
Bernoulli 25(2), 2019, 1326–1354
https://doi.org/10.3150/18-BEJ1022

Strong Gaussian approximation of the
mixture Rasch model
FRIEDRICH LIESE*, ALEXANDER MEISTER** and JOHANNA KAPPUS†

Institut für Mathematik, Universität Rostock, D-18051 Rostock, Germany.
E-mail: *friedrich.liese@uni-rostock.de; **alexander.meister@uni-rostock.de;
†johanna_kappus@t-online.de

We consider the famous Rasch model, which is applied to psychometric surveys when n persons under
test answer m questions. The score is given by a realization of a random binary n × m-matrix. Its (j, k)th
component indicates whether or not the answer of the j th person to the kth question is correct. In the
mixture, Rasch model one assumes that the persons are chosen randomly from a population. We prove that
the mixture Rasch model is asymptotically equivalent to a Gaussian observation scheme in Le Cam’s sense
as n tends to infinity and m is allowed to increase slowly in n. For that purpose, we show a general result on
strong Gaussian approximation of the sum of independent high-dimensional binary random vectors. As a
first application, we construct an asymptotic confidence region for the difficulty parameters of the questions.

Keywords: asymptotic equivalence of statistical experiments; high-dimensional central limit theorem; item
response model; Le Cam distance; psychometrics

1. Introduction

The Rasch model is a famous and widely used approach to analyse surveys in the field of psycho-
metrics. It assumes that each of n subjects (typically persons) are exposed to m items (typically
questions to be answered). For each j = 1, . . . , n and k = 1, . . . ,m the correctness of the answer
of person j to the question k is a binary random variable Xj,k where the probability of a correct
answer, that is, Xj,k = 1, is given by

P(Xj,k = 1) = exp{βj − θk}
1 + exp{βj − θk} , k = 1, . . . ,m; j = 1, . . . , n.

The parameter θk characterizes the difficulty of the kth item and the parameter βj reflects the
ability of the j th individual. The βj may be either considered as unknown parameters (standard
Rasch model) or as realizations of i.i.d. random variables with distribution F . The latter case
describes the situation in which the individuals are randomly selected from a large population.
Then the observation vectors Yj = (Xj,1, . . . ,Xj,m) are i.i.d. and it holds for every binary matrix
ε = (εj,k)j=1,...,n;k=1,...,m that

P
(
(Y1, . . . , Yn)

T = ε
)=

n∏
j=1

∫ {
m∏

k=1

exp{εj,k(β − θk)}
1 + exp{β − θk}

}
dF(β), εj,k ∈ {0,1}. (1.1)
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This type of psychometric model is called the mixture Rasch model which will be the central
object in this paper.

For original literature, we refer to the book of Rasch [29], after whom the model has been
named. Also we mention the books of Alagumalai et al. [1] and Bezruczko [5] for applications
of the Rasch model. It has also confined attention in the econometric literature (Hoderlein et al.
[18]). The mixture model is used in Lindsay et al. [22], Rice [31] and Strasser [36,37]. Also we
refer to the books of Fischer and Molenaar [15] and von Davier and Carstensen [38].

So far most of the literature on the Rasch model has mainly focused on the estimation of the
difficulty parameters, consistency and asymptotic normality (mostly for bounded m) where max-
imum likelihood (ML) or quasi-ML methods are preferred, see, for example, Haberman [17],
de Leeuw and Verhelst [13] or Pfanzagl [27,28]. Lindsay et al. [22] consider semiparametric
estimation in the Rasch model and related problems. Biehler et al. [6] study saddlepoint approxi-
mation of the ability parameters. Doebler et al. [14] construct confidence intervals for the ability
parameters. Strasser [36,37] thoroughly investigates the covariance structure and asymptotic dis-
tribution of quasi-ML estimators in the mixture Rasch model.

In this work, we approximate the mixture Rasch model in the strong Le Cam sense by a model
which contains a Gaussian observation, and – conditionally on that – another Gaussian observa-
tion whose distribution does not depend on the ability distribution F (as n → ∞). This investi-
gation is motivated by the fact that, for Gaussian models, the structure of optimal estimators and
tests is understood very well in both the parametric and nonparametric case.

As a first application, we will construct a uniform asymptotic confidence ellipsoid for the dif-
ficulty parameters in the asymptotically equivalent Gaussian model under potentially increasing
(but restricted) dimension m, which, thus, also represents a uniform asymptotic confidence el-
lipsoid in the original mixture Rasch model. Also the asymptotic equivalence result will open a
broad field of further applications as we will explain in the conclusions.

The distribution F in (1.1) is not nonparametrically identified for bounded m, a situation that
is similar to the binomial mixture models. Therefore, we allow m = mn to tend to infinity, as
n → ∞. Therein mn has to be of smaller order compared to n. This means that there are much
more subjects under test compared to the total number of questions contained in the sheet, a con-
dition that is satisfied in almost all applications and especially in the Programme for International
Student Assessment (PISA), to which the Rasch model has been applied.

The model (1.1) is included in the more general framework of statistical experiments in which
one observes the i.i.d. random vectors Y1, . . . , Yn with

L(Y1, . . . , Yn) =
∫ n⊗

j=1

m⊗
i=1

Pβj −θi
dF⊗n(β1, . . . , βn)

(1.2)

=
(∫ m⊗

i=1

Pβ−θi
dF (β)

)⊗n

,

where
⊗

is the symbol for the product measure and Pγ is an exponential family; concretely,

Pγ (X = k) = h(k) exp
{
γ k − K(γ )

}
, k ∈N∪ {0}.
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In our setting (1.1), we have K(γ ) = log(1 + exp{γ }) and h = 1{0,1}. As an alternative example
for the general setting (1.2), we provide the Poisson Rasch model, for which it holds that

Pλ(X = k) = h(k) exp
{
k(β − θ) − exp{λ}}= (ρτ)k

k! exp{−ρτ },

where ρ = exp{β}, τ = exp{−θ}, λ = exp{β − θ} and h(k) = 1/k!. Thus, Pλ is a Poisson distri-
bution in that model rather than a Bernoulli distribution as in our setting (1.1).

2. Asymptotic equivalence

In this section, we provide a brief introduction to the concept of equivalence and asymp-
totic equivalence of statistical experiments. Assume we have two statistical experiments Ej =
(	j ,Aj , (Pθ,j )θ∈
) with the same parameter space 
. By Ki,j and i, j ∈ {1,2}, we shall denote
the set of all Markov kernels Ki,j :Aj × 	i → [0,1]. The application of K2,1 on Pθ,2, that is,

(K2,1Pθ,2)(A1) =
∫

K2,1(A1,ω2)Pθ,2(dω2)

is a probability measure on (	1,A1). The two statistical experiments E1 and E2 are called
equivalent if there are Markov kernels K1,2 and K2,1, both not depending on θ , such that
K2,1Pθ,2 = Pθ,1 and K1,2Pθ,1 = Pθ,2 for all θ ∈ 
. Then the two experiments are also equivalent
in the decision theoretic sense. Indeed, if (D,D) is a decision space, L(a, θ) a loss function and
Di(B,ωi),B ∈D,ωi ∈ 	i is a (randomized) decision for the ith experiment then

Dj(B,ωj ) :=
∫

Di(B,ωi)Kj,i(dωi,ωj )

is a decision for the other experiment and it can be easily seen that both decisions have identical
risk functions. Now suppose that T : 	1 → 	2 is sufficient, in the sense that there exists some
Markov kernel K which does not depend on θ but represents a version of the conditional measure
given T under Pθ,1 for all θ ∈ 
; concretely K(A1, T ) = Eθ,1(1A1 | T ) Pθ,1-a.s., for all A1 ∈A1;
and that Pθ,2 = Pθ,1 ◦T −1 for all θ ∈ 
. Let δa denote the Dirac measure concentrated at point a.
Then K1,2(A2,ω1) = δT (ω1)(A2) is a Markov kernel and it holds that K1,2Pθ,1 = Pθ,1 ◦ T −1.
The sufficiency of T implies that there is a Markov kernel K2,1 with K2,1Pθ,2 = Pθ,1. The two
experiments are equivalent, therefore.

The concept of deficiency makes precise in what sense the approximate sufficiency of a statis-
tic or, more generally, the approximate equivalence is to be understood. It is defined with the
help of the total variation distance TV(P,Q) = 2 supA |P(A) − Q(A)| between the distributions
P and Q. Put, for i, j ∈ {1,2}, i �= j ,

δ(Ei ,Ej ) = inf
Kj,i∈Ki,j

sup
θ∈


TV(Kj,iPθ,j ,Pθ,i),

(E1,E2) = max
(
δ(E1,E2), δ(E2,E1)

)
.
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Therein δ(Ei ,Ej ) is called the deficiency of Ei and Ej and (E1,E2) is the Le Cam distance of E1
and E2. It is a metric in the space of equivalence classes of statistical experiments with a joint pa-
rameter set. Two sequences Ej,n = (	j,n,Aj,n, (Pθ,j,n)θ∈
n), j = 1,2 of statistical experiments
are called asymptotically equivalent if limn→∞ (E1,n,E2,n) = 0. By a slight abuse of language
one calls the experiments E1,n and E2,n asymptotically equivalent while this means asymptotic
equivalence of the corresponding sequences. Sometimes the sample spaces are identical, then

(E1,n,E2,n) ≤ sup
θ∈
n

TV(Pθ,1,n,Pθ,2,n).

