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This paper discusses variance estimation in sequential Monte Carlo methods, alternatively termed particle
filters. The variance estimator that we propose is a natural modification of that suggested by H.P. Chan
and T.L. Lai [Ann. Statist. 41 (2013) 2877–2904], which allows the variance to be estimated in a single
run of the particle filter by tracing the genealogical history of the particles. However, due particle lineage
degeneracy, the estimator of the mentioned work becomes numerically unstable as the number of sequential
particle updates increases. Thus, by tracing only a part of the particles’ genealogy rather than the full one,
our estimator gains long-term numerical stability at the cost of a bias. The scope of the genealogical tracing
is regulated by a lag, and under mild, easily checked model assumptions, we prove that the bias tends to
zero geometrically fast as the lag increases. As confirmed by our numerical results, this allows the bias to
be tightly controlled also for moderate particle sample sizes.

Keywords: asymptotic variance; Feynman–Kac models; hidden Markov models; particle filters; sequential
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1. Introduction

Since the bootstrap particle filter was introduced in [14], sequential Monte Carlo (SMC) meth-
ods, alternatively termed particle filters, have been successfully applied within a wide range
of applications, including computer vision, automatic control, signal processing, optimisation,
robotics, econometrics, and finance; see, for example, [13,23] for introductions to the topic. SMC
methods approximate a given sequence of distributions by a sequence of possibly weighted em-
pirical measures associated with a sample of particles evolving recursively and randomly in time.
Each iteration of the SMC algorithm comprises two operations: a mutation step, which moves the
particles randomly in the state space, and a selection step, which duplicates/eliminates, through
resampling, particles with high/low importance weights, respectively.

In parallel with algorithmic developments, the theoretical properties of SMC have been studied
extensively during the last twenty years, and there is currently a number of available results
describing the convergence, as the number of particles tends to infinity, of Monte Carlo estimates
produced by the algorithm; see, for example, the monographs [5,6] and [1], Chapter 9. The
first central limit theorem (CLT) for SMC methods was established in [7], and this result was
later refined in the series of papers [3,10,18]. In the mentioned CLT, the asymptotic variance of
the weak Gaussian limit is expressed through a recursive formula involving high-dimensional
integrals over generally complicated integrands and is hence intractable in general.
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Due to its complexity, only a very few recent works have treated the important—although
challenging—topic of variance estimation in SMC algorithms. A breakthrough was made by
H.P. Chan and T.L. Lai, who proposed, in [2] and within the framework of general state-space
models (or, hidden Markov models), an estimator, from now on referred to as the Chan & Lai
estimator (CLE), that allows the sequence of asymptotic variances to be estimated on the basis
of a single realisation of the algorithm, without the need of additional simulations. Remarkably,
the CLE can be shown to be consistent (see [2], Theorem 2), that is, to converge in probability
to the true asymptotic variance as the number of particles tends to infinity. At a given time step,
the CLE estimates the asymptotic variance by tracing genealogically the time-zero ancestors of
the particles at the time step in question. The variance estimators proposed recently in [19] are
based on the same principle, and may be viewed as refinements of the CLE within a more general
framework of Feynman–Kac models and particle algorithms with time varying particle popula-
tion sizes. Moreover, [19] provides an elegant, deepened (asymptotic as well as non-asymptotic)
theoretical analysis of the technique, and these results are essential for the development of the
present paper.

Appealingly, the set of time-zero ancestors may be updated recursively in the SMC algorithm
by adding just a single line to the code. This allows variance estimates to be computed online with
essentially the same computational complexity and memory demands as the original algorithm.
Nevertheless, since the SMC algorithm performs repeatedly selection, it is well established that
all the particles in the sample will, eventually, share the same time-zero ancestor (see, e.g., [16]
for a theoretical analysis of this particle path degeneracy phenomenon). Unfortunately, this im-
plies that the CLE collapses eventually to zero as time increases. Increasing the particle sample
size or resampling less frequently the particles will postpone somewhat, but not avoid, this col-
lapse. This makes the CLE impractical in the long run. Thus, although the SMC methodology
has become a standard tool in statistics and engineering, a numerically stable estimator of the
SMC variance has, surprisingly, hitherto been lacking, and the aim of the present paper is to—at
least partially—fill this gap.

The natural solution that we propose in the present paper is to estimate the SMC asymptotic
variance by tracing only a part of the particles’ genealogy rather than the full one (i.e., back to
the time-zero ancestors). By tracing genealogically only the last generations, depleted ancestor
sets are avoided as long as the particle sample size is at least moderately large. Still, this measure
leads to a bias, whose size determines completely the success of the approach. Nevertheless,
in [12], which studies the stochastic stability of the sequence of asymptotic variances within
the framework of general hidden Markov models, or, viewed differently, randomly perturbed
Feynman–Kac models (see [12], Remark 1), it is established that the variance, which at time n

may be expressed in the form of a sum of n + 1 terms, is, in the case where the perturbations form
a stationary sequence, uniformly stochastically bounded in time, or, tight. Moreover, the analysis
provided in [12], which is driven by mixing assumptions, indicates that the size of the mth term
in the variance at time n decreases geometrically fast with the difference n − m. Consequently,
we may expect the last terms of the sum to represent the major part of the variance, and as long
as the number λ of traced generations, the lag, and the particle sample size are not too small,
the bias should be negligible. This argument is confirmed by our main result, Theorem 6, which
at any time point n provides an order ρλ bound on the asymptotic (as the number of particles
tends to infinity) bias, where ρ ∈ (0,1) is a mixing rate. Consequently, as long as the number of
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particles is large enough, the bias stays numerically stable in the long run and may, as it decreases
geometrically fast with the lag λ, be controlled efficiently. Methodologically, the estimator that
we propose has similarities with the fixed-lag smoothing approach studied in [17,21,22], and we
here face the same bias-variance tradeoff, in the sense that a too greedy/generous lag design leads
to high bias/variance, respectively.

The developments of the present paper are cast into the framework of randomly perturbed
Feynman–Kac models, and the theoretical analysis is driven by the assumptions of [11,12] (go-
ing back to [9]), which are easily checked for many models used in practice. In particular, by
replacing the now classical strong mixing assumption on the transition kernel of the underlying
Markov chain—a standard assumption in the literature that typically requires the state space of
the Markov chain to be a compact set—by a local Doeblin condition, we are able to verify the
assumptions for a wide class of models with possibly non-compact state space.

As a numerical illustration, we apply our estimator in the context of SMC-based predictor
flow approximation in general state-space models, including the widely used stochastic volatility
model proposed in [15]. We are able to report an efficient, numerically stable performance of our
variance estimator, with tight control of the bias at low variance.

The paper is structured as follows. Section 2 introduces some notation, defines the framework
of perturbed Feynman–Kac models, and provides some background to SMC. In Section 3, fo-
cus is set on asymptotic variance estimation and after a prefatory discussion on the CLE we
introduce the proposed fixed-lag variance estimator. We also describe how our estimator can be
straightforwardly extended to so-called updated Feynman–Kac distribution flows. Theoretical
and numerical results are found in Section 4 and Section 5, respectively, and the Appendix con-
tains all proofs. Our theoretical analysis is divided into two parts: first, the identification of the
limiting bias and, second, the construction of a tight upper bound on the same. The first part
relies on the theoretical machinery developed in [19], whose key elements are recalled briefly in
the beginning of Section A.1. Finally, Section 6 concludes the paper.

2. Preliminaries

2.1. Some notation and conventions

We assume that all random variables are defined on a common probability space (�,F,P). The
set of natural numbers is denoted by N = {0,1,2, . . .}, and we let N∗ = N \ {0} be the positive
ones. For all (m,n) ∈ N

2, we set �m,n� := {m,m + 1, . . . , n}. The set of nonnegative real num-
bers is denoted by R+. For any quantities {a�}m�=1, vectors are denoted by ām

� := (a�, . . . , am).
We introduce some measure and kernel notation. Given some state space (E,E), we denote

by F(E) and M(E) the spaces of bounded measurable functions and probability measures on
(E,E), respectively. For any functions (h,h′) ∈ F(E)2 we define the product function h � h′ :
E2 � (x, x′) �→ h(x)h′(x′). The identity function x �→ x is denoted by id. Let μ be a measure on
(E,E); then for any μ-integrable function h, we denote by

μh :=
∫

h(x)μ(dx)
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the Lebesgue integral of h w.r.t. μ. In addition, let (E′,E ′) be some other measurable space and
K some possibly unnormalised transition kernel K : E × E ′ → R+. The kernel K induces two
integral operators, one acting on functions and the other on measures. More specifically, given a
measure ν on (E,E) and a measurable function h on (E′,E ′), we define the measure

νK : E ′ � A �→
∫

K(x,A)ν(dx)

and the function

Kh : E � x �→
∫

h(y)K(x,dy),

whenever these quantities are well defined.

2.2. Randomly perturbed Feynman–Kac models

Let (X,X ) and (Z,Z) be a pair of general measurable spaces. Moreover, let K and χ be a Markov
transition kernel and a probability measure on (X,X ), respectively, and {g〈z〉 : z ∈ Z} a family of
real-valued, positive, and measurable potential functions on (X,X ). For all vectors z̄m

k ∈ Zm−k+1,
we define unnormalised transition kernels

Q
〈
z̄m
k

〉 : X ×X � (xk,A) �→
∫

· · ·
∫

1A(xm+1)

m∏
�=k

g〈z�〉(x�)M(x�,dx�+1),

with the convention Q〈z̄m
k 〉(x,A) = δx(A) if m < k (where δx denotes the Dirac mass located

at x), and probability measures

η
〈
z̄m
k

〉 :X � A �→ χQ〈z̄m
k 〉1A

χQ〈z̄m
k 〉1X

. (1)

Using these definitions we may, given a sequence {zn}n∈N of perturbations in Z, express the
Feynman–Kac distribution flow {η〈z̄n

0〉}n∈N recursively as

η
〈
z̄n

0

〉 = η〈z̄n−1
0 〉Q〈zn〉

η〈z̄n−1
0 〉Q〈zn〉1X

, n ∈N (2)

(where, by the previous convention, η〈z̄−1
0 〉 = χ ). Even though the previous model may be ap-

plied in a non-temporal context, we will often refer to the index n as “time”.

