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We propose discrete random-field models that are based on random partitions of N2. The covariance struc-
ture of each random field is determined by the underlying random partition. Functional central limit the-
orems are established for the proposed models, and fractional Brownian sheets, with full range of Hurst
indices, arise in the limit. Our models could be viewed as discrete analogues of fractional Brownian sheets,
in the same spirit that the simple random walk is the discrete analogue of the Brownian motion.
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1. Introduction

In this paper, we propose random-field models that are based on random partitions, and show that
their partial-sum random fields scale to fractional Brownian sheets. Our motivation came from
three recent papers, one by Hammond and Sheffield [12] and two by the authors and collaborator
[3,9], where it was shown that fractional Brownian motions and some operator-scaling Gaus-
sian random fields (that can be viewed as random-field generalizations of fractional Brownian
motions, see [4]) may arise as the scaling limits of certain stochastic models, the dependence
structure of which is essentially determined by certain random partitions of N = {1,2, . . .}. We
start by briefly recalling the results in one dimension.

The two papers [9,12] established functional central limit theorems for fractional Brownian
motions based on two different random partitions. In each model, there is an underlying random
partition of the integers {1, . . . , n}, and conditioning on the random partition, ±1-valued random
spins X1, . . . ,Xn are assigned, in certain ways to be specified later. The advantage of taking
random spins is that in this way, the covariances of the partial sums are determined by the under-
lying random partitions. By appropriately choosing the random partition and the assignment rule
of random spins, the partial sum Sn = X1 + · · · + Xn scales to a fractional Brownian motion as
n → ∞ in the form of {

S�nt�
nH L(n)

}
t∈[0,1]

⇒ {
B

H
t

}
t∈[0,1] (1.1)
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in D([0,1]) as n → ∞, where L is a slowly varying function at infinity and B
H on the right-

hand side above denotes the fractional Brownian motion with Hurst index H ∈ (0,1), a centered
Gaussian process with covariance function

Cov
(
B

H
s ,BH

t

) = 1

2

(
t2H + s2H − |t − s|2H

)
, s, t ≥ 0.

Throughout, ⇒ stands for convergence in distribution and D([0,1]) for the space of càdlàg
functions equipped with the Skorohod topology [5].

The models in [9,12] are different in both the underlying random partitions and the ways of
assigning ±1 spins, and they lead to different ranges of Hurst index: H ∈ (0,1/2) in [9] and
H ∈ (1/2,1) in [12]. The partial sum Sn can be interpreted as a correlated random walk and
provides a simple discrete counterpart to the fractional Brownian motion, in the same spirit that
the simple random walk can be viewed as the discrete counterpart of the Brownian motion.

In view of the non-standard normalization nH L(n) in (1.1) instead of n1/2 for Sn of the
i.i.d. random variables, such models are sometimes referred to as having long-range dependence
[26,30]. Moreover, the fractional Brownian motion in the limit characterizes the non-negligible
dependence at macroscopic scale of the discrete model when H 	= 1/2 (recall that B1/2 is a
standard Brownian motion). Such limit theorems are of special interest for the study of long-
range dependence, as they often reveal different types of dynamics underlying certain common
long-range dependence phenomena. Namely, drastically different models may lead to the same
stochastic process with long-range dependence, and fractional Brownian motions often show up
in such limit theorems. Fractional Brownian motions, first considered by Kolmogorov [18] and
studied rigorously by Mandelbrot and Van Ness [21], are arguably the most important stochastic
processes in the investigation of long-range dependence: it is well known now that fractional
Brownian motions arise in limit theorems on models from various areas, including finance [17],
telecommunications [23], interacting particle systems [25], aggregation of correlated random
walks [10], just to mention a few.

Results in [9,12] provide a new class of examples for long-range dependence: they may arise
in the presence of certain random partitions. Such a point of view, to the best of our knowl-
edge, has been rarely explored before. Our motivation is to demonstrate that the random-partition
mechanism behind the long-range dependence phenomena in the aforementioned papers remains
at work in a natural random-field setup. The generalization of aforementioned one-dimensional
random partitions to high dimensions, however, is far from being unique. A first attempt has been
successfully worked out in [3], where certain operator-scaling Gaussian random fields appear in
the limit (see Remark 3.4).

Here we continue to explore other possibilities of random-field extensions. In particular, we
shall propose three random-field extensions of the one-dimensional models, and show that the
partial sums of proposed models scale to fractional Brownian sheets. Our limit theorems shall
cover the full range of Hurst indices for the fractional Brownian sheets. This is in sharp contrast
to the previous random-field model investigated earlier in [3], where the limit random fields are
most of the time not fractional Brownian sheets. This reflects the fact that the random partitions
considered here are essentially different from the ones considered in [3], and hence our models
and limit theorems here complement the ones therein.
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Recall that a fractional Brownian sheet with Hurst index H = (H1,H2) ∈ (0,1)2 is a multi-
parameter zero-mean Gaussian process {BH

t }t∈R2+ with covariance

Cov
(
B

H
s ,BH

t

) =
2∏

q=1

1

2

(
t
2Hq
q + s

2Hq
q − |tq − sq |2Hq

)
, t, s ∈ R

2+.

Fractional Brownian sheets are random-field generalizations of fractional Brownian motions pro-
posed by Kamont [15]. These are centered Gaussian processes that are operator-scaling (gener-
alization of self-similarity to random fields, see e.g. [4]) and with stationary rectangular incre-
ments. In the special case H1 = H2 = 1/2, the fractional Brownian sheet becomes the standard
Brownian sheet, the random-field generalization of Brownian motion. For other Hurst indices,
fractional Brownian sheets exhibit anisotropic long-range dependence. Representation and path
properties of these random fields have been extensively investigated. See for example the re-
cent survey by Xiao [33]. Stochastic partial differential equations driven by fractional Brownian
sheets have also been studied (see, e.g., [13,24]). At the same time, fractional Brownian sheets
are not the only operator-scaling random fields with stationary rectangular increments. There are
other random fields with long-range dependence which could also be viewed as generalization of
fractional Brownian motions. Limit theorems for fractional Brownian sheets and other Gaussian
random fields with long-range dependence, however, have not been as much developed as for
fractional Brownian motions. Recent developments in this direction include for examples limit
theorems for linear random fields [19,32], for set-indexed fields [2], and for aggregated models
[29,31].

Now we describe our models, which are extensions of the one-dimensional models in [9,12] to
two dimensions, in more details. For these one-dimensional models, we first introduce a random
partition of N into different components, where each component may have possibly an infinite
number of elements. Next, given a random decomposition {Ck}k∈N of N, for each component
C we sample XC = {Xi}i∈C according to a specific assignment rule, applied in an independent
manner to all components {XCk

}k∈N. For these models, each Xi takes the values ±1 only. We
consider two possible assignment rules:

Identical assignment rule. Assign the same values for all Xi in the same component. The
identical value is either 1 or −1, with equal probabilities.

Alternating assignment rule. Assign ±1 values in an alternating manner with respect to the
natural order on N, for Xi in the same component. Given a component, there are two such ways
of assigning ±1 values, and one of them is chosen with probability 1/2. For example, given a
component C = {1,2,5}, the alternating assignment rule assigns (1,−1,1) or (−1,1,−1) with
equal probabilities to (X1,X2,X5).

In particular, the Hammond–Sheffield model in [12] is based on a random partition of N in-
duced by a random forest with infinite components, each being an infinite tree, and the identical
assignment rule (the random forest induces actually a random partition of Z). The model in [9]
is based on an exchangeable random partition on N [27] induced by a certain infinite urn scheme
and the alternating assignment rule. It is a modification of a model originally investigated in
Karlin [16], and hence we refer to the model as the randomized Karlin model. The two models
will be recalled in full detail in later sections. Note that this framework of building stationary
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Figure 1. A component from a product of partitions. Left: component {1,2,4,5,6}×{1,2,4,6,7}. Middle:
alternating assignment rule of 1 (black) and −1 (white) values. Right: mixture of identical assignment rule
in horizontal direction and alternating assignment rule in vertical direction.

sequences based on random partitions and assignment rules also includes the example of inde-
pendent ±1 spins, of which the partial-sum process is well known to scale to a Brownian motion.
To achieve this, it suffices to take the finest partition of N, that is, each component corresponds
exactly to one element from N, and then apply either assignment rule (the two are the same in
this case).

Our random-field models are based on random partitions of N2 obtained as the product of two
independent random partitions of N. Namely, let C(q) = {C(q)

i }i∈N, q = 1,2, be two partitions of
N. Let C = C(1) × C(2) denote the partition of N2 whose components are the Cartesian products
C(1)

i × C(2)
j for all i, j ∈ N (e.g., {1,2} × {1,3} = {(1,1), (1,3), (2,1), (2,3)} is a subset of N2).

Once the random partition is given, one of the two assignment rules is applied in each direction.
Figure 1 illustrates the product of partitions (left), the alternating assignment rule (middle), and
an assignment rule of mixed type (right).

We shall investigate the partial-sum random fields of three ±1-valued models, each converging
to fractional Brownian sheets in a different regime in terms of the Hurst indices. The contributions
of the paper are summarized here.

(i) In Section 2, we propose a generalization of the randomized Karlin model and show that
the partial-sum random field scales to a fractional Brownian sheet with H ∈ (0,1/2)2.

(ii) In Section 3, we propose a generalization of the Hammond–Sheffield model and show that
the partial-sum random field scales to a fractional Brownian sheet with H ∈ (1/2,1)2.

(iii) In Section 4, we propose a model that can be viewed as a combination of the Hammond–
Sheffield model and the randomized Karlin model, and show that the partial-sum random
field scales to a fractional Brownian sheet with H ∈ (1/2,1) × (0,1/2).

More specifically, our main results Theorems 2.2, 3.3, and 4.1 are limit theorems in the form
of

1

ZH (n)

{ ∑
i∈[1,�n·t�]

Xi

}
t∈[0,1]2

⇒ {
B

H
t

}
t∈[0,1]2
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in D([0,1]2) as min(n1, n2) → ∞, where ZH (n) is an appropriate normalization depending
on the model (and hence on H ). Our models can thus be viewed as discrete counterparts of
fractional Brownian sheets. Throughout, for any element a ∈ R

2, we write a = (a1, a2) and for
any a,b ∈ Z

2, we write [a,b] = ([a1, b1] × [a2, b2]) ∩ Z
2 the set of points in the rectangle

[a1, b1] × [a2, b2] with integer coordinates. We also use the notation �n · t� = (�n1t1�, �n2t2�)
where �·� stands for the integer part.

The proofs for the two-dimensional randomized Karlin model and the other two models are
completely different. For the randomized Karlin model, conditioning on the partition structure,
the partial sums become sums of i.i.d. random variables. For the other two models, the proof
is based on a martingale central limit theorem due to McLeish [22], already used for the one-
dimensional Hammond–Sheffield model. However, the proofs for two-dimensional models are
much more demanding than their one-dimensional counterpart, as in general, the martingale
central limit theorem does not work as well for random fields as for stationary sequences, as
pointed out by Bolthausen [7] already in the 80s. Indeed, for the one-dimensional Hammond–
Sheffield model, the normalized partial sum Sn = X1 + · · · + Xn can be expressed as

Sn

bn

= 1

bn

∑
j∈Z

bn,jX
∗
j

for a stationary sequence of martingale differences {X∗
j }j∈Z and some coefficients bn,j , with

b2
n = ∑

j∈Z b2
n,j . This is a remarkable representation at the heart of the proof; see [3] (the proof

in [12] did not use directly this convenient presentation, but applied nevertheless an argument
by martingale approximation). Then, to prove the weak convergence, by McLeish’s central limit
theorem, the key step is to show

lim
n→∞

1

b2
n

∑
j∈Z

b2
n,j

(
X∗

i

)2 = Var
(
X∗

0

)
in probability. (1.2)

This requires already an involved argument in one dimension; see [12], Lemma 3.2, and [3],
Lemma 7.