Asymptotic equivalence allows to take over asymptotic properties such as convergence rates of
estimators or asymptotic confidence regions from one experiment to the other.

In the local asymptotic decision theory 
 is an open subset of Rd and for a fixed θ0 ∈ 
 and a
sequence an tending to zero one introduce a local parameter h ∈ Hn = {h : θ0 + anh ∈ 
} ⊆R

d .
The so called LAN condition for E1,n, see Strasser [35] is equivalent to the following statement:
There is a matrix I(θ0), called information matrix, such that (E1,n)n converges weakly to the
Gaussian experiment E2 = (Rd ,B(Rd), (N(I(θ0)h,I(θ0))h∈Rd ). Weak convergence means that
(EH1,n,EH2 ) → 0, where the superscript H means that for consider the experiments only for a
finite but arbitrary subset H ⊆ Hn as parameter set. A typical situation, in which this condition
holds, occurs if the family Pθ is L2-differentiable and an = 1√

n
and Pθ,1,n = P ⊗n

θ,1 , that is, if we
have i.i.d. observations.

For books on Le Cam theory we refer to Le Cam [19], Strasser [35], Le Cam and Yang [20],
Shiryaev and Spokoiny [34] and Liese and Miescke [21]. In nonparametric literature, research
mainly focuses on showing asymptotic equivalence of curve estimation problems to white noise
models, in which the target curve occurs as the drift function of a Wiener process. Therein we
mention for example, Nussbaum [26], Carter [10] and Brown et al. [7] for density estimation;
Brown and Low [8], Rohde [32], Carter [11], Cai and Zhou [9] and Schmidt-Hieber [33] for
nonparametric regression; Meister [24] for functional linear regression; Reiß [30], Genon-Catalot
and Larédo [16] and Mariucci [23] for the analysis of more complex stochastic processes. The
paper of Meister and Reiß [25] somehow deviates from this list as it establishes asymptotic
equivalence of nonregular nonparametric regression and a specific Poisson point process. Still
Gaussian limit models are most popular.

3. Dimension reduction by sufficiency

The sample space for the Rasch model is 	 = {0,1}n×m, the space of all binary n × m-matrices
ω = (ωj,k),1 ≤ j ≤ n;1 ≤ k ≤ m. Throughout, we equip a discrete sample space X by the power
set P(X ) as σ -algebra. Let Xj,k(ω) = ωj,k indicate the correctness of the answer of person j to
question k. Then Yj = (Xj,1, . . . ,Xj,m) is the response vector of person j .

We fix some R > 0 and a set F of admitted distributions F in (1.1) and set


 =
{

θ ∈ [−R,R]m :
m∑

k=1

θk = 0

}
. (3.1)
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Note that the condition that the θk add to zero is a common calibration to ensure identifiability
of the difficulty parameters. For θ = (θ1, . . . , θm) and F ∈ F, we denote by P A

θ,F the joint dis-

tribution of Y1, . . . , Yn. The density dP A
θ,F /dκn×m of P A

θ,F with respect to the counting measure
κn×m on 	 is the probability mass function and (1.1) yields

dP A
θ,F

dκn×m

(ω) = P A
θ,F

({ω})=
n∏

j=1

∫ {
m∏

k=1

exp{ωj,k(β − θk)}
1 + exp{β − θk}

}
dF(β). (3.2)

Putting together all components we arrive at the experiment, which is the mixture Rasch model,

An,m := ({0,1}n×m,P
({0,1}n×m

)
,
(
P A

θ,F

)
(θ,F )∈
×F

)
.

We set

Sj =
m∑

k=1

Xj,k, Nk =
n∑

j=1

1{k}(Sj ), Tk =
n∑

j=1

Xj,k, (3.3)

where 1A is the indicator function of the set A. Put

G(k, θ,F ) = log

{∫ {
exp{kβ}

m∏
l=1

1

1 + exp{β − θl}

}
dF(β)

}

for k = 0, . . . ,m. The representation (3.2) yields

dP A
θ,F

dκn×m

= exp

{
−

m∑
k=1

θkTk +
n∑

j=1

G(Sj , θ,F )

}
= exp

{
−

m∑
k=1

θkTk +
m∑

k=0

Nk · G(k, θ,F )

}
.

Then, by the Fisher–Neyman factorization criterion, we realize in a first step that the statistic
(S1, . . . , Sn, T1, . . . , Tm) which consists of the sums of the rows and of the columns is suffi-
cient, a fact that has already been established in Andersen [2,3] or on page 41 in Fischer and
Molenaar [15] for the standard Rasch model and extended to the polytomous Rasch model in
Andrich [4]. But the above representation shows that one can reduce the mixture Rasch model
further to the statistic (T1, . . . , Tm,N0, . . . ,Nm) in a second step. As

∑m
k=1 Tk = ∑m

k=0 k · Nk

and
∑m

k=0 Nk = n we may remove one of the components of (N0, . . . ,Nm) and one of the
components of (T1, . . . , Tm) without losing sufficiency of the statistic. Especially the statistic
(T ,N) = (T1, . . . , Tm−1,N1, . . . ,Nm) is sufficient and takes its values in {0, . . . , n}2m−1. Denot-
ing the distribution of (T ,N) under P A

θ,F by P B
θ,F we arrive at the experiment

Bn,m := ({0, . . . , n}2m−1,P
({0, . . . , n}2m−1), (P B

θ,F

)
(θ,F )∈
×F

)
. (3.4)

As explained in Section 2, sufficiency implies equivalence in Le Cam’s sense so that we obtain
the following statement.

Theorem 3.1. The experiments An,m in (3.2) and Bn,m in (3.4) are equivalent.
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Put 〈θ, b〉 =∑m
i=1 θibi, b ∈ {0,1}m and

S(k,m) =
{

b ∈ {0,1}m :
m∑

i=1

bi = k

}
.

To study the distribution of Yj on {0,1}m =⋃m
k=0 S(k,m), we deduce from (3.2) that

P A
θ,F (Yj = b) = exp

{−〈θ, b〉 + G(k, θ,F )
}
, b ∈ S(k,m). (3.5)

Moreover, the Yj are i.i.d. which implies that (N0, . . . ,Nm) has the multinomial distribution
Mn,m,θ,F with the cell probabilities

qk(θ,F ) =
∑

b∈S(k,m)

∫ {
m∏

i=1

exp{bi(β − θi)}
1 + exp{β − θi}

}
dF(β)

=
∑

b∈S(k,m)

exp
{−〈θ, b〉 + G(k, θ,F )

}
. (3.6)

The conditional distribution �θ,F (·|i) of Yj given Sj = i has the probability mass function

�θ,F

({b}|i) := P A
θ,F (Yj = b|Sj = i)

= exp{−〈θ, b〉}∑
c∈S(i,m) exp{−〈θ, c〉} · 1S(i,m)(b)

= exp(−∑m−1
k=1 ϑkbk)∑

c∈S(i,m) exp(−∑m−1
k=1 ϑkck)

· 1S(i,m)(b),

where ϑk := θk − θm. Writing Ym−1
j = (Xj,1, . . . ,Xj,m−1) the event {Ym−1

j = b} equals the

union of {Yj = (b,0)} and {Yj = (b,1)} for any b ∈ {0,1}m−1 so that

P A
θ,F

(
Ym−1

j = b | Sj = i
)= exp(−∑m−1

k=1 ϑkbk)∑
c∈B(i,m) exp(−∑m−1

k=1 ϑkck)
· 1B(i,m)(b), (3.7)

where B(i,m) := S(i − 1,m − 1) ∪ S(i,m − 1). The conditional distribution of Ym−1
j given

Sj = i under P A
θ,F is denoted by Uϑ,F (· | i). As the random vectors (Ym−1

j , Sj ), j = 1, . . . , n, are

independent the conditional distribution of T in (3.3) given S1, . . . , Sn under P A
θ,f turns out to be

L(T | S1, . . . , Sn) = ∗n
j=1Uϑ,F (· | Sj ) = ∗m

k=1U∗Nk

ϑ,F (· | k),

where ∗ denotes convolution. Therein we have used that convolution is a commutative operation
and that Uϑ,F (·|0) = δ0. Since the random measure L(T | S1, . . . , Sn) is measurable in the σ -field
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generated by N we conclude that

L(T | N) = ∗m
k=1U∗Nk

ϑ,F (· | k).

This proves the following theorem.

Theorem 3.2. For the observation (T ,N) = (T1, . . . , Tm−1,N1, . . . ,Nm) in the experiment Bn,m

in (3.4), the random vector (N0 := n − ∑m
i=1 Ni,N1, . . . ,Nm) has a multinomial distribution

with the cell probabilities qk(θ,F ); and ∗m
i=1U∗Ni

ϑ,F (· | i) is the conditional distribution of T

given N .