Example 1 (Partially dominated state-space models). Let (X,X ) be a measurable space, M :
X × X → [0,1] a Markov transition kernel, and χ a probability measure on (X,X ) (the latter
being referred to as the initial distribution). In addition, let (Y,Y) be another measurable space
and g : X × Y → R+ a Markov transition density with respect to some reference measure ν on
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(Y,Y). By a general state-space model, we mean the canonical version of the bivariate Markov
chain {(Xn,Yn)}n∈N having transition kernel

X × Y ×X � Y � (
(x, y),A

) �→
∫∫

1A

(
x′, y′)g(

x′, y′)ν(
dy′)M

(
x,dx′)

and initial distribution

X � Y � A �→
∫∫

1A(x, y)g(x, y)ν(dy)χ(dx).

Here the marginal process {Xn}n∈N, referred to as the state process, is only partially observed
through the observation process {Yn}n∈N. For the model {(Xn,Yn)}n∈N defined in this way,

(i) the state process is a Markov chain with transition kernel M and initial distribution χ ,
(ii) the observations are, given the states, conditionally independent and such that the marginal

conditional distribution of each Yn depends on Xn only and has density g(Xn, ·)
(we refer to [1], Section 2.2 for details). When operating on a well-specified state-space model,
a key ingredient is typically the computation of the flow of predictor distributions, where the
predictor η〈ȳn−1

0 〉 at time n ∈N is defined as the conditional distribution of the state Xn given the
record ȳn−1

0 ∈ Yn of realised historical observations up to time n−1. Using Bayes’ formula (see,
e.g., [1], Section 3.2.2 for details), it is straightforwardly shown that the predictor flow satisfies
a perturbed Feynman–Kac recursion (2) with (X,X ), M, and χ given above, the observations
{Yn}n∈N playing the role of perturbations (i.e., Z ← Y and Z ← Y), and the local likelihood
functions {g(·, y) : y ∈ Y} playing the role of potential functions {g〈y〉 : y ∈ Y}. We will return to
this framework in Section 5.

2.3. Sequential Monte Carlo methods

SMC methods approximate online the Feynman–Kac flow generated by (2) and a given sequence
{zn}n∈N of perturbations by propagating recursively a random sample {ξ i

n}Ni=1 of X-valued parti-

cles. More specifically, given a particle sample {ξ i
n}Ni=1 targeting η〈z̄n−1

0 〉 in the sense that for all
h ∈ F(X ), ηN 〈z̄n−1

0 〉h � η〈z̄n−1
0 〉h as N tends to infinity, where

ηN

〈
z̄n−1

0

〉 :X � A �→ 1

N

N∑
i=1

1A

(
ξ i
n

)

denotes the empirical measure associated with the particles, an updated particle sample {ξ i
n+1}Ni=1

approximating η〈z̄n
0〉 is, as the perturbation zn becomes accessible, formed by Algorithm 1.

(In the algorithm above, Cat({ω�
n/�n}N�=1) denotes the categorical distribution induced by the

normalised particle weights {ω�
n/�n}N�=1.) Algorithm 1 is initialised at time n = 0 by drawing

{ξ i
0}Ni=1 ∼ χ �N . For all n ∈ N and all h ∈ F(X ), the convergence, as N tends to infinity, of

ηN 〈z̄n−1
0 〉h to η〈z̄n−1

0 〉h can be established in several probabilistic senses. In particular, the first
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Data: {ξ i
n}Ni=1, zn

Result: {ξ i
n+1}Ni=1

1 set �n ← 0;
2 for i = 1 → N do
3 set ωi

n ← g〈zn〉(ξ i
n);

4 set �n ← �n + ωi
n;

5 for i = 1 → N do
6 draw I i

n+1 ∼ Cat({ω�
n/�n}N�=1);

7 draw ξ i
n+1 ∼ M(ξ

I i
n+1

n , ·);
Algorithm 1: SMC particle update

CLT for SMC methods was provided by [7], establishing that

√
N

(
ηN

〈
z̄n−1

0

〉
h − η

〈
z̄n−1

0

〉
h
) D−→ σ

〈
z̄n−1

0

〉
(h)Z, (3)

where Z is standard normally distributed and the asymptotic variance is given by σ 〈z̄n−1
0 〉 :=

σ0〈z̄n−1
0 〉 with

σ 2
�

〈
z̄n−1

0

〉 : F(X ) � h �→
n∑

m=�

η〈z̄m−1
0 〉{Q〈z̄n−1

m 〉(h − η〈z̄n−1
0 〉h)}2

(η〈z̄m−1
0 〉Q〈z̄n−1

m 〉1X)2
(4)

(see also [3,10,18] for similar results). The fact that we in (4) define a truncated version of the
variance with only n − � + 1 terms will be clear later on. In the coming section, we propose a
lag-based, numerically stable estimator of the sequence {σ 2〈z̄n−1

0 〉}n∈N of asymptotic variances.
The estimator approximates {σ 2〈z̄n−1

0 〉}n∈N online, as n increases, under constant computational
complexity and memory requirements. Importantly, the estimator is obtained as a by-product of
the particle filter output and does not require additional simulations. The numerical stability is
obtained at the price of a small bias, which may be controlled under weak assumptions on the
mixing properties of the model.

3. A lag-based variance estimator

3.1. The variance estimator proposed in [2]

Since Algorithm 1 resamples the particles at each time step, the particle cloud may be associated
with a tree describing the genealogical lineages of the particles. The estimators proposed in [2]
and [19] are based on the particles’ Eve indices {Ei

n}Ni=1 (the terminology is adopted from [19]),
which are, for all n ∈N, defined as the indices of the time-zero ancestors of the particles {ξ i

n}Ni=1.
More specifically, the Eve indices may, for all i ∈ �1,N �, be computed recursively in Algorithm 1
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(just after Line 6) by letting

Ei
n :=

{
i for n = 0,

E
I i
n

n−1 for n ∈ N
∗.

Using the Eve indices, H.P. Chan and T.L. Lai proposed, in [2], for all n ∈N, σ 2
N 〈z̄n−1

0 〉(h), with

σ 2
N

〈
z̄n−1

0

〉 : F(X ) � h �→ 1

N

N∑
i=1

( ∑
j :Ej

n=i

{
h
(
ξ

j
n

) − ηN

〈
z̄n−1

0

〉
h
})2

, (5)

as an estimator of σ 2〈z̄n−1
0 〉(h) for all h ∈ F(X ). As mentioned in the introduction, we will refer

to this estimator as the CLE. (More precisely, in [2], focus was set on the updated distribution
flows discussed in Section 3.3 below; the adaptation is however straightforward.) In [19], a gen-
eralisation of the CLE, allowing the particle population size N to vary between SMC iterations,
is presented. As the main result of [2], the consistency, as N tends to infinity, of the CLE is
established; see also [19], Theorem 1 and Corollary 1 for a generalisation.

The CLE is indeed remarkable, as it allows the variance to be estimated online in a single run
of the particle filter with no further simulation. Nevertheless, as explained in the introduction, the
previous estimator has a serious flaw which is related to the well-known particle path depletion
phenomenon of SMC algorithms. More specifically, resampling the particles systematically at
each time leads without exception to a random time point before which all the genealogical
traces coincide; we refer again to [16], which provides a time uniform O(N logN) bound on
the expected number of generations back in time to this most recent common ancestor. Thus,
as n increases, the sets {j ∈ �1,N � : Ej

n = i} will eventually be empty for all indices i ∈ �1,N �

except one, say, i0, for which {j ∈ �1,N � : E
j
n = i0} = �1,N �. As a consequence, eventually,

σ 2
N 〈z̄n−1

0 〉(h) = 0 for all h ∈ F(X ), which makes the estimator impractical. In the next section,
we propose a simple modification of the CLE that stabilises numerically the same at the cost of
a negligible, controllable bias.