In two dimensions, the situation becomes even more complicated as now the partial sum Sn =∑
i∈[1,n] Xi is expressed (Proposition 3.6 below) as

Sn

bn
= 1

b
(1)
n1

∑
j∈Z

b
(1)
n1,j

Uj,n2 ,

where {Uj,n2}j∈Z is a stationary martingale-difference sequence with respect to the filtration
corresponding to the first direction. The new difficulty of the random-field models comes from
the fact that the martingale differences now also depend on n2 and the dependence structure of
the random partition in the second direction. To overcome the new difficulty, at the core of our
proofs for the counterpart of (1.2) is a decoupling argument. See Section 3.4.

We conclude the Introduction with a few remarks.
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Remark 1.1. If one searches for a similar random field that scales to a fractional Brownian sheet
with Hurst index 1/2 in one direction, one can modify the proposed model by taking instead the
finest partition (each integer consists of a component) in that direction. Such a model and its
analysis are much easier. The details are omitted.

Remark 1.2. It will become clear that our constructions are not limited to two dimensions only.
Our limit theorems could also be extended accordingly to high dimensions, where the limit ran-
dom fields cover fractional Brownian sheets with all legitimate indices. For high-dimensional
models and the corresponding limit theorems, the analysis can be carried out by an induction
argument, but will be notationally heavy. Therefore, in this paper we focus on two dimensions,
and only discuss the high dimension in Remark 4.4 at the end.

Remark 1.3. Our application of martingale central limit theorem is of a different nature from and
much more complicated than the one for the other random-field extension in [3] (see Remark 3.4).
There the partial sum can be expressed as a linear random field in the form of

Sn

bn
= 1

bn

∑
j∈Zd

bn,jX∗
j , n ∈N

d, (1.3)

with a stationary sequence of martingale differences {X∗
j }j∈Zd in the lexicographical order for

all d ∈ N, whence the analysis becomes dimension-free. To the best of our knowledge, the model
in [3] is one of the very rare examples in the literature where a one-dimensional sequence of
stationary martingale differences can be elegantly embedded into the presentation of the partial
sums of a high-dimensional random field. In general, embedding with respect to the lexicographi-
cal order could be formidable [8], and the simple representation (1.3) seems rather a coincidence.

2. Randomized Karlin model

In this section, we introduce the two-dimensional randomized Karlin model, and show that the
partial-sum random field scales to a fractional Brownian sheet with Hurst index H ∈ (0,1/2)2.

2.1. One-dimensional model

We first recall the one-dimensional randomized Karlin model [9,16]. Let {Yn}n∈N be i.i.d. random
variables with common distribution μ on N. They induce a partition �∞ of N by setting in the
same equivalent class (component), denoted by i ∼ j , if and only if Yi = Yj . Intuitively, imagine
that we throw balls consecutively and independently into boxes labeled by N, and set Yn = � if
the nth ball falls into the box with label �. This event occurs with probability p� = μ({�}), and
i ∼ j if and only if the balls at round i and j fall in the same box. The partition obtained this
way is an infinite exchangeable random partition of N, sometimes referred to as the partition
generated by random samplings, or the paintbox partition [27]. Many estimates of this random
partition that we apply here can be found in [11,16].
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Throughout, we assume that {p�}�∈N is a non-increasing sequence (this can always be assumed
because the attached value of each label is irrelevant) and that for some α ∈ (0,1),

ν(x) = max{� ≥ 1 : p� ≥ 1/x} ∼ xαL(x) as x → ∞, (2.1)

where L is a slowly varying function at ∞. Without loss of generality, L is assumed to be
bounded away from 0 and ∞ on every compact set in (0,∞). For example, the condition (2.1)
is satisfied (with L ≡ 1) when

pk ∼ k−1/α as k → ∞.

The law of (X1, . . . ,Xn) given the partition �n of the set {1, . . . , n} induced by Y1, . . . , Yn is
then determined by the alternating assignment rule. To express the alternating assignment rule
explicitly, we introduce

Yn,� =
n∑

i=1

1{Yi=�}, � ∈N, (2.2)

representing the number of balls in the box � after the first n sampling. Then, the law of
(X1, . . . ,Xn) given the partition can be equivalently determined by letting {εn}n∈N be i.i.d. ran-
dom variables, independent of �∞, with common distribution P(ε1 = −1) = P(ε1 = 1) = 1/2
and setting for each n ∈N,

Xn = ε�(−1)Yn,�+1 if Yn = �. (2.3)

Originally, Karlin [16] obtained a central limit theorem for the non-randomized model, with
ε� ≡ 1. The functional central limit theorem of the partial-sum process Sn = X1 + · · · + Xn was
established in [9].

Later in Section 4, we shall need a functional central limit theorem for a slightly more gen-
eral version of the one-dimensional Karlin model. We say that {Xn}n∈N is a generalized one-
dimensional Karlin model, if instead of (2.3) we have

Xn = Z�ε�(−1)Yn,�+1 if Yn = �,

for i.i.d. random variables {Z�}�∈N with some common distribution ν, independent from Y and ε.
In this way, given the partition induced by {Yn}n∈N, Xi = Xj if i ∼ j , and otherwise Xi and Xj

are independent and identically distributed as Z1ε1.

Proposition 2.1. For the generalized one-dimensional randomized Karlin model with μ satis-
fying (2.1) with α ∈ (0,1) and a slowly varying function L, for a distribution ν with bounded
support, we have {

S�nt�
nα/2L(n)1/2

}
t∈[0,1]

⇒ σα

{
B

α/2
t

}
t∈[0,1]

in D([0,1]) as n → ∞, with

σ 2
α = �(1 − α)2α−1 Var(X1).
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The proof of this result is omitted here, as it can be obtained by following the same strategy
as in the proof of Theorem 2.2, the functional central limit theorem for two-dimensional ran-
domized Karlin model to be introduced below. This result could also follow from a multivariate
functional central limit theorem for the one-dimensional randomized Karlin model established
in [9], Theorem 2.2, Corollary 2.8, where the limit corresponds to a decomposition of fractional
Brownian motion into a bi-fractional Brownian motion and another smooth self-similar Gaussian
process due to Lei and Nualart [20]. In [9], only the randomized one-dimensional Karlin model
was addressed, although the same proof applies to the generalized model with ν having bounded
support, too.

2.2. Two-dimensional model and main result

We next describe the two-dimensional randomized Karlin model. For each q = 1,2, consider
Y (q) = {Y (q)

n }n∈N as i.i.d. sampling from a certain probability measure μq satisfying (2.1) with
αq ∈ (0,1) and a slowly varying function Lq . Assume that Y (1), Y (2) are independent. Then,

each Y (q) induces an infinite exchangeable random partition on N and for each n, let Y
(q)

n,� be the

corresponding statistics as in (2.2) before. Write Yn = (Y
(1)
n1 , Y

(2)
n2 ) and for every pair n,m ∈ N

2,
set

n ∼ m if Yn = Ym.

In this way, equivalent subclasses (components) of N2 are indexed by labels � ∈ N
2. This gives

the random partition of N
2 as the product of the two partitions determined by Y (1) and Y (2).

Given the partition induced by {Yi}i∈[1,n], the law of {Xi}i∈[1,n] is determined by the alternating
assignment rule in both directions. This is equivalent to set, letting {ε�}�∈N2 be i.i.d. random
variables taking values in {−1,1} with equal probabilities,

Xn = ε�

2∏
q=1

(−1)
Y

(q)
nq ,�q

+1
if Yn = �.

The so-obtained random field {Xn}n∈N2 is referred to as the two-dimensional randomized Karlin
model.

With a little abuse of language, for n ∈N
2, we refer to {Yi}i∈[1,n] as the first n samplings. We

write n → ∞ for min(n1, n2) → ∞ and we write nα = ∏2
q=1 n

αq
q and L(n) = ∏2

q=1 Lq(nq).
The main result of this section is the following.

Theorem 2.2. For the two-dimensional randomized Karlin model with μq satisfying (2.1) with
αq ∈ (0,1) and slowly varying functions Lq for q = 1,2, we have{

S�n·t�
|n|α/2L(n)1/2

}
t∈[0,1]2

⇒ σα

{
B

α/2
t

}
t∈[0,1]2

in D([0,1]2) as n → ∞, with σ 2
α = ∏2

q=1 �(1 − αq)2αq−1.
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2.3. Auxiliary estimates

Here we provide some useful estimates on the one-dimensional randomized Karlin model that
we shall use in the proof of Theorem 2.2. Recall Yn,� in (2.2) and let

Kn =
∞∑

�=1

1{Yn,�>0} and Kn,r =
∞∑

�=1

1{Yn,�=r} for all r ∈N,

denote the number of occupied boxes and number of boxes occupied with r balls, respectively,
after n samplings. The statistics of Kn and Kn,r (independent from ε�) have been studied in [16]
already, where a similar model with ε� replaced by constant 1 was investigated. We summarize
some results on Kn and Kn,r below that will be needed later. In the sequel, � denotes the gamma
function and for r ≥ 1 and α ∈ (0,1), we write

pα(r) = α(1 − α) · · · (r − 1 − α)

r! .

Observe that
∑∞

r=1 pα(r) = 1 and
∑∞

r=1 pα(2r − 1) = 2α−1.

Lemma 2.3. Under the assumption (2.1), we have

lim
n→∞

Kn

nαL(n)
= �(1 − α), (2.4)

lim
n→∞

Kn,r

nαL(n)
= �(1 − α)pα(r), (2.5)

lim
n→∞

∑∞
r=1 Kn,2r−1

nαL(n)
= �(1 − α)2α−1, (2.6)

where the convergences hold almost surely and also in Lp for all p > 0.

Proof. (i) For the almost sure convergence in the three limits above, see [11], Corollary 21 and
discussion after Proposition 2, and [16], Theorem 9.

(ii) To prove the Lp convergence, we prove (2.4) holds in Lp for p > 0. This and the facts that
0 ≤ Kn,r ≤ Kn and 0 ≤ ∑

r≥1 Kn,2r−1 ≤ Kn then imply the Lp convergence in (2.5) and (2.6).
For (2.4), it suffices to prove the uniform integrability of the sequence (K

p
n /(nαL(n))p)n≥1. This

follows, writing 	n = EKn, from the asymptotic equivalence (see [11], Proposition 17)

	n ∼ �(1 − α)nαL(n) as n → ∞, (2.7)

the fact that for every m ∈ N, there exist a constant Cm, such that for all n ∈N,

EKm
n ≤ Cm	m

n , (2.8)

and then an application of the de la Vallée Poussin criterion for uniform integrability:
(Kn/(n

αL(n)))n∈N is bounded in Lm for m > p. To see (2.8), we need the following lemma.
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Lemma 2.4. For n ∈N, for all k ∈ N and �1, . . . , �k ∈N distinct,

P(Yn,�1 > 0, . . . , Yn,�k
> 0) ≤

k∏
q=1

P(Yn,�q > 0).

Proof. To prove the desired result, it suffices to show

P(Yn,�k
> 0|Yn,�1 > 0, . . . , Yn,�k−1 > 0) ≤ P(Yn,�k

> 0), (2.9)

for all k ≥ 2 and �1, . . . , �k ∈N distinct. Observe that

P(Yn,�k
> 0|Yn,�1 > 0, . . . , Yn,�k−1 > 0)

= 1 − P(Yn,�k
= 0)

P(Yn,�1 > 0, . . . , Yn,�k−1 > 0|Yn,�k
= 0)

P(Yn,�1 > 0, . . . , Yn,�k−1 > 0)
.

The ratio after P(Yn,�k
= 0) is larger than one, and this yields (2.9) and hence the desired result.

