕ
((
X

2,(n+1)
01 [1] −X

2,(n)
01 [1])(X2,(n+1)

01 [1] −X
2,(n)
01 [1])∗)

,

we can write

M(n) = 1

4

2n−1∑
i,j=0

ϕ
({

Y
(n)
2i

Y
(n)
2i+1 − Y

(n)
2i+1Y

(n)
2i

}{
Y

(n)
2j+1Y

(n)
2j

− Y
(n)
2j

Y
(n)
2j+1

})
.

Applying formula (5) to the semicircular family {Yi}i=0,...,2n+1−1, we can easily expand the latter quantity
as

M(n) = 1

2

2n−1∑
i,j=0

�(n)(i, j), (47)

where

�(n)(i, j) := ϕ
(
Y

(n)
2i

Y
(n)
2j

)
ϕ
(
Y

(n)
2i+1Y

(n)
2j+1

) − ϕ
(
Y

(n)
2i

Y
(n)
2j+1

)
ϕ
(
Y

(n)
2j

Y
(n)
2i+1

)
.

At this point, observe that �(n)(i, j) = �(n)(j, i) for all i, j = 0, . . . ,2n − 1, and for 0 ≤ i ≤ j ≤ 2n − 1,
it can be checked that

�(n)(i, j) = 1

4 · 24H(n+1)
�H

(
2(j − i)

)
,

where, for every k ≥ 0, �H (k) is defined as

�H (k) := (
2|k|2H − |k + 1|2H − |k − 1|2H

)2

− (
2|k − 1|2H − |k|2H − |k − 2|2H

)(
2|k + 1|2H − |k|2H − |k + 2|2H

)
.

Going back to (47), we thus have

M(n) = 1

8 · 24H(n+1)

{
2n�H (0) + 2

2n−1∑
k=1

(
2n − k

)
�H (2k)

}

= 2n(1−4H)

24H+3

{
�H (0) + 2

2n−1∑
k=1

(
1 − k

2n

)
�H (2k)

}
.

(48)

Denoting by fH the function at the center of the subsequent Lemma 3.1, one has, for every k ≥ 1, �H (k) =
−k4H fH ( 1

k
), and so, using the result of this lemma, we get that for every k ≥ 1,

∣∣�H (2k)
∣∣ ≤ |2k|4H · 2

|2k|4 ≤ 1

4k3
,
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which implies that �H (2k) ≥ − 1
4k3 . Injecting this lower bound into (48), we end up with

M(n) ≥ 2n(1−4H)

24H+3

{
�H (0) − 1

2

∞∑
k=1

1

k3
+ 1

2n+1

2n−1∑
k=1

1

k2

}
≥ 2n(1−4H)

24H+3

{
�H (0) − 1

2

∞∑
k=1

1

k3

}
,

and we can now explicitly check that this lower bound is indeed strictly positive, due to

�H (0) = 22H
{
4 − 22H

} ≥ 3.

As for the second assertion in our statement, it relies of course on estimate (1), that is on the bound

M(n) ≤ ∥∥X2,(n+1)
01 [1] −X

2,(n)
01 [1]∥∥2

. �

Lemma 3.1. Consider the function fH defined for every x ∈ [0, 1
2 ] as

fH (x) := [
2(1 − x)2H − 1 − (1 − 2x)2H

][
2(1 + x)2H − 1 − (1 + 2x)2H

]
− [

2 − (1 + x)2H − (1 − x)2H
]2

.

Then for all 0 < H ≤ 1
4 and k ≥ 1, it holds that |fH ( 1

2k
)| ≤ 2

|2k|4 .

Proof. Note that the claimed bound follows from rough estimates (and is thus far from optimal).
First, for k = 1, let us write fH (1/2) as

fH (1/2) = [
21−2H − 1

][
2H(1 − 2H)

∫ 1/2

0
dy1

∫ 1/2

0
dy2

(
1 + (y1 + y2)

)2H−2
]

−
[

2H(1 − 2H)

∫ 1/2

0
dy

∫ y

−y
dz (1 − z)2H−2

]2
,

so that

∣∣fH (1/2)
∣∣ ≤

{
2H(1 − 2H)(1/2)2 + (

2H(1 − 2H)
)224−4H

∣∣∣∣2
∫ 1/2

0
dy y

∣∣∣∣2
}

≤ {
(1/2)4 + 24(1/2)8} ≤ 2(1/2)4.

Then, for every x ∈ [0, 1
4 ], write fH (x) as

fH (x) = (
2H(1 − 2H)

)2
{[∫ x

0
dy1

∫ x

0
dy2

(
1 − (y1 + y2)

)2H−2
]

·
[∫ x

0
dy1

∫ x

0
dy2

(
1 + (y1 + y2)

)2H−2
]

−
[∫ x

0
dy

∫ y

−y
dz (1 − z)2H−2

]2}
,

and as a result

∣∣fH (x)
∣∣ ≤ 1

16

{
22−2H x4 +

(
4

3

)4−4H ∣∣∣∣2
∫ x

0
dy y

∣∣∣∣2
}

≤ 1

16

{
4 +

(
4

3

)4}
x4 ≤ x4. �
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