3.2. Our estimator

The estimator that we propose is based on the simple idea of stabilising numerically the CLE by
tracing, backwards in time, only a few generations of the particle genealogy, rather than tracing
the history all the way back to the time-zero ancestors. In our approach, the Eve indices will be
replaced by Enoch indices1 defined, for all i ∈ �1,N � and m ∈N, recursively as

Ei
m,n :=

{
i for n = m,

E
Ii
n

m,n−1 for n > m.
(6)

In other words, for all n ∈ N, m ∈ �1, n�, and i ∈ �1,N �, ξ
Ei

m,n
m is the ancestor of ξ i

n at time m.
Now, let λ ∈N be some fixed number, referred to as the lag, and define n(λ) := (n−λ)∨0; then,

1Two figures named Enoch appear in the 2nd as well as the 6th generations of the Genealogies of Genesis, as the son of
Cain and the son-son-son-son-son of Seth, respectively.
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Data: {ξ i
n}Ni=1, { Ei

n(λ),n, . . . ,E
i
n,n}Ni=1, zn

Result: {ξ i
n+1}Ni=1, { Ei

(n+1)(λ),n+1, . . . ,E
i
n+1,n+1}Ni=1

1 set �n ← 0;
2 for i = 1 → N do
3 set ωi

n ← g〈zn〉(ξ i
n);

4 set �n ← �n + ωi
n;

5 for i = 1 → N do
6 draw I i

n+1 ∼ Cat({ω�
n/�n}N�=1);

7 draw ξ i
n+1 ∼ M(ξ

I i
n+1

n , ·);
8 for m = (n + 1)(λ) → n do

9 set Ei
m,n+1 ← E

Ii
n+1

m,n ;

10 set Ei
n+1,n+1 ← i;

Algorithm 2: SMC particle and Enoch-index update

we propose σ 2
N,λ〈z̄n−1

0 〉(h), with

σ 2
N,λ

〈
z̄n−1

0

〉 : F(X ) � h �→ 1

N

N∑
i=1

( ∑
j :Ej

n(λ),n
=i

{
h
(
ξ

j
n

) − ηN

〈
z̄n−1

0

〉
h
})2

, (7)

as an estimator of the variance σ 2〈z̄n−1
0 〉(h) for all n ∈ N, z̄n−1

0 ∈ Zn, and h ∈ F(X ). On-
line computation of the Enoch indices {Ei

n(λ),n}Ni=1 requires the propagation of a window

{Ei
n(λ),n

, . . . ,Ei
n,n}Ni=1 of indices; see Algorithm 2 for a pseudo-code. As the length of the win-

dow is bounded by λ + 1, the memory demand of the estimator is O(λN) independently of n.
Moreover, since genealogical tracing has a linear complexity in N , the total complexity of the
estimator is O(λN), again independently of n.

For n = 0, Algorithm 2 is initialised by drawing {ξ i
0}Ni=1 ∼ χ �N and setting Ei

0,0 ← i for all
i ∈ �1,N �. At the end of the algorithm, after the second for-loop, an estimate

σ 2
N,λ

〈
z̄n

0

〉
(h) = 1

N

N∑
i=1

( ∑
j :Ej

(n+1)(λ),n+1=i

{
h
(
ξ

j

n+1

) − ηN

〈
z̄n

0

〉
h
})2

of σ 2
λ 〈z̄n

0〉(h) may be formed for all h ∈ F(X ).

3.3. Variance estimators for flows of updated distributions

Some applications involve approximation of the updated measures

η̄
〈
z̄m
k

〉 :X � A �→ χQ〈z̄m−1
k 〉(g〈zm〉1A)

χQ〈z̄m−1
k 〉(g〈zm〉1X)

, (8)
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for z̄m
k ∈ Zm−k+1, rather than the measures defined by (1).

Example 2 (Partially dominated state-space models, revisited). In the case of the partially
dominated state-space models discussed in Example 1, the updated measures {η̄〈ȳn

0〉}n∈N defined
through (8) are the filter distributions; more precisely, in this context, for all n ∈ N, η̄〈ȳn

0〉 is the
conditional distribution of the state Xn given the realised observations ȳn

0 ∈ Yn+1 up to time n

(i.e., including the last observation yn).

Since for all h ∈ F(X ), by normalisation,

η̄
〈
z̄m
k

〉
h = η〈z̄m−1

k 〉(g〈zm〉h)

η〈z̄m−1
k 〉g〈zm〉 ,

the flow {η̄〈z̄n
0〉}n∈N of updated distributions is naturally approximated by the flow of weighted

empirical measures

η̄N

〈
z̄n

0

〉 : A �X �→ ηN 〈z̄m−1
k 〉(g〈zm〉1A)

ηN 〈z̄m−1
k 〉g〈zm〉 =

N∑
i=1

ωi
n

�n

1A

(
ξ i
n

)
, (9)

for some given sequence {zn}n∈N of perturbations, where the weights {ωi
n}Ni=1 and the weight

sum �n are computed in Algorithm 1. By the normality (3) and the consistency (43) one obtains,
using Slutsky’s theorem, for all z̄n

0 ∈ Zn+1, the central limit theorem

√
N

(
η̄
〈
z̄n

0

〉
h − η̄

〈
z̄n

0

〉
h
) D−→ σ̄

〈
z̄n

0

〉
(h)Z, (10)

as N tends to infinity, where Z is standard normally distributed and the asymptotic variance is
given by σ̄ 2〈z̄n

0〉(h) = σ̄ 2
0 〈z̄n

0〉(h) with

σ̄ 2
�

〈
z̄n

0

〉 : F(X ) � h �→ σ 2
� 〈z̄n−1

0 〉(g〈zn〉{h − η̄〈z̄n
0〉h})

(η〈z̄n−1
0 〉g〈zn〉)2

(11)

(where σ�〈z̄n−1
0 〉 is defined in (4) for the original Feynman–Kac particle model). In the case

� = 0, the expression (11) is found also in [12], Eqn. (17). In the light of (11), casting our fixed-
lag approach into the framework of updated Feynman–Kac models yields the estimator

σ̄ 2
N,λ

〈
z̄n

0

〉 : F(X ) � h �→ σ 2
N,λ〈z̄n−1

0 〉(g〈zn〉{h − η̄N 〈z̄n
0〉h})

(ηN 〈z̄n−1
0 〉g〈zn〉)2

= N

N∑
i=1

( ∑
j :Ej

n(λ),n
=i

ωi
n

�n

{
h
(
ξ

j
n

) − η̄N

〈
z̄n

0

〉
h
})2 (12)

for some suitable lag λ ∈ N (where the equality stems from the fact that ηN 〈z̄n−1
0 〉{g〈zn〉(h −

η̄N 〈z̄n
0〉h)} = 0).
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4. Theoretical results

4.1. Main assumptions

In the following, we assess the theoretical properties of our estimator. All proofs are presented in
the Appendix. We preface our main assumptions by the definition of an r-local Doeblin set.

Definition 3. Let r ∈ N
∗. A set C ∈ X is r-local Doeblin with respect to M and g if there exist

positive functions ε−
C : Zr → R

+ and ε+
C : Zr → R

+, a family {μC〈z̄〉; z̄ ∈ Zr} of probability mea-
sures, and a family {ϕC〈z̄〉; z̄ ∈ Zr} of positive functions such that for all z̄ ∈ Zr , μC〈z̄〉(C) = 1
and for all A ∈X and x ∈ C,

ε−
C 〈z̄〉ϕC〈z̄〉(x)μC〈z̄〉(A) ≤ Q〈z̄〉(x,A ∩ C) ≤ ε+

C 〈z̄〉ϕC〈z̄〉(x)μC〈z̄〉(A).

Our theoretical analysis is driven by the following assumptions, under which [12] established
that the asymptotic SMC variance is stochastically bounded (tight) in time.

(A1). The perturbation process {ζn}n∈Z, taking on values in (Z,Z), is strictly stationary and
ergodic.2 Moreover, there exist an integer r ∈ N

∗ and a set K ∈ Z�r such that the following
holds.

(i) The process {ζ̄n}n∈Z, where ζ̄n := ζ̄
(n+1)r−1
nr , is ergodic and such that P(ζ̄0 ∈ K) > 2/3.

(ii) For all η > 0 there exists an r-local Doeblin set C ∈X such that for all z̄r−1
0 ∈ K ,

sup
x∈C�

Q
〈
z̄r−1

0

〉
1X(x) ≤ η sup

x∈X
Q

〈
z̄r−1

0

〉
1X(x) < ∞

and

inf
z̄r−1

0 ∈K

ε−
C 〈z̄r−1

0 〉
ε+
C 〈z̄r−1

0 〉 > 0,

where the functions ε+
C and ε−

C are given in Definition 3.
(iii) There exists a set D ∈ X such that

E

[
ln− inf

x∈D
Q

〈
ζ̄

r−1
0

〉
1D(x)

]
< ∞.

(A2).

(i) For all (x, z) ∈ X × Z, g〈z〉(x) > 0.
(ii) For all z ∈ Z, ‖g〈z〉‖∞ < ∞.

(iii) E[ln+ ‖g〈ζ0〉‖∞] < ∞.

2Here ergodic means, more specifically, that the dynamical system induced on (ZN,Z⊗N) by the distribution of {ζn}n∈Z
and the shift operator is ergodic.
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Remark 4. In the case r = 1, (A1) may be replaced by the simpler assumption that there exists
a set K ∈ Z such that the following holds.

(i) P(ζ0 ∈ K) > 2/3.
(ii) For all η > 0 there exists a 1-local Doeblin set C ∈X such that for all z ∈ K ,

sup
x∈C�

g〈z〉(x) ≤ η
∥∥g〈z〉∥∥∞ < ∞. (13)

(iii) There exists a set D ∈X satisfying

inf
x∈D

M(x,D) > 0 and E

[
ln− inf

x∈D
g〈ζ0〉(x)

]
< ∞.

This simplified version will be used in Section 5.

4.2. Theoretical properties of the fixed-lag estimator

As established by the following proposition, for all n ∈ N, z̄n−1
0 ∈ Zn, and λ ∈ N, the estimator

σ 2
N,λ〈z̄n−1

0 〉 is a consistent for σ 2
n(λ)〈z̄n−1

0 〉, where the latter is given by (4) with � = n(λ).

Proposition 5. Assume (A2)(i–ii). Then for all n ∈ N, z̄n−1
0 ∈ Zn, λ ∈ N, and h ∈ F(X ), as

N → ∞,

σ 2
N,λ

〈
z̄n−1

0

〉
(h)

P−→ σ 2
n(λ)

〈
z̄n−1

0

〉
(h).