To see this, let {Y ∗
n }n∈N be another collection of i.i.d. random variables, taking values i ∈ N\ {�k}

with probability p∗
i = pi/(1 − p�k

). Then, the ratio above equals

P(Y ∗
n,�1

> 0, . . . , Y ∗
n,�k−1

> 0)

P(Yn,�1 > 0, . . . , Yn,�k−1 > 0)
≥ 1. �

Now to obtain (2.8), it suffices to observe that

EKm
n =

∑
�1,...,�m

P(Yn,�1 > 0, . . . , Yn,�m > 0)

≤
m∑

k=1

Ck,m

∑
�1,...,�k

�i 	=�j ,i 	=j

k∏
q=1

P(Yn,�q > 0) ≤
m∑

k=1

Ck,m	k
n,

for some constants Ck,m > 0, and recall that 	n ↑ ∞ as n → ∞. �

We also need to work with partitions generated between two times m and n, that is, the parti-
tions generated by Ym+1, . . . , Yn. For this purpose, we introduce Y ∗

m,n,� = ∑n
i=m+1 1{Yi=�},

K∗
m,n =

∞∑
�=1

1{Y ∗
m,n,�>0} and K∗

m,n,r =
∞∑

�=1

1{Y ∗
m,n,�=r}.

We need the following lemma.
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Lemma 2.5. Under the assumption (2.1), with probability one for all s, t ∈ [0,1], s < t , the
following limits hold:

lim
n→∞

K∗�ns�,�nt�
nαL(n)

= (t − s)α�(1 − α), (2.10)

lim
n→∞

∑∞
i=r K∗�ns�,�nt�,i

nαL(n)
= (t − s)α�(1 − α)

∞∑
i=r

pα(i), (2.11)

lim
n→∞

K∗�ns�,�nt�,r
nαL(n)

= (t − s)α�(1 − α)pα(r), (2.12)

lim
n→∞

∑∞
i=1 K∗�ns�,�nt�,2i−1

nαL(n)
= (t − s)α�(1 − α)2α−1. (2.13)

Proof. To prove the desired results, it suffices to establish them for fixed s and t ; the results then
hold for a countable dense set of [0,1] with probability one, and by continuity for all s, t ∈ [0,1]
with probability one.

Observe that

K∗�ns�,�nt�
d= K�nt�−�ns� and K∗�ns�,�nt�,r

d= K�nt�−�ns�,r for all r ∈N, (2.14)

where “
d=” stands for equality in distribution. By Lemma 2.3, it follows immediately that all

convergences hold in probability. To strengthen to the almost sure sense, we apply a monotonicity
argument as in [11], Proposition 2.

From now on, we fix s, t ∈ [0,1], s < t . We first prove (2.10). Let Vn = VarKn and, as before,
	n = EKn. By [11], Lemma 1 and Proposition 17,

Vn ∼ �(1 − α)
(
2α − 1

)
nαL(n) as n → ∞.

Therefore, for nm = �m2/α�, by (2.14) and the Borel–Cantelli lemma, we have

lim
n→∞

K∗�nms�,�nmt�
	�nmt�−�nms�

= 1 almost surely.

Thus, by (2.7),

lim
m→∞

K∗�nms�,�nmt�
nα

mL(nm)
= (t − s)α�(1 − α) almost surely.

Furthermore, for m large enough, we have �nms� < �nm+1s� < �nmt� < �nm+1t�, and since 	n

is increasing,

K∗�nm+1s�,�nmt�
	�nm+1t�−�nms�

≤ K∗�ns�,�nt�
	�nt�−�ns�

≤ K∗�nms�,�nm+1t�
	�nmt�−�nm+1s�

for all nm ≤ n ≤ nm+1.
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Since

lim
m→∞

	�nm+1t�−�nms�
	�nmt�−�nm+1s�

= 1,

it follows that (2.10) holds with probability one. The same argument holds for (2.11), which
implies (2.12). At last, (2.13) follows from (2.11) and (2.12). �

2.4. Proof of Theorem 2.2

The main idea behind the proof is that conditioning on the underlying partitions, the partial sum
Sn can be represented as a sum of independent ±1-valued random variables, for which limit
theorems follow immediately. We illustrate this idea by first proving a central limit theorem of
the model. We let N (0, σ 2) denote the Gaussian distribution with mean zero and variance σ 2.

Proposition 2.6. For the two-dimensional randomized Karlin model, if μq satisfies (2.1) with
αq ∈ (0,1) and slowly varying functions Lq for q = 1,2, then

Sn

|n|α/2L(n)1/2
⇒ N

(
0, σ 2

α

)
,

as n → ∞, with σ 2
α = ∏2

q=1 �(1 − αq)2αq−1.

Proof. Let Sn,� be the sum over all the spins Xi associated to the box �:

Sn,� =
∑

i∈[1,n]
Xi1{Yi=�}.

Because of the alternating assignment rule, Sn,� ∈ {−1,0,1}, and Sn,� = 0 if and only if the
number of variables Xi associated to the box � after n samplings is even. We are therefore
interested in the number of boxes having an odd number of balls after n samplings. To give an
expression of this number, to be denoted by K̃n below, we first remark that the number of boxes
with an odd number of balls from samplings Y (q) equals

∞∑
�=1

1{Y (q)
n,� odd} =

∞∑
i=1

K
(q)

n,2i−1,

where K
(q)
n,i = ∑∞

�=1 1{Y (q)
n,� =i}. It follows that

K̃n =
2∏

q=1

( ∞∑
iq=1

K
(q)

nq ,2iq−1

)
. (2.15)
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Therefore,

Sn|K̃n
d=

K̃n∑
i=1

ε′
i , (2.16)

where the left-hand side is understood as the conditional distribution of Sn given K̃n, and
on the right-hand side {ε′

n}n∈N are i.i.d. copies of ε1. Introduce furthermore the σ -field Y =
σ(Y (1), Y (2)), and observe that K̃n is Y measurable. Now, by Lemma 2.3,

lim
n→∞

Var(Sn|Y)

|n|αL(n)
= lim

n→∞

2∏
q=1

∑∞
iq=1 K

(q)

nq ,2iq−1

n
αq
q Lq(nq)

=
2∏

q=1

σ 2
αq

= σ 2
α a.s.

Therefore, we obtain the conditional central limit theorem

Sn

|n|α/2L(n)1/2

∣∣∣Y ⇒N
(
0, σ 2

α

)
as n → ∞,

and the desired annealed version follows. �

To prove Theorem 2.2, we prove the convergence of finite-dimensional distributions and tight-
ness separately.

Proof of convergence of finite-dimensional distributions. For m ∈ N fixed, consider λ1, . . . ,

λm ∈R, and t (r) = (t
(r)
1 , t

(r)
2 ) ∈ [0,1]2 for r = 1, . . . ,m. Writing

nt = (�n1t1�, �n2t2�
)

for all t ∈ [0,1]2,n ∈N
2, (2.17)

we set

Ŝn =
m∑

r=1

λrSn
t(r)

, n ∈ N
2.

Similarly as before and using the Cramér–Wold device [14], Corollary 4.5, to show the conver-
gence of finite-dimensional distributions, it suffices to show the following conditional central
limit theorem:

Ŝn

σα|n|α/2L(n)1/2

∣∣∣Y ⇒
m∑

r=1

λrB
α/2
t (r)

,

as n → ∞. For this purpose, we first remark that given Y , Ŝn is the sum of K̃n independent
random variables corresponding to the K̃n boxes that have at least one ball from the first n
samplings, and that each such random variable is bounded by |λ1| + · · · + |λm| uniformly. At
the same time, we know that K̃n → ∞ almost surely, as n → ∞. Therefore, to establish the
conditional central limit theorem it remains to show that the variance

Var(Ŝn|Y) =
m∑

r=1

m∑
r ′=1

λrλr ′EY (Sn
t(r)

Sn
t(r

′) )
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converges to the corresponding one of the fractional Brownian sheet as n → ∞, after nor-
malization. Here and in the sequel, we write EY (·) = E(·|Y). This part is established in
Lemma 2.7. �

Lemma 2.7. With the same notation as in (2.17), for all n ∈N
2, t, s ∈ [0,1]2,

lim
n→∞

EY (Snt Sns )

σ 2
α |n|αL(n)

=
2∏

q=1

1

2

(|tq |αq + |sq |αq − |tq − sq |αq
)
.

Proof. We first consider the case of the one-dimensional model described in Section 2.1. We
write, for n ∈ N, t, s ∈ [0,1],

EY (Snt Sns ) = 1

2
EY

[
S2

nt
+ S2

ns
− (Snt − Sns )

2], (2.18)

where Sn = ∑n
i=1 Xi , nt = �nt�, and ns = �ns�. We saw in the proof of Proposition 2.6 that

EYS2
n = ∑∞

i=1 Kn,2i−1, and thus Lemma 2.3 yields that, almost surely,

lim
n→∞

EYS2
nt

nαL(n)
= tασ 2

α . (2.19)

For n > n′, by a similar argument as in the proof of Proposition 2.6, we see that

Sn − Sn′ |Y d=
K̃∗

n,n′∑
i=1

ε′
i with K̃∗

n,n′ =
∞∑
i=1

K∗
n,n′,2i−1,

where {ε′
i} are i.i.d. copies of ε1. In this way,

EY (Snt − Sns )
2 =

∞∑
i=1

K∗
nt ,ns ,2i−1,

and by (2.13),

lim
n→∞

EY (Snt − Sns )
2

nαL(n)
= |t − s|ασ 2

α almost surely.

Combining this, (2.18) and (2.19), we have thus proved

lim
n→∞

EY (Snt Sns )

σ 2
α |n|αL(n)

= 1

2

(|t |α + |s|α − |t − s|α)
.

For the two-dimensional model, we start by introducing a different model. Let {̃ε(q)
k }k∈N, q =

1,2, be i.i.d. random variables taking values ±1 with equal probabilities and set ε̃n = ∏2
q=1 ε̃

(q)
nq

.
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Now, assign

X̃n =
2∏

q=1

ε̃
(q)
�q

(−1)
Y

(q)
nq ,�q if Yn = �, (2.20)

and set S̃n = ∑
i∈[1,n] X̃i . Although {X̃n}n∈N2 is different from {Xn}n∈N2 , observe that for all

i,j ∈ N
2,

(Xi,Xj )|Y d= (X̃i, X̃j )|Y .

Indeed, this follows from the fact that (ε�, ε�′)
d= (̃ε�, ε̃�′), for all �,�′ ∈ N

2. (Note that {ε�}�∈Nd

and {̃ε�}�∈Nd do not have the same joint distributions, although the fact that they have the same
bivariate distributions serves our purpose.)

It follows that

EY (Snt Sns ) = EY (S̃nt S̃ns ).

However, EY (S̃nt S̃ns ) is much easier to compute. From (2.20), X̃i can be written as

X̃i =
2∏

q=1

X̃
(q)
iq

if Yi = � with X̃
(q)
iq

= ε̃
(q)
�q

(−1)
Y

(q)
iq ,�q

+1
, q = 1,2.

In this way, one can write

S̃n =
∑

i∈[1,n]

2∏
q=1

X̃
(q)
iq

=
2∏

q=1

nq∑
iq=1

X̃
(q)
iq

=
2∏

q=1

S̃
(q)
nq

with S̃
(q)
n =

n∑
i=1

X̃
(q)
i .