It is remarkable that the conditional distribution of T given N does not depend on the ability
distribution F but only on the difficulty parameter θ since the distributions Uϑ,F (· | i) do not
depend on F , see (3.7) and Theorem 3.2. This fact has also been mentioned for example, in
Pfanzagl [27] and Strasser [36,37].

4. High-dimensional Gaussian approximation

In this section, we establish a general result on the approximation of the sum of high-dimensional
independent binary random vectors by Gaussian models. Later, we will apply this finding to the
experiment Bn,m. The results of Carter [10], which are restricted to multinomial experiments, are
included in a special setting. In particular, Carter’s results are not applicable to the statistic T in
the experiment Bn,m. Moreover, we use a completely different strategy of proofs.

The starting point of this section is a triangular array of independent binary vectors Yi,n =
(X1,i,n, . . . ,Xd,i,n) where the dimension d = dn is allowed to tend to infinity moderately with
respect to n. That rate will be made precise later. We write Wn := y0 +∑n

i=1 Yi,n for any de-
terministic y0 ∈ Z

d . As Wn is a discrete random vector which takes its values in Z
d one can-

not approximate the measure PWn of Wn by a continuous probability measure such as a nor-
mal distribution in the total variation sense. Therefore, one has to apply a smoothing procedure
to Wn. Concretely, a d-dimensional random vector U is generated independently of Wn and,
then, Wn and U are added so that we consider the absolutely continuous probability measure
L(Wn + U) = L(Wn) ∗L(U).

Now suppose that Wn represents the observation in a statistical experiment. Then the Markov
kernel K(x, ·) := L(U + x) transforms L(Wn) into L(Wn + U). As an attempt for the inverse
transformation, one could round each component of Wn + U and denote the outcome by [Wn +
U ]. Carter [10] applies this strategy where U is uniformly distributed on the cube [−1/2,1/2]d .
Then [Wn + U ] = Wn so that the original data are reconstructed by the rounding procedure. In
this case the experiment in which one observes Wn is equivalent to the experiment in which the
observation is Wn + U .

It turns out that, in the experiment Bn,m, the approach which involves uniformly distributed
U would require dn to increase only at a logarithmic rate in n in order to obtain asymptotic
equivalence to a Gaussian model. It is really surprising that polynomial rates can be achieved by
a simple idea. We replace the uniform distribution by a centered normal distribution where the
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scaling factor of the covariance matrix tends to infinity in a suitable manner. We consider L(U) =
N(0, bnI ) where I denotes the d × d-identity matrix and the sequence (bn)n is allowed to tend
to infinity. Now the random vector Wn cannot be identified from Wn + U but we will show that
the total variation distance between L(Wn) and L([Wn + U ]) still tends to zero (uniformly with
respect to the parameter) under some constraints so that the experiment in which one observes
Wn is asymptotically equivalent to the experiment which describes the observation of Wn + U .

We introduce the notation

Y
−j
i,n := (X1,i,n, . . . ,Xj−1,i,n,Xj+1,i,n, . . . ,Xd,i,n),

and

pj,i := E
(
Xj,i,n | Y−j

i,n

)
, μj :=

n∑
i=1

pj,i , σ 2
j :=

n∑
i=1

pj,i(1 − pj,i).

Moreover, we define

κ := inf
θ ′∈
′ min

i=1,...,n
min

j=1,...,d
Epj,i(1 − pj,i), (4.1)

when the distributions of the Yi,n and y0 ∈ Z
d are indexed by a parameter θ ′, which lies in a

set 
′. Small values of κ indicate that there are strong dependencies between some components.
Moreover, we will give lower bounds on the smallest eigenvalue of the covariance matrix of∑n

i=1 Yi,n in Lemma 4.3. We derive the following central theorem (CLT) which allows to ap-
proximate statistical experiments, in which one observes a sum of independent binary random
vectors, by Gaussian experiments. Then the experiment Xn describes the observation of the ran-
dom vector Wn. Furthermore, we define the Gaussian experiment Zn by

Zn := (
R

d,B
(
R

d
)
,
{
N(μθ ′ ,�θ ′)

}
θ ′∈
′

)
.

The above consideration leads to the following theorem, which is one of our main results.

Theorem 4.1. Suppose that κ = κn > n−1/2+δ for some fixed δ > 0 and n sufficiently large; and
that inf(bn)n > 0. Then the Le Cam distance between the experiments Xn and Zn satisfies

(Xn,Zn) ≤ const. · ({log(nκn)
}1/2

n−1/2κ
−1/2
n dnb

1/2
n + b

−1/2
n d4

n/κn + bnn
−1κ−1

n d
3/2
n

)
,

for some universal constant.

Remark 4.1. The Markov kernel which transforms Xn into Zn in Theorem 4.1 equals x �→
N(x, bnI ), x ∈ Z

d ; and the inverse transformation is carried out by rounding each component of
the observation from Zn.

Pointing out the dominating terms, the upper bound on the Le Cam distance which is provided
in Theorem 4.1 converges to zero as n → ∞ whenever

lim
n→∞

{
log(nκn)

}
n−1κ−1

n d2
nbn + b−1

n d8
nκ−2

n = 0. (4.2)
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Note that, in order to satisfy (4.2), the scaling factor (bn)n must be chosen such that (bn)n tends
to infinity (as n → ∞), but not too fast with respect to the sequences (κn)n and (dn)n.

Theorem 4.1 is a consequence of a series of lemmata. First, let us show asymptotic proximity
between L(Wn) and its shifted versions.

Lemma 4.1. Fix any δ > 0 such that κ > n−1/2+δ and nκ > 2. Then the total variation distance
between L(Wn) and L(Wn + l), for some deterministic l ∈ Z

d , obeys the following upper bound

TV
(
L(Wn),L(Wn + l)

)≤ A
{
log(nκ)

}1/2
n−1/2κ−1/2

d∑
j=1

|lj |,

for a universal constant A ∈ (0,∞).

Lemma 4.1 represents a robustness property of L(Wn) with respect to shifting the measure
on the Z

d -grid. That provides the major tool to establish the upper bound on the total variation
distance between L(Wn) and L([Wn + U ]) as provided in the next lemma.

Lemma 4.2. Under the conditions of Lemma 4.1 we have, for L(U) = N(0, bnI ), bn > 0, that

TV
(
L(Wn),L

([Wn + U ]))≤ A
{
log(nκ)

}1/2
n−1/2κ−1/2dn

(
1/2 + b

1/2
n

)
with A as in Lemma 4.1.

Clearly, bn must not be chosen too large as it represents the noise level of the smoothing normal
random vector. If the regime of blurring the observation becomes too intensive, then the total
variation distance between the laws of Wn and its contaminated and, afterwards, componentwise
rounded version will not tend to zero. That is made precise by the statement of the upper bound in
the lemma. Thus, if this right hand side of the inequality in Lemma 4.2 tends to zero (uniformly
with respect to a family of admitted measures of the Yi,n, i = 1, . . . , n), the observation of Wn, on
the one hand, and of Wn +U , on the other hand, represent asymptotically equivalent experiments.

In the next step, we will approximate the smoothed distribution L(Wn + U) by the normal
distribution whose expectation vector and covariance matrix coincide with those of Wn + U . We
establish a CLT for independent binary random vectors with increasing dimension in the total
variation sense. We write μi and �i for the expectation vector and the covariance matrix of Yi,n,
respectively. Accordingly, μ = y0 +∑n

i=1 μi and � =∑n
i=1 �i are the corresponding quantities

of Wn. Preparatory to this CLT, we provide a positive lower bound on the eigenvalues of partial
sums of the matrices �i .

Lemma 4.3. For any N ⊆ {1, . . . , n}, all eigenvalues of the matrix
∑

i∈N �i , are bounded from
below by (#N )κ/d .

Besides Lemma 4.3 also yields invertibility of the matrix � whenever κ > 0. Another impor-
tant result which will be used to derive the CLT is the asymptotic proximity of the smoothed
version of each L(Yi,n) (i.e. L(Yi,n) convolved with some normal distribution N(0, �̃)) and the
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normal distribution with the same expectation vector and covariance matrix as L(Yi,n)∗ N(0, �̃).
We provide

Lemma 4.4. Let �̃ be some positive definite d × d-matrix. Then,

TV
(
L(Yi,n) ∗ N(0, �̃),N(μi,�i + �̃)

)≤ Bλ−3/2d3
n,

for a universal constant B ∈ (0,∞) where λ denotes the smallest eigenvalue of the matrix �̃.

Lemma 4.4 forms the main tool for the proof of the following lemma. We are now ready to
prove a strong CLT for sums of independent binary random vectors.

Lemma 4.5. If (bn)n is bounded away from zero, then

TV
(
L(Wn) ∗ N(0, bnI ),N(μ,� + bnI)

)≤ Cb
−1/2
n d4

n/κn,

for κ = κn with a universal constant C.