Now, define, for all n ∈ N and z̄n−1
0 ∈ Zn, the asymptotic bias

βλ

〈
z̄n−1

0

〉 : F(X ) � h �→ σ 2〈z̄n−1
0

〉
(h) − σ 2

n(λ)

〈
z̄n−1

0

〉
(h), (14)

which is always nonnegative. For the integer r ∈ N
∗ and the set D ∈ X given in (A1), introduce

the class

M(D, r) := {
χ ∈ M(X ) : E[

ln− χQ
〈
ζ̄

�−1
0

〉
1D

]
< ∞ for all � ∈ �0, r�

}
(15)

of initial distributions. Then the following theorem, which is the main result of this paper, states
that the asymptotic bias can be controlled uniformly in time by the lag λ. In particular, the bias
decreases with λ at a geometric rate.

Theorem 6. Assume (A1)–(A2). Then there exist a constant ρ ∈ (0,1) and a sequence (ck)k∈N∗
in R+ such that for all χ ∈ M(D, r) (with D and r given by (A1)), λ ∈N, h ∈ F(X ), and k ∈ N,

sup
n∈N

P

(
βλ〈ζ̄ n−1

0 〉(h)

ρλ+1‖h‖2∞
> ck

)
≤ 1

k
. (16)
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Remark 7. We stress that the sequence {ck}k∈N∗ as well as the mixing rate ρ in the previous
theorem depend exclusively on the properties of the model and not on the lag size λ, the objective
function h, or the initial distribution χ (as long as this belongs to M(D, r)). This means that at
any level specified by k, the asymptotic bias can be controlled uniformly in time at a geometric
rate in λ.

The strength of these bounds will be illustrated numerically in Section 5.

4.3. Extensions to variance estimators for flows of updated distributions

In the following, we confirm that the previous results can be extended to flows of updated
Feynman–Kac distributions (recall the definitions in Section 3.3).

Proposition 8. Assume (A2)(i–ii). Then for all n ∈ N, z̄n
0 ∈ Zn+1, λ ∈ N, and h ∈ F(X ), as

N → ∞,

σ̄ 2
N,λ

〈
z̄n

0

〉
(h)

P−→ σ̄ 2
n(λ)

〈
z̄n

0

〉
(h).

Now, as in the previous section, define, for all n ∈ N and z̄n
0 ∈ Zn+1, the asymptotic bias

β̄λ

〈
z̄n

0

〉 : F(X ) � h �→ σ̄ 2〈z̄n
0

〉
(h) − σ̄ 2

n(λ)

〈
z̄n

0

〉
(h). (17)

Theorem 9. Assume (A1)–(A2). Then the statement of Theorem 6 holds true when βλ〈ζ̄ n−1
0 〉 is

replaced by β̄λ〈ζ̄ n
0〉.

4.4. Bounds on the asymptotic bias under strong mixing assumptions

Before continuing to the numerical part of the paper, we provide, for the sake of completeness,
a stronger bound on the asymptotic bias under the following strong mixing assumption, which is
standard in the literature of SMC analysis (see [8] and, e.g., [1,4,5] for refinements) and points
to applications where the state space X is a compact set.

(S).

(i) There exist constants 0 < ¯ε < ε̄ < ∞ and a probability measure μ ∈ M(X ) such that for
all x ∈ X and A ∈X ,

¯εμ(A) ≤ M(x,A) ≤ ε̄μ(A).

(ii) There exist constants 0 < ¯δ < δ̄ < ∞ such that for all z ∈ Z, ‖g〈z〉‖∞ ≤ δ̄ and for all
(x, z) ∈ X × Z, Mg〈z〉(x) ≥ ¯δ.

Under (S)(i), define � := 1 − ¯ε/ε̄; then, instead of bounding the asymptotic bias stochastically
(as in Theorem 6), the following theorem provides a deterministic bound on the same. The proof
is found in Section A.5.
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Theorem 10. Assume (S). Then for all n ∈ N, z̄n−1
0 ∈ Zn, λ ∈N, and h ∈ F(X ),

βλ

〈
z̄n−1

0

〉
(h) ≤

{
0 for n ≤ λ,

c�2(λ+1)‖h‖2∞ for n > λ,

where

c := (δ̄/¯δ)
2

(1 + �)(1 − �)3
.

Remark 11. Note that in the previous theorem, the strong mixing assumption (S) renders a
bound on the asymptotic bias that is completely explicit in � and λ. This allows us to derive a
criterion for how the lag λ should be designed in order to guarantee a given bound ε > 0 on the
asymptotic bias. More specifically, note that

c�2(λ+1)‖h‖2∞ ≤ ε ⇒ λ ≥ log(2ε) − 2 log(‖h‖∞δ̄/¯δ) + 3 log(1 − �)

2 log�
− 1. (18)

The function � �→ log(1 −�)/ log�, which plays the crucial role in the lower bound (18) on λ, is
displayed in Figure 1. After a very slow increase over, say, (0,0.95), the function increases very

Figure 1. The function � �→ log(1 − �)/ log� over the interval (0.8,1).
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rapidly as � is approaching 1. We may hence expect the performance of the lag-based variance
estimator to be relatively robust vis-á-vis the forgetting, in the sense that the model has to exhibit
very poor mixing properties in order for the lag approximation to deteriorate. However, in the
latter case the lag-based approximation introduces a significant bias, which is perfectly in line
with our expectations.

5. Application to state-space models

5.1. Predicting log-volatility

As a first numerical illustration, we consider the problem of computing the predictor flow in
the—now classical—stochastic volatility model

Xn+1 = ϕXn + σUn+1,

Yn = β exp(Xn/2)Vn,
n ∈N, (19)

proposed in [15], where {Un}n∈N∗ and {Vn}n∈N are sequences of uncorrelated standard Gaussian
noise. In this model, where only the process {Yn}n∈N is observable, β is a constant scaling factor,
ϕ is the persistence, and σ is the volatility of the log-volatility. In the case where |ϕ| < 1, the
state process {Xn}n∈N is stationary with a Gaussian invariant distribution having zero mean and
variance σ̃ 2 := σ 2/(1 − ϕ2).

It is easily checked that the model {(Xn,Yn)}n∈N defined by (19) is indeed a state-space model
in the notion of Example 1, and in this case X = Y =R, X = Y = B(R), and

M(x,A) =
∫

A

φ
(
x′;ϕx,σ 2)dx′,

g(x, y) = φ
(
y;0, β2ex

)
,

where (x, y) ∈ R
2, A ∈ B(R), and φ(·;μ,ς2) denotes the density of the Gaussian distribution

with expectation μ ∈ R and standard deviation ς > 0. Consequently, the flow of one-step log-
volatility predictors satisfies the perturbed Feynman–Kac recursion (2) with g〈y〉 = g(·, y), y ∈
Y, and may thus be approximated using SMC methods.

We check that the model satisfies the simplified assumptions in Remark 4 for the scenario
where |ϕ| < 1, implying stationary state and observation processes, the latter with marginal sta-
tionary distribution

B(R) � A �→
∫∫

1A(y)φ
(
y;0, β2ex

)
φ
(
x;0, σ̃ 2)dx dy. (20)

For this purpose, we first note that for all y ∈ R,

∥∥g〈y〉∥∥∞ = 1

|y|√2π
e−1/2,
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that is, for all (x, y) ∈R
2,

g〈y〉(x)

‖g〈y〉‖∞
∝ |y| exp

(
−x

2
− y2e−x

2β2

)
,

where the right hand side tends to zero as |x| → ∞ for all y ∈ R. We thus conclude that Condi-
tions (i) and (ii) in Remark 4 hold true for any compact set K ⊂R with probability exceeding 2/3
under (20). In this case, every compact set C ⊂ R is 1-local Doeblin with respect to Lebesgue
measure. In addition, since

E
[
Y 2

0

] = β2
∫

exφ
(
x;0, σ̃ 2)dx < ∞, (21)

Condition (iii) is satisfied for all compact sets D ⊂ R. Moreover, for such compact sets D, (21)
implies that M(D,1) contains all initial distributions χ with χ(D) > 0; in particular, M(D,1)

contains the invariant Gaussian distribution of the state process, which we use as initial distribu-
tion in the predictor Feynman–Kac recursion.

In this context, we aim at computing the sequence {η〈ȳn−1
0 〉 id}n∈N of predictor means; how-

ever, due to the nonlinearity of the emission density g, closed-form expressions are beyond
reach, and we thus apply SMC for this purpose. In the scenario considered by us, (β,ϕ,σ ) =
(0.641,0.975,0.165), which are the parameter estimates obtained in [1], Example 11.1.1.2 on
the basis of British pound/US dollar daily log-returns from 1 October 1981 to 28 June 1985. In
this setting, the following two numerical experiments were conducted.

5.1.1. Lag size influence

First, in order to assess the dependence of the bias (14) on the lag λ, a record comprising
600 observations were generated by simulation of the model under the parameters above. We
re-emphasise that even though we here, for simplicity, consider the scenario of a perfectly
specified model, this is not required in our assumptions in Section 4 (as long as the obser-
vation sequence is stationary). By inputting, 100 times, these observations into Algorithm 2
and running the same with N = 4000 particles, 100 replicates of the particle predictor mean
at time 600 were produced and furnished with estimates of the asymptotic variance at the
same time point. For each replicate, the asymptotic variance was estimated using all the lags
λ ∈ {2,10,12,14,16,18,20,22,50,100,200,600}, where the last one, λ = 600, corresponds to
the CLE. Moreover, the reference value 1.63 of the asymptotic variance, again at the time point
600, was obtained by the brute-force approach consisting in generating as many as 1000 repli-
cates of the particle predictor mean, again with N = 4000 particles, and simply multiplying the
sample variance of these replicates by N . The outcome is reported numerically and visually in
Table 1 and Figure 2, respectively, where the different boxes in Figure 2 correspond to different
lags. For each box, the reference value is indicated by a blue-colored asterisk (∗) and the average
estimate of each box is indicated by a red ditto. From Figure 2, it is evident that the clear bias
introduced by the smallest lags (λ ∈ {2,10,12}) decreases rapidly as λ increases, and for λ = 20
the bias is more or less eliminated. After this, increasing further λ leads, as we may expect from
the particle path degeneracy, to significant increase of variance and no further improvement of



Estimation of variance in particle filters 1519

Table 1. Means and standard deviations of the
variance estimates reported in Figure 2

λ Mean St. dev.