Observe that {X̃(1)
i }i∈N and {X̃(2)

i }i∈N are independent and each S̃
(q)
n is the partial sum of a one-

dimensional Karlin model with parameter αq . Therefore,

EY (S̃nt S̃ns )

|n|αL(n)
=

2∏
q=1

EY (S̃
(q)
�nq tq�S̃

(q)
�nqsq�)

n
αq
q Lq(nq)

→ σ 2
α

d∏
q=1

1

2

(|tq |αq + |sq |αq − |tq − sq |αq
)

as n → ∞.
�

Proof of tightness. Applying a criterion of Bickel and Wichura [1], it suffices to establish for
some p > 0, γ > 1,

E

( |Sm|
|n|α/2

)p

≤ C

2∏
q=1

(
mq

nq

)γ

for all m,n ∈ N
2,m ≤ n. (2.21)
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To do so, pick p > max(2/α1,2/α2). Recall that, given Y , Sm is the sum of K̃m independent
copies of ε1. We infer

E|Sm|p = EEY
(|Sm|p) ≤ E

[
CpEYK̃

p/2
m

] = CpEK̃
p/2
m ,

where we used Burkholder’s inequality, and Cp is a positive constant depending only on p. The
expectation on the right-hand side above is then bounded from above by, recalling (2.15),

EK̃
p/2
m =

2∏
q=1

E

( ∞∑
iq=1

K
(q)

mq,2iq−1

)p/2

≤
2∏

q=1

E
(
K

(q)
mq

)p/2
.

Now, for each q , the expectation can be uniformly bounded by Cqm
αqp/2
q Lq(mq)p/2 for some

constant Cq > 0 by Lemma 2.3. Therefore,

E

( |Sm|
|n|α/2

)p

≤ Cp

2∏
q=1

Cq

(
mq

nq

)γ ′(
Lq(mq)

Lq(nq)

)p/2

with γ ′ = min(α1, α2)p/2 > 1. To conclude, we choose δ > 0 such that γ = γ ′ − δp/2 > 1 and
we apply Potter’s theorem (see [6], Theorem 1.5.6) to bound from above Lq(mq)/Lq(nq) by
C(mq/nq)−δ . The inequality (2.21) follows and we have thus proved the tightness. �

3. Hammond–Sheffield model

In this section, we introduce the two-dimensional Hammond–Sheffield model and show that the
partial-sum random field scales to a fractional Brownian sheet with Hurst index in (1/2,1)2.

3.1. One-dimensional model

We first recall the model in one dimension. Let μ be a probability measure on N satisfying

μ
({n,n + 1, . . . }) ∼ n−αL(n)

with α ∈ (0,1/2) and L a slowly varying function at infinity. Let {Ji}i∈Z be i.i.d. random vari-
ables with distribution μ and consider the random graph G = G(V,E) with vertex set V = Z

and edge set E = {(i, i − Ji)}i∈Z. In words, for each vertex i ∈ Z, a random jump Ji is sampled
independently from μ and the vertex i is connected to the vertex i − Ji . For each vertex i, the
largest connected subgraph of G containing i is a tree with an infinite number of vertices. Each
such tree is referred to as a component of Z. It was shown in [12] that for α ∈ (0,1/2), the
random graph G almost surely has infinitely many components, each being an infinite tree. The
random forest G obtained this way induces a random partition of Z, so that i and j are in the
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same component, denoted by i ∼ j , if and only if they are in the same tree. In the sequel, it is
convenient to work with ancestral lines defined as the random sets

Ai = {
j ∈ Z : ∃j = j0 < j1 < · · · < jk = i, s.t. (j�−1, j�) ∈ E,� = 1, . . . , k

} ∪ {i},
for all i ∈ Z. So, i ∼ j if and only if Ai ∩ Aj 	=∅.

We now apply the identical assignment rule. This entails that marginally P(Xi = −1) =
P(Xi = 1) = 1/2, and conditioning on G = σ {Ji, i ∈ Z}, Xi = Xj if Ai ∩ Aj 	= ∅, and
Xi1, . . . ,Xik are independent for any i1, . . . , ik such that Ai1, . . . ,Aik are mutually disjoint. The
one-dimensional Hammond–Sheffield model is the stationary process {Xi}i∈Z constructed this
way.

The following notations and results from [12] will be used in our two-dimensional model. Let,
for k ∈ Z,

qk = P(0 ∈ Ak),

so qk = 0 for k < 0. It is proved in [12], Lemma 3.1, that with the choice of μ above and
α ∈ (0,1/2),

∑∞
k=0 q2

k < ∞, and for Sn = ∑n
i=1 Xi ,

Var(Sn) ∼ Cα∑
k≥0 q2

k

n2α+1L(n)−2 as n → ∞, (3.1)

with

Cα = (
2α(2α + 1)�(1 − α)2�(2α) cos(πα)

)−1 (3.2)

(note that the constant in [12] contains a misprint that is corrected here).
We shall however need a slightly more general version when working with the two-

dimensional model later. We say that {Xi}i∈Z is a generalized one-dimensional Hammond–
Sheffield model with distribution ν on R if it is built using ν as the common marginal distribution
instead of the symmetric law on {−1,1}. That is, the underlying random partition is the same
as before and, conditioning on the random partition, the identical assignment rule is applied
(Xi = Xj if i ∼ j and Xi and Xj are independent otherwise) with each Xi having the same
marginal distribution ν.

Proposition 3.1. For the generalized one-dimensional Hammond–Sheffield model with a cen-
tered distribution ν with bounded support,{

S�nt�
nH L(n)−1

}
t∈[0,1]

⇒
(

Cα∑
k≥0 q2

k

)1/2{
B

H
t

}
t∈[0,1]

in D([0,1]) with H = α + 1/2.

Remark 3.2. The results in [12] concern only ν supported on {−1,1}. The relaxation of ν to
bounded law does not affect most of the proof, which is based on a martingale central limit the-
orem. The boundedness is sufficient for certain ergodicity of the sequence of martingale differ-
ences ([12], Lemma 3.2, and [3], Lemma 7), and the rest of the proof would remain unchanged.
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As the proof for the two-dimensional model will follow the same strategy but is much more
involved, we therefore skip the proof of Proposition 3.1 here.

3.2. Two-dimensional model and main result

We now generalize Hammond–Sheffield model to two dimensions. Again the first step is to con-
struct a random partition of Z

2. This random partition is taken as the product of independent
random partitions from one-dimensional Hammond–Sheffield models, each with jump distribu-
tion μr , r = 1,2 respectively, satisfying

μr

({n,n + 1, . . . }) ∼ n−αr Lr(n) as n → ∞ (3.3)

with αr ∈ (0,1/2) and slowly varying function Lr at infinity. For r = 1,2, let {A(r)
i }i∈Z be the

ancestral lines corresponding to each random partition. In particular, {A(1)
i }i∈Z and {A(2)

i }i∈Z are
independent. We then introduce the ancestral lattices Ai, i ∈ Z

2, as

Ai = {
j ∈ Z

2|j1 ∈ A
(1)
i1

, j2 ∈ A
(2)
i2

} = A
(1)
i1

× A
(2)
i2

.

For the partition of Z2 obtained by product, we have i ∼ j if and only if Ai ∩ Aj 	= ∅. Once
the random partition is given, the identical assignment rule is applied. That is, given {Ai}i∈Z2 ,
Xi = Xj if Ai ∩ Aj 	= ∅, and if Ai1 , . . . ,Aik

are mutually disjoint, Xi1 , . . . ,Xik
are i.i.d. with

common distribution the uniform law on {−1,1}. The so-constructed {Xi}i∈Z2 is referred to as
the two-dimensional Hammond–Sheffield model in the sequel.

We write for n ∈ Z
2, qn = P(0 ∈ An), and q

(r)
n = P(0 ∈ A

(r)
n ), r = 1,2. Because of indepen-

dence,

qn = q(1)
n1

q(2)
n2

,

and then
∑

n∈Z2 q2
n < ∞ when (α1, α2) ∈ (0,1/2)2. The main result of this section is the follow-

ing functional central limit theorem, where as before nα = ∏2
r=1 n

αr
r and L(n) = ∏2

r=1 Lr(nr).

Theorem 3.3. For the two-dimensional Hammond–Sheffield model, suppose that (3.3) holds
with α1, α2 ∈ (0,1/2) and slowly varying functions L1, L2 respectively. For Sn = ∑

i∈[1,n] Xi ,
we have {

S�n·t�
|n|H L(n)−1

}
t∈[0,1]2

⇒ σα

{
B

H
t

}
t∈[0,1]2

in D([0,1]2), as n → ∞, where B
H is a fractional Brownian sheet with Hurst index H with

Hr = αr + 1/2, r = 1,2, and

σ 2
α = Cα1Cα2∑

n∈Z2 q2
n

with Cα defined in (3.2).
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Remark 3.4. Another natural extension of the Hammond–Sheffield model has been addressed
in [3], where the random graph indexed by Z in the original model is generalized to high dimen-
sions by having i.i.d. jumps attached to vertices indexed by Z

d and allowing each jump to take
values in N

d . With appropriate choice of the law of the jumps, the limit random fields therein
are of different types from fractional Brownian sheets most of the time (even when fractional
Brownian sheets arise in the limit, they are degenerate in the sense that at least one of the Hurst
indices is either 1/2 or 1 [3], Section 5.2), and a so-called scaling-transition phenomenon [28,
29] occurs. In particular, the partial sum of interest therein is still over a rectangular region that
increases to infinity, although for the same model (i.e., with fixed law of the jumps) various limits
arise, depending on the relative growing rate of each direction of the increasing rectangle.

The rest of this section is devoted to the proof of Theorem 3.3. The strategy is to express the
partial sum of the variable Xi as a weighted sum of martingale differences in the first direction
and to apply a theorem of McLeish [22] for triangular arrays of martingale differences. The hard
part lies in the analysis of the second direction, where we shall apply results for the generalized
one-dimensional Hammond–Sheffield model.

3.3. Representation via martingale differences

Introduce for each m ∈ Z, the σ -algebra of the past in the first direction F (1)
m = σ {Xi : i1 <

m, i2 ∈ Z} and the operators

P(1)
m (·) = E

(·|F (1)
m+1

) −E
(·|F (1)

m

)
, m ∈ Z.

Observe that P(1)
m (Y ) ∈ F (1)

m+1 and E(P(1)
m (Y )|F (1)

m ) = 0 for any bounded random variable Y .
Introduce

X∗
j =P(1)

j1
(Xj ) = Xj −E

(
Xj |F (1)

j1

)
, j ∈ Z

2. (3.4)

By definition, for all j2 ∈ Z, {X∗
j }j1∈Z is a martingale-difference sequence with respect to the

filtration {Fj1}j1∈Z. Denoting by {J (1)
j }j∈Z the random jumps in the first direction and observing

that for all j ∈ Z
2,

Xj =
∑
k≥1

1{J (1)
j1

=k}X(j1−k,j2),

we obtain another representation of X∗
j as

X∗
j = Xj −

∑
k≥1

p
(1)
k X(j1−k,j2), j ∈ Z

2, (3.5)

where p
(1)
k = μ1({k}), k ∈ N. Recall that qn = 0 if min(n1, n2) < 0. We have the following

results.
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Lemma 3.5. (i) For all m ∈ Z, n ∈ Z
2, P(1)

m (Xn) = q
(1)
n1−mX∗

(m,n2)
.

(ii) For all n ∈ Z
2,

Xn =
∑

m≤n1

q
(1)
n1−mX∗

(m,n2)
,

where the sum converges in L2. Furthermore Var(X∗
0) = (

∑
k≥0(q

(1)
k )2)−1.

Proof. (i) For m ∈ Z, write

Xn = Xn1{m∈A
(1)
n1 } + Xn1{m/∈A

(1)
n1 }.

Observe that

Xn1{m∈A
(1)
n1 } = X(m,n2)1{m∈A

(1)
n1 }

and {m ∈ A
(1)
n1 } is independent of F (1)

m+1. It then follows that

P(1)
m (Xn1{m∈A

(1)
n1 }) =P(1)

m (X(m,n2))P
(
m ∈ A(1)

n1

) = X∗
(m,n2)

q
(1)
n1−m.