By Lemma 4.5, the blurred version of Wn (normal mixture) may be replaced by a fully Gaus-
sian random variable with the law N(μ,�+bnI) where μ and � represent the expectation vector
and the covariance matrix of the original random vector Wn. For that purpose, the noise level bn

shall be selected as large as possible to make the upper bound on the total variation as small as
possible; while respecting the constraints on bn which come from Lemma 4.2.

The term bnI remains to be removed in the covariance matrix of the new random vector. By a
famous formula which governs the Hellinger distance between normal distributions we deduce

Lemma 4.6. We have that

TV
(
N(μ,� + bnI),N(μ,�)

)≤ 2
√

2bnn
−1κ−1

n d
3/2
n .

This upper bound resembles that of Lemma 4.2. It represents an analogue of Lemma 4.2 in
the Gaussian world. Again the noise level bn must be chosen as small as possible so that the two
normal distributions become close to each other (in the total variation sense), which is consistent
with the conditions on bn from that lemma.

Piecing together the Lemmata 4.2, 4.5 and 4.6 yields Theorem 4.1.

5. Gaussian approximation of the mixture Rasch model

In this section, we apply the general Gaussianization scheme provided in Section 4 and, in par-
ticular, in Theorem 4.1 to the experiment Bn,m in (3.4). Therein we distinguish between the
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statistics T and N . Obviously dn from Theorem 4.1 equals m − 1 and m for the statistic T

and N , respectively, while the quantity κn has to be studied in details in both settings.

5.1. Gaussian model for the difficulty parameters

The new statistical experiment, which is denoted by Cn,m, describes the observation of (T ∗,N)

where N is as in the experiment Bn,m and T ∗ is an (m − 1)-dimensional random vector whose
conditional distribution given N is N(EB

θ,F (T |N), covB
θ,F (T |N)). We define the experiments

Bn′
n,m := ({0, . . . , n}m−1,P

({0, . . . , n}m−1), (LB
θ,F

(
T | N = n′))

θ,F

)
,

Cn′
n,m := (

R
m−1,B

(
R

m−1), (LB
θ,F

(
T ∗ | N = n′))

θ,F

)
.

Now we consider sequences of experiments indexed by the random vector N . Note that

(Bn,m,Cn,m) ≤ sup
θ,F

EB
θ,F 

(
BN

n,m,CN
n,m

)
. (5.1)

By Theorem 3.2 the observation in the experiment Bn′
n,m can be written as the sum of n′

1 + · · · +
n′

m−1 independent binary random vectors so that it has the structure of the random vector Wn

from Section 4 when putting y0 = n′
m · (1, . . . ,1). The following lemma gives us a lower bound

on κ in (4.1).

Lemma 5.1. Assuming that L(Wn − y0 | N) = ∗m−1
k=1 U∗Nk

ϑ,F (· | k) in the notation of Section 4; and
that m ≥ 3, the quantity κ in (4.1) satisfies

κ ≥ exp(−6R)

(m − 1)(1 + exp(2R))
.

Note that the number of Yi,n, which is denoted by n in Section 4, equals n′
1 + · · · + n′

m−1 in

the experiment Bn′
n,m. To show that it has at least the order n from the mixture Rasch model, the

following assumption and lemma are required. We impose that every distribution F in F has a
Lebesgue density f ; and that there exists an enveloping function f with

∫
f (x)dx < ∞ such

that

f ≤ f a.e.,∀F ∈ F . (5.2)

Condition (5.2) represents a tightness property of F . Then is the following lemma.

Lemma 5.2. Under the conditions (5.2), m ≥ 3 and ρ ∈ (0,1) sufficiently close to 1, we have
that

lim
n→∞ sup

θ∈
,F∈F
P B

θ,F (N0 + Nm > ρn) = 0.
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By (5.1), we deduce for some ρ ∈ (0,1) from Lemma 5.2 that

(Bn,m,Cn,m) ≤ 2 sup
θ,F

P B
θ,F (N0 + Nm > ρn)

+ sup
θ,F

EB
θ,F 1[(1−ρ)n,∞)

(
m−1∑
j=1

Nj

)
· (BN

n,m,CN
n,m

)
,

where the latter term tends to zero as n → ∞ whenever

lim
n→∞n−1m3bn + b−1

n m10 = 0,

thanks to Lemma 5.1, Theorem 4.1 and equation (4.2). The convergence of the first term is
guaranteed by Lemma 5.2. We establish asymptotic equivalence between the experiments Bn,m

and Cn,m under some constraints.

Theorem 5.1. Assume (5.2); m = mn ≥ 3; that there is some β > 13 such that supn m
β
n/n < ∞.

Then the selection bn � n(7+β)/(2β) yields asymptotic equivalence of the experiments Bn,m and
Cn,m; moreover

(Bn,m,Cn,m) =O
(
n(13−β)/(4β)(logn)1/2).

Let us consider the conditional Gaussian distribution of the statistic T ∗ given N in the exper-
iment Cn,m. Since L(T | N) = ∗m

k=0U∗Nk

ϑ,F (· | N) with (T ,N) as in the experiment Bn,m we have

that EB
θ,F (T | N) = −∇�N(ϑ) and covB

θ,F (T | N) = �N(ϑ) where

�n′(ϑ) :=
m∑

k=0

n′
k · log

( ∑
b∈S(k,m)

exp

{
−

m−1∑
l=1

ϑlbl

})
, ϑ = (ϑ1, . . . , ϑm−1),

and ∇ and  denote the gradient and the Hessian matrix, respectively.
We introduce the experiment Dn,m by

Dn,m := (
R

2m−1,B
(
R

2m−1), (Lθ,F

(
N,T ∗∗))

θ∈
,F∈F
)
,

where N is as in the experiment Cn,m and the conditional distribution of T ∗∗ given N equals
N(ϑ, {�N(ϑ)}−1) if N0 + Nm < n; otherwise put T ∗∗ = 0. By the Lemmata 4.3 and 5.1, the
matrix �N(x) is invertible for all x ∈ R

m−1 on the event {N0 +Nm < n}. Therein note that, for
any x ∈ R

m−1, there exist some R > 0 and θ ∈ 
 such that ϑ = x. That also implies injectivity
of the mapping x �→ ∇�N(x) on the domain R

m−1 in the case of N0 + Nm < n. Now define the
function � by

�
(
x,n′) :=

{(∇�n′(x), n′), if n′
1 + · · · + n′

m−1 �= 0,(
0, n′), otherwise.
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By D′
n,m we define the experiment in which one observes �(T ∗∗,N) with (T ∗∗,N) as in Dn,m.

Clearly N is uniquely reconstructible from �(T ∗∗,N). If N1 + · · · + Nm−1 = 0 then T ∗∗ = 0;
otherwise the injectivity of x �→ ∇�N(x) enables us to identify T ∗∗. Therefore, the experiments
Dn,m and D′

n,m are equivalent in Le Cam’s sense. Then it suffices to establish that

lim
n→∞ sup

θ∈
,F∈F
TV
(
LD

θ,F (�),P C
θ,F

)= 0, (5.3)

in order to show the following theorem.

Theorem 5.2. Under the conditions of Theorem 5.1 the experiments Cn,m and Dn,m are asymp-
totically equivalent as n → ∞.

The experiment Dn,m has the advantage compared to Cn,m that the directly observed statistic
T ∗∗ represents an asymptotically unbiased estimator of ϑ . This will be exploited in Section 6.

5.2. Gaussian model for the ability distribution

We focus on the statistic N in the experiment Dn,m. Note that (N0,N) is a multinomial random
vector by Theorem 3.2. If we can show that the sub-experiment in which only N is observed is
asymptotically equivalent to the experiment which describes the observation of N∗ with

L
(
N∗)= N

(
ED

θ,F N, covD
θ,F (N)

)
,

then we have asymptotic equivalence of Dn,m and the experiment En,m which is defined by

En,m := (
R

2m−1,B
(
R

2m−1), (Lθ,F

(
T ∗∗,N∗))

θ∈
,F∈F
)
,

such that LE
θ,F (T ∗∗ | N∗) = N(ϑ, {�[N∗]+(ϑ)}−1) if [N∗

1 ]+ +· · ·+[N∗
m−1]+ > 0 (put T ∗∗ := 0

otherwise) where [x]+ denotes (max{[xj ],0})j=1,...,m for any x ∈ R
m. Note that, for all θ ∈ 


and F ∈F , we have that

LE
θ,F

(
T ∗∗ | N∗ = N

)= LD
θ,F

(
T ∗∗ | N), a.s.,

for N as in the experiment Dn,m. Moreover, by the multinomial distribution of N , we immedi-
ately derive that

ED
θ,F N = n · q̃(θ,F ) := n · (q1(θ,F ), . . . , qm(θ,F )

)T
,

covD
θ,F (N) = n · (Q̃(θ,F ) − q̃(θ,F )q̃(θ,F )T

)
,

where qk(θ,F ) is as in (3.6) and Q̃(θ,F ) denotes the (m − 1) × (m − 1)-diagonal matrix whose
(k, k)th entry equals qk(θ,F ). The asymptotic equivalence of Dn,m and En,m is shown by a direct
application of Theorem 4.1 where the quantity κ in (4.1) has to be bounded from below again.
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Therefore, a constraint on the tail behaviour of the Lebesgue density f of the ability distribution
F is required; concretely we assume that

f (x) ≥ D0 exp
{−D1|x|}, ∀x ∈R,F ∈F, (5.4)

for some universal positive constants D0 and D1. As an alternative for condition (5.4), we may
consider m = mn as bounded with respect to n. Then Gaussian models for F are still included.
In the notation of Section 4, one may conclude that

κ ≥ inf
θ,F

inf
k=1,...,m

q0(θ,F )qk(θ,F )/
(
q0(θ,F ) + qk(θ,F )

)
.