2 0.47 0.02
10 0.96 0.09
12 0.99 0.11
14 1.47 0.40
16 1.54 0.49
18 1.60 0.57
20 1.63 0.62
22 1.62 0.61
50 1.58 0.61

100 1.53 0.71
200 1.46 0.71
600 1.30 0.96

the bias. On the contrary, the fact that the cardinality of the set {Ei
n(λ),n : i ∈ �1,N �} decreases

monotonously as λ increases, leading to constantly zero variance estimates for n and λ large
enough, re-introduces bias also for large λ. For the last replicate, the cardinalities of the sets
{Ei

n : i ∈ �1,N �} and {Ei
n(20),n : i ∈ �1,N �} were 8 and 140, respectively.

5.1.2. Long-term stability

In order to investigate numerically the long-term stability of our fixed-lag estimator, we executed
Algorithm 2 on a considerably longer observation record comprising 3500 values generated by
simulation. The number of particles was set to N = 5000. Guided by the outcome of the previ-
ous experiment, we furnished the estimated predictor means with variance estimates obtained in
the same sweep of the data using the fixed-lag estimator with λ = 20. In parallel, the CLE was
computed on the same realisation of the particle cloud. Finally, the brute-force approach estimat-
ing the asymptotic variances on the basis of 1200 replicates of the predictor mean sequence was
re-applied as a reference.

Figure 3 displays the time evolution of the variance estimates over the initial 200 time steps,
where only estimates corresponding to every second time step have been plotted for readability.
As evident from the top panel, the CLE targets well the reference values at most time points for
this relatively limited time horizon, even though slight numerical instability may be discerned
towards the very end of the plot. In addition, the fixed-lag estimator follows nicely the reference
values for most time points with a variance that is somewhat smaller than that of the CLE. In
order to display the estimators’ long-term stability properties, Figure 4 provides the analogous
plot for the full observation record comprising 3500 values. Again, for readability, only estimates
corresponding to every 35th time step have been plotted. Now, as clear from the top panel, the
estimates produced by the CLE degenerate rapidly and after, say, 1500 time steps the CLE loses
track completely of the reference values. From time step 2871, all particles in the cloud share
the same Eve index, and the CLE collapses to zero. On the the contrary, from the bottom panel
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Figure 2. Estimated asymptotic variances of the particle predictor mean at time 600 in the stochastic
volatility model (19). The particle population size is N = 4000. The boxes are based on 100 replicates
of Algorithm 2 and correspond to the different lags λ ∈ {2,10,12,14,16,18,20,22,50,100,200,600}.
The reference value 1.63, which is indicated by blue-colored asterisks (∗), was obtained as the sample vari-
ance (scaled by the number of particles) of 1000 independent replicates of the particle predictor mean at
time 600 (again, Algorithm 2 used N = 4000 particles). Red-colored asterisks indicate average estimates.

it is evident that the estimates delivered by the fixed-lag estimator stay numerically stable and
follows well the reference values at most time points. In particular, the variance peak arising as a
result of extreme state process behavior at time 3395 is captured strikingly well by the fixed-lag
estimator.

5.2. SMC confidence bounds

The linear Gaussian state-space model

Xn+1 = ϕXn + σuUn+1,

Yn = Xn + σvVn,
n ∈ N, (22)

where {Un}n∈N∗ and {Vn}n∈N are again sequences of uncorrelated standard Gaussian noise, al-
lows predictor means to be computed in a closed form using Kalman prediction (see, e.g., [1],
Algorithm 5.2.9). Thus, allowing comparisons with true quantities to be made, the class of linear
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Figure 3. Long-term evolution of estimated asymptotic variances of particle predictor means in the stochas-
tic volatility model (19). For clarity, only every second estimate is plotted. The top panel displays variance
estimates (◦) produced using the CLE estimator along with reference values obtained as the sample vari-
ances (scaled by the number of particles) computed from 1200 independent replicates of the particle pre-
dictor mean sequence. The bottom panel displays the analogous plot for estimates (◦) produced using the
fixed-lag estimator with λ = 20. The number of particles was set to N = 5000 is all cases.

Gaussian models is often used as a testing lab for SMC algorithms. In the setting where |ϕ| < 1,
the state and observation processes are stationary, with zero mean Gaussian marginal stationary
distributions with variances σ̃ 2 and σ̃ 2 + σ 2

v , respectively, where σ̃ 2 := σ 2
u /(1 − ϕ2). We let the

former initialise the state process.
Arguing along the lines of Section 5.1, Assumptions (A1)–(A2) are checked straightforwardly

also for this model. We leave the details to the reader.
After having generated, for the parameterisation (ϕ,σu, σv) = (0.98,0.2,1), an observation

record of 600 observations, the experiment in Section 5.1.1 was repeated for the same set of lag
sizes λ. As in the stochastic volatility example, the evolution of the N = 4000 particles followed
the same model dynamics as that generating the observations, and the reference value 1.102 of
the variance at n = 600 was obtained on the basis of 1000 predictor mean replicates. The outcome
is reported in Figure 5 and Table 2, which for this model indicate a somewhat even more robust
performance of our estimator with respect to the lag size; indeed, more or less all the lag sizes
in the interval �12,22� yield negligible biases, with only a slight increase of variance for the
larger ones. According to Table 2, λ = 18 yields the minimal bias. As in the previous example,
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Figure 4. The same plot as in Figure 3, but now for the full observation record comprising 3500 observa-
tions. For clarity, only every 35th estimate is plotted.

The CLE (corresponding to the lag size λ = 600) exhibits very unstable performance due to the
relatively high n-to-N ratio, with at least 75% of its estimates falling below the reference value.

Finally, using the lag λ = 18 extracted from the previous simulation, Algorithm 2 was re-
run 150 times on the same observation record ȳn−1

0 , n = 600, each run producing a sequence
{ηN 〈ȳm−1

0 〉(id)}nm=0 of particle predictor means, a sequence {σN,m(λ)〈ȳm−1
0 〉(id)}nm=0 of fixed-lag

variance estimates, and associated approximate 95% confidence intervals {Im}nm=0, each interval
given by

Im =
(

ηN

〈
ȳm−1

0

〉
id ± λ0.025

σN,m(λ)〈ȳm−1
0 〉(id)√
N

)
, (23)

where λ0.025 denotes the 2.5% quantile of the standard Gaussian distribution. As before, N was
set to 4000. In the case of effective variance estimation, one may expect each Im to fail to cover
the true predicted mean η〈ȳm−1

0 〉(id) with a probability close to 5%. Since we are in the setting
of a linear Gaussian model, the exact predictor means {η〈ȳm−1

0 〉(id)}nm=0 are accessible through
Kalman prediction, and we are thus able to assess the failure rates of the confidence intervals at
different time points. Such failure rates are reported in Figure 6, and the red-dashed line indicates
the perfect rate 5%. For readability, only every 10th time point is reported. Appealingly, it is clear
that the rates fluctuate constantly around 5%, without any notable time dependence. This recon-
firms the numeric stability of our fixed-lag variance estimator. The average failure rate across all
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Figure 5. Estimated asymptotic variances of the particle predictor mean at time 600 in the linear Gaussian
model (22). The particle population size is N = 4000. The boxes are based on 100 replicates of Algo-
rithm 2 and correspond to the different lags λ ∈ {2,10,12,14,16,18,20,22,50,100,200,600}. The ref-
erence value 1.102, which is indicated by blue-colored asterisks (∗), was obtained as the sample variance
(scaled by the number of particles) of 1000 independent replicates of the particle predictor mean at time
600 (again, Algorithm 2 used N = 4000 particles). Red-colored asterisks indicate average estimates of the
boxes.

600 time points was 5.5%. The fact that the average failure rate is slightly above the perfect rate
5% is in line with the fact that the bias of our estimator is always positive, as underestimation
of variance leads to more narrow confidence bounds and, consequently, higher failure rates. One
way of hedging against underestimation of variance could be to replace Gaussian quantiles by
the quantiles of some Student’s t -distribution with a moderate number of degrees of freedom.

6. Conclusion

The estimator of the SMC asymptotic variance that we propose is a natural modification of
the CLE introduced in [2]. As in [17,21], the main idea is to reduce the degree of genealogical
tracing, which has a devastating effect on the CLE’s numerical stability, at the cost of a small bias,
which may be controlled using the forgetting properties of the model. That this measure stabilises
numerically the estimator in the long run is confirmed by our theoretical results in Section 4,
which are obtained under—what we believe—minimal model assumptions being satisfied also
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Table 2. Means and standard deviations of the
variance estimates reported in Figure 5. The ref-
erence value is 1.102

λ Mean St. dev.