On the other hand,

E
(
Xn1{m/∈A

(1)
n1 }|F

(1)
m+1

) = E
(
Xn1{m/∈A

(1)
n1 }|F (1)

m

)
,

and thus

P(1)
m (Xn1{m/∈A

(1)
n1 }) = 0.

(ii) By stationarity, it suffices to prove this for X0. For n ∈N, write

0∑
m=−n

P(1)
m (X0) =

0∑
m=−n

q(1)
m X∗

(m,0).

Since {X∗
(m,0)}m∈Z is a stationary martingale-difference sequence, we have EX∗

(m,0) = 0 and
E(X∗

(m,0)X
∗
(n,0)) = 0 if m 	= n. Then,

E

(
0∑

m=−n

P(1)
m (X0)

)2

= Var
(
X∗

0

) n∑
m=0

(
q(1)
m

)2 → Var
(
X∗

0

) ∑
m≥0

(
q(1)
m

)2
as n → ∞. (3.6)

Here the assumption α1 ∈ (0,1/2) entails that
∑

m≥0 (q
(1)
m )2 < ∞.

On the other hand, let J
(1)
0 ∈ N denote the random jump at 0 in the first direction. One can

write, in view of (3.5),

X∗
0 =

∑
�∈N

(
1{J (1)

0 =�} − p
(1)
�

)
X(−�,0).
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Thus,

Var
(
X∗

0

) =
∑

�,�′∈N
P
(
A

(1)
−� ∩ A

(1)

−�′ 	=∅
)
E

[(
1{J (1)

0 =�} − p
(1)
�

)(
1{J (1)

0 =�′} − p
(1)

�′
)]

=
∑

�,�′∈N
P
(
A

(1)
−� ∩ A

(1)

−�′ 	=∅
)(−p

(1)
� p

(1)

�′ + p
(1)
� 1{�=�′}

)
= 1 −

∑
�,�′∈N

p
(1)
� p

(1)

�′ P
(
A

(1)
−� ∩ A

(1)

−�′ 	=∅
) = 1 − P

(
A

(1)
0 ∩ Ã

(1)
0 	= {0}),

where Ã
(1)
0 is an independent copy of A

(1)
0 . Therefore,

Var
(
X∗

0

) = P
(
A

(1)
0 ∩ Ã

(1)
0 = {0}).

Combining with (3.6), we have

lim
n→∞E

(
0∑

m=−n

P(1)
m (X0)

)2

= P
(
A

(1)
0 ∩ Ã

(1)
0 = {0}) ∑

m≥0

(
q(1)
m

)2
.

We thus have the convergence in L2 by the fact that EX2
0 = 1 and

P
(
A

(1)
0 ∩ Ã

(1)
0 = {0}) = 1∑

m≥0 (q
(1)
m )2

. (3.7)

Indeed, observe that∑
m≥0

(
q(1)
m

)2 =
∑
m≥0

P
(−m ∈ A

(1)
0 ,−m ∈ Ã

(1)
0

) = E
∣∣A(1)

0 ∩ Ã
(1)
0

∣∣,
and remark that |A(1)

0 ∩ Ã
(1)
0 |, the cardinality of intersection of the two independent ancestral

lines, is a geometric random variable with rate θ = P(A
(1)
0 ∩ Ã

(1)
0 = {0}). Thus E|A(1)

0 ∩ Ã
(1)
0 | =

1/θ , which proves (3.7). �

Introduce b
(1)
n,j = ∑n

i=1 q
(1)
i−j , n ∈ N, j ∈ Z. From the preceding lemma, we have for all n ∈N

2,

Sn =
∑

i∈[1,n]
Xi =

∑
j1∈Z

b
(1)
n1,j1

n2∑
j2=1

X∗
j .

Further, for each n ∈ N, the sequence (
∑n

j2=1 X∗
j )j1∈Z is a martingale-difference sequence with

respect to the filtration {F (1)
j1

}j1∈Z. Denoting (b
(1)
n )2 = ∑

j∈Z(b
(1)
n,j )

2, by (3.1), we obtain(
b(1)
n

)2 ∼ Cα1n
2α1+1L1(n)−2 as n → ∞. (3.8)



From random partitions to fractional Brownian sheets 1433

Now introduce similarly b
(2)
n,j = ∑n

i=1 q
(2)
i−j and (b

(2)
n )2 = ∑

j∈Z(b
(2)
n,j )

2, for n ∈ N, j ∈ Z. In
summary, we have shown the following.

Proposition 3.6. In the notation above,

Sn

bn
= 1

b
(1)
n1

∑
j1∈Z

b
(1)
n1,j1

Uj1,n2 (3.9)

with

Uj1,n2 = 1

b
(2)
n2

n2∑
j2=1

X∗
j (3.10)

and

b2
n = (

b(1)
n1

)2(
b(2)
n2

)2 ∼ Cα1Cα2n
2α+1L(n)−2 as n → ∞. (3.11)

Note that again, for each n ∈ N, {Uj,n}j∈Z is a stationary martingale-difference sequence with

respect to the filtration {F (1)
j }j∈Z.

3.4. A central limit theorem

Instead of proving directly the convergence of finite-dimensional distributions, we prove the
following central limit theorem first, in order to better illustrate the key ideas of the proof.

Proposition 3.7. For the two-dimensional Hammond–Sheffield model, suppose (3.3) holds with
α1, α2 ∈ (0,1/2) and slowly varying functions L1, L2, respectively. We have

Sn

bn
⇒ N

(
0, σ 2) as n → ∞,

where σ 2 = (
∑

k≥0 q2
k)−1.

The rest of this subsection is devoted to the proof of this proposition. With the representation
in (3.9), by McLeish’s martingale central limit theorem [22], it suffices to show

sup
n∈N2

E

(
sup
j∈Z

(
b

(1)
n1,j

b
(1)
n1

)2

U2
j,n2

)
< ∞, (3.12)

lim
n→∞ sup

j∈Z

(
b

(1)
n1,j

b
(1)
n1

)2

U2
j,n2

= 0 in probability (3.13)

and

lim
n→∞

∑
j∈Z

(
b

(1)
n1,j

b
(1)
n1

)2

U2
j,n2

= EX∗2
0 in probability. (3.14)
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We start with the following observation.

Lemma 3.8. For α1 ∈ (0,1/2), we have

lim
n→∞ sup

j∈Z

b
(1)
n,j

b
(1)
n

= 0.

Proof. By Lemma 8 in [3], it suffices to prove that
∑

j∈Z((b
(1)
n,j )

2 − (b
(1)
n,j+1)

2) = o((b
(1)
n )2),

which follows from
∑

j∈Z(b
(1)
n,j − b

(1)
n,j+1)

2 = o((b
(1)
n )2) by the Cauchy–Schwarz inequality. To

see the latter, observe that∑
j∈Z

(
b

(1)
n,j − b

(1)
n,j+1

)2 =
∑
j∈Z

(
q

(1)
n−j − q

(1)
−j

)2 ≤ 2
∑
j∈Z

(
q

(1)
j

)2
< ∞.

�

We also need uniform bounds on the moments of Uj,n. To facilitate, we introduce a rep-
resentation of Uj,n as a weighted sum of martingale differences in the second direction. Let

F (2)
m = σ {Xi |i1 ∈ Z, i2 < m} and P(2)

m (·) = E(·|F (2)
m+1) −E(·|F (2)

m ), m ∈ Z. We set

X∗∗
n =P(2)

n2

(
X∗

n

) = X∗
n −E

(
X∗

n|F (2)
n2

)
. (3.15)

For all n1 ∈ Z, (X∗∗
n )n2∈Z is a martingale-difference sequence with respect to the filtration

(F (2)
n2 )n2∈Z. Proceeding as in Lemma 3.5, we obtain that for all n ∈ N

2,

X∗
n =

∑
m≤n2

P(2)
m

(
X∗

n

) =
∑

m≤n2

q
(2)
n2−mX∗∗

(n1,m),

where the sum converges in L2. We thus have, for all n ∈N, j1 ∈ Z,

Uj1,n = 1

b
(2)
n

∑
j2∈Z

b
(2)
n,j2

X∗∗
j . (3.16)

Further,

Var
(
X∗∗

0

) = Var(X∗
0)∑

k≥0 (q
(2)
k )2

= 1∑
k≥0 q2

k

.

Lemma 3.9. (i) For all n ∈N, EU2
0,n = (

∑
k∈Z2 q2

k)−1 < ∞.

(ii) For all p ≥ 1, supn∈NEU
2p

0,n < ∞.

Proof. Part (i) is a direct consequence of (3.15): we have E(X∗∗
n X∗∗

m ) = 0 for n 	= m and thus

Var(U0,n) = Var
(
X∗∗

0

) = 1∑
k≥0 q2

k

.
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For (ii), using that (X∗∗
(0,n))n∈Z is a martingale-difference sequence, by Burkholder’s inequality,

writing ‖ · ‖p = (E| · |p)1/p , for some constant Cp depending only on p,

‖U0,n‖2p ≤ Cp

∥∥∥∥∑
j∈Z

(b
(2)
n,j )

2

(b
(2)
n )2

X∗∗2
(0,j)

∥∥∥∥1/2

p

≤ Cp

(∑
j∈Z

(b
(2)
n,j )

2

(b
(2)
n )2

∥∥X∗∗2
0

∥∥
p

)1/2

= Cp

∥∥X∗∗
0

∥∥
2p

.

Then (ii) follows since X∗∗
0 is bounded. �

Now, we establish the conditions of McLeish’s theorem.
For (3.12), by the inequality supj |aj | ≤ ∑

j |aj |, the left-hand side is bounded by EU2
0,n =

(
∑

k≥0 q2
k)−1 < ∞ by Lemma 3.9(i).

For (3.13), for all ε > 0, one has

P

(
max
j∈Z

(
b

(1)
n1,j

b
(1)
n1

)2

U2
j,n2

> ε

)
≤

∑
j∈Z

P

((
b

(1)
n1,j

b
(1)
n1

)2

U2
j,n2

> ε

)

≤
∑
j∈Z

(
b

(1)
n1,j

b
(1)
n1

)4
E|U0,n2 |4

ε2
.

Lemma 3.8 and Lemma 3.9(ii) then yield (3.13).
Condition (3.14) is much harder to establish. We shall prove the corresponding L2-

convergence, which will follow from

lim
n→∞

1

(b
(1)
n1 )4

∑
j1,j

′
1∈Z

(
b

(1)
n1,j1

)2(
b

(1)

n1,j
′
1

)2 Cov
(
U2

j1,n2
,U2

j ′
1,n2

) = 0. (3.17)

For this purpose, we first provide an approximation of X∗
j as follows. Introduce, for each integer

K ≥ 1, for all j ∈ Z
2,

X∗
j ,K = Xj −

K∑
k1=1

p
(1)
k X(j1−k,j2).

Recalling (3.5), observe that

∣∣X∗
0 − X∗

0,K

∣∣ ≤
∞∑

k=K+1

p
(1)
k → 0 as K → ∞.
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Then, define

Uj1,n,K = 1

b
(2)
n

n∑
j2=1

X∗
j ,K for n,K ∈ N, j1 ∈ Z. (3.18)

Note that {Uj,n,K }j∈Z for every K,n ∈ N is again a stationary martingale-difference sequence

with respect to the filtration {F (1)
j }j∈Z. We shall need the following uniform bounds.

Lemma 3.10. (i) For all p ≥ 1 and K ≥ 1,

sup
n∈N

E|U0,n,K |2p < ∞.

(ii) For all p ≥ 1,

lim
K→∞ sup

n∈N
E|U0,n − U0,n,K |2p = 0.