Thus, a lower bound on the qk(θ,F ) is needed.

Lemma 5.3. Under condition (5.4), we obtain that

inf
θ,F

inf
k=0,...,m

qk(θ,F ) ≥ const. · m−3/2−D1 ,

for a universal constant factor.

Hence, κn ≥ const. · m−3/2−D1 so that, by (4.2), the following statement follows.

Theorem 5.3. Assume the constraints of Theorem 5.1; condition (5.4); and the existence of some
β > 3D1 +29/2 such that supn m

β
n/n < ∞. Then the selection bn � n(2β+2D1+15)/(4β) yields that

(Dn,m,En,m) =O
(
n(29+6D1−2β)/(8β)(logn)1/2),

so that the experiments Dn,m and En,m are asymptotically equivalent as n → ∞.

Instead of condition (5.4) one can assume that m = mn is bounded in n and the claim of
Theorem 5.3 remains valid.

Thanks to the marginal multinomial distribution of the statistic N in the experiment Bn,m a
transformation of the experiment En,m (in particular, of the statistic N∗) is possible in order to
obtain independent components. Similar arguments have been used in Carter [10]. We introduce
the (m + 1)-dimensional random vector N∗∗ with L(N∗∗) = N(nq(θ,F ),nQ(θ,F )) where

q(θ,F ) := (
q0(θ,F ), . . . , qm(θ,F )

)T
,

Q(θ,F ) := {
1{j}(k)qk(θ,F )

}
j,k=0,...,m

.

Then the conditional distribution of T ∗∗ given N∗∗ equals N(ϑ, {�[τ(N∗∗)]+(ϑ)}−1) on the
event {[τ(N∗∗)]+,1 + · · · + [τ(N∗∗)]+,m+1 > 0} (again T ∗∗ := 0 otherwise), where the function
τ from R

m+1 to R
m is defined by

τ : x = (x0, . . . , xm) �→ (x1, . . . , xm) · n
/

max

{
ζ,

m∑
j=0

xj

}
,
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for some deterministic ζ > 0 still to be chosen. We consider the experiment

Fn,m := (
R

2m,B
(
R

2m
)
,
(
Lθ,F

(
T ∗∗,N∗∗))

θ,F

)
.

In order to show asymptotic equivalence of En,m and Fn,m, we consider the statistic N∗∗ from the
experiment Fn,m and the sum of its components, which we call V . As N∗∗ can be uniquely re-
constructed from (τ (N∗∗),V ) we derive equivalence of Fn,m and the experiment F ′

n,m in which
(T ∗∗, τ (N∗∗),V ) is observed. It can be shown that

Lθ,F

(
N∗∗ | V )= N

(
V q(θ,F ),nQ(θ,F ) − nq(θ,F )q(θ,F )T

)
,

Lθ,F

(
τ
(
N∗∗) | V )

= N
(
nq̃(θ,F )V/max{T , ζ }, n3(Q̃(θ,F ) − q̃(θ,F )q̃(θ,F )T

)
/
(
max{V, ζ })2)

.

The following asymptotic approximation is required.

Lemma 5.4. Assume the conditions of Theorem 5.3 and select ζ = n/2. Then,

lim
n→∞ sup

θ,F

Eθ,F TV
(
Lθ,F

(
τ
(
N∗∗) | V ),N

(
nq̃(θ,F ),nQ̃(θ,F ) − nq̃(θ,F )q̃(θ,F )T

))= 0.

As the conditional distribution of T ∗∗ given τ(N∗∗) and V equals that given τ(N∗∗),
Lemma 5.4 provides asymptotic equivalence of F ′

n,m and F ′′
n,m where the latter experiment de-

scribes the observation of (T ∗∗,N∗,V ∗) where V ∗ and V are identically distributed but V ∗ and
(T ∗∗,N∗) are independent. As, in addition, Lθ,F (V ∗) = N(n,n), the distribution of V ∗ does
not depend on θ or F and, thus, V ∗ can be omitted without losing any information on (θ,F ).
Therefore, F ′′

n,m and En,m are equivalent so that the following result has been established.

Theorem 5.4. Under the conditions of Theorem 5.3, the experiments En,m and Fn,m are asymp-
totically equivalent as n → ∞.

6. Applications

In this section, we apply the Gaussian models of Section 5, which have now been proved to be
asymptotically equivalent to the mixture Rasch model An,m, to develop asymptotic inference.
In particular we will construct an asymptotic confidence ellipsoid for the difficulty parameters.
Thus, the results carry over to the original mixture Rasch model.

Let T ∗∗ be the part of the observation from the experiment Dn,m where L(T ∗∗ | N) =
N(ϑ, {�N(ϑ)}−1) if N1 + · · · + Nm−1 > 0. We define the random ellipsoid

Ê :=
{

x ∈ R
m :

m∑
j=1

xj = 0,
(
x − ZT ∗∗)T Z

(
ZT Z

)−1
�N

(
T ∗∗)(Z†Z

)−1
Z†(x − ZT ∗∗)≤ ι

}
,
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for some threshold ι > 0 to be determined and the m × (m − 1)-matrix

Z :=

⎛
⎜⎜⎜⎜⎜⎝

1 − 1/m −1/m · · · −1/m

−1/m 1 − 1/m · · · −1/m
...

...
...

...

−1/m −1/m · · · 1 − 1/m

−1/m −1/m · · · −1/m

⎞
⎟⎟⎟⎟⎟⎠ .

Note that θ = Zϑ for all θ ∈ 
 thanks to the definition (3.1). In order to motivate the selection
of ι, we give an oracle version of Ê by

Ẽ :=
{

x ∈R
m :

m∑
j=1

xj = 0,
(
x − ZT ∗∗)†

Z
(
Z†Z

)−1
�N(ϑ)

(
Z†Z

)−1
Z†(x − ZT ∗∗)≤ ι

}
.

Concretely, we have replaced T ∗∗ by its conditional expectation given N in the argument of
�N . Conditionally on N under {N1 + · · · + Nm−1 > 0}, we may represent T ∗∗ by T ∗∗ = ϑ +
{�N(ϑ)}−1/2ε where here ε denotes an (m − 1)-dimensional random vector with independent
N(0,1)-distributed components. On the event {N1 + · · · + Nm−1 > 0}, it follows that

P D
θ,F (θ ∈ Ẽ | N) = P

(|ε|2 ≤ ι
)
.

That inspires us to choose ι as the (1 − α)-quantile of the χ2(m − 1)-distribution, i.e. ι =
F−1

m−1(1−α) where Fm−1 denotes the χ2(m−1)-distribution function, for some given α ∈ (0,1).
Then,

lim inf
n→∞ inf

θ,F
P D

θ,F (θ ∈ Ẽ) ≥ 1 − α,

as P D
θ,F (N0 + Nm < n) tends to zero uniformly in θ and F . Focusing on the ellipsoid Ê, we

provide the following result.

Theorem 6.1. In the experiment Dn,m we have

lim sup
n→∞

sup
θ,F

P D
θ,F (θ /∈ Ê) ≤ α,

under the assumptions of Theorem 5.1 for any fixed α ∈ (0,1). The maximal length of an axis ê

of Ê obeys the following asymptotic upper bound

lim
c→∞ lim sup

n→∞
sup
θ,F

P D
θ,F (ê > c · mn/

√
n) = 0.

Remark 6.1. Theorem 6.1 shows that Ê is an asymptotic (1 − α)-confidence ellipsoid for θ in
the experiment Dn,m. The maximal axis of this ellipsoid shrinks to zero at the rate OP (mn/

√
n)

as n → ∞. By the Theorems 3.1, 3.2, 5.1 and 5.2 the properties established in Theorem 6.1
extend to the original mixture Rasch model (experiment An,m) after applying the appropriate
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Markov kernel which transforms experiment Dn,m to An,m. Note that the asymptotic confidence
region is uniform with respect to the parameter θ ∈ 
 and F ∈ F . Thus, we have developed a
stronger version of asymptotic confidence regions than in the usual setting where θ and F are
viewed as fixed, that is, θ and F must not change in n. This is thanks to the fact that we have used
asymptotic approximation with respect to the Le Cam distance rather than central limit laws for
specific estimators in terms of weak convergence, where the latter results are commonly used to
construct asymptotic confidence regions.