2 0.524 0.035
10 1.080 0.157
12 1.095 0.163
14 1.095 0.162
16 1.096 0.175
18 1.099 0.190
20 1.094 0.198
22 1.093 0.202
50 1.071 0.246

100 0.976 0.370
200 0.944 0.471
600 0.751 0.593

Figure 6. Failure rates of confidence bounds (23) at time points m ∈ {10,20,30, . . . ,600}. The red-dashed
line indicates the perfect rate 5%. The failure rate estimates are based on 150 runs of Algorithm 2 with
N = 4000 particles.
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for many models with possibly non-compact state space. The fact that the bias can be shown to
decrease geometrically fast as the lag increases indicates that tight control of the bias is possible
also for moderately large particle sample sizes. This is approved by our numerical experiments in
Section 5, which report, in the examples under consideration, a negligible bias already for some
thousands of particles.

Needless to say, the success of our approach depends highly on the interplay between the
forgetting properties of the model, the particle sample size, and the choice of the lag. Adaptive
lag design is hence a natural direction for future research. Moreover, as our estimator provides
numerically stable estimates of the asymptotic variance, it should be highly useful for online
SMC sample size adaptation. Here one natural approach could be to estimate the variance of
the next time step using a part of the particle population (pilot sampling) and then “refuel” the
particle system at time steps of high variance (here the techniques developed in [19], where the
authors consider the SMC sample allocation problem in the batch mode, should be useful for
the theoretical analysis). Finally, casting, using the results obtained in [20], our estimator and
analysis into the framework of Rao–Blackwellised SMC algorithms, should be of high relevance
for high-dimensional applications.

Appendix: Proofs

A.1. Proof of Proposition 5

The proof of Proposition 5 relies on the machinery developed in [19], from which we adopt the
following definitions. Throughout this section, let n ∈N and z̄n−1

0 ∈ Zn be picked arbitrarily.

• Denote by Bn := {0,1}n+1 the space of binary strings of length n + 1. The zero string of
length n + 1 is denoted by 0n and for m ∈ �0, n�, 1m denotes a unit string of length n + 1
with 1 on position m (with positions indexed from 0) and zeros everywhere else.

• For a given string b̄
n

0 ∈ Bn, a Markov chain {(Xm,X′
m)}nm=0 on (X2,X �2) is defined as

follows. If b0 = 0, then (X0,X
′
0) ∼ χ �2; otherwise, if b0 = 1, X′

0 = X0 ∼ χ (the initial dis-
tribution). After this, if bm+1 = 0, Xm+1 ∼ M(Xm, ·) and X′

m+1 ∼ M(X′
m, ·) conditionally

independently; otherwise, if bm+1 = 1, X′
m+1 = Xm+1 ∼ M(Xm, ·).

• With E
b̄
n
0

denoting the expectation under the law of {(Xm,X′
m)}nm=0, we define, for all

b̄
n

0 ∈ Bn, the measures

μ
b̄
n
0

〈
z̄n−1

0

〉 : X �2 � A �→ E
b̄
n
0

[
1A

(
Xn,X

′
n

) n−1∏
m=0

g〈zm〉(Xm)g〈zm〉(X′
m

)]
.

Note that for all h ∈ F(X ) it holds that μ0n〈z̄n−1
0 〉h�2 = (χQ〈z̄n−1

0 〉h)2 and μ1m〈z̄n−1
0 〉×

h�2 = χQ〈z̄m−1
0 〉1X × χQ〈z̄m−1

0 〉(Q〈z̄n−1
m 〉h)2, and defining

υm,n

〈
z̄n−1

0

〉 : F(X ) � h �→ μ1m〈z̄n−1
0 〉h�2 − μ0n〈z̄n−1

0 〉h�2

(χQ〈z̄n−1
0 〉1X)2
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yields for all h ∈ F(X ),

υm,n

〈
z̄n−1

0

〉
(h) = η〈z̄m−1

0 〉(Q〈z̄n−1
m 〉h)2

(η〈z̄m−1
0 〉Q〈z̄n−1

m 〉1X)2
− (

η
〈
z̄n−1

0

〉
h
)2

and, consequently, for all � ∈ �0, n�,

σ 2
�

〈
z̄n−1

0

〉
(h) =

n∑
m=�

υm,n

〈
z̄n−1

0

〉(
h − η

〈
z̄n−1

0

〉
h
)
. (24)

• For all N ∈ N
∗, let Fn := σ({ξ i

0}Ni=1, {ξ i
m, I i

m}Ni=1;m ∈ �1, n�) be the σ -field generated by
the output of Algorithm 1 during the first n iterations. Conditionally on Fn, a genealogical
trace Ḡ

n

0 is formed backwards in time by, first, drawing Gn uniformly over �1,N � and,

second, setting Gm = I
Gm+1
m+1 for all m ∈ �0, n−1�. In addition, a parallel trace Ḡ′n

0 is formed

by, first, drawing G′
n uniformly over �1,N � and, second, letting G′

m = I
G′

m+1
m+1 if G′

m+1 �=
Gm+1 or G′

m ∼ Cat({ωi
m/�m}Ni=1) otherwise.

The proof of the following lemma follows closely that of [19], Lemma 4 and is hence omitted.

Define for all � ∈ �0, n� and b̄
�

0 ∈ B�,

I�
(
b̄

�

0

) := {(
k̄
�

0, k̄
′�
0

) ∈ �1,N �2(�+1) : for all �′ ∈ �0, ��, k�′ = k′
�′ ⇔ b�′ = 1

}
.

Lemma 12. For all N ∈ N
∗ and m ∈ �0, n�,

{
EGn

m,n �= E
G′

n
m,n

} = {(
Ḡ

n

m, Ḡ′n
m

) ∈ In−m(0n−m)
}
.

In addition, define, for all N ∈N
∗, the measures

γN

〈
z̄n−1

0

〉 : X � A �→ 1

Nn+1

(
n−1∏
m=0

�m

)
N∑

i=1

1A

(
ξ i
n

)
(25)

and

μ
N,b̄

n
0

〈
z̄n−1

0

〉 : X �2 � A �→ N#1(b̄
n
0)

(
N

N − 1

)#0(b̄
n
0)(

γN

〈
z̄n−1

0

〉
1X

)2

×E
[
1A

(
ξGn
n , ξ

G′
n

n

)
1
{(

Ḡ
n

0, Ḡ′n
0

) ∈ In
(
b̄

n

0

)} | Fn

]
,

(26)

where #1(b̄
n

0) := ∑n
m=0 bm and #0(b̄

n

0) := n + 1 − #1(b̄
n

0) denote the numbers of ones
and zeros in b̄

n

0, respectively. Note that (25) implies that for all h ∈ F(X ), ηN 〈z̄n−1
0 〉h =

γN 〈z̄n−1
0 〉h/γN 〈z̄n−1

0 〉1X.
The following lemma, where first part is established in [19], Theorem 2 and the last part is a

standard result (see, e.g., [10] for results on the weak consistency of SMC), will be instrumental.
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Lemma 13. For all b̄
n

0 ∈ Bn and h ∈ F(X �2), as N → ∞,

μ
N,b̄

n
0

〈
z̄n−1

0

〉
h

P−→ μ
b̄
n
0

〈
z̄n−1

0

〉
h.

In addition, for all h ∈ F(X ),

γN

〈
z̄n−1

0

〉
h

P−→ χQ
〈
z̄n−1

0

〉
h.

Proof of Proposition 5. Fix � ∈ �0, n� and define for all N ∈N
∗,

ϕN,�

〈
z̄n−1

0

〉 :X �2 � A �→ (
γN

〈
z̄n−1

0

〉
1X

)2

×E
[
1A

(
ξGn
n , ξ

G′
n

n

)
1
{(

Ḡ
n

� , Ḡ
′n
�

) ∈ In−�(0n−�)
} | Fn

]
.

First, note that by Lemma 12, since Gn and G′
n are conditionally independent and uniformly

distributed over �1,N �, for all h ∈ F(X ),

1

N2

N∑
i=1

( ∑
j :Ej

�,n=i

h
(
ξ

j
n

))2

= 1

N2

∑
(i,j):Ei

�,n=E
j
�,n

h
(
ξ i
n

)
h
(
ξ

j
n

)

= (
ηN

〈
z̄n−1

0

〉
h
)2 − 1

N2

∑
(i,j):Ei

�,n �=E
j
�,n

h
(
ξ i
n

)
h
(
ξ

j
n

)

= (
ηN

〈
z̄n−1

0

〉
h
)2 − ϕN,�〈z̄n−1

0 〉h�2

(γN 〈z̄n−1
0 〉1X)2

.

(27)

It is hence enough to prove that for all N ∈N
∗ and h ∈ F(X ),

N
{(

γN

〈
z̄n−1

0

〉
h
)2 − ϕN,�

〈
z̄n−1

0

〉
h�2}

=
n∑

m=�

(
μN,1m

〈
z̄n−1

0

〉
h�2 − μN,0n

〈
z̄n−1

0

〉
h�2) + (n − � + 1)

(
γN

〈
z̄n−1

0

〉
h
)2

+ ‖h‖2∞O
(
N−1),

(28)

where the O(N−2) term does not depend on h; indeed, along the lines of the proof of [19],
Theorem 1, Lemma 13 implies that for all b̄

n

0 ∈ Bn, as N → ∞,

μN,b̄
n
0

〈
z̄n−1

0

〉{
h − ηN

〈
z̄n−1

0

〉
h
}�2 P−→ μ

b̄
n
0

〈
z̄n−1

0

〉{
h − η

〈
z̄n−1

0

〉
h
}�2

,
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and (28) hence yields, with � = n(λ) and when combined with (27) and (24), again as N → ∞,

σ 2
N,λ

〈
z̄n−1

0

〉
(h)

=
n∑

m=n(λ)

μN,1m〈z̄n−1
0 〉{h − ηN 〈z̄n−1

0 〉h}�2 − μN,0n〈z̄n−1
0 〉{h − ηN 〈z̄n−1

0 〉h}�2

(γN 〈z̄n−1
0 〉1X)2

+ ‖h‖2∞O
(
N−1) P−→ σ 2

n(λ)

〈
z̄n−1

0

〉
(h).