Proof. This lemma can be established in the same way as for Lemma 3.9 before by proving that
for all p ≥ 1, there exists a finite constant Cp depending on p only, such that for all n,K ∈N,

E|U0,n,K |2p ≤ CpE
∣∣X∗

0,K

∣∣2p
,

E|U0,n − U0,n,K |2p ≤ CpE
∣∣X∗

0 − X∗
0,K

∣∣2p
. �

Now, to prove (3.17), we first show that for all ε > 0, one can choose K ∈ N large enough
such that ∣∣Cov

(
U2

0,n,U
2
j,n

) − Cov
(
U2

0,n,K,U2
j,n,K

)∣∣ < ε for all n, j ∈N. (3.19)

To see this, we first bound∣∣E(
U2

0,nU
2
j,n

) −E
(
U2

0,n,KU2
j,n,K

)∣∣
≤ E

∣∣U2
0,n

(
U2

j,n − U2
j,n,K

)∣∣ +E
∣∣(U2

0,n − U2
0,n,K

)
U2

j,n,K

∣∣.
The first term on the right-hand side is bounded, applying the Cauchy–Schwarz inequality twice,
by (

E|U0,n|4
)1/2(

E|Uj,n + Uj,n,K |4)1/4(
E|Uj,n − Uj,n,K |4)1/4

.

By Lemma 3.10, this expression converges to 0 uniformly in n, as K → ∞. The second term
can be treated similarly. Therefore (3.19) follows for K large enough and hence to show (3.17)
it suffices to establish, for K large enough,

lim
n→∞

1

(b
(1)
n1 )4

∑
j1,j

′
1∈Z

(
b

(1)
n1,j1

)2(
b

(1)

n1,j
′
1

)2 Cov
(
U2

j1,n2,K
,U2

j ′
1,n2,K

) = 0. (3.20)

For this purpose, we shall establish the following lemma.
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Lemma 3.11. For all K ∈ N, ε > 0, there exist integers LK,ε,NK,ε , such that∣∣Cov
(
U2

0,n,K,U2
j,n,K

)∣∣ < ε for all j > LK,ε, n > NK,ε.

Given this result, observe that the left-hand side of (3.20) without taking the limit is bounded
by, writing

∑
j ′

1∈Z = ∑
|j1−j ′

1|≤LK,ε
+∑

|j1−j ′
1|>LK,ε

for each j1 ∈ Z,

CLK,ε

∑
j1∈Z

(
b

(1)
n1,j1

b
(1)
n1

)2

sup
j ′

1∈Z

(b
(1)

n1,j
′
1

b
(1)
n1

)2

+ 1

(b
(1)
n1 )4

∑
j1,j

′
1∈Z

(
b

(1)
n1,j1

)2(
b

(1)

n1,j
′
1

)2
ε

(3.21)

≤ CLK,ε sup
j ′

1∈Z

(b
(1)

n1,j
′
1

b
(1)
n1

)2

+ ε,

for all n2 > NK,ε . This and Lemma 3.8 give (3.20) and hence the third condition of McLeish’s
central limit theorem (3.14). Therefore, the proof of Proposition 3.7 is completed. It remains to
prove Lemma 3.11.

Proof of Lemma 3.11. Introduce, for each K ∈ N, j ∈ Z, the event

R
(1)
j,K =

{( ⋃
i∈{−K+1,...,0}

A
(1)
i

)
∩

( ⋃
i′∈{j−K+1,...,j}

A
(1)

i′

)
=∅

}
. (3.22)

We have limj→∞ P(R
(1)
j,K) = 1 for all K . This comes from

P
(
A

(1)
0 ∩ A

(1)
j 	=∅

) ≤
∑
k≥0

P
(−k ∈ A

(1)
0 ,−k ∈ A

(1)
j

)
≤

∑
k≥0

q
(1)
k q

(1)
j+k ≤

(∑
k≥0

(
q

(1)
k

)2
)1/2(∑

k≥0

(
q

(1)
j+k

)2
)1/2

,

and the fact that
∑

k≥0(q
(1)
j+k)

2 → 0 as j → ∞. We now write

E
(
U2

0,n,KU2
j,n,K

) = E
(
U2

0,n,KU2
j,n,K1

R
(1)
j,K

) +E
(
U2

0,n,KU2
j,n,K1

(R
(1)
j,K )c

)
. (3.23)

The second term on the right-hand side, by applying the Cauchy–Schwarz inequality twice and
Lemma 3.10, can be bounded uniformly in n by CP((R

(1)
j,K)c)1/2, which goes to zero as j → ∞

(C is a positive constant). So, it suffices to show that the first term on the right-hand side above
can be controlled to be arbitrarily close to (EU2

0,n,K)2 for j,K large enough.
For this purpose, the key idea is to decouple the underlying partitions in the first direction

U0,n,K and Uj,n,K . Otherwise, notice that the two are dependent for all choices of j and K . For
the decoupling, first notice that the law of the partition in the first direction are determined by the
law of those ancestral lines involved in the definition of R

(1)
j,K . To proceed we introduce a copy
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of {A(1)
j }j∈Z, denoted by {Ã(1)

j }j∈Z, independent of the original two-dimensional Hammond–

Sheffield model. Introduce the product partition G̃ of Z2 as in the original model, but instead
induced by {Ã(1)

j }j∈Z and {A(2)
j }j∈Z. Then, define {X̃j }j∈Z2 as before on G̃ by identical as-

signment rule. Define similarly X̃∗
i , X̃

∗
i,K, Ũj,n and Ũj,n,K as before, based on G̃. These are

identically distributed copies of the corresponding quantities of the original model. Define

R̃
(1)
j,K =

{( ⋃
i∈{−K+1,...,0}

A
(1)
i

)
∩

( ⋃
i′∈{j−K+1,...,j}

Ã
(1)

i′

)
=∅

}
. (3.24)

We first remark that P(R
(1)
j,K) = P(R̃

(1)
j,K) for j ≥ K and

(U0,n,K,Uj,n,K)|R(1)
j,K

d= (U0,n,K, Ũj,n,K)|R̃(1)
j,K ,

where each side is understood as the conditional distribution of a bivariate random vector. There-
fore, we have

E
(
U2

0,n,KU2
j,n,K1

R
(1)
j,K

)
= E

(
U2

0,n,KŨ2
j,n,K1

R̃
(1)
j,K

)
(3.25)

= E
(
U2

0,n,KŨ2
j,n,K

) −E
(
U2

0,n,KŨ2
j,n,K1

(R̃
(1)
j,K )c

)
= E

(
U2

0,n,KŨ2
0,n,K

) −E
(
U2

0,n,KŨ2
j,n,K1

(R̃
(1)
j,K )c

)
,

where in the last expression above, the second term is again bounded by CP((R̃
(1)
j,K)c)1/2, uni-

formly in n, for some positive constant C. To sum up, by (3.23) and (3.25) we arrive at the fact
that there exists a constant LK,ε such that∣∣E(

U2
0,n,KU2

j,n,K

) −E
(
U2

0,n,KŨ2
0,n,K

)∣∣ ≤ ε

2
for all j > LK,ε, n ∈ N. (3.26)

Finally, we will prove that

lim
n→∞ Cov

(
U2

n,0,K , Ũ2
n,0,K

) = 0. (3.27)

This and (3.26) shall yield that there exists an integer NK,ε such that∣∣E(
U2

0,n,KŨ2
0,n,K

) − (
EU2

0,n,K

)2∣∣ <
ε

2
for all n ∈ Nk,ε,

and complete the proof of the lemma.
It remains to show (3.27). We start by establishing a conditional central limit theorem for

U0,n,K , given the ancestral lines A
(1)
−K+1, . . . ,A

(1)
0 . We shall actually only need the random parti-

tion on {−K + 1, . . . ,0}, denoted by G
(1)
K , induced by these ancestral lines. Recall the definition
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of U0,j,K in (3.18). We have

U0,n,K = 1

b
(2)
n

n∑
j=1

X∗
(0,j),K = 1

b
(2)
n

n∑
j2=1

(
X(0,j2) −

K∑
j1=1

p
(1)
j1

X(−j1,j2)

)
≡ 1

b
(2)
n

n∑
j=1

Xj , (3.28)

where we introduce Xj = X∗
(0,j),K to simplify the notation. Note that X depends on K .

Here we need the crucial remark that, given G
(1)
K , {Xi}i∈Z is a generalized one-dimensional

Hammond–Sheffield model, with a marginal law as the conditional law of X∗
0,K

given G
(1)
K ,

and hence with bounded support (Remark 3.2). To see this, the second expression of U0,n,K in
(3.28) is more convenient: by definition of the two-dimensional model, it suffices to examine
the partition of {−K + 1, . . . ,0} × N. Recall that the product partition is obtained by Cartesian
products. It then follows that Xi ≡ Xj if i ∼ j with respect to the random partition G(2) of the
second direction of the model, and otherwise Xi and Xj are i.i.d. Note that this observation

remains true if we condition on G
(1)
K first; the marginal law will depend on G

(1)
K , but remains

bounded. Then, Proposition 3.1 tells that

{
1

b
(2)
n

�nt�∑
i=1

Xi

}
t∈[0,1]

∣∣∣G(1)
K ⇒ σK

{
B

H
t

}
t∈[0,1], (3.29)

where H = α2 + 1/2 and

σ 2
K = E(X2

1|G(1)
K )∑

k≥0(q
(2)
k )2

= E(X∗2
0,K

|G(1)
K )∑

k≥0(q
(2)
k )2

.

See the Appendix for our notations for conditional limit theorems. We only need t = 1 to deal
with U0,n,K in the central limit theorem here, but for the proof of finite-dimensional distributions
later, we shall need the above conditional functional central limit theorem. In particular, (3.29)
yields that

U0,n,K |G(1)
K ⇒ σK ·N (0,1).

Introduce similarly G̃
(1)
K based on {Ã(1)

−K+1, . . . , Ã
(1)
0 }. By the same approach described above,

we can show that

(U0,n,K, Ũ0,n,K)|G(1)
K , G̃

(1)
K ⇒ (σKZ, σ̃KZ̃), (3.30)

where Z and Z̃ are two independent standard normal random variables and

σ̃ 2
K = E(X̃∗2

0,K |G̃(1)
K )∑

k≥0(q
(2)
k )2

.
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To establish the joint convergence, by the Cramér–Wold device it suffices to consider, for all
a, b ∈ R,

aU0,n,K + bŨ0,n,K |G(1)
K , G̃

(1)
K

d= 1

b
(2)
n

n∑
i=1

(
aX∗

(0,i),K + bX̃∗
(0,i),K

)∣∣∣G(1)
K , G̃

(1)
K ,

where X̃∗
(0,i),K is defined similarly as X∗

(0,i),K , and the two are assumed to be conditionally

independent given {A(2)
j }j∈Z. Again, given G

(1)
K and G̃

(1)
K , the process

{Xi}i∈N ≡ {
aX∗

(0,i),K + bX̃∗
(0,i),K

}
i∈N

is a generalized one-dimensional Hammond–Sheffield model. The normalized partial sum∑n
i=1 Xi/b

(2)
n then converges to a normal distribution, with variance equal to

Var
(
X1|G(1)

K , G̃
(1)
K

) = E
[(

aX∗
(0,i),K + bX̃∗

(0,i),K

)2|G(1)
K , G̃

(1)
K

] = a2σ 2
K + b2σ̃ 2

K.

Hence, (3.30) follows as before by Proposition 3.1.
As a consequence of (3.30), we arrive at

(U0,n,K, Ũ0,n,K) ⇒ (σKZ, σ̃KZ̃) as n → ∞,

where now σK and σ̃K are random variables, and all four random variables on the right-hand
side are independent. By the boundedness of σK, σ̃K and the uniform integrability of U4

n,0,K and

Ũ4
n,0,K , it follows that

lim
n→∞ Cov

(
U2

n,0,K , Ũ2
n,0,K

) = Cov
(
σ 2

KZ2, σ̃ 2
KZ̃2) = 0.