7. Conclusions and outlook

In this paper, we derive asymptotically equivalent Gaussian experiments for the mixture Rasch
model. In Section 6, asymptotic statistical inference on the difficulty parameters is provided
based on these Gaussian experiments. But the asymptotic equivalence of the experiment Fn,m

and the original mixture Rasch model An,m also opens the perspective for nonparametric infer-
ence on the ability distribution. While this goal exceeds the framework of the current paper the
authors are working on this issue and intend to present their future results in a separate paper.

8. Proofs

Proof of Lemma 4.1. Thanks to the shift-invariance of the total variation distance we may put
y0 = 0 without any loss of generality. Note that we may write

L(Wn + l) = L(Wn) ∗ (∗d
j=1δlj ej

)
,

where ej denotes the vector with its j th component equal to 1 while all other components vanish.
By a telescoping sum, we deduce that

TV
(
L(Wn + l),L(Wn)

)≤
d∑

j=1

TV
(
L(Wn),L(Wn) ∗ δlj ej

)≤
d∑

j=1

|lj |TV
(
L(Wn),L(Wn) ∗ δej

)
.

We have that

TV
(
L(Wn),L(Wn) ∗ δej

)=
∑

w∈Zd

|P(Wn = w) − P(Wn = w − δej
)|

(8.1)
≤ E

∑
u∈Z

|P(Wn,j = u | Yn,j ) − P(Wn,j = u − 1 | Yn,j )|,

where Yn,j denotes the σ -field generated by Y
−j

1,n , . . . , Y
−j
n,n . By Fourier inversion we obtain that

P(Wn,j = u | Yn,j ) = 1

2π

∫ π

−π

exp{−iux}ψWn,j |Yn,j
(x) dx,
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for all u ∈ Z where ψZ denotes the characteristic function of a random variable Z. Since

∣∣ψWn,j |Yn,j
(x)

∣∣= n∏
i=1

∣∣ψ
Xj,i,n|Y−j

i,n

(x)
∣∣= n∏

i=1

∣∣exp{ix}pj,i + 1 − pj,i

∣∣

≤
n∏

i=1

exp
{−2pj,i(1 − pj,i)x

2/π2}= exp
{−2σ 2

j x2/π2},
for all x ∈ [−π,π] it follows that

∣∣P(Wn,j = u | Yn,j ) − P(Wn,j = u − 1 | Yn,j )
∣∣

= 1

2π

∣∣∣∣
∫ π

−π

exp{−iux}(1 − exp{ix})ψWn,j |Yn,j
(x) dx

∣∣∣∣
≤ 1

π

∫ π

0
x exp

{−2σ 2
j x2/π2}dx ≤ π/

(
4σ 2

j

)
.

Therefore the total variation distance between L(Wn,j | Yn,j ) and L(Wn,j + 1 | Yn,j ) is bounded
from above by

∑
u∈Z

∣∣P(Wn,j = u | Yn,j ) − P(Wn,j = u − 1 | Yn,j )
∣∣

≤
∑

|u−μj |≤τσj +1

∣∣P(Wn,j = u | Yn,j ) − P(Wn,j = u − 1 | Yn,j )
∣∣

+ 2P
(|Wn,j − μj | > τσj | Yn,j

)
≤ (2τσj + 3)π2/

(
2σ 2

j

)+ 4 exp
{−τ 2/4

}+ 4 exp{−3σj τ/4},

for any τ > 0 where Bernstein’s inequality has been used in the last step. We introduce the event
Aj := {σ 2

j > Eσ 2
j /2} where Eσ 2

j ≥ nκ and we put τ := √
c · log(nκ) with a constant c > 0

sufficiently large so that

E
∑
u∈Z

∣∣P(Wn,j = u | Yn,j ) − P(Wn,j = u − 1 | Yn,j )
∣∣

≤ 2
(
1 − P(Aj )

)+ A∗{log(nκ)
}1/2

n−1/2κ−1/2,

for a universal constant A∗ ∈ (0,∞). Finally, Hoeffding’s inequality yields that

1 − P(Aj ) ≤ 2 exp
{−(Eσ 2

j

)2
/(2n)

}≤ 2 exp
{−nκ2/2

}
,

which completes the proof of the lemma. �
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Proof of Lemma 4.2. As Wn is Zd -valued it holds that [Wn + U ] = Wn + [U ] so that

TV
(
L
([Wn + U ]),L(Wn)

)≤
∑
l∈Zd

TV
(
L(Wn + l),L(Wn)

) · P ([U ] = l
)

≤ A
{
log(nκ)

}1/2
n−1/2κ−1/2

d∑
j=1

E
∣∣[Uj ]

∣∣,
where E|[Uj ]| ≤ 1/2 + E|Uj | ≤ 1/2 + b

1/2
n . �

Proof of Lemma 4.3. Let λ be an arbitrary eigenvalue of the matrix
∑

i∈N �i with the corre-
sponding unit eigenvector v. As �i is the covariance matrix of Yi,n we deduce that

λ = vT
∑
i∈N

�iv =
∑
i∈N

vT �iv =
∑
i∈N

var

(
d∑

k=1

vkXk,i,n

)

=
∑
i∈N

EE

{(
d∑

k=1

vk(Xk,i,n − EXk,i,n)

)2

| Y−l
i,n

}

≥
∑
i∈N

E var
(
vlXk,l,n | Y−l

i,n

)≥ v2
l · (#N ) · κ,

for all l = 1, . . . , d . Summing up both sides of the above inequality over l = 1, . . . , d we obtain
that

dλ ≥ (#N ) · κ,

which completes the proof. �

Proof of Lemma 4.4. Note that �̃ − λI is a positive semi-definite matrix so that

N(0, �̃) = N(0, λI) ∗ N(0, �̃ − λI),

from what follows that

TV
(
L(Yi,n) ∗ N(0, �̃),N(μi,�i + �̃)

)≤ TV
(
L(Yi,n) ∗ N(0, λI),N(μi,�i + λI)

)
.

The distribution L(Yi,n) ∗ N(0, λI) has the d-dimensional Lebesgue density

g0(x) = E(2πλ)−d/2 exp
{−|x − Yi,n|2/(2λ)

}
.

Since N(μi,�i + λI) = N(μi,�i) ∗ N(0, λI) the Lebesgue density g1 of the distribution
N(μi,�i + λI) may be written as

g1(x) = E(2πλ)−d/2 exp
{−|x − Zi,n|2/(2λ)

}
,
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where L(Zi,n) = N(μi,�i). The total variation distance between N(μi,�i + λI) and L(Yi,n) ∗
N(0, λI) equals the L1(R

d)-distance between the densities g0 and g1. Thus,

TV
(
L(Yi,n) ∗ N(0, �̃),N(μi,�i + λI)

)
= (2π)−d/2

∫ ∣∣E exp
{−∣∣x − λ−1/2Yi,n

∣∣2/2
}− E exp

{−∣∣x − λ−1/2Zi,n

∣∣2/2
}∣∣dx.

Taylor expansion around x yields that

exp
(−|x − |2/2

)= P2,x() + R2,x(),

for all  ∈ R
d and any fixed x ∈ R

d where P2,x is a d-variate quadratic polynomial and R2,x

is the corresponding remainder term. As the expectation vectors and the covariance matrices of
Yi,n and Zi,n coincide we deduce that

EP2,x

(
λ−1/2Yi,n

)= EP2,x

(
λ−1/2Zi,n

)
.

Therefore,

TV
(
L(Yi,n) ∗ N(0, λI),N(μi,�i + λI)

)
≤ (2π)−d/2

(∫
E
∣∣R2,x

(
λ−1/2Yi,n

)∣∣dx +
∫

E
∣∣R2,x

(
λ−1/2Zi,n

)∣∣dx

)
.

Calculating the third order partial derivatives of x �→ exp(−|x|2/2) we deduce that

(2π)−d/2E

∫
|R2,x

(
λ−1/2Yi,n

)|dx ≤ λ−3/2E

(
d∑

k=1

|Xk,i,n|
)3

(8.2)
≤ B∗ · λ−3/2 · d3,

for some universal constant B∗ ∈ (0,∞) where L(Z) = N(0,1). When replacing Xk,i,n by the
kth component of Zi,n the identical upper bound applies (with a different constant B∗). Note that
this component is N(EXk,i,n,varXk,i,n)-distributed. �

Proof of Lemma 4.5. Again the shift-invariance of the total variation distance allows us to
restrict to the case of y0 = 0. As a telescoping sum, we consider

TV
(
L(Wn) ∗ N(0, bnI ),N(μ,� + bnI)

)
= TV

(
N(0, bnI ) ∗ {∗n

i=1L(Yi,n)
}
,N(0, bnI ) ∗ {∗n

i=1N(μi,�i)
})

≤
n∑

k=1

TV
({∗n

i=k+1L(Yi,n)
} ∗ N(0, bnI ) ∗ {∗k

i=1N(μi,�i)
}
,

{∗n
i=kL(Yi,n)

} ∗ N(0, bnI ) ∗ {∗k−1
i=1 N(μi,�i)

})
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≤
n∑

k=1

TV
(
N(μk,�k + �̃k−1),L(Yk,n) ∗ N(0, �̃k−1)

)
,

where �̃l := bnI + ∑l
i=1 �i . By Lemma 4.3 the smallest eigenvalue of �̃l is bounded from

below by bn + lκ/dn. Then Lemma 4.4 provides that

TV
(
L(Wn) ∗ N(0, bnI ),N(μ,� + bnI)

)
≤ Bd3

n

n∑
k=1

(
bn + (k − 1)κ/d

)−3/2

≤ Bd3
n

(
b

−3/2
n +

∫ ∞

0
(bn + xκ/dn)

−3/2 dx

)
= Bd3

nb
−3/2
n + 2Bd4

nb
−1/2
n /κ.