(29)

In order to establish (28), write, using that Gn and G′
n are, given Fn, conditionally independent

and uniformly distributed over �1,N �,

(
γN

〈
z̄n−1

0

〉
h
)2 − ϕN,�

〈
z̄n−1

0

〉
h�2

= (
γN

〈
z̄n−1

0

〉
1X

)2 ∑
b̄
n
0∈Bn

E
[
h
(
ξGn
n

)
h
(
ξ

G′
n

n

)
1
{(

Ḡ
n

0, Ḡ′n
0

) ∈ In
(
b̄

n

0

)} | Fn

]
(30)

− (
γN

〈
z̄n−1

0

〉
1X

)2 ∑
b̄
n
0∈Bn:b̄n

�=0n−�

E
[
h
(
ξGn
n

)
h
(
ξ

G′
n

n

)
1
{(

Ḡ
n

0, Ḡ′n
0

) ∈ In
(
b̄

n

0

)} |Fn

]

and note that, by definition (26),

(
γN

〈
z̄n−1

0

〉
1X

)2 ∑
b̄
n
0∈Bn

E
[
h
(
ξGn
n

)
h
(
ξ

G′
n

n

)
1
{(

Ḡ
n

0, Ḡ′n
0

) ∈ In
(
b̄

n

0

)} | Fn

]

= 1

N

n∑
m=0

μN,1m

〈
z̄n−1

0

〉
h�2 +

(
1 − 1

N

)n+1

μN,0n

〈
z̄n−1

0

〉
h�2 + ‖h‖2∞O

(
N−2) (31)

= 1

N

n∑
m=0

(
μN,1m

〈
z̄n−1

0

〉
h�2 − μN,0n

〈
z̄n−1

0

〉
h�2) + μN,0n

〈
z̄n−1

0

〉
h�2 + ‖h‖2∞O

(
N−2).

Similarly,

(
γN

〈
z̄n−1

0

〉
1X

)2 ∑
b̄
n
0∈Bn:b̄n

�=0n−�

E
[
h
(
ξGn
n

)
h
(
ξ

G′
n

n

)
1
{(

Ḡ
n

0, Ḡ′n
0

) ∈ In
(
b̄

n

0

)} | Fn

]

= 1

N

�−1∑
m=0

(
μN,1m

〈
z̄n−1

0

〉
h�2 − μN,0n

〈
z̄n−1

0

〉
h�2) + μN,0n

〈
z̄n−1

0

〉
h�2

− n − � + 1

N
μN,0n

〈
z̄n−1

0

〉
h�2 + ‖h‖2∞O

(
N−2),

(32)

and combining (30), (31), (32), and the fact that μ0n〈z̄n−1
0 〉h�2 = (χQ〈z̄n−1

0 〉h)2 yields (28).
This completes the proof. �
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A.2. Proof of Theorem 6

In the proof of Theorem 6, the asymptotic bias is bounded using the time-shift approach taken in
[12], Theorem 10. Even though the theoretical analysis provided in [12] is cast into the frame-
work of general state-space models, it never makes use of the fact that g is a normalised transition
density. As stressed in [12], Remark 1, it is hence directly applicable to the framework of ran-
domly perturbed Feynman–Kac models in Section 2.2.

Proof. Pick arbitrarily n ∈ N, λ ∈ N, h ∈ F(X ), and χ ∈ M(D, r). By defining, for all m ∈ N,
� ∈ �0,m − 1�, z̄m−1

� ∈ Zm−�, and measures (μ,μ′) ∈M(X )2,

�μ,μ′
〈
z̄m−1
�

〉 : F(X )2 � (
h,h′) �→ μQ

〈
z̄m−1
�

〉
h × μ′Q

〈
z̄m−1
�

〉
h′

− μQ
〈
z̄m−1
�

〉
h′ × μ′Q

〈
z̄m−1
�

〉
h,

(33)

we may, using the identity

η
〈
ζ̄

m−1
0

〉
Q

〈
ζ̄

n−1
m

〉
1X = χQ〈ζ̄ n−1

0 〉1X

χQ〈ζ̄ m−1
0 〉1X

=
n−1∏
�=m

χQ〈ζ̄ �
0〉1X

χQ〈ζ̄ �−1
0 〉1X

=
n−1∏
�=m

η
〈
ζ̄

�−1
0

〉
g〈ζ�〉,

for all m ∈ �0, n�, write the asymptotic bias at time n as

βλ

〈
ζ̄

n−1
0

〉
(h) =

n(λ)−1∑
m=0

∫
η
〈
ζ̄

m−1
0

〉
(dx)

(�
δx,η〈ζ̄ m−1

0 〉〈ζ̄
n−1
m 〉(h,1X)

[∏n−1
�=m η〈ζ̄ �−1

0 〉g〈ζ�〉]2

)2

. (34)

In addition, under the assumptions of the theorem, [11], Proposition 1 provides the existence of
a function π : Z∞ →R such that for all initial distributions χ ∈M(D, r),

lim
m→∞η

〈
ζ̄

−1
−m

〉
g〈ζ0〉 = π

〈
ζ̄

0
−∞

〉
, P-a.s.

Since the perturbations {ζn}n∈Z are stationary, the distribution of βλ〈ζ̄ n−1
0 〉(h) coincides with

that of the time-shifted bias βλ〈ζ̄−1
−n〉(h), and a key step in the present proof is to express, via

(34), the latter as

βλ

〈
ζ̄

−1
−n

〉
(h)

=
n(λ)−1∑
m=0

∫
η
〈
ζ̄

−n+n(λ)−m−2
−n

〉
(dx)

(�
δx,η〈ζ̄−n+n(λ)−m−2

−n 〉〈ζ̄
−1
−n+n(λ)−m−1〉(h,1X)

[∏n−n(λ)+m+1
�=1 η〈ζ̄−�−1

−n 〉g〈ζ−�〉]2

)2

.

We hence obtain the bound

βλ

〈
ζ̄

−1
−n

〉
(h) ≤ An × Bn, (35)
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where

An :=
(

sup
(k,m)∈Z2:−n≤k≤m

m−1∏
�=k

π〈ζ̄ �
−∞〉

η〈ζ̄ �−1
−n 〉g〈ζ�〉

)4

,

Bn :=
n(λ)−1∑
m=0

( supx∈X |�
δx,η〈ζ̄−n+n(λ)−m−2

−n 〉〈ζ̄
−1
−n+n(λ)−m−1〉(h,1X)|

[∏n−n(λ)+m+1
�=1 π〈ζ̄−�

−∞〉]2

)2

.

To bound uniformly the sequence {Bn}n∈N, decompose each term according to

supx∈X |�
δx,η〈ζ̄−n+n(λ)−m−2

−n 〉〈ζ̄
−1
−n+n(λ)−m−1〉(h,1X)|

[∏n−n(λ)+m+1
�=1 π〈ζ̄−�

−∞〉]2

=
(‖Q〈ζ̄−1

−n+n(λ)−m−1〉1X‖∞∏n−n(λ)+m+1
�=1 π〈ζ̄−�

−∞〉

)2

×
supx∈X |�

δx,η〈ζ̄−n+n(λ)−m−2
−n 〉〈ζ̄

−1
−n+n(λ)−m−1〉(h,1X)|

‖Q〈ζ̄−1
−n+n(λ)−m−1〉1X‖2∞

.

(36)

We consider separately the two factors of (36). First,

(‖Q〈ζ̄−1
−n+n(λ)−m−1〉1X‖∞∏n−n(λ)+m+1

�=1 π〈ζ̄−�
−∞〉

)2

= exp
{(

n − n(λ) + m + 1
)
εn−n(λ)+m+1

}
, (37)

with

εk := 2

k

(
ln

∥∥Q
〈
ζ̄

−1
−k

〉
1X

∥∥∞ −
k∑

�=1

lnπ
〈
ζ̄

−�
−∞

〉)

being independent of χ for all k ∈ N
∗. By [12], Lemma 17, εk → 0, P-a.s., as k → ∞, which

implies that (37) grows at most subgeometrically fast with m. In addition, by [12], Proposi-
tion 16(iii) there exists a constant ρ ∈ (0,1) and a P-a.s. finite random variable D such that for
all n and m, all h ∈ F(X ), and all χ ∈M(X ), P-a.s.,

supx∈X |�
δx,η〈ζ̄−n+n(λ)−m−2

−n 〉〈ζ̄
−1
−n+n(λ)−m−1〉(h,1X)|

‖Q〈ζ̄−1
−n+n(λ)−m−1〉1X‖2∞

≤ Dρn−n(λ)+m+1‖h‖∞.