This completes the proof of (3.27). �

3.5. Proof of Theorem 3.3

Proof of convergence of finite-dimensional distributions. We use Cramér–Wold device.
For m ∈ N, let λ1, . . . , λm ∈ R and t (1), . . . , t (m) ∈ [0,1]2 be fixed. For n ∈ N

2, denote
nt (1) , . . . ,nt (m) ∈ N

2 as before in (2.17) and to shorten the notation, the two coordinates of nt (r)

are denoted by n1(r) = �n1t
(r)
1 � and n2(r) = �n2t

(r)
2 � respectively, t (r) being fixed. We have for

all n ∈ N
2,

1

bn

m∑
r=1

λrSn
t(r)

= 1

b
(1)
n1

∑
j1∈Z

m∑
r=1

λrb
(1)
n1(r),j1

Uj1,n2(r),

where Uj1,n2(r) is defined as in (3.10). One can show as before that{
m∑

r=1

λrb
(1)
n1(r),j

Uj,n2(r)

}
j∈Z
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is a martingale-difference sequence with respect to {F (1)
j }j∈Z. Therefore, we apply the cen-

tral limit theorem of McLeish as in Section 3.4. The two conditions corresponding to (3.12)
and (3.13) can be verified similarly as before. The third condition (3.14) becomes

lim
n1→∞

1

(b
(1)
n1 )2

∑
j∈Z

(
m∑

r=1

λrb
(1)
n1(r),j1

Uj,n2(r)

)2

= Var(
∑m

r=1 λrB
H
t (r)

)

(
∑

k≥0 q2
k)2

in probability.

This shall follow from

lim
n1→∞

1

(b
(1)
n1 )2

∑
j∈Z

b
(1)
n1(r),j

b
(1)

n1(r
′),jUj,n2(r)Uj,n2(r

′)

(3.31)

=
Cov(BH

t (r)
,BH

t (r
′) )

(
∑

k≥0 q2
k)2

in probability,

for all r, r ′ ∈ {1, . . . ,m}. We do so again by computing the L2-convergence. Remark first that

E

(
1

(b
(1)
n1 )2

∑
j∈Z

b
(1)
n1(r),j

b
(1)

n1(r
′),jUj,n2(r)Uj,n2(r

′)

)

= 1

(b
(1)
n1 )2

∑
j1∈Z

b
(1)
n1(r),j1

b
(1)

n1(r
′),j1

1

(b
(2)
n2 )2

∑
j2∈Z

b
(2)
n2(r),j2

b
(2)

n2(r
′),j2

Var
(
X∗∗

0

)
∼ Cov

(
B

H
t (r)

,BH
t (r

′)
)

Var
(
X∗∗

0

)
as n → ∞,

where X∗∗
0 is defined as in (3.15) and the asymptotic follows from the identity∑

j∈Z
b

(m)
n(r),j b

(m)

n(r ′),j = 1

2

[(
b

(m)
n(r)

)2 + (
b

(m)

n(r ′)
)2 − ∣∣b(m)

n(r) − b
(m)

n(r ′)
∣∣2]

= 1

2

[(
b

(m)
n(r)

)2 + (
b

(m)

n(r ′)
)2 − (

b
(m)

|n(r)−n(r ′)|
)2]

, m = 1,2,

and (3.8). Therefore, to show (3.31), it suffices to prove, as a counterpart of (3.20),

lim
n→∞

1

(b
(1)
n1 )4

∑
j,j ′∈Z

b
(1)
n1(r),j

b
(1)

n1(r
′),j b

(1)

n1(r),j
′b

(1)

n1(r
′),j ′

× Cov(Uj,n2(r),KUj,n2(r
′),K,Uj ′,n2(r),KUj ′,n2(r

′),K) = 0,

which, as in (3.21), shall follow from the following lemma. The proof of convergence of finite-
dimensional distributions is thus completed. �

Lemma 3.12. For all K ∈ N, ε > 0, there exists LK,ε,NK,ε , such that∣∣Cov(U0,n2(r),KU0,n2(r
′),K,Uj,n2(r),KUj,n2(r

′),K)
∣∣ < ε for all j > LK,ε, n2 > NK,ε.
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Proof. By the same idea as in the proof of Lemma 3.11, it suffices to show

lim
n2→∞ Cov(U0,n2(r),KU0,n2(r

′),K, Ũ0,n2(r),KŨ0,n2(r
′),K) = 0.

As a consequence of (3.29), instead of (3.30) we now have

(U0,n2(r),K,U0,n2(r
′),K, Ũ0,n2(r),K, Ũ0,n2(r

′),K)|G(1)
K , G̃

(1)
K

⇒ (
σKB

H2

t
(r)
2

, σKB
H2

t
(r′)
2

, σ̃K B̃
H2

t
(r)
2

, σ̃K B̃
H2

t
(r′)
2

)
,

where B
H2 and B̃

H2 are i.i.d. copies of fractional Brownian motion with Hurst index H2 = α2 +
1/2, σK and σ̃K are as before. This completes the proof. �

Proof of tightness. Again, applying Bickel–Wichura’s criterion [1] and using (3.11), the tight-
ness will follow from the existence of a real γ > 1 such that

E

(
Sm

bn

)2

≤ C

2∏
q=1

(
mq

nq

)γ

for all m ≤ n.

Let δ > 0 be such that γ = 2 min(α1, α2) + 1 − δ > 1. Using the representation of Sm as in (3.9)
and the representation of U0,n as in (3.16), applying Burkholder’s inequality twice, we get

E

(
Sm

bn

)2

≤ C

(
b

(1)
m1

b
(1)
n1

)2(
b

(2)
m2

b
(2)
n2

)2∥∥X∗∗
0

∥∥2
2 ≤ C

2∏
q=1

(
mq

nq

)2αq+1 Lq(nq)

Lq(mq)
.

We obtain the desired result by Potter’s bound Lq(nq)/Lq(mq) ≤ C(mq/nq)−δ . �

4. Combining Hammond–Sheffield model and Karlin model

In this section, we combine a one-dimensional Hammond–Sheffield model and a one-dimensional
randomized Karlin model together, and show that the combined model converges weakly to a
fractional Brownian sheet with Hurst indices H1 ∈ (1/2,1) and H2 ∈ (0,1/2).

4.1. Model and main result

Consider two random partitions from the one-dimensional Hammond–Sheffield model and the
randomized Karlin model, respectively. Assume the two random partitions are independent.
Namely, let G(1) = G(E,V ) be the underlying random forest structure of the Hammond–
Sheffield model generated by a distribution μ1, and let {A(1)

j }j∈Z be the associated ancestral

lines. Let {Y (2)
j }j∈N be i.i.d. random variables with common distribution μ2. Suppose μi, i = 1,2

are probability measures on N satisfying (3.3) and (2.1) respectively with α1 ∈ (0,1/2) and



From random partitions to fractional Brownian sheets 1443

α2 ∈ (0,1). Assume G(1) and {Y (2)
j }j∈N are independent. Now, consider the product of the two

random partitions. This is the random partition of Z×N determined by

i ∼ j if and only if A
(1)
i1

∩ A
(1)
j1

	=∅ and Y
(2)
i2

= Y
(2)
j2

.

Next, given the partition, we apply the identical assignment rule in the first direction, and the
alternating assignment rule in the second (see Figure 1, right). Given a collection of components
determined by G(1) and {Y (2)

n }n∈N, we assign values XC = {Xj }j∈C as follows. Let {εC}C be a
collection of i.i.d. random variables taking values in {−1,1} with equal probabilities, indexed by
different components C. For each C fixed, express this as

C = C(1) × {
j

(2)
�

}
�∈N with 1 ≤ j

(2)
1 ≤ j

(2)
2 ≤ · · · ,

and set

Xj = (−1)�+1εC for j = (j1, j2) ∈ C, j2 = j
(2)
� .

The random field {Xj }j∈Z×N constructed this way is referred to as the two-dimensional com-
bined model. The main result of this section is the following invariance principle for Sn =∑

i∈[1,n] Xi .

Theorem 4.1. For the two-dimensional combined model with α1 ∈ (0,1/2), α2 ∈ (0,1), and
slowly varying functions L1, L2 respectively,{

S�n·t�
n

H1
1 n

H2
2 L1(n1)−1L2(n2)1/2

}
t∈[0,1]2

⇒ σα

{
B

H
t

}
t∈[0,1]2

in D([0,1]2), as n → ∞, with H1 = α1 + 1/2 ∈ (1/2,1), H2 = α2/2 ∈ (0,1/2), and

σ 2
α = Cα1�(1 − α2)2α2−1∑

j≥0(q
(1)
j )2

,

for Cα1 defined in (3.2) and q
(1)
j = P(0 ∈ A

(1)
j ), j ∈ Z.

4.2. Proof of Theorem 4.1

The proof follows the same strategy as for the two-dimensional Hammond–Sheffield model in
Sections 3.3 and 3.4. We first introduce the sequence {X∗

j }j∈Z defined as in (3.4) by

X∗
j = Xj −E

(
Xj |F (1)

j1

)
, j ∈ Z,

where F (1)
j = σ {Xi |i1 < j, i2 ∈ N}. Note that, to draw a parallel with Sections 3.3 and 3.4,

we keep the same notation but the variables X∗
j here are different from the preceding section

since the dependence in the second direction is given by a partition from the Karlin model.
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Nevertheless, for any j2 ∈ N, the sequence {Xj }j1∈Z is a martingale-difference sequence with

respect to {F (1)
j1

}j1∈Z. So, Lemma 3.5 remains valid here (the proof is exactly the same) and we
thus have

Sn =
∑
j1∈Z

b
(1)
n1,j1

n2∑
j2=1

X∗
j ,

with b
(1)
n,j = ∑n

k=1 q
(1)
k−j defined as before. Recall from (3.8) that

(
b(1)
n

)2 =
∑
j∈Z

(
b

(1)
n,j

)2 ∼ Cα1n
2α1+1L1(n)−2 as n → ∞.

Because of the alternating assignment rule in the second direction, we need to consider the num-
ber K̃

(2)
n = ∑∞

i=1 K
(2)
n,2i−1 of odd-occupancy boxes, that is the number of values appearing an

odd number of times among {Y (2)
1 , . . . , Y

(2)
n }. Recall from Lemma 2.3 that(

a(2)
n

)2 = EK̃(2)
n ∼ �(1 − α2)2

α2−1nα2L2(n) as n → ∞.

This time, for all n ∈ N
2, we can write

Sn

b
(1)
n1 a

(2)
n2

= 1

b
(1)
n1

∑
j∈Z

b
(1)
n1,j1

Uj1,n2 with Uj1,n2 = 1

a
(2)
n2

n2∑
i=1

X∗
j .

This is the counterpart of Proposition 3.6, representing the normalized partial sum of interest as
a weighted linear process with stationary martingale-difference innovations.

We then introduce, for all K ≥ 1, the approximations

X∗
j ,K = Xj −

K∑
k=1

p
(1)
k X(j1−k,j2) and Uj1,n,K = 1

a
(2)
n

n∑
j2=1

X∗
j ,K,

for all j1 ∈ Z, j2 ∈ N, n ∈ N.

Proof of convergence of finite-dimensional distributions. This can be done as in Section 3.4
by the use of Cramér–Wold device and McLeish’s theorem [22]. For this purpose, we only need
to show that the conclusions of Lemmas 3.9, 3.10, 3.11, and 3.12 are still valid with respect
to the newly defined X∗

j , X∗
j ,K , Uj1,n2 and Uj1,n2,K . For the sake of convenience, we restate

Lemmas 3.9 and 3.10 in Lemma 4.2 below, and restate Lemma 3.11 in Lemma 4.3 below. The
core arguments of Lemma 3.12 are all in Lemma 3.11 and we therefore omit the proof. �

Lemma 4.2. (i) For all n ∈N, EU2
0,n = (

∑
k≥0 q2

k)−1 < ∞.