The lemma has been shown. �

Proof of Lemma 4.6. The total variation distance between two distributions is bounded from
above by twice their Hellinger distance. It follows from for example, eq. (A.4) in Reiß [30] that

TV2(N(μ,� + bnI),N(μ,�)
)≤ 8b2

n

∥∥�−1∥∥2
F

= 8b2
n

dn∑
j=1

λ−2
j ,

where ‖ · ‖F denotes the Frobenius norm and λj , j = 1, . . . , dn, are the eigenvalues of the matrix
�. Applying the lower bound on the eigenvalues provided in Lemma 4.3 completes the proof of
this lemma. �

Proof of Lemma 5.1. In the notation of Section 4, we assume some random vector Yi,n =
(X1,i,n, . . . ,Xd,i,n) with d = m − 1 and L(Yi,n) = Uϑ,F (· | k). Then

pl,i = E
(
Xl,i,n | Y−l

i,n

)= exp(−ϑl)

1 + exp(−ϑl)
· 1{k−1}

(
m−1∑
q �=l

Xq,i,n

)
+ 1{k−2}

(
m−1∑
q �=l

Xq,i,n

)
,

so that

Epl,i(1 − pl,i) = exp(−ϑl)

(1 + exp(−ϑl))2
· Uϑ,F

(
m−1∑
q �=l

Xq,i,n = k − 1 | k
)

= exp(−ϑl)

1 + exp(−ϑl)
·

∑
b∈B′(l,k,m)

exp

(
−

m−1∑
i �=l

ϑibi

)/ ∑
c∈B(k,m)

exp

(
−

m−1∑
i=1

ϑici

)
,
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where B
′(l, k,m) collects all b ∈ B(k,m) such that

∑m−1
i �=l bi = k − 1. Note that

B(k,m) =
m−1⋃
l=1

B
′(l, k,m),

as k ∈ {1, . . . ,m − 1}. Also we have

∑
b∈B′(l,k,m)

exp

(
−

m−1∑
i �=l

ϑibi

)
≤ exp(4R)

∑
b∈B′(l′,k,m)

exp

(
−

m−1∑
i �=l′

ϑibi

)
,

for all l, l′ ∈ {1, . . . ,m − 1}. It follows that

Epl,i(1 − pl,i) ≥ exp(−6R)

(m − 1)(1 + exp(2R))
,

which completes the proof. �

Proof of Lemma 5.2. Note that N0 + Nm has a binomial distribution with the parameters n and
q0(θ,F ) + qm(θ,F ) where qk(θ,F ) is defined in (3.6). For any s > 0, we have

q0(θ,F ) ≤
∫

x<−s

f (x) dx + (
1 + exp(−s − R)

)−m
,

(8.3)

q1(θ,F ) ≤
∫

x>s

f (x) dx + (
1 + exp(−s − R)

)−m
,

for all θ ∈ 
. For any fixed ε > 0, we choose s sufficiently large such that the first summands in
both lines of (8.3) are bounded from above by ε/2 and, then, M sufficiently large such that for
all m > M the second summands in (8.3) are smaller than ε/2. Thus, for all m > M , we obtain
that q0(θ,F ) + qm(θ,F ) < ε. On the other hand, if m ≤ M , we fix s′ > 0 sufficiently large such
that ∫

|x|≥s′
f (x)dx < 1/2,

so that
∫
|x|≤s′ f (x)dx ≥ 1/2 holds true for all F ∈ F . Then we consider the continuous positive

mapping Tm, m = 2, . . . ,M , with

Tm(x, θ) :=
∑

b∈S(1,m)

m∏
l=1

exp(bl[x − θl])
1 + exp(x − θl)

,

which take its positive minimum on the compact domain [−s′, s′] × [−R,R]m. Hence,

inf
θ∈
,F∈F

q1(θ,F ) > 0, ∀m = 2, . . . ,M,
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so that supθ∈
,F∈F q0(θ,F ) + qm(θ,F ) < 1. Thus, we have shown that

q := sup
θ∈
,F∈F

sup
m≥3

q0(θ,F ) + qm(θ,F ) < 1.

Now we choose ρ := (1 + q)/2 ∈ (0,1) so that simple application of Chebyshev’s inequality
completes the proof. �

Proof of Theorem 5.2. Fix some ρ ∈ (0,1) from Lemma 5.2. Thus, the probability of {N0 +
Nm > ρn} converges to zero uniformly with respect to θ and F . Therefore, it suffices to show
that the mean total variation distance between LD

θ,F (� | N) and P C
θ,F (· | N), restricted to the

event N := {N0 + Nm ≤ ρn}, tends to zero uniformly in θ and F as well. The first (conditional)
probability measure has the Lebesgue density

hθ (x | N) = (2π)1/2−1/m
(
det�N(ϑ)

)1/2(det�N(x)
)−1

· exp
{−((∇�N)−1(−x) − ϑ

)T
�N(ϑ)

(
(∇�N)−1(−x) − ϑ

)
/2
}
,

on the range R of −∇�N , on which hθ (· | N) is supported and on which the func-
tion ∇�N has an inverse mapping. We write gθ (· | N) for the density of P C

θ,F (· | N) =
N(−∇�N(ϑ),�N(ϑ)). Moreover, note that

E1N

∫ ∣∣hθ (x | N) − gθ (x | N)
∣∣dx ≤ 2E1N

∫
R

∣∣hθ (x | N) − gθ (x | N)
∣∣dx.

Applying the integral substitution via −∇�N the right-hand side of the above inequality equals
2E1N |Y − 1| where

Y := det�N(X)

det�N(ϑ)
exp

{
−1

2

((∇�N(X) − ∇�N(ϑ)
)T {

�N(ϑ)
}−1

× (∇�N(X) − ∇�N(ϑ)
)− (X − ϑ)T �N(ϑ)(X − ϑ)

)}
,

where L(X | N) = N(ϑ, {�N(ϑ)}−1). All third-order partial derivatives of �N are bounded by
6n so that

∇�N(X) − ∇�N(ϑ) = �N(ϑ)(X − ϑ) + R1,

where the remainder term R1 satisfies |R1| ≤ 6nm3/2|X−ϑ |2. The matrix-valued function �N

has the following Lipschitz property (with respect to the Frobenius norm),∥∥�N(X) − �N(ϑ)
∥∥

F
≤ 6nm3/2|X − ϑ |.

The Theorem of Courant–Fischer yields that

sup
j=1,...,m−1

∣∣λj (X) − λj (ϑ)
∣∣≤ 6nm3/2|X − ϑ |,
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where λj (X) and λj (ϑ) denote the eigenvalues of the matrices �N(X) and �N(ϑ), respec-
tively, in decreasing order. We learn from the Lemmata 4.3 and 5.1 that

inf
n

(
m2

n/n
) · inf

θ
inf
j

λj (ϑ) > 0,

for m = mn. Thus, on the event C := N ∩ {|X − ϑ | ≤ αnm
−9/2
n }, for any sequence (αn) ↓ 0, we

deduce that

∣∣∣∣1 − det�N(X)

det�N(ϑ)

∣∣∣∣=
∣∣∣∣∣1 −

mn−1∏
j=1

(
1 + λj (X) − λj (ϑ)

λj (ϑ)

)∣∣∣∣∣≤ const. · αn,

where, in the sequel, const. stands for a constant only depending on ρ and R. Furthermore,

(∇�N(X) − ∇�N(ϑ)
)T {

�N(ϑ)
}−1(∇�N(X) − ∇�N(ϑ)

)− (X − ϑ)T �N(ϑ)(X − ϑ)

= 2RT
1 (X − ϑ) + RT

1

{
�N(ϑ)

}−1
R1 ≤ const. · (nα3

nm
−12
n + nα4

nm
−13
n

)
,

holds true on the event C. Any selection of (αn)n such that

lim
n→∞αnm

−4
n n1/3 = 0,

guarantees uniform convergence of E1C |Y − 1| to zero. On the other hand the probability of
N \{|X − ϑ | ≤ αnm

−9/2
n } also tends to zero uniformly with respect to θ and F if

αnn
1/2m6

n → ∞,

as n → ∞ since L(X − ϑ) = N(0, {�N(ϑ)}−1). As supn m
β
nn < ∞ for some β > 13 such a

choice of (αn)n exists. Then,

lim
n→∞ sup

θ,F

E1N |Y · 1C − 1| = 0.

As Y is non-negative, E1NY ≤ 1 and limn→∞ supθ,F (1 − P C
θ,F (N )) = 0 we arrive at

lim
n→∞ sup

θ,F

E1N |Y − 1| = 0,

which completes the proof. �

Proof of Lemma 5.3. Setting

ηk(β) := exp{β − θk}/
(
1 + exp{β − θk}

)
, k = 1, . . . ,m,

we may write

qk(θ,F ) =
∫ {∗m

k=1B
(
1, ηk(β)

)}
dF(β).
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As θ ∈ [−R,R]m we have that

ηk(β) ≤ exp(2R) · η1(β),

1 − ηk(β) ≤ exp(2R) · (1 − η1(β)
)
,

for all β ∈R and k = 2, . . . ,m.
On the sets A1 := {β : η1(β) ≤ cm−3/4} and A2 := {β : 1 − η1(β) ≤ cm−3/4} for some con-

stant c > 0, we apply Poisson approximation of binomial distributions. Precisely, an inequality
of Le Cam (see p. 657 in DasGupta [12], for instance) yields that

TV
(
P
(
Q(β)

)
,∗m

k=1B
(
1, ηk(β)

))≤ 2 exp(4R)c2m−1/2, ∀β ∈ A1,

where Q(β) := ∑m
k=1 ηk(β). Put Ik(δ) := Q−1([k − δ, k + δ]) for k = 1, . . . ,m − 1; I0(δ) :=

Q−1([0, δ]) and Im(δ) := Q−1([m − δ,m − δ/2]) for some fixed δ ∈ (0,1). By Stirling’s ap-
proximation,

b(m,k,β) := {∗m
l=1B

(
1, ηl(β)

)}
(k) ≥ exp

{−Q(β)
}
Qk(β)/k! − 2 exp(4R) · c2m−1/2

≥ exp
{−1/(12k) − δ

}
(1 − δ/k)k/

√
2πk − 2 exp(4R) · c2m−1/2

≥ const. · m−1/2,

for all β ∈ A1 ∩ Ik(δ), k ≥ 1, and a constant factor only depending on R, when choosing the
constant c > 0 sufficiently small. For k = 0, this bound applies as well.

For β ∈ A2 ∩ Ik(δ) the identical lower bound applies since qk(θ,F ) is viewed as the density
of ∗m

l=1B(1,1 − ηl(β)) at m − k.
Finally, we consider the complement A3 := R\(A1 ∪ A2). Clearly η1(β) ∈ (cm−3/4,1 −

cm−3/4) holds for all β ∈ A3. By Fourier inversion,

b(m,k,β) = 1

2π

∫ π

−π

exp
{−it

(
k − Q(x)

)}
fm(t, β) dt,

with

fm(t, β) :=
m∏

l=1

exp
{
it
(
1 − ηl(β)

)} · ηl(β) + exp
{−itηl(β))

} · (1 − ηl(β)
)
,

η(β) :=
m∑

l=1

ηl(β)
(
1 − ηl(β)

)
.

As in the proof of Lemma 4.1, we derive that

∣∣fm(t, β)
∣∣≤ exp

{
− 2

π2
η(β)

}
,
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for all t ∈ [−π,π]. Moreover, for all β ∈ A3, we have

η(β) ≥ c exp{−2R}m1/4(1 − c exp{−2R}m−3/4).
Put ν := {D(logη(β))/η(β)}1/2 for some constant D > 0 sufficiently large. Then |fm(t, β)| ≤
m−D/(2π2) if |t | ∈ (ν,π]. Otherwise, for t ∈ [−ν, ν], Taylor approximation yields that

fm(t, β) = exp
{−t2η(β)/2

} · (1 + m(t,β)
)
,

with the remainder |m(t,β)| ≤ const. · ν for some universal constant factor. Combining these
facts with ∣∣1 − exp

{−it
(
k − Q(β)

)}∣∣≤ |t |δ,
for all β ∈ Ik(δ), we deduce that

b(m,k,β) ≥ const. · m−1/2, (8.4)

for all β ∈ Ik(δ) ∩ A3 and some universal positive constant. Summarising, the inequality (8.4)
has been verified for all β ∈ Ik(δ) where the constant factor only depends on R and δ.

We conclude that

qk(θ,F ) ≥ const. · m−1/2 ·
∫

Ik(δ)

f (x) dx,

for all k = 0, . . . ,m where the constant does not depend on k. As the derivative of Q is bounded
by m the length of the interval Ik(δ) has the lower bound δ/(2m). Moreover,

sup
{|x| : x ∈ Ik(δ)

}≤ R + ∣∣log(δ/2)
∣∣+ logm,

for any δ ∈ (0,1/2) and all k = 0, . . . ,m. Finally, by the tail condition (5.4) on f , the proof is
completed. �

Proof of Lemma 5.4. The total variation distance between N(nq̃(θ,F ),nQ̃(θ,F )−nq̃(θ,F )×
q̃(θ,F )T ) and L(τ (N∗∗) | V ) is bounded from above by

1(−∞,ζ )(V ) + 1[ζ,∞)(V )

· TV
(
N
(
nq̃(θ,F ),n3(Q̃(θ,F ) − q̃(θ,F )q̃(θ,F )T

)
/V 2),

N
(
nq̃(θ,F ),n

(
Q̃(θ,F ) − q̃(θ,F )q̃(θ,F )T

)))
≤ 1(−∞,ζ )(V ) + 1[ζ,∞)(V ) · H

(
N
(
0,
(
n2/V 2)I),N(0, I )

)
≤ 1(−∞,ζ )(V ) +√

2(m + 1) · 1[ζ,∞)(V ) · ∣∣n2/V 2 − 1
∣∣,

where H denotes the Hellinger distance and I the (m + 1) × (m + 1)-identity matrix. Therein
equation (A.4) in Reiß [30] has been used to bound the Hellinger distance between normal dis-
tributions. Applying the expectation to the above term, we obtain

P F
θ,F (V < ζ) +√

2(m + 1)ζ−2E
∣∣n2 − V 2

∣∣≤ 4/n + 4
√

2(m + 1)
(
2n3/2 + n

)
/n2,
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as LF
θ,F (V ) ∼ N(n,n) and ζ = n/2. Thanks to the conditions on mn in Theorem 5.3, the above

expression tends to zero uniformly in θ ∈ 
 and F ∈ F . �

Proof of Theorem 6.1. We consider that

P D
θ,F (θ /∈ Ê | N) ≤ 1[0,n)(N0 + Nm)P D

θ,F

(
εT �N(ϑ)−1/2�N

(
T ∗∗)�N(ϑ)−1/2ε > ι | N)

+ P D
θ,F (N0 + Nm = n)

≤ 1[0,n)(N0 + Nm)P D
θ,F

(|ε|2 · {1 + 6nm3/2
∥∥{�N(ϑ)

}−1/2∥∥3|ε|}> ι | N)
+ P D

θ,F (N0 + Nm = n),

where ‖ · ‖ denotes the usual matrix norm which is induced by the Euclidean metric; we have
used that

sup
x∈Rm−1

sup
l,j,j ′

∣∣∣∣ ∂3

∂xl∂xj ∂xj ′
�N(x)

∣∣∣∣≤ 6n.

By the Lemmata 4.3 and 5.1, we deduce that

P D
θ,F (θ /∈ Ê) ≤ 2P D

θ,F (N0 + Nm > ρn) + P
(|ε| > hnn

1/2m−9/2)
+ P

(|ε|2 · (1 + 6c(1 − ρ)−3/2hn

)
> ι

)
,

for some sequence (hn)n such that (hnmn)n ↓ 0 (with m = mn) but (h2
nnm−10

n )n ↑ ∞, some
constant c > 0 only depending on R and some fixed ρ ∈ (0,1) from Lemma 5.2. Taking the
supremum over θ ∈ 
 and F ∈ F and, then, the limit superior, as n → ∞, on both sides of the
above inequality we conclude that

lim sup
n→∞

sup
θ,F

P D
θ,F (θ /∈ Ê) ≤ lim sup

n→∞
P
(|ε|2 > ι

)= α,

where we have used Lemma 5.2 and the fact that the χ2(m − 1)-density, as a consecutive se-
quence of convolutions, is bounded uniformly with respect to m where ι � m (since α ∈ (0,1) is
fixed). Moreover the choice of ι is crucial in the last step.

The maximal length of an axis ê of Ê turns out to be 2/
√

λmin where λmin is the small-
est positive eigenvalue of the matrix Z(Z†Z)−1�N(T ∗∗)(Z†Z)−1Z†. For all x ∈ R

m with∑m
j=1 xj = 0, we have |(Z†Z)−1Z†x| ≥ |x|. Therefore, λmin is bounded from below by the

smallest eigenvalue λ′
min of the matrix �N(T ∗∗). Then it follows from the Lemmata 4.3 and 5.1

that

λ′
min ≥ const. · {(1 − ρ)n/m2

n − (1 − ρ)−1/2|ε| · mn/n1/2},
holds on the event {N0 + Nm ≤ ρn}. Using Lemma 5.2, we establish that

1/λmin =OP

(
m2

n/n
)
,

uniformly with respect to θ and F . �
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