Thus, P-a.s.,

Bn ≤ D2‖h‖2∞
n(λ)−1∑
m=0

ρ2(n−n(λ)+m+1) exp
{
2
(
n − n(λ) + m + 1

)
εn−n(λ)+m+1

}
.
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If n ≤ λ, then n(λ) = 0, and the bias vanishes. Thus, we assume in the following that λ < n,
which means that n(λ) = n − λ. Then, by the Cauchy–Schwarz inequality, P-a.s.,

Bn ≤ D2‖h‖2∞
∞∑

m=λ+1

ρ2m exp(2mεm)

≤ D2‖h‖2∞

( ∞∑
m=λ+1

ρ2m

)1/2( ∞∑
m=λ+1

ρ2m exp(4mεm)

)1/2

≤ D2‖h‖2∞ρλ+1

( ∞∑
m=0

ρ2m

)1/2( ∞∑
m=0

ρ2m exp(4mεm)

)1/2

= C‖h‖2∞ρλ+1,

(38)

where random variable

C := D2

( ∞∑
m=0

ρ2m

)1/2( ∞∑
m=0

ρ2m exp(4mεm)

)1/2

is P-a.s. finite and independent of λ, h, and χ . For c ∈ R+, write, using (35) and (38),

P

(
βλ〈ζ̄ n−1

0 〉(h)

ρλ+1‖h‖2∞
> c

)
= P

(
βλ〈ζ̄−1

−n〉(h)

ρλ+1‖h‖2∞
> c

)
≤ P(AnC > c),

where the probability on the right hand side is again independent of λ, h, or χ . Thus, using the
stationarity of {An}n∈N,

P

(
βλ〈ζ̄ n−1

0 〉(h)

ρλ+1‖h‖2∞
> c

)
≤ P

(
A0 > c1/2) + P

(
C > c1/2),

where the right-hand side does not depend on n. Now, the P-a.s. finiteness of A0 was established
as a part of the proof of [12], Theorem 10. Consequently, as also C is P-a.s. finite, there exists,
for all k ∈N

∗, a constant ck ∈ R+, independent of λ, h, and χ , such that the probabilities P(A0 >

c
1/2
k ) and P(C > c

1/2
k ) are both bounded by 1/(2k). This completes the proof. �

A.3. Proof of Proposition 8

Proof. The proof consists mainly in combining some of the equalities in the proof of Proposi-
tion 5 with the identity

{
g〈zn〉

(
h − η̄N

〈
z̄n

0

〉
h
)}�2 = (

g〈zn〉h
)�2 − {(

g〈zn〉h
)

� g〈zn〉
}
η̄N

〈
z̄n

0

〉
h

− {
g〈zn〉 �

(
g〈zn〉h

)}
η̄N

〈
z̄n

0

〉
h + g〈zn〉�2(η̄N

〈
z̄n

0

〉
h
)2

.

(39)
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More specifically, as it holds that

ηN

〈
z̄n−1

0

〉(
g〈zn〉

{
h − η̄N

〈
z̄n

0

〉
h
}) = 0, (40)

by reusing the equality in (29),

σ 2
N,λ

〈
z̄n−1

0

〉(
g〈zn〉

{
h − η̄N

〈
z̄n

0

〉
h
})

=
n∑

m=n(λ)

μN,1m〈z̄n−1
0 〉{g〈zn〉(h − η̄N 〈z̄n

0〉h)}�2 − μN,0n〈z̄n−1
0 〉{g〈zn〉(h − η̄N 〈z̄n

0〉h)}�2

(γN 〈z̄n−1
0 〉1X)2

+ ∥∥g〈zn〉
∥∥2

∞‖h‖2∞O
(
N−1).

(41)

Now, write, using (39), for all b̄
n

0 ∈ Bn,

μ
N,b̄

n
0

〈
z̄n−1

0

〉{
g〈zn〉

(
h − η̄N

〈
z̄n

0

〉
h
)}�2

= μ
N,b̄

n
0

〈
z̄n−1

0

〉(
g〈zn〉h

)�2

− μ
N,b̄

n
0

〈
z̄n−1

0

〉{(
g〈zn〉h

)
� g〈zn〉

}
η̄N

〈
z̄n

0

〉
h − μ

N,b̄
n
0

〈
z̄n−1

0

〉{
g〈zn〉 �

(
g〈zn〉h

)}
η̄N

〈
z̄n

0

〉
h

+ μ
N,b̄

n
0

〈
z̄n−1

0

〉
g〈zn〉�2(η̄N

〈
z̄n

0

〉
h
)2

.

(42)

Applying Lemma 13 to each term of (42) (note that the second part of Lemma 13 implies the
consistency of the updated particle measures, as

η̄N

〈
z̄n

0

〉
h = ηN 〈z̄n−1

0 〉(g〈zn〉h)

ηN 〈z̄n−1
0 〉g〈zn〉

P−→ χQ〈z̄n−1
0 〉(g〈zn〉h)

χQ〈z̄n−1
0 〉g〈zn〉

= η̄
〈
z̄n

0

〉
h (43)

when N tends to infinity, a now classical result) yields, using again (39),

μ
N,b̄

n
0

〈
z̄n−1

0

〉{
g〈zn〉

(
h − η̄N

〈
z̄n

0

〉
h
)}�2

P−→ μ
b̄
n
0

〈
z̄n−1

0

〉(
g〈zn〉h

)�2

− μ
b̄
n
0

〈
z̄n−1

0

〉{(
g〈zn〉h

)
� g〈zn〉

}
η̄
〈
z̄n

0

〉
h − μ

b̄
n
0

〈
z̄n−1

0

〉{
g〈zn〉 �

(
g〈zn〉h

)}
η̄
〈
z̄n

0

〉
h

+ μ
b̄
n
0

〈
z̄n−1

0

〉
g〈zn〉�2(η̄〈

z̄n
0

〉
h
)2 = μ

b̄
n
0

〈
z̄n−1

0

〉{
g〈zn〉

(
h − η̄

〈
z̄n

0

〉
h
)}�2

,

as N tends to infinity. Now, applying the previous limit to (41) and using (24), (40), and the
second part of Lemma 13 yields

σ̄ 2
N,λ

〈
z̄n

0

〉
(h) = σ 2

N,λ〈z̄n−1
0 〉(g〈zn〉{h − η̄N 〈z̄n

0〉h})
(ηN 〈z̄n−1

0 〉g〈zn〉)2
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P−→ σ 2
λ 〈z̄n−1

0 〉(g〈zn〉{h − η̄〈z̄n
0〉h})

(η〈z̄n−1
0 〉g〈zn〉)2

= σ̄ 2
λ

〈
z̄n

0

〉
(h)

as N tends to infinity, which completes the proof. �

A.4. Proof of Theorem 9

Proof. Pick arbitrarily n ∈ N, λ ∈ N, and h ∈ F(X ). Using the expression of σ̄ 2〈ζ̄ n
0〉(h) derived

in the proof of [12], Theorem 11, one may express the bias β̄λ〈ζ̄ n
0〉(h) as

β̄λ

〈
ζ̄

n
0

〉
(h) =

n(λ)−1∑
m=0

∫
η
〈
ζ̄

m−1
0

〉
(dx)

(�
δx,η〈ζ̄ m−1

0 〉〈ζ̄
n−1
m 〉(g〈ζn〉h,g〈ζn〉)

(η〈ζ̄ m−1
0 〉Q〈ζ̄ n−1

m 〉1X)2

)2

,

where �
δx,η〈ζ̄ m−1

0 〉〈ζ̄
n−1
m 〉(g〈ζn〉h,g〈ζn〉) is given by (33). Thus, the proof is finalised by follow-

ing closely the lines of the proof of Theorem 6 and noting that the statement of [12], Proposi-
tion 16(iii) still holds true when h and 1X are replaced by g〈ζn〉h and g〈ζn〉, respectively. �

A.5. Proof of Theorem 10

Proof. If n ≤ λ, the bias vanishes by definition; we thus assume that n > λ. Write, for m ∈
�0, n − λ� and x ∈ X,

Q〈z̄n−1
m 〉(h − η〈z̄n−1

0 〉h)(x)

η〈z̄m−1
0 〉Q〈z̄n−1

m 〉1X

= δxQ〈z̄n−1
m 〉1X

η〈z̄m−1
0 〉Q〈z̄n−1

m 〉1X

(
δxQ〈z̄n−1

m 〉h
δxQ〈z̄n−1

m 〉1X
− η〈z̄m−1

0 〉Q〈z̄n−1
m 〉h

η〈z̄m−1
0 〉Q〈z̄n−1

m 〉1X

)
,

(44)

where [5], Proposition 4.3.4 bounds uniformly the second factor of (44) according to

∣∣∣∣ δxQ〈z̄n−1
m 〉h

δxQ〈z̄n−1
m 〉1X

− η〈z̄m−1
0 〉Q〈z̄n−1

m 〉h
η〈z̄m−1

0 〉Q〈z̄n−1
m 〉1X

∣∣∣∣ ≤ �n−m‖h‖∞. (45)

To bound the first factor of (44), note that

η
〈
z̄m−1

0

〉
Q

〈
z̄n−1
m

〉
1X = η̄

〈
z̄m−1

0

〉
M

(
g〈zm〉MQ

〈
z̄n−1
m+1

〉
1X

) ≥ ¯δ¯εμQ
〈
z̄n−1
m+1

〉
1X

and

δxQ
〈
z̄n−1
m

〉
1X = g〈zm〉(x)MQ

〈
z̄n−1
m+1

〉
1X(x) ≤ δ̄ε̄μQ

〈
z̄n−1
m+1

〉
1X,
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where (¯ε, ε̄) and (¯δ, δ̄) are given in (S)(ii), implying that

δxQ〈z̄n−1
m 〉1X

η〈z̄m−1
0 〉Q〈z̄n−1

m 〉1X

≤ δ̄ε̄

¯δ¯ε
. (46)

Now, using (45) and (46), proceed like

βλ

〈
z̄n−1

0

〉
(h) =

n−λ−1∑
m=0

η〈z̄m−1
0 〉{Q〈z̄n−1

m 〉(h − η〈z̄n−1
0 〉h)}2

(η〈z̄m−1
0 〉Q〈z̄n−1

m 〉1X)2

≤ ‖h‖2∞
(

δ̄ε̄

¯δ¯ε
)2 n−λ−1∑

m=0

�2(n−m) ≤ c‖h‖2∞�2(λ+1),

with c := (δ̄ε̄/¯δ¯ε)
2/(1 − �2), and the proof is complete. �
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