(ii) For all p ∈ N and K ∈ N, EU
2p

0,n and EU
2p

0,n,K are uniformly bounded.

(iii) For all p ≥ 1, limK→∞ supn∈NE|U0,n − U0,n,K |2p = 0.
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Proof. Denoting by G(1) and Y(2) the σ -fields generated by G(1) and {Y (2)
j }j∈N respectively, as

for (2.16), we see that for all n ∈N, j1 ∈ N,

n∑
j2=1

X∗
j

∣∣∣G(1),Y(2) d=
K̃

(2)
n∑

i=1

ε′
i

∣∣∣G(1),

where the random variables {ε′
i}i∈N are conditionally independent given G(1), independent of

Y(2), and for all i ∈ N, the conditional distribution ε′
i |G(1) is the same as the conditional distri-

bution X∗
0 |G(1). Note in the identity above, without the conditioning on G(1), the {ε′

i}i∈N on the
right-hand side are no longer independent. We can thus write

E
(
U2

0,n|G(1),Y(2)
) = 1

(a
(2)
n )2

E

[(
n∑

j2=1

X∗
j

)2∣∣∣G(1),Y(2)

]

= 1

(a
(2)
n )2

E

[(
K̃

(2)
n∑

i=1

ε′
i

)2∣∣∣G(1),Y(2)

]
= K̃

(2)
n

(a
(2)
n )2

E
(
ε′2

0 |G(1)
)
.

Thus

E
(
U2

0,n

) = Var
(
X∗

0

)
< ∞ uniformly in n.

This proves the first part.
For the second part, for all p ≥ 1, by Burkholder’s inequality we have

E
(
U

2p

0,n|G(1),Y(2)
) ≤ Cp

(
K̃

(2)
n

(a
(2)
n )2

)p

E
(
X

∗2p

0 |G(1)
)
.

Note that E(K̃
(2)
n /(a

(2)
n )2)p is uniformly bounded by Lemma 2.3. Similarly,

E
(
U

2p

0,n,K |G(1),Y(2)
) ≤ Cp

(
K̃

(2)
n

(a
(2)
n )2

)p

E
(
X

∗2p

0,K
|G(1)

)
.

For the third part, we have

E
(|U0,n,K − U0,n|2p|G(1),Y(2)

) ≤ Cp

(
K̃

(2)
n

(a
(2)
n )2

)p

E
(∣∣X∗

0,K − X∗
0

∣∣2p|G(1)
) → 0,

as K → ∞. �

Lemma 4.3. For all K ∈N, ε > 0, there exists integers LK,ε,NK,ε , such that∣∣Cov
(
U2

0,n,K,U2
j,n,K

)∣∣ < ε for all j > LK,ε, n > NK,ε.
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Proof. To proceed we introduce a copy of {A(1)
j }j∈Z, denoted by {Ã(1)

j }j∈Z, independent of

the original model and we defined a new field {X̃j }j∈Z based on the combined model involv-

ing {Ã(1)
j }j∈Z and the same {Y (2)

j }j∈N as the original model. Then X̃j , X̃∗
j , X̃∗

j ,K , Ũj,n, and

Ũj,n,K are defined as the corresponding statistics of the combined model based on {Ã(1)
j }j∈Z

and {Y (2)
j }j∈N. In particular, these random variables are identically distributed as the variables

Xj ,X∗
j ,X∗

j ,K,U0,n and U0,n,K , respectively, and they are conditionally independent from them

given Y(2). As in the proof of Lemma 3.11, observe that

(U0,n,K,Uj,n,K)|R(1)
j,K

d= (U0,n,K, Ũj,n,K)|R̃(1)
j,K,

for R
(1)
j,K and R̃

(1)
j,K defined as in (3.22) and (3.24). Therefore, we see that to prove the desired

result it suffices to show that for all K ≥ 1,

lim
n→∞ Cov

(
U2

0,n,K, Ũ2
0,n,K

) = 0,

corresponding to (3.27). Let G
(1)
K be the random partition of {−K + 1, . . . ,0} induced by G(1)

and note that

U0,n,K |G(1)
K

d= 1

a
(2)
n2

n∑
i=1

X∗
(0,i),K

∣∣∣G(1)
K ≡ 1

a
(2)
n2

n∑
i=1

Xi

∣∣∣G(1)
K ,

where again we write Xi = X∗
(0,i),K for the sake of simplicity. Here, conditionally given G

(1)
K ,

{Xi}i∈N is a generalized one-dimensional randomized Karlin model. Indeed, for i � j with re-
spect to {Y (2)

j }j∈N, the random variables Xi and Xj are conditionally independent given G
(1)
K

and Y(2), and for i ∼ j , letting � denote the number of integers in the component between i

and j (say i < j without loss of generality, so � = {k : i < k < j,Y
(2)
k = Y

(2)
i = Y

(2)
j }), we have

Xi = (−1)�+1
Xj given G

(1)
K and Y(2).

Similarly, let G̃
(1)
K be the random partition of {−K + 1, . . . ,0} induced by G̃(1). Then for all

a, b ∈ R,

aU0,n,K + bŨ0,n,K |G(1)
K , G̃

(1)
K

d= 1

a
(2)
n2

n∑
i=1

(
aX∗

(0,i),K + bX̃∗
(0,i),K

)∣∣∣G(1)
K , G̃

(1)
K ,

where

{Xi}i∈N ≡ {
aX∗

(0,i),K + bX̃∗
(0,i),K

}
i∈N,

given G
(1)
K and G̃

(1)
K , this time is a generalized one-dimensional randomized Karlin model. Since

{Xi}i∈N has bounded and centered marginal distribution, we can thus apply Proposition 2.1 for
generalized one-dimensional randomized Karlin model. The variance of the limit normal distri-
bution is then

E
(
X

2
1|G(1)

K , G̃
(1)
K

) = a2 Var
(
X∗

0,K |G(1)
K

) + b2 Var
(
X̃∗

0,K |G̃(1)
K

) = a2σK + b2σ̃K .
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It follows that, by the Cramér–Wold device,

(U0,n,K, Ũ0,n,K) ⇒ (σKZ, σ̃KZ̃),

where Z and Z̃ are standard normal random variables and the four random variables are inde-
pendent. To conclude, we deduce that

lim
n→∞ Cov

(
U2

0,n,K, Ũ2
0,n,K

) = Cov
(
σ 2

KZ2, σ̃ 2
KZ̃2) = 0,

which imply the desired result. �

Proof of tightness. Again, we proceed using Bickel–Wichura’s criterion [1]. Observe that for all
n ∈N, {Uj,n}j∈Z is a martingale-difference sequence with respect to {F (1)

j }j∈Z. By Burkholder’s

inequality, for all p ≥ 1, for all n,m ∈ N
2,

E

(
Sm

b
(1)
n1 a

(2)
n2

)2p

≤ Cp

(
a

(2)
m2

b
(1)
n1 a

(2)
n2

)2p

E

(∑
j∈Z

(
b(1)
m1

)2
U2

j,m2

)p

≤ Cp

(
b

(1)
m1

b
(1)
n1

)2p(
a

(2)
m2

a
(2)
n2

)2p

EU
2p

0,n.

Using that EU
2p

0,n is bounded uniformly in n and that

(
b

(1)
m1

b
(1)
n1

)2p(
a

(2)
m2

a
(2)
n2

)2p

∼ m
H1
1 L−1

1 (m1)

n
H1
1 L−1

1 (n1)

m
H2
2 L2(m2)

n
H2
2 L2(n2)

as n → ∞,

we can conclude as for the other models, dealing with the slowly varying functions by using
Potter’s bound. �

Remark 4.4. As we have seen, the proof follows the same structure as for the two-dimensional
Hammond–Sheffield model. In fact, our models have their natural generalizations to high di-
mensions (d ≥ 2), and the proof will follow the same strategy. The generalization of the model
to high dimensions, based on independent random partitions and assignment rules in different
directions, is intuitively obvious. However, it is notationally heavy to introduce. We only briefly
explain how the proof would go. If in all directions the random partition is the same as the one
in the one-dimensional Karlin model, then the same proof as Theorem 2.2, by first conditioning
on the partition, shall work. If at least in one direction, say the first, the random partition and
assignment rule are the ones of the one-dimensional Hammond–Sheffield model, then the same
strategy as in two-dimensional Hammond–Sheffield model and the combined model shall work,
by first writing

1

bn
Sn1,...,nd

= 1

b
(1)
n1

∑
j1∈Z

b
(1)
j1,n1

Uj1,n2,...,nd
,
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with {Uj1,n2,...,nd
}j1∈Z a stationary sequence of martingale differences. The analysis of this

martingale-difference sequence shall need results for generalized (d − 1)-dimensional models
(to be defined properly first). To complete the details of this strategy would require an induction
argument.

Appendix: Conditional convergence

We follow the notations of Kallenberg [14], Chapter 5. Let (�,A,P) be a probability space,
(S,S) be a Borel space and (T ,T ) be a measurable space. Let ξ, η be two random elements in
S,T respectively. A regular conditional distribution of ξ given η is defined as a random measure
ν of the form

ν(η,B) = P
(
ξ ∈ B|σ(η)

)
almost surely, B ∈ S,

where ν is a probability kernel from (T ,T ) to (S,S): ν(·,B) is T -measurable for all B ∈ S , and
ν(t, ·) is a probability measure on (S,S) for all t ∈ T . Under the previous regularity assumption
on the space (S,S) and (T ,T ), such a probability kernel ν exists, and is unique almost every-
where P◦η−1 [14], Theorem 5.3. Furthermore, for all measurable function f on (S ×T ,S×T ),
with E|f (ξ, η)| < ∞,

E
(
f (ξ, η)|σ(η)

) =
∫

ν(η, ds)f (s, η) almost surely.

See for example [14], Theorem 5.4.
Some of our results are in the form of conditional (functional) limit theorems for the random

field given underlying the random partition. The random partition, denoted by η here, and the
random field {Xi}i∈Zd , d ∈ N are defined on a common probability space (�,A,P). Let {Zn}n∈N
be a sequence of real-valued random variables (the normalized partial sum with appropriate
normalization) in the same probability space. Then, let νn(η, ·) denote the regular conditional
distribution of Zn given η. With G = σ(η), we write for some G-measurable random variable V

(possibly a constant),

Zn|G ⇒ V ·N (0,1),

if νn(η(ω), ·) as n → ∞ converges to the standard normal distribution multiplied by V (ω) almost
surely. That is, for all bounded continuous functions h :R→ R,

lim
n→∞

∫
h(z)νn

(
η(ω), dz

) =
∫

h(z)
1√
2π

e−z2/2 dz · V (ω) almost surely.

In this case we say that the conditional central limit theorem holds.
The conditional functional central limit theorem is interpreted in a similar way. Let Z =

{Z(t)}t∈T and Zn = {Zn(t)}t∈T , n ∈ N with T = [0,1]d , d ∈ N, be real-valued stochastic pro-
cesses in D(T ) equipped with the Skorohod topology, defined in the same probability space. We
write {

Zn(t)
}
t∈T

|G ⇒ V · {Z(t)
}
t∈T

,
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if, letting νn(η, ·) denote this time the regular conditional distribution of Zn given η and μZ de-
note the distribution of Z , both as probability measures on D(T ), for all bounded and continuous
function h from D(T ) to R,

lim
n→∞

∫
D(T )

h(ζ )νn

(
η(ω), dζ

) =
∫

D(T )

h(ζ )μZ (dζ ) · V (ω) almost surely